Exact General-Purpose Solvers for Mixed-Integer Bilevel Linear Programs Tutorial

I. Ljubić

ESSEC Business School of Paris, France

JFRO 2018, March 26, Paris

- Part I: M. Fischetti, I. Ljubić, M. Monaci, M. Sinnl: On the Use of Intersection Cuts for Bilevel Optimization, Mathematical Programming, to appear, 2018
- Part II: M. Fischetti, I. Ljubić, M. Monaci, M. Sinnl: A new general-purpose algorithm for mixed-integer bilevel linear programs, Operations Research 65(6): 1615-1637, 2017

Bilevel Optimization

General bilevel optimization problem

$$\min_{x \in \mathbb{R}^{n_1}, y \in \mathbb{R}^{n_2}} F(x, y) \tag{1}$$

$$G(x, y) \le 0 \tag{2}$$

$$y \in \arg\min_{y' \in \mathbb{R}^{n_2}} \{f(x, y') : g(x, y') \le 0\} \tag{3}$$

- Stackelberg game: two-person sequential game
- Leader takes follower's optimal reaction into account
- $N_x = \{1, \ldots, n_1\}, N_y = \{1, \ldots, n_2\}$
- $n = n_1 + n_2$: total number of decision variables

Bilevel Optimization

General bilevel optimization problem

$$\min_{\substack{x \in \mathbb{R}^{n_1}, y \in \mathbb{R}^{n_2}}} F(x, y) \tag{1}$$

$$G(x, y) \leq 0$$

$$(2)$$

$$(2)$$

$$(3)$$

Leader
$$y \in \arg\min_{y' \in \mathbb{R}^{n_2}} \{f(x, y') : g(x, y') \le 0\}$$
 (3)

- Stackelberg game: two-person sequential game
- · Leader takes follower's optimal reaction into account
- $N_x = \{1, \ldots, n_1\}, N_y = \{1, \ldots, n_2\}$
- $n = n_1 + n_2$: total number of decision variables

Bilevel Optimization

General bilevel optimization problem

- Stackelberg game: two-person sequential game
- · Leader takes follower's optimal reaction into account
- $N_x = \{1, \ldots, n_1\}, N_y = \{1, \ldots, n_2\}$
- $n = n_1 + n_2$: total number of decision variables

(1)

(2) (3)

Optimistic vs Pessimistic Solution

The Stackelberg game under:

- **Perfect information:** both agents have perfect knowledge of each others strategy
- Rationality: agents act optimally, according to their respective goals
- What if there are multiple optimal solutions for the follower?
 - Optimistic Solution: among the follower's solution, the one leading to the best outcome for the leader is assumed
 - Pessimistic Solution: among the follower's solution, the one leading to the worst outcome for the leader is assumed

Optimistic vs Pessimistic Solution

The Stackelberg game under:

- Perfect information: both agents have perfect knowledge of each others strategy
- Rationality: agents act optimally, according to their respective goals
- What if there are multiple optimal solutions for the follower?
 - Optimistic Solution: among the follower's solution, the one leading to the best outcome for the leader is assumed
 - Pessimistic Solution: among the follower's solution, the one leading to the worst outcome for the leader is assumed

Our Focus: Mixed-Integer Bilevel Linear Programs (MIBLP)

$$\begin{array}{ll} (\mathsf{MIBLP}) & \min c_x^T x + c_y^T y & (4) \\ & G_x x + G_y y \leq 0 & (5) \\ & y \in \arg\min\{d^T y : Ax + By \leq 0, & (6) \\ & y_j \ \mathrm{integer}, \forall j \in J_y\} & (7) \\ & x_j \ \mathrm{integer}, \forall j \in J_x & (8) \\ & (x, y) \in \mathbb{R}^n & (9) \end{array}$$

where c_x, c_y, G_x, G_y, A, B are given rational matrices/vectors of appropriate size.

Complexity

Bilevel Linear Programs

Bilevel LPs are strongly NP-hard (Audet et al. [1997], Hansen et al. [1992]).

Complexity

Bilevel Mixed-Integer Linear Programs

MIBLP is Σ_2^P -hard (Lodi et al. [2014]): there is no way of formulating MIBLP as a MILP of polynomial size unless the polynomial hierarchy collapses.

