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Bilevel Optimization

General bilevel optimization problem

min
x∈Rn1 ,y∈Rn2

F (x , y) (1)

G (x , y) ≤ 0 (2)

y ∈ arg min
y ′∈Rn2

{f (x , y ′) : g(x , y ′) ≤ 0 } (3)

• Stackelberg game: two-person sequential game

• Leader takes follower’s optimal reaction into account

• Nx = {1, . . . , n1}, Ny = {1, . . . , n2}
• n = n1 + n2: total number of decision variables
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Ivana Ljubić (ESSEC) Exact General-Purpose Solvers for MIBLPs JFRO 2018, March 26, Paris 3



Bilevel Optimization

General bilevel optimization problem

min
x∈Rn1 ,y∈Rn2

F (x , y) (1)

G (x , y) ≤ 0 (2)

y ∈ arg min
y ′∈Rn2

{f (x , y ′) : g(x , y ′) ≤ 0 } (3)Leader

Follower

• Stackelberg game: two-person sequential game

• Leader takes follower’s optimal reaction into account

• Nx = {1, . . . , n1}, Ny = {1, . . . , n2}
• n = n1 + n2: total number of decision variables
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Optimistic vs Pessimistic Solution

The Stackelberg game under:

• Perfect information: both agents have perfect knowledge of each others
strategy

• Rationality: agents act optimally, according to their respective goals

• What if there are multiple optimal solutions for the follower?
I Optimistic Solution: among the follower’s solution, the one leading to the

best outcome for the leader is assumed
I Pessimistic Solution: among the follower’s solution, the one leading to the

worst outcome for the leader is assumed
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Ivana Ljubić (ESSEC) Exact General-Purpose Solvers for MIBLPs JFRO 2018, March 26, Paris 4



Our Focus: Mixed-Integer Bilevel Linear Programs (MIBLP)

(MIBLP) min cTx x + cTy y (4)

Gxx + Gyy ≤ 0 (5)

y ∈ arg min{dT y : Ax + By ≤ 0, (6)

yj integer,∀j ∈ Jy} (7)

xj integer,∀j ∈ Jx (8)

(x , y) ∈ Rn (9)

where cx , cy ,Gx ,Gy ,A,B are given rational matrices/vectors of appropriate size.
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Complexity

Bilevel Linear Programs

Bilevel LPs are strongly NP-hard (Audet et al. [1997], Hansen et al. [1992]).

min cT x

Ax = b

x ∈ {0, 1}
⇔

min cT x

Ax = b

v = 0

v ∈ arg max{w : w ≤ x ,w ≤ 1− x ,w ≥ 0}

x

w
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Complexity

Bilevel Mixed-Integer Linear Programs

MIBLP is ΣP
2 -hard (Lodi et al. [2014]): there is no way of formulating MIBLP as a

MILP of polynomial size unless the polynomial hierarchy collapses.
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Overview

Part I
• Develop a finitely convergent branch-and-bound approach (under certain

conditions)

• Capable of dealing with unboundedness and infeasibility

• Introduce intersection cuts to speed-up convergence

Part II
• Introduce a fully-fledged branch-and-cut for MIBLPs
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STEP 1: VALUE FUNCTION
REFORMULATION
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Our Focus: Mixed-Integer Bilevel Linear Programs (MIBLP)
Value Function Reformulation:

(MIBLP) min cTx x + cTy y (10)

Gxx + Gyy ≤ 0 (11)

Ax + By ≤ 0 (12)

(x , y) ∈ Rn (13)

dT y ≤ Φ(x) (14)

xj integer, ∀j ∈ Jx (15)

yj integer, ∀j ∈ Jy (16)

where Φ(x) is non-convex, non-continuous:

Φ(x) = min{dT y : Ax + By ≤ 0, yj integer,∀j ∈ Jy}

• dropping dT y ≤ Φ(x) → High Point Relaxation (HPR) which is a MILP →
we can use MILP solvers with all their tricks

• let HPR be LP-relaxation of HPR
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Example

• notorious example from Moore and Bard [1990]

• HPR

• value-function reformulation

min
x∈Z
−x − 10y

y ∈ arg min
y ′∈Z
{y ′ :

−25x + 20y ′ ≤ 30

x + 2y ′ ≤ 10

2x − y ′ ≤ 15

2x + 10y ′ ≥ 15} x

y

1 2 3 4 5 6 7 8

1

2

3

4

Φ(x)
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General Idea

General Procedure

• Start with the HPR- (or HPR-)relaxation

• Get rid of bilevel infeasible solutions on the fly

• Apply branch-and-bound or branch-and-cut algorithm

There are some unexpected difficulties along the way...

