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Store-forward routing

Routing through a deterministic delay-tolerant networks

Motivations
Making use of knowledge about node mobility (and possibilities of collaboration)
to efficiently route information from the source nodes to a set of recipient nodes
within a given time horizon.
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DakNet project

DakNet – a Road To Universal Broadband Connectivity
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Formal description

In this work, we consider only one datum (split into several identified datum units)
to be delivered to all recipient nodes. A fixed amount of data can be transmitted
during each contact. Formally, we consider:

l a set N = {1, 2, . . . , n} of n nodes,

l a datum D = {1, 2, . . . , u} of u datum units,

l each nodes i ∈ N stores a subset Oi ⊆ D of datum units at the outset,

l a subset R ⊆ N of recipients (these must recover all datum units),

l and a sequence σ = {σ1, σ2, . . . , σm} of m contacts. During each contact
σc = (sc , rc) ∈ N 2, at most one datum unit can be transmitted from the
sending node sc to the receiving node rc .

Objective
Finding a valid transfer plan, i.e. a function that indicates how to route the datum
units from their sources to all recipient nodes.
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Definition
A transfer plan is a function:

φ : {1, 2, . . . ,m} 7→ {∅, {1}, {2}, . . . , {u}}

where φ(c) designates the datum unit received by rc during contact σc .

Definition
Given a transfer plan φ, we associate with each node i ∈ N , a set of states Ot

i
defined by: O0

i = Oi ; ∀c ∈ {1, 2, . . . ,m}

Oc
rc
= Oc−1

rc
∪ φ(c) and ∀i ∈ N\{rc},Oc

i = Oc−1
i

Definition
A transfer plan φ is said to be valid if every node always transfer a datum unit it
possesses, i.e. ∀c ∈ {1, 2, . . . ,m}, φ(c) ∈ {∅} ∪ {{k} | k ∈ Oc−1

sc
}.
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Objective function

Objective
Finding a transfer plan minimizing the dissemination length, i.e. the smallest index t at which every
recipient is served. This problem is equivalent to find a set of arc-disjoint evolving branchings, whose
roots are given by the source nodes, whose terminals are given by the recipient nodes, and such that
the last transfer occurs at the earliest.

Evolving Graphs [Ferreira,2004]
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N = R = {1, 2, . . . , 6} ;D = {1,2} ;O1 = {1, 2} ;O2 = {1} ;O3 = · · · = O6 = ∅ ;
σ = {(1, 6), (6, 1), (6, 5), (1, 3), (3, 5), (5, 4), . . . , (5, 6)}
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Complexity

Theorem
The dissemination problem is strongly NP-Hard.

Theorem
The dissemination problem can be solved in polynomial time

if u = 1 (only one datum unit) or if |R| = 1 (only one recipient node).
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Minimal transfer plans

Definition
A transfer plan φ is minimal if every transfer φ(c), c ∈ {1, 2, . . . ,m} is either null
(i.e. φ(c) = ∅) or improving (i.e. Oc−1

rc
⊂ Oc

rc
).

Theorem
The set of minimal transfer plans is dominant.
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Strictly-active transfer plans

Definition
A transfer plan φ is strictly-active if no transfer is null, while it could has been
improving, i.e. ∀c ∈ {1, 2, . . . ,m}, if ∃k ∈ D such that k ∈ Oc−1

sc
and k /∈ Oc−1

rc
,

then φ(c) is improving.

Theorem
The set of strictly-active transfer plans is dominant.

Theorem
The set of minimal strictly-active transfer plans is dominant.
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The transfer graph

An instance of the dissemination problem

1

{1, 2}

2 {2, 3}

3 4

{3}
1

2
3

4

The associated transfer graph

v{1} v{2} v{3}

vφ(1)

φ(1) = ∅

vφ(2)

vφ(3) vφ(4)

φ(3) = φ(2)

φ(4) = φ(3)

φ(2) = {3}
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The transfer graph

Transfer graph and subsets of transfer plans

v{1} v{2} v{3}

vφ(1)

χD(
vφ(1), 1) = 0

vφ(2)

vφ(3) vφ(4)

{true}

χA(
vφ(4), vφ(3)) = {true, false}

{f
al
se

}

{true}

Additional vertex/arc properties

− χφ(
v{3}) = {{3}} − χD(

v{1}, 3) =∞
− χφ(

vφ(1)) = {∅} − χD(
v{2}, 1) = 0

− χφ(
vφ(2)) = {{2}} − χD(

v{3}, 3) = 2
− χφ(

vφ(4)) = {∅, {3}} − χD(
v{3}, 3) =∞
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Elementary reasonings

Preprocessing procedures

For each contact σc ∈ σ, we try to show that all the transfer values possessed
by sc are also possessed by node rc when contact σc occurs. If so, the contact
is removed in accordance with the minimality rule.
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Elementary reasonings

Domain consistency

v z2
v z1

v z3

vφ(c)

{k} /∈ χφ(
v z1) {k} /∈ χφ(

v z2) {k} /∈ χφ(
v z3)

!
{k} /∈ χφ(

vφ(c))

v z1

v z2

χφ(
v z1) = {{1}, {2}}

χφ(
v z2) = {{3}, {4}}

6=%
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Elementary reasonings

Bottom-up procedure

v z1 . . . v zk . . . v zα

. . .v zk1
v zkβ

v φ(c)

⊆ Oc−1
rc ⊆ Oc−1

rc ⊆ Oc−1
rc

⊆ Oc−1
rc

⊆ Oc−1
rc

⊆ Oc−1
rc

[
c − 1 ≥ χD(

v zkβ , rc)
]

!