Overview

Part I

- Develop a finitely convergent branch-and-bound approach (under certain conditions)
- · Capable of dealing with unboundedness and infeasibility
- Introduce intersection cuts to speed-up convergence

Part II

• Introduce a fully-fledged branch-and-cut for MIBLPs

STEP 1: VALUE FUNCTION REFORMULATION

Our Focus: Mixed-Integer Bilevel Linear Programs (MIBLP) Value Function Reformulation:

(MIBLP) min
$$c_x^T x + c_y^T y$$
 (10)

$$G_x x + G_y y \le 0 \tag{11}$$

$$Ax + By \le 0 \tag{12}$$

$$(x,y) \in \mathbb{R}^n$$
 (13)

$$d^{\mathsf{T}} y \leq \Phi(x) \tag{14}$$

$$x_j$$
 integer, $\forall j \in J_x$ (15)

$$\gamma_j \text{ integer}, \quad \forall j \in J_y$$
 (16)

where $\Phi(x)$ is non-convex, non-continuous:

$$\Phi(x) = \min\{d^T y : Ax + By \le 0, \quad y_j \text{ integer}, \forall j \in J_y\}$$

 dropping d^Ty ≤ Φ(x) → High Point Relaxation (HPR) which is a MILP → we can use MILP solvers with all their tricks

• let HPR be LP-relaxation of HPR

Our Focus: Mixed-Integer Bilevel Linear Programs (MIBLP) Value Function Reformulation:

where $\Phi(x)$ is non-convex, non-continuous:

 $\Phi(x) = \min\{d^T y : Ax + By \le 0, \quad y_j \text{ integer}, \forall j \in J_y\}$

- dropping d^Ty ≤ Φ(x) → High Point Relaxation (HPR) which is a MILP → we can use MILP solvers with all their tricks
- let HPR be LP-relaxation of HPR

Our Focus: Mixed-Integer Bilevel Linear Programs (MIBLP) Value Function Reformulation:

$$(\overline{\text{HPR}}) \quad \min c_x^T x + c_y^T y$$
 (10)

$$G_x x + G_y y \le 0 \tag{11}$$

$$Ax + By \le 0 \tag{12}$$

$$(x,y) \in \mathbb{R}^n$$
 (13)

(14)

(15)

(16)

where $\Phi(x)$ is non-convex, non-continuous:

 $\Phi(x) = \min\{d^{\mathsf{T}}y : Ax + By \le 0, \quad y_j \text{ integer}, \forall j \in J_y\}$

- dropping d^Ty ≤ Φ(x) → High Point Relaxation (HPR) which is a MILP → we can use MILP solvers with all their tricks
- let HPR be LP-relaxation of HPR

Example

- notorious example from Moore and Bard [1990]
- HPR
- value-function reformulation

Example

- notorious example from Moore and Bard [1990]
- HPR
- value-function reformulation

 $\min_{x,y \in \mathbb{Z}} -x - 10y \\ -25x + 20y \ge 30 \\ x + 2y \le 10 \\ 2x - y \le 15 \\ 2x + 10y \ge 15$

Example

- notorious example from Moore and Bard [1990]
- HPR

r

value-function reformulation

$$\min_{x,y \in \mathbb{Z}} -x - 10y \\ -25x + 20y \ge 30 \\ x + 2y \le 10 \\ 2x - y \le 15 \\ 2x + 10y \ge 15 \\ y \le \Phi(x)$$

General Idea

General Procedure

- Start with the HPR- (or HPR-)relaxation
- · Get rid of bilevel infeasible solutions on the fly
- Apply branch-and-bound or branch-and-cut algorithm

There are some unexpected difficulties along the way...