• Optimal solution can be unattainable

• HPR can be unbounded
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(Un)expected Difficulties: Unattainable Solutions

Example from Köppe et al. [2010]

Continuous variables in the leader, integer variables in the follower ⇒ optimal
solution may be unattainable

inf
x,y

x − y

0 ≤ x ≤ 1

y ∈ arg min
y ′
{y ′ : y ′ ≥ x , 0 ≤ y ′ ≤ 1, y ′ ∈ Z}.

Equivalent to
inf
x
{x − dxe : 0 ≤ x ≤ 1}

x

y

1

1

Bilevel feasible set is neither convex nor closed.
Crucial assumption for us: follower subproblem
depends only on integer leader variables JF ⊆ Jx .
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(Un)expected Difficulties: Unbounded HPR-Relaxation

Example from Xu and Wang [2014]

Unboundness of HPR-relaxation does not allow to draw conclusions on the
optimal solution of MIBLP

• unbounded

• infeasible

• admit an optimal solution

max
x,y

x + y

0 ≤ x ≤ 2

x ∈ Z
y ∈ arg max

y ′
{d · y ′ : y ′ ≥ x , y ′ ∈ Z}.

max
x,y

x + y

0 ≤ x ≤ 2

y ≥ x

x , y ∈ Z

d = 1 ⇒ Φ(x) =∞ (MIBLP infeasible)

d = 0 ⇒ Φ(x) feasible for all y ∈ Z (MIBLP unbounded)

d = −1 ⇒ x∗ = 2, y∗ = 2 (optimal MIBLP solution)
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STEP 2: BRANCH-AND-CUT
ALGORITHM
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Assumption

All the integer-constrained variables x and y have finite lower and upper bounds
both in HPR and in the follower MILP.

Assumption

Continuous leader variables xj (if any) do not appear in the follower problem.

If for all HPR solutions, the follower MILP is unbounded ⇒ MIBLP is infeasible.
Preprocessing (solving a single LP) allows to check this. Hence:

Assumption

For an arbitrary HPR solution, the follower MILP is well defined.
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Algorithm 1: A basic branch-and-bound scheme for MIBLP

Apply a standard LP-based B&B to HPR, inhibit incumbent update, and
node-fathoming due to unboundedness of HPR

for each unfathomed B&B node where standard branching cannot be
performed do

if HPR is not unbounded then
Let (x∗, y∗) be the HPR solution at the current node;
Compute Φ(x∗) by solving the follower MILP for x = x∗;

if dT y∗ ≤ Φ(x∗) then
The current solution (x∗, y∗) is bilevel feasible: update the incumbent,

fathom the current node, and continue with another node
end

end
if all variables xj with j ∈ JF are fixed by branching (x∗

F ) then
Refinement: Solve HPR with x = x∗

F , dT y ≤ Φ(x∗
F ). If unbounded return

UNBOUNDED;
Possibly update the incumbent with the resulting solution (x̂ , ŷ), if any;
Fathom the current node

else
Branch on any xj (j ∈ JF ) not fixed by branching yet (even if x∗

j is integer
in the LP-solution at the node)

end

end
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Our Goal: Design MILP-based solver for MIBLP

For the rest of presentation: Assume HPR value is bounded.

Our Goal
solve MIBLP by using a standard simplex-based branch-and-cut algorithm;
enforce dT y ≤ Φ(x) on the fly, by adding cutting planes

• given optimal vertex (x∗, y∗) of HPR
I (x∗, y∗) infeasible for HPR (i.e., fractional) → branch as usual
I (x∗, y∗) feasible for HPR and f (x∗, y∗) ≤ Φ(x∗) → update the incumbent as

usual
I (x∗, y∗) feasible for HPR and f (x∗, y∗) > Φ(x∗), i.e., bilevel-infeasible → we

need to do something!
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I (x∗, y∗) feasible for HPR and f (x∗, y∗) > Φ(x∗), i.e., bilevel-infeasible → we

need to do something!