!
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Elementary reasonings

Top-down procedure

s1

s2

i

φ(c1)

φ(c2)

6=

Oc1−1
s1 = {1, 2}

Oc2−1
s2 = {1, 2}

Oc2
i = {1, 2}

!
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Elementary reasonings

Delivery consistency

Node 3 must receive datum unit 1 before time 3 to forward it to node 4.

2

1

3 4
χD(

v{1}, 4) = 2
χD(

v{1}, 4) = 3

χD(
v{1}, 3) = 1

χD(
v{1}, 3) =�∞ 3

{1}

{1} 4

1
2

3

Thus σ4 occurs too late and transfer φ(1) = {1} is necessary.

2

1

3 4
χD(

v{1}, 4) = 2
χD(

v{1}, 4) = 3

χD(
v{1}, 3) = 1

χD(
v{1}, 3) = 3

{1}

{1} �4

φ(1) = {1}
2

3
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Branching algorithm

The model contains:

l some variables to represent the transfer plan;

l some variables to represent what nodes possess;

l some variables to compute the dissemination length;

l some constraints to bind the variables, and to express the problem;

l some constraints to express the dominance rules.

The transfers are set sequentially. At each node of the search tree, the solver
selects the smallest index c ∈ {1, 2, . . . ,m} for which the value of transfer φ(c)
has not yet been decided, then creates one branch per possible value. The
order in which these branches are visited is heuristic. We first seek to identify
the most “critical” transfers in terms of feasibility or, in case of a tie, we seek to
balance the dissemination of the datum units.
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Lower bounds

The first lower bound is based on the fact that each recipient node i ∈ R needs
to receive α = u − |Oi | datum units.

Proposition
Let σx ∈ σ be the αth contact σc = (sc , i) ∈ σ during which a datum unit
k ∈ D\Oi can be transferred to node i . x is a valid lower bound.
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Lower bounds

Assignment problem

available transfers

required units

φ(3)

φ(5)

φ(8)

φ(9)

{1}

{2}

{3}
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Symmetry-breaking techniques

Symmetric sub-branchings

1{1, 2} 6

2

{2}

3

4

5

φ(
1)

=
{1}

φ(3) = {2}

φ(2) = {1}

φ(7) = {2}

φ(4) = {1}

φ(5) = ∅

9

11 10

8

6
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Symmetry-breaking techniques

Symmetric sub-branchings

1{1, 2} 6

2

{2}

3

4

5

φ(
1)

=
{1}

φ(3) = {2}

φ(2) = {1}

φ(7) = {1}

φ(4) = {2}

φ(5) = ∅

9

11 10

8

6
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Symmetry-breaking techniques

Consecutive contacts

3

1

2

{1, 2}

{1, 2}

O2
3 = {1, 2}

3

1

2

{1, 2}

{1, 2}

1

4

2

3

{2, 3}

{1, 2, 3} 5

{1, 2, 4}

{1, 3}

{
φ(3) ∈ {{1},��{2}, {4}}
φ(4) ∈ {��{1},��{3}} → ∅

φ(1) = {1}

φ(2) = {2}

φ(1) = {2}

φ(2) = {1}

φ(1) = {2}

φ(2) = {3}

3 4
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Nogood recording

When we set transfer φ(t), we compute the subset of datum units possessed by
each node. If we have already built a transfer plan such that all nodes
possessed exactly the same datum units (or even more) at time t , then we can
prune the current node.
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CPLEX

name solved (%) feas (%) cpu (s) gap (%)

1 3u10n 100 - 0.91 -

4u20n 100 - 14.1 -

2
4u50n 100 - 30.2 -

4u100n 95.0 5.0 240 4.6

5u50n 95.7 4.3 266 14.0

3
10u10n 81.3 12.5 1317 20.1

50u10n 56.3 18.8 2563 2.6

100u10n 33.3 16.7 3116 0.28
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CPLEX+Preprocessings

name solved feas cpu gap prep rem fcd

1
3u10n 100 - 0.47 - 0.42 49.0 5.3

4u20n 100 - 2.0 - 1.4 26.9 6.7

2

4u50n 100 - 4.1 - 2.5 21.0 6.7

4u100n 100 - 20.1 - 5.7 20.3 5.6

5u50n 100 - 19.4 - 2.7 13.1 7.4

3

10u10n 93.8 6.3 464 10.17 12.9 14.6 15.5

50u10n 68.8 6.3 1691 1.06 156 8.8 8.9

100u10n 66.7 0.00 3305 - 601 1.6 1.8
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CP-Optimizer+Preprocessings

name algorithm solved feas cpu

1
3u10n sym+ngr+wlb 100 - 0.39

4u20n sym+ngr+wlb 100 - 1.3

2

4u50n sym+ngr+wlb 100 - 2.7

4u100n sym+ngr+wlb 100 - 88.5

5u50n sym+ngr+wlb 100 - 20.7

3

10u10n sym+ngr+slb 100 - 36.1

50u10n sym+ngr+slb 87.5 12.0 640

100u10n sym+ngr+slb 100 - 1220
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Conclusion

l An extensible, intuitive and generic framework.

l Efficient and “user-friendly” solvers.

l Ongoing research – the robust dissemination problem !
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