Decoding Strategies for the 0/1 Multi-objective Unit Commitment Problem

S. Jacquin^{1,2} Lucien Mousin ¹ I. Machado ³ L. Jourdan^{1,2} E.G. Talbi ^{1,2}

¹Inria Lille - Nord Europe, DOLPHIN Project-team

²University Lille 1, LIFL, UMR CNRS 8022

³University of Flumisende, Brasil

Journées Franciliennes de Recherche Opérationnelle 2015

イロト 不得 とくほ とくほ とうほ

- The Biobjective Unit Commitment Problem
- 2 Solving method for the mono-objective UCP
- Oifficulties of the MO-UCP
- 4 Solving method

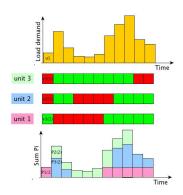
ヘロト 人間 ト ヘヨト ヘヨト

э

The Biobjective Unit Commitment Problem

Solving method for the mono-objective UCP Difficulties of the MO-UCP Solving method Results Conclusion

Unit Commitment Problem



MO-UCP

- The UCP is to give:
 - The on/off scheduling of each production unit (*v*_{*i*,*t*}).
 - The exact production of each turned on unit (*p_{i,t}*).
- Such that :
 - The demand is met (u_t) .
 - Operational constraints are met.
- Objectives Minimize:
 - the production cost
 - the emission of SO₂ and CO₂.

The Biobjective Unit Commitment Problem Solving method for the mono-objective UCP

Difficulties of the MO-UCP Solving method Results Conclusion

Unit Commitment Problem

Objective functions

- Production cost:
 - Fuel cost : quadratic function of the production.
 - Start up cost : depend on how long a untit have been turned off before being turned of.
- Emission cost : quadratic function of the production.

ヘロト 人間 ト ヘヨト ヘヨト

The Biobjective Unit Commitment Problem

Solving method for the mono-objective UCP Difficulties of the MO-UCP Solving method Results Conclusion

Unit Commitment Problem

Constraints

- Unit output constraints.
- Spinning reserve constraints.
- Minimum up time limit.
- Minimum down time limit.

ヘロト ヘアト ヘビト ヘビト

э

Solving method for the mono-objective UCP

2 stages hierarchical problem

- On/off scheduling sub-problem => fix the binary variables
- dispatching sub-problem => fix the continuous variables

・ロット (雪) () () () ()

Economic dispatching problem

For a given on/off scheduling the dispatching problem is :

$$\min_{p} (\sum_{t} \sum_{i, v_{i,t}=1} a_1 p_{i,t}^2 + a_2 p_{i,t} + a_3)$$

such that :

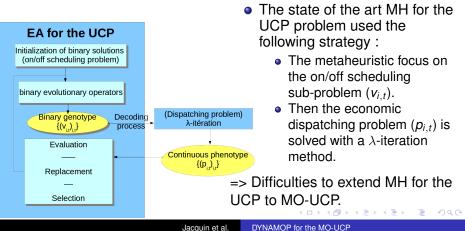
• demand is met :
$$\sum_{i,v_{i,t}=1} p_{i,t} = u_t \ \forall t.$$

• capacity constraints are met : $p_{i,min} \le p_{i,t} \le p_{i,max}$ $\forall i, t, v_{i,t} = 1.$

=> Continuous convex problem that can easily be solve exactly with a λ -iteration method.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

General framework of EA for the mono-objective UCP



Results Conclusion

Decoding Problem for the MO-UCP

Multi-objective dispatching problem

$$\min_{p} \left(\sum_{t} \sum_{i, v_{i,t}=1} a_1 p_{i,t}^2 + a_2 p_{i,t} + a_3; \sum_{t} \sum_{i, v_{i,t}=1} b_1 p_{i,t}^2 + b_2 p_{i,t} + b_3 \right)$$

such that :

• demand is met : $\sum_{i,v_{i,t}=1} p_{i,t} = u_t \ \forall t.$

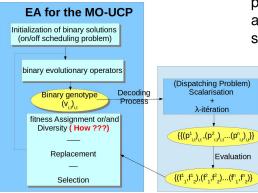
• capacity constraints are met : $p_{i,min} \le p_{i,t} \le p_{i,max}$ $\forall i, t, v_{i,t} = 1.$

=> Convex Pareto front => Efficiency of the weighted sum method => interest of decoding

・ロト ・ 理 ト ・ ヨ ト ・

Solving method Results Conclusion

Decoding Problem for the MO-UCP



MO dispatching problem=> Many phenotypic solutions can be attached to one single genotypic solution:

- "How to efficiently attach a single phenotypic solution to each genotypic solution?"
- "How to evaluate the quality of a genotypic solution corresponding to many phenotypic solutions?"

イロト イポト イヨト イヨト

Solving method

Results Conclusion

Solving method

Solving method

- We propose a simple genetic algorithm that will be applied with 3 decoding strategies:
 - 2 mono-objectives decoders;
 - 1 multi-objective decoder.

ヘロト 人間 ト ヘヨト ヘヨト

э

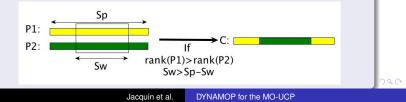
Results Conclusion

Solving method

Genetic algorithm based NSGA-II

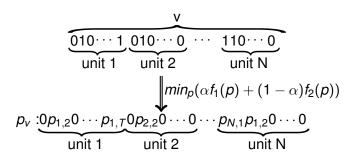
- Representation : binary vectors :
- Mutations : Bit flip and Window mutations.