• Moore and Bard [1990] (Branch-and-Bound)
I branching to cut-off bilevel infeasible solutions
I no y -variables in leader-constraints
I either all x-variables integer or all y -variables continuous
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usual
I (x∗, y∗) feasible for HPR and f (x∗, y∗) > Φ(x∗), i.e., bilevel-infeasible → we

need to do something!

• DeNegre [2011], DeNegre & Ralphs (Branch-and-Cut)
I cuts based on slack
I needs all variables and coefficients to be integer
I open-source solver MibS
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Our Goal: Design MILP-based solver for MIBLP

For the rest of presentation: Assume HPR value is bounded.

Our Goal
solve MIBLP by using a standard simplex-based branch-and-cut algorithm;
enforce dT y ≤ Φ(x) on the fly, by adding cutting planes
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I (x∗, y∗) feasible for HPR and f (x∗, y∗) > Φ(x∗), i.e., bilevel-infeasible → we

need to do something!

• Xu and Wang [2014], Wang and Xu [2017] (Branch-and-Bound)
I multiway branching to cut-off bilevel infeasible solutions
I all x-variables integer and bounded, follower coefficients of x-variables must be

integer
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Our Goal: Design MILP-based solver for MIBLP

For the rest of presentation: Assume HPR value is bounded.

Our Goal
solve MIBLP by using a standard simplex-based branch-and-cut algorithm;
enforce dT y ≤ Φ(x) on the fly, by adding cutting planes

• given optimal vertex (x∗, y∗) of HPR
I (x∗, y∗) infeasible for HPR (i.e., fractional) → branch as usual
I (x∗, y∗) feasible for HPR and f (x∗, y∗) ≤ Φ(x∗) → update the incumbent as

usual
I (x∗, y∗) feasible for HPR and f (x∗, y∗) > Φ(x∗), i.e., bilevel-infeasible → we

need to do something!

• Our Approach (Branch-and-Cut)
I Use Intersection Cuts (Balas [1971]) to cut off bilevel infeasible solutions
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STEP 3: INTERSECTION CUTS
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Intersection Cuts (ICs)

• powerful tool to separate a bilevel infeasible point (x∗, y∗) from a set of
bilevel feasible points (X ,Y ) by a linear cut

IC

• what we need to derive ICs
I a cone pointed at (x∗, y∗) containing all (X ,Y ) (if (x∗, y∗) is a vertex of

HPR-relaxation, a possible cone comes from LP-basis)
I a convex set S with (x∗, y∗) but no bilevel feasible points ((x , y) ∈ (X ,Y )) in

its interior
I important: (x∗, y∗) should not be on the frontier of S .
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Intersection Cuts for Bilevel Optimization

• we need a bilevel-free set S

Theorem

For any feasible solution of the follower ŷ ∈ Rn2 , the set

S(ŷ) = {(x , y) ∈ Rn : dT y > dT ŷ , Ax + Bŷ ≤ b}

does not contain any bilevel-feasible point (not even on its frontier).

• note: S(ŷ) is a polyhedron

• problem: bilevel-infeasible (x∗, y∗) can be on the frontier of bilevel-free set
S → IC based on S(ŷ) may not be able to cut off (x∗, y∗)
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Intersection Cuts for Bilevel Optimization

Assumption

Ax + By − b is integer for all HPR solutions (x , y).