- Optimal solution can be unattainable
- HPR can be unbounded

(Un)expected Difficulties: Unattainable Solutions

Example from Köppe et al. [2010]

Continuous variables in the leader, integer variables in the follower \Rightarrow optimal solution may be ${\bf unattainable}$

$$\begin{split} & \inf_{x,y} \quad x-y \\ & 0 \leq x \leq 1 \\ & y \in \arg\min_{y'} \{y': y' \geq x, 0 \leq y' \leq 1, y' \in \mathbb{Z} \}. \end{split}$$

Equivalent to

$$\inf_{x} \{ x - \lceil x \rceil : 0 \le x \le 1 \}$$

x

(Un)expected Difficulties: Unattainable Solutions

Example from Köppe et al. [2010]

Continuous variables in the leader, integer variables in the follower \Rightarrow optimal solution may be ${\bf unattainable}$

$$\begin{split} & \inf_{x,y} \quad x-y \\ & 0 \leq x \leq 1 \\ & y \in \arg\min_{y'} \{y': y' \geq x, 0 \leq y' \leq 1, y' \in \mathbb{Z} \}. \end{split}$$

Equivalent to

$$\inf_{x} \{ x - \lceil x \rceil : 0 \le x \le 1 \}$$

Bilevel feasible set is neither convex nor closed. **Crucial assumption for us:** follower subproblem depends only on integer leader variables $J_F \subseteq J_x$.

x

(Un)expected Difficulties: Unbounded HPR-Relaxation

Example from Xu and Wang [2014]

 $\ensuremath{\textbf{Unboundness}}$ of $\ensuremath{\textbf{HPR-relaxation}}$ does not allow to draw conclusions on the optimal solution of $\ensuremath{\mathsf{MIBLP}}$

- unbounded
- infeasible
- admit an optimal solution

 $\max_{x,y} x + y \qquad \max_{x,y} x + y \qquad \max_{x,y} x + y \qquad 0 \le x \le 2 \qquad 0 \le x \le 2 \qquad y \ge x \qquad y \in \arg\max_{y'} \{ d \cdot y' : y' \ge x, y' \in \mathbb{Z} \}.$

d = 1	$\Rightarrow \Phi(x) = \infty$ (MIBLP infeasible)
	$\Rightarrow \Phi(x)$ feasible for all $y \in \mathbb{Z}$ (MIBLP unbounded)
d = -1	$\Rightarrow x^* = 2, y^* = 2$ (optimal MIBLP solution)

(Un)expected Difficulties: Unbounded HPR-Relaxation

Example from Xu and Wang [2014]

 $\ensuremath{\textbf{Unboundness}}$ of $\ensuremath{\textbf{HPR-relaxation}}$ does not allow to draw conclusions on the optimal solution of $\ensuremath{\mathsf{MIBLP}}$

- unbounded
- infeasible
- admit an optimal solution

$\max_{x,y} x+y$	$\max_{x,y} x+y$
$0 \le x \le 2$	$0 \le x \le 2$
$x \in \mathbb{Z}$	$y \ge x$
$y \in rg\max_{y'} \{ d \cdot y' : y' \ge x, y' \in \mathbb{Z} \}.$	$x,y\in\mathbb{Z}$

 $\begin{array}{ll} d = 1 & \Rightarrow \Phi(x) = \infty \mbox{ (MIBLP infeasible)} \\ d = 0 & \Rightarrow \Phi(x) \mbox{ feasible for all } y \in \mathbb{Z} \mbox{ (MIBLP unbounded)} \\ d = -1 & \Rightarrow x^* = 2, y^* = 2 \mbox{ (optimal MIBLP solution)} \end{array}$

STEP 2: BRANCH-AND-CUT ALGORITHM

Assumption

All the integer-constrained variables x and y have finite lower and upper bounds both in HPR and in the follower MILP.

Assumption

Continuous leader variables x_j (if any) do not appear in the follower problem.

If for all HPR solutions, the follower MILP is unbounded \Rightarrow MIBLP is infeasible. Preprocessing (solving a single LP) allows to check this. Hence:

Assumption

For an arbitrary HPR solution, the follower MILP is well defined.

Algorithm 1: A basic branch-and-bound scheme for MIBLP

```
Apply a standard LP-based B&B to HPR, inhibit incumbent update, and node-fathoming due to unboundedness of \overline{\text{HPR}}
```

for each unfathomed B&B node where standard branching cannot be performed do

if $\overline{\text{HPR}}$ is not unbounded then

```
Let (x^*, y^*) be the HPR solution at the current node;
Compute \Phi(x^*) by solving the follower MILP for x = x^*;
if d^T y^* \le \Phi(x^*) then
The current solution (x^*, y^*) is bilevel feasible: update the incumbent,
fathom the current node, and continue with another node
end
```

end

```
if all variables x_j with j \in J_F are fixed by branching (x_F^*) then
```

Refinement: Solve HPR with $x = x_F^*$, $d^T y \le \Phi(x_F^*)$. If unbounded **return UNBOUNDED**;

Possibly update the incumbent with the resulting solution (\hat{x}, \hat{y}) , if any;

Fathom the current node

else

Branch on any x_j $(j \in J_F)$ not fixed by branching yet (even if x_j^* is integer in the LP-solution at the node)

end

end

For the rest of presentation: Assume HPR value is bounded.