Crossovers: 1-point crossover and an Intelligent 2-points crossover.



> Results Conclusion

Decoding strategy : Naive Approach



Naive Approach

A single phenotypic solution p_v is associated with a genotypic solution v. This solution is obtained in solving the aggregated dispatching problem with a fixed weight α .

13/27

Results Conclusion

Decoding strategy : Naive Approach

Drawback of the naive approach

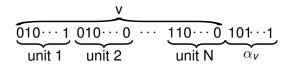
Not all Pareto optimal solutions are reachable

ヘロト ヘアト ヘビト ヘビト

э

> Results Conclusion

Decoding strategy : Scalarized decoding



Scalarized decoding

- A weight of scalarization α_ν is associated with each solution ν.
- This weight is use to attach a single phenotypic solution p_v to v.

< < >> < <</>

(문) (문)

Conclusion

Decoding strategy : Scalarized decoding

Adaptations on the mutations

- 1-bit-flip mutation and the window mutation : applied only on the bit corresonding to *v*.
- New mutation : replaced α_ν by a value chosen randomly between 0 and 1 with a normal distribution centered on its original value.

Conclusion

Decoding Strategie : Multi decoding embedded approach

	u	
010 · · · 1	010 · · · 0	 $110 \cdots 0$
unit 1	unit 2	unit N

Fig. 3. representation genotypic of a solution u

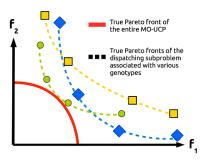
Multi decoding embedded approach

 A Pareto Front of n_α + 1 solutions is attached with each genotypic solution.

イロト イポト イヨト イヨト

Conclusion

Decoding Strategie : Multi decoding embedded approach



• Decoded-NSGAII :

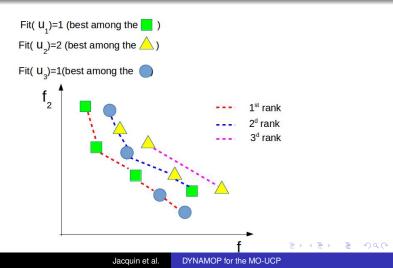
 How to adapt the Fitness Assignment strategy ? (rank)

< 17 ▶

 How to adapt the Diversity Assignment strategy ? crowding distance

Conclusio

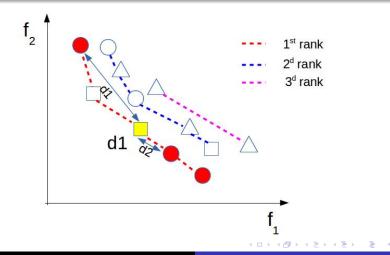
Fitness Assignment



Solving method

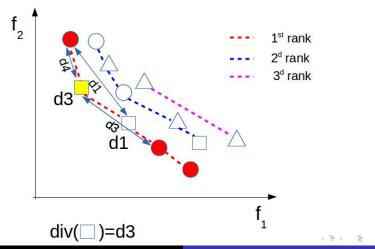
Results

Diversity assignment



Results

Diversity assignment



Experimental Protocol

- Instances: 10, 40 and 100-units data.
- Performance Assessment: *ϵ*-indicator and hypervolume difference indicator.
- Experimental design:
 - Parameter setting: Use of Irace a R package.
 - Population size fixed to 100 individuals.
 - Stopping criterion: convergence time of the algorithms.
 - 20 runs launched for each case and each decoder, results are compared with PISA using Friedman statistical test with a p-value of 0.005.

ヘロト 人間 ト ヘヨト ヘヨト

Results

Cas 10 unités

Decoder	Naive	Scalarized	Multi
Naive	-	=	<
Scalarized	=	-	<
Multi	>	>	-

Indicator	$I_{\varepsilon+}^{1}$		I_H^-	
Decoder	best	mean	best	mean
Naive	0.736	0.738	0.451	0.455
Scalarized	0.719	0.738	0.433	0.454
Multi	0.709	0.712	0.422	0.425

<ロ> <問> <問> < 因> < 因>

Results

Cas 40 unités

Decoder	Naive	Scalarized	Multi
Naive	-	<	<
Scalirized	>	-	<
Multi	>	>	-

Indicator	$I_{\varepsilon+}^{1}$		I_{H}^{-}	
Decoder	best	mean	best	mean
Naive	0.195	0.333	0.346	0.508
Scalarized	0.181	0.233	0.208	0.377
Multi	0.00129	0.0840	0.000880	0.100

<ロ> <問> <問> < 因> < 因>

Results

Cas 100 unités

Decoder	Naive	Scalarized	Multi
Naive	-	<	<
Scalirized	>	-	<
Multi	>	>	-

Indicator	$I_{\varepsilon+}^{1}$		I_H^-	
Decoder	best	mean	best	mean
Naive	0.306	0.573	0.549	0.864
Scalarized	0.016	0.404	0.0169	0.636
Multi	0.00389	0.150	0.000177	0.264

<ロ> <問> <問> < 因> < 因>

Conclusion

Contributions

- Extension of the indirect representation in UCP to the MO-UCP.
- Proposition and comparison of 3 decoder systems.
- **Conclusion:** The interest of the Multi decoding embedded approach has been demonstrated.

Perspectives

- Generalized the Multi-decoder strategy to any algorithm.
- Apply this strategy on some others problems.

ヘロト 人間 ト ヘヨト ヘヨト

э

Merci pour votre attention

Jacquin et al. DYNAMOP for the MO-UCP

ヘロン ヘアン ヘビン ヘビン

æ