Theorem

Under the previous assumption, for any feasible solution of the follower ŷ ∈ Rn2 ,
the extended polyhedron

S+(ŷ) = {(x , y) ∈ Rn : dT y ≥ dT ŷ , Ax + Bŷ ≤ b + 1}, (17)

where 1 = (1, · · · , 1) denote a vector of all ones of suitable size, does not contain
any bilevel feasible point in its interior.
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Intersection Cuts for Bilevel Optimization

• application sketch on the example from Moore and Bard [1990]

• solve HPR→ obtain (x∗, y∗) = (2, 4) and LP-cone, take ŷ = 2

• solve HPR again → obtain (x∗, y∗) = (6, 2) and LP-cone, take ŷ = 1

min
x∈Z
−x − 10y

y ∈ arg min
y ′∈Z
{y ′ :

−25x + 20y ′ ≤ 30

x + 2y ′ ≤ 10

2x − y ′ ≤ 15

2x + 10y ′ ≥ 15} x

y

1 2 3 4 5 6 7 8

1

2

3

4
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min
x∈Z
−x − 10y

y ∈ arg min
y ′∈Z
{y ′ :

−25x + 20y ′ ≤ 30

x + 2y ′ ≤ 10

2x − y ′ ≤ 15

2x + 10y ′ ≥ 15} x

y

1 2 3 4 5 6 7 8

1

2

3

4
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• solve HPR again → obtain (x∗, y∗) = (6, 2) and LP-cone, take ŷ = 1
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Separating Intersection Cuts

• given bilevel infeasible (x∗, y∗), how do we determine convex bilevel-free set
S+(ŷ)?

• a natural option: use the optimal solution ŷ of the follower subproblem
for x = x∗

I needs to be solved in any case to check bilevel-feasibility of (x∗, y∗)

• separation procedure is a MILP:

SEP− 1 : ŷ ∈ arg min{dT y

Ax∗ + By ≤ b

yj integer ∀j ∈ Jy}

SEP-1 maximizes distance of (x∗, y∗) to dT y ≥ dT ŷ .
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S+(ŷ)?

• a natural option: use the optimal solution ŷ of the follower subproblem
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COMPUTATIONAL RESULTS
(First insights about usefulness of

intersection cuts)
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Computational Results

C, CPLEX 12.6.3, Intel Xeon E3-1220V2 3.1 GHz, four threads

Table: Our testbed. Column #inst reports the total number of instances in the class,
while column type indicates whether the instances are binary (B) or integer (I).

Class source # inst type Notes

DENEGRE DeNegre [2011] 50 I randomly generated
INTERDICTION DeNegre [2011] 125 B interdiction inst.s
MIPLIB Fischetti et al. [2016] 57 B from MIPLIB 3.0

Table: Our tested settings.
#cutsr/#cutso : maximum number of cuts added at root node/all other nodes

Name Sep. #cutsr #cutso

SEP-1a SEP-1 20 20
SEP-1b SEP-1 20 0

BENCHMARK our benchmark code implementing cuts in DeNegre [2011]
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Computational Results

Table: Summary of obtained results. We report the number of solved instances (#), the
shifted geometric mean for computing time (t[s]) and for number of nodes (nodes), and
the average gaps (g [%]).

MIPLIB (57 inst.s) INTERDICTION (125 inst.s) DENEGRE (50 inst.s)
setting # t[s] nodes g [%] # t[s] nodes g [%] # t[s] nodes g [%]

SEP-1a 20 599 9655.9 27.65 83 148 36769.3 33.06 42 40 574.0 4.61
SEP-1b 18 660 100475.8 27.85 64 245 240859.4 48.39 45 35 12452.1 3.89

BENCHMARK 15 954 234670.7 31.78 44 496 1310639.5 63.45 38 58 27918.5 9.20
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Computational Results

Figure: Performance profile plot over all instances (classes DENEGRE, INTERDICTION and
MIPLIB).

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●●●

●●●
●●●●

●●●
●●●

● ●●●
●●●●

●●●
●●●●●

●●●●
●● ●●●

●● ●● ●● ●●● ●●●
●● ●●● ●●●●●● ●●●●● ●●●●●

● ●●●● ● ●

0

20

40

60

1 10 100 1000
No more than x times worse than best setting

P
er

ce
n
ta

g
e 

o
f 

in
st

a
n
ce

s

Setting

● SEP−1a

SEP−1b

BENCHMARK

The leftmost point of the graph for a setting s shows the percentage of instances
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PART II:
MILP-BASED SOLVER for MIBLP
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MILP-based solver for MIBLP

Basic Solution Scheme

• standard simplex-based branch-and-cut algorithm . . .

• . . . that enforces dT y ≤ Φ(x), on the fly, by adding cutting planes.

New features:

• Follower preprocessing.

• Follower Upper-Bound cuts.

• Intersection Cuts (ICs):
I New families of ICs;
I Separation of ICs.
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Follower Preprocessing

ŷ ∈ arg min{dT y

Ax + By ≤ b

l ≤ y ≤ u

yj integer ∀j ∈ Jy}

Theorem
Let yj be a follower variable and let lj be its lower bound in the follower.

If dj > 0 and Bj ≥ 0 then yj = lj in any optimal solution.

• Idea: for any x∗ ∈ Rn1 , fixing variable yj to the lower bound decreases the
follower cost and does not reduce the associated feasible set.

• Fix yj = lj in the HPR as well.
• Large impact in the performance of the algorithm.
• Observation: to preserve equivalent optimal solutions for the follower, we

require dj be strictly positive.
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Follower Preprocessing

ŷ ∈ arg min{dT y

Ax + By ≤ b

l ≤ y ≤ u

yj integer ∀j ∈ Jy}

Theorem
Let yj be a follower variable and let uj be its upper bound in the follower.

If dj < 0 and Bj ≤ 0 then yj = uj in any optimal solution.

• Idea: for any x∗ ∈ Rn1 , fixing variable yj to the upper bound decreases the
follower cost and does not reduce the associated feasible set.

• Fix yj = uj in the HPR as well.
• Large impact in the performance of the algorithm.
• Observation: to preserve equivalent optimal solutions for the follower, we

require dj be strictly negative.
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Follower Upper-Bound (FUB) cuts

Observation:
Let FUB be an upper bound for the value of the follower’s solution, independently
on the choice of x . Then:

dT y ≤ FUB

is a valid cut for HPR.

Tighter Bounds

Tighter FUB values could be obtained inside the B&B tree, but these cuts are
only locally valid.

Overrestricting the Follower

By replacing original constraints Ax + By ≤ b by more restricting ones
(independent on the choice of x), a FUB can be obtained.
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Follower Upper-Bound cuts

Theorem

Let (x−, x+) denote the bounds for the x variables at the current B&B node.
The following inequality

dT y ≤ FUB(x−, x+)

is locally valid for the current node, where

FUB(x−, x+) := min{dT y∑
j∈Nx

max{Aijx
−
j ,Aijx

+
j }+

∑
j∈Ny

Bijyj ≤ bi , i = 1, . . . ,m

yj integer, ∀j ∈ Jy}.

• FUB(x−, x+) is an overestimator of the follower objective at the current
node (all x ’s are set to their worst value).
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MORE ON INTERSECTION
CUTS
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Intersection Cuts (ICs)

• Main ingredient of our basic branch-and-cut algorithm.

• Given an infeasible x∗ and the associated simplex cone, the definition of an
IC asks for the definition of a convex set S with x∗ but no bilevel-feasible
x ∈ X in its interior.

• The choice of bilevel-free polyhedra is not unique.

• The larger the bilevel-free set, the better the IC.

Theorem (Fischetti et al. [2018])

Given ŷ ∈ Rn
2 such that ŷj integer ∀j ∈ Jy , the following set

S+(ŷ) = {(x , y) ∈ Rn : dT y ≥ dT ŷ , Ax + Bŷ ≤ b + 1}

is bilevel-feasible free.
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Other Bilevel-Free Sets can be defined

Motivated by the results Xu [2012], Wang and Xu [2017]:
Assumption: Ax + By − b is integer for all HPR solutions (x , y).

Theorem (Fischetti et al. [2017])

Given ∆ŷ ∈ Rn
2 such that dT∆ŷ < 0 and ∆ŷj integer ∀j ∈ Jy , the following set

X+(∆ŷ) = {(x , y) ∈ Rn : Ax + By + B∆ŷ ≤ b + 1}

has no bilevel-feasible points in its interior.

Proof: by contradiction. Assume (x̃ , ỹ) ∈ X+(∆ŷ) is bilevel-feasible. But then,
dT ỹ > dT (ỹ + ∆ŷ) and (x̃ , ỹ + ∆ŷ) is feasible for the follower, hence
contradiction.
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SEPARATION of INTERSECTION
CUTS
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Separation of ICs associated to S+(ŷ)

Given ŷ ∈ Rn
2 such that ŷj integer ∀j ∈ Jy , the following set

S+(ŷ) = {(x , y) ∈ Rn : dT y ≥ dT ŷ , Ax + Bŷ ≤ b + 1}

is bilevel-feasible free. How to compute ŷ?