Our Goal

- given **optimal vertex** (x^*, y^*) of HPR
 - (x^*, y^*) infeasible for HPR (i.e., fractional) \rightarrow branch as usual
 - (x^*, y^*) feasible for HPR and $f(x^*, y^*) \leq \Phi(x^*) \rightarrow$ update the incumbent as usual
 - (x^*, y^*) feasible for HPR and $f(x^*, y^*) > \Phi(x^*)$, i.e., **bilevel-infeasible** \rightarrow we need to do something!

For the rest of presentation: Assume HPR value is bounded.

Our Goal

- given **optimal vertex** (x^*, y^*) of \overline{HPR}
 - (x^*, y^*) infeasible for HPR (i.e., fractional) \rightarrow branch as usual
 - ▶ (x^*, y^*) feasible for HPR and $f(x^*, y^*) \leq \Phi(x^*) \rightarrow$ update the incumbent as usual
 - (x^*, y^*) feasible for HPR and $f(x^*, y^*) > \Phi(x^*)$, i.e., **bilevel-infeasible** \rightarrow we need to do something!

For the rest of presentation: Assume HPR value is bounded.

Our Goal

- given **optimal vertex** (x^*, y^*) of \overline{HPR}
 - (x^*, y^*) infeasible for HPR (i.e., fractional) \rightarrow branch as usual
 - ▶ (x^*, y^*) feasible for HPR and $f(x^*, y^*) \leq \Phi(x^*) \rightarrow$ update the incumbent as usual
 - (x^*, y^*) feasible for HPR and $f(x^*, y^*) > \Phi(x^*)$, i.e., **bilevel-infeasible** \rightarrow we need to do something!
- Moore and Bard [1990] (Branch-and-Bound)
 - branching to cut-off bilevel infeasible solutions
 - no y-variables in leader-constraints
 - either all x-variables integer or all y-variables continuous

For the rest of presentation: Assume HPR value is bounded.

Our Goal

- given **optimal vertex** (x^*, y^*) of \overline{HPR}
 - (x^*, y^*) infeasible for HPR (i.e., fractional) \rightarrow branch as usual
 - ▶ (x^*, y^*) feasible for HPR and $f(x^*, y^*) \leq \Phi(x^*) \rightarrow$ update the incumbent as usual
 - (x^*, y^*) feasible for HPR and $f(x^*, y^*) > \Phi(x^*)$, i.e., **bilevel-infeasible** \rightarrow we need to do something!
- DeNegre [2011], DeNegre & Ralphs (Branch-and-Cut)
 - cuts based on slack
 - needs all variables and coefficients to be integer
 - open-source solver MibS

For the rest of presentation: Assume HPR value is bounded.

Our Goal

- given **optimal vertex** (x^*, y^*) of \overline{HPR}
 - (x^*, y^*) infeasible for HPR (i.e., fractional) \rightarrow branch as usual
 - ▶ (x^*, y^*) feasible for HPR and $f(x^*, y^*) \leq \Phi(x^*) \rightarrow$ update the incumbent as usual
 - (x^*, y^*) feasible for HPR and $f(x^*, y^*) > \Phi(x^*)$, i.e., **bilevel-infeasible** \rightarrow we need to do something!
- Xu and Wang [2014], Wang and Xu [2017] (Branch-and-Bound)
 - multiway branching to cut-off bilevel infeasible solutions
 - all x-variables integer and bounded, follower coefficients of x-variables must be integer

For the rest of presentation: Assume HPR value is bounded.

Our Goal

- given **optimal vertex** (x^*, y^*) of \overline{HPR}
 - (x^*, y^*) infeasible for HPR (i.e., fractional) \rightarrow branch as usual
 - ▶ (x^*, y^*) feasible for HPR and $f(x^*, y^*) \leq \Phi(x^*) \rightarrow$ update the incumbent as usual
 - (x^*, y^*) feasible for HPR and $f(x^*, y^*) > \Phi(x^*)$, i.e., **bilevel-infeasible** \rightarrow we need to do something!
- Our Approach (Branch-and-Cut)
 - Use Intersection Cuts (Balas [1971]) to cut off bilevel infeasible solutions

STEP 3: INTERSECTION CUTS

Intersection Cuts (ICs)

 powerful tool to separate a bilevel infeasible point (x*, y*) from a set of bilevel feasible points (X, Y) by a linear cut

- what we need to derive ICs
 - ▶ a cone pointed at (x^*, y^*) containing all (X, Y) (if (x^*, y^*) is a vertex of \overline{HPR} -relaxation, a possible cone comes from LP-basis)
 - ► a convex set S with (x^*, y^*) but no bilevel feasible points $((x, y) \in (X, Y))$ in its interior
 - important: (x^*, y^*) should not be on the frontier of S.

Intersection Cuts (ICs)

 powerful tool to separate a bilevel infeasible point (x*, y*) from a set of bilevel feasible points (X, Y) by a linear cut

- what we need to derive ICs
 - ▶ a cone pointed at (x^*, y^*) containing all (X, Y) (if (x^*, y^*) is a vertex of \overline{HPR} -relaxation, a possible cone comes from LP-basis)
 - ▶ a convex set S with (x^*, y^*) but no bilevel feasible points $((x, y) \in (X, Y))$ in its interior
 - important: (x^*, y^*) should not be on the frontier of *S*.

Intersection Cuts (ICs)

 powerful tool to separate a bilevel infeasible point (x*, y*) from a set of bilevel feasible points (X, Y) by a linear cut

- what we need to derive ICs
 - a cone pointed at (x^*, y^*) containing all (X, Y) (if (x^*, y^*) is a vertex of \overline{HPR} -relaxation, a possible cone comes from LP-basis)
 - a convex set S with (x*, y*) but no bilevel feasible points ((x, y) ∈ (X, Y)) in its interior
 - important: (x^*, y^*) should not be on the frontier of S.
Intersection Cuts (ICs)

 powerful tool to separate a bilevel infeasible point (x*, y*) from a set of bilevel feasible points (X, Y) by a linear cut

- what we need to derive ICs
 - a cone pointed at (x^*, y^*) containing all (X, Y) (if (x^*, y^*) is a vertex of \overline{HPR} -relaxation, a possible cone comes from LP-basis)
 - ▶ a convex set S with (x^*, y^*) but no bilevel feasible points $((x, y) \in (X, Y))$ in its interior
 - important: (x^*, y^*) should not be on the frontier of S.

Intersection Cuts (ICs)

 powerful tool to separate a bilevel infeasible point (x*, y*) from a set of bilevel feasible points (X, Y) by a linear cut

- what we need to derive ICs
 - a cone pointed at (x^*, y^*) containing all (X, Y) (if (x^*, y^*) is a vertex of \overline{HPR} -relaxation, a possible cone comes from LP-basis)
 - ▶ a convex set S with (x^*, y^*) but no bilevel feasible points $((x, y) \in (X, Y))$ in its interior
 - important: (x^*, y^*) should not be on the frontier of S.

• we need a **bilevel-free set** S

Theorem

For any feasible solution of the follower $\hat{y} \in \mathbb{R}^{n_2}$, the set

$$S(\hat{y}) = \{(x, y) \in \mathbb{R}^n : d^T y > d^T \hat{y}, Ax + B\hat{y} \le b\}$$

does not contain any bilevel-feasible point (not even on its frontier).

• note: $S(\hat{y})$ is a **polyhedron**

• problem: **bilevel-infeasible** (x^*, y^*) can be on the **frontier** of bilevel-free set $S \rightarrow IC$ based on $S(\hat{y})$ may not be able to cut off (x^*, y^*)

• we need a **bilevel-free set** S

Theorem

For any feasible solution of the follower $\hat{y} \in \mathbb{R}^{n_2}$, the set

$$S(\hat{y}) = \{(x, y) \in \mathbb{R}^n : d^T y > d^T \hat{y}, Ax + B\hat{y} \le b\}$$

does not contain any bilevel-feasible point (not even on its frontier).