• SEP1

ŷ ∈ arg min
y∈Rn2

{dT y : By ≤ b − Ax∗, yj integer ∀j ∈ Jy}.

I ŷ is the optimal solution of the follower when x = x∗.
I Maximize the distance of (x∗, y∗) from the facet dT y ≥ dT ŷ of S(ŷ).

• SEP2 Alternatively, try to find ŷ such that some of the facets in
Ax + bŷ ≤ b can be removed (making thus S(ŷ) larger!)
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Separation of ICs associated to S+(ŷ)
Given ŷ ∈ Rn

2 such that ŷj integer ∀j ∈ Jy , the following set

S+(ŷ) = {(x , y) ∈ Rn : dT y ≥ dT ŷ , Ax + Bŷ ≤ b + 1}
is bilevel-feasible free. How to compute ŷ?

• SEP2 (Fischetti et al. [2018])

ŷ ∈ arg min
m∑
i=1

wi

dT y ≤ dT y∗ − 1

By + s = b

si + (Lmax
i − L∗i )wi ≥ Lmax

i , ∀i = 1, . . . ,m

yj integer, ∀j ∈ Jy

s free ,w ∈ {0, 1}m

where
L∗i :=

∑
j∈Nx

Aijx
∗
j ≤ Lmax

i :=
∑
j∈Nx

max{Aijx
−
j ,Aijx

+
j }.

I wi = 0 if i-th facet of Ax + Bŷ ≤ b can be removed
I the number of “removable facets” is maximized → larger S+(ŷ).
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Separation of ICs associated to X+(∆ŷ)

Given ∆ŷ ∈ Rn
2 such that dT∆ŷ < 0 and ∆ŷj integer ∀j ∈ Jy , the following set

X+(∆ŷ) = {(x , y) ∈ Rn : Ax + By + B∆ŷ ≤ b + 1}

has no bilevel-feasible points in its interior. How to compute ∆ŷ?

• XU (Xu [2012])

∆ŷ ∈ arg min
m̃∑
i=1

ti

dT∆y ≤ −1

B∆y ≤ b − Ax∗ − By∗

∆yj integer, ∀j ∈ Jy

B∆y ≤ t and t ≥ 0.

I variable ti has value 0 in case (B̃∆y)i ≤ 0 (“removable facet”);
I “maximize the size” of the bilevel-feasible set associated with ∆ŷ .
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COMPUTATIONAL STUDY
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Settings

C, CPLEX 12.6.3, Intel Xeon E3-1220V2 3.1 GHz, four threads.

Class Source Type #Inst #OptB #Opt

DENEGRE DeNegre [2011],Ralphs and Adams [2016] I 50 45 50
MIPLIB Fischetti et al. [2016] B 57 20 27
XUWANG Xu and Wang [2014] I,C 140 140 140

INTER-KP DeNegre [2011],Ralphs and Adams [2016] B 160 79 138
INTER-KP2 Tang et al. [2016] B 150 53 150
INTER-ASSIG DeNegre [2011],Ralphs and Adams [2016] B 25 25 25
INTER-RANDOM DeNegre [2011],Ralphs and Adams [2016] B 80 - 80
INTER-CLIQUE Tang et al. [2016] B 80 10 80
INTER-FIRE Baggio et al. [2016] B 72 - 72

total 814 372 762

• #OptB = number of optimal solutions known before our work.

• #Opt = number of optimal solutions known after our work.
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Effects of FUB cuts

• Speed-ups achieved by FUB cuts for the instance set DENEGRE.
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Effects of follower preprocessing

• Speed-ups achieved using follower preprocessing.
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Combining FUB cuts and follower preprocessing

• Final gaps for settings SEP2 and SEP2++ for instance set MIPLIB, obtained
when the time-limit of one hour is reached.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

40

60

80

100

0 25 50 75 100
%gap

#
in

st
an

ce
s 

[%
]

Setting
● SEP2++

SEP2
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Effects of different ICs

• MIX++: combination of settings SEP2++ and XU++ (both ICs being separated
at each separation call).

• Performance profile on the subsets of (bilevel and interdiction) instances that
could be solved to optimality by all three settings within the given time-limit
of one hour.
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Comparison with the literature (1)

• Results for the instance set XUWANG

MIX++ Xu and Wang [2014]
n1 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 avg avg

10 3 3 3 3 2 3 2 3 2 3 2.6 1.4
60 2 0 0 1 1 1 1 1 2 2 0.9 45.6
110 2 1 2 2 1 2 1 2 2 12 2.8 111.9
160 2 2 3 2 3 1 4 1 1 3 2.1 177.9
210 2 3 1 1 3 3 3 2 5 3 2.6 1224.5
260 3 4 3 6 3 5 6 2 7 11 5.0 1006.7
310 5 10 11 14 7 16 15 8 5 3 9.4 4379.3
360 17 28 11 13 11 15 7 19 9 14 14.4 2972.4
410 19 10 29 8 21 10 9 15 23 42 18.7 4314.2
460 22 10 22 35 21 21 32 22 23 23 23.1 6581.4
B1-110 0 0 0 0 0 1 0 1 0 9 1.3 132.3
B1-160 1 1 3 1 2 1 3 0 0 2 1.3 184.4
B2-110 16 2 2 8 1 25 15 5 1 122 19.7 4379.8
B2-160 8 38 21 91 34 4 40 3 12 123 37.4 22999.7
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Comparison with the literature (2)

• Results for the instance sets INTER-KP2 (left) and INTER-CLIQUE (right)

MIX++ Tang et al. [2016]
n1 k t[s] t[s] #unsol

20 5 5.4 721.4 0
20 10 1.7 2992.6 3
20 15 0.2 129.5 0
22 6 10.3 1281.2 6
22 11 2.3 3601.8 10
22 17 0.2 248.2 0
25 7 33.6 3601.4 10
25 13 8.0 3602.3 10
25 19 0.4 1174.6 0
28 7 97.9 3601.0 10
28 14 22.6 3602.5 10
28 21 0.5 3496.9 8
30 8 303.0 3601.0 10
30 15 31.8 3602.3 10
30 23 0.6 3604.5 10

MIX++ Tang et al. [2016]
ν d t[s] t[s] #unsol

8 0.7 0.1 373.0 0
8 0.9 0.2 3600.0 10
10 0.7 0.3 3600.1 10
10 0.9 0.7 3600.2 10
12 0.7 0.8 3600.3 10
12 0.9 1.9 3600.4 10
15 0.7 2.2 3600.3 10
15 0.9 12.6 3600.2 10
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Conclusions

• We presented an enhanced branch-and-cut algorithm, based on
I follower preprocessing;
I new locally-valid cuts;
I new separation procedures for ICs.

• Detailed computational analysis (available on the paper) shows that
I both preprocessing and FUB cuts can have a large impact on branch-and-cut

performance;
I the new algorithm outperforms previous methods from the literature (including

our original branch-and-cut) by a large margin.

• Byproduct: the optimal solution for more than 300 instances previously
unsolved instances from literature is now available.

Code is publicly available:

https://msinnl.github.io/pages/bilevel.html

Thanks for Your Attention! Questions?
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Hypercube Intersection Cuts

• Simple polyhedron that can be used to generate IC even when Ax + By − b is
NOT integer.

Theorem

Assume JF := {j ∈ Nx : Aj 6= 0} ⊆ Jx and let (x̂ , ŷ) an optimal bilevel-feasible
solution with x̂j = x∗j ∀j ∈ JF (if any). Then the following hypercube

HC+(x∗) = {(x , y) ∈ Rn : x∗j − 1 ≤ xj ≤ x∗j + 1, ∀j ∈ JF}

does not contain any bilevel-feasible solution (or any bilevel-feasible solution
strictly better than (x̂ , ŷ), if the latter is defined) in its interior.

• Idea: the interior of HC+(x∗) only contains bilevel-feasible solutions (x , y)
with xj = x̂j = x∗j ∀j ∈ JF
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