• note: $S(\hat{y})$ is a **polyhedron**

• problem: **bilevel-infeasible** (x^*, y^*) can be on the **frontier** of bilevel-free set $S \rightarrow IC$ based on $S(\hat{y})$ may not be able to cut off (x^*, y^*)

• we need a **bilevel-free set** S

Theorem

For any feasible solution of the follower $\hat{y} \in \mathbb{R}^{n_2}$, the set

$$S(\hat{y}) = \{(x, y) \in \mathbb{R}^n : d^T y > d^T \hat{y}, Ax + B\hat{y} \le b\}$$

does not contain any bilevel-feasible point (not even on its frontier).

- note: $S(\hat{y})$ is a **polyhedron**
- problem: **bilevel-infeasible** (x^*, y^*) can be on the **frontier** of bilevel-free set $S \rightarrow IC$ based on $S(\hat{y})$ may not be able to cut off (x^*, y^*)

Assumption

Ax + By - b is integer for all HPR solutions (x, y).

Theorem

Under the previous assumption, for any feasible solution of the follower $\hat{y} \in \mathbb{R}^{n_2}$, the extended polyhedron

$$S^{+}(\hat{y}) = \{ (x, y) \in \mathbb{R}^{n} : d^{T}y \ge d^{T}\hat{y}, Ax + B\hat{y} \le b + 1 \},$$
(17)

where $\mathbf{1}=(1,\cdots,1)$ denote a vector of all ones of suitable size, does not contain any bilevel feasible point in its interior.

Assumption

Ax + By - b is integer for all HPR solutions (x, y).

Theorem

Under the previous assumption, for any feasible solution of the follower $\hat{y} \in \mathbb{R}^{n_2}$, the extended polyhedron

$$S^{+}(\hat{y}) = \{ (x, y) \in \mathbb{R}^{n} : d^{T}y \ge d^{T}\hat{y}, Ax + B\hat{y} \le b + 1 \},$$
(17)

where $\mathbf{1} = (1, \dots, 1)$ denote a vector of all ones of suitable size, does not contain any bilevel feasible point in its interior.

- application sketch on the example from Moore and Bard [1990]
- solve $\overline{\text{HPR}} \rightarrow \text{obtain} (x^*, y^*) = (2, 4)$ and LP-cone, take $\hat{y} = 2$
- solve HPR again \rightarrow obtain $(x^*, y^*) = (6, 2)$ and LP-cone, take $\hat{y} = 1$

- application sketch on the example from Moore and Bard [1990]
- solve $\overline{\text{HPR}} \rightarrow \text{obtain} (x^*, y^*) = (2, 4)$ and LP-cone, take $\hat{y} = 2$
- solve $\overline{\text{HPR}}$ again \rightarrow obtain $(x^*, y^*) = (6, 2)$ and LP-cone, take $\hat{y} = 1$

- application sketch on the example from Moore and Bard [1990]
- solve $\overline{\text{HPR}} \rightarrow \text{obtain} (x^*, y^*) = (2, 4)$ and LP-cone, take $\hat{y} = 2$
- solve $\overline{\text{HPR}}$ again \rightarrow obtain $(x^*, y^*) = (6, 2)$ and LP-cone, take $\hat{y} = 1$

- application sketch on the example from Moore and Bard [1990]
- solve $\overline{\text{HPR}} \rightarrow \text{obtain} (x^*, y^*) = (2, 4)$ and LP-cone, take $\hat{y} = 2$
- solve $\overline{\text{HPR}}$ again \rightarrow obtain $(x^*, y^*) = (6, 2)$ and LP-cone, take $\hat{y} = 1$

- application sketch on the example from Moore and Bard [1990]
- solve $\overline{\text{HPR}} \rightarrow \text{obtain} (x^*, y^*) = (2, 4)$ and LP-cone, take $\hat{y} = 2$
- solve $\overline{\text{HPR}}$ again \rightarrow obtain $(x^*, y^*) = (6, 2)$ and LP-cone, take $\hat{y} = 1$

- application sketch on the example from Moore and Bard [1990]
- solve $\overline{\text{HPR}} \rightarrow \text{obtain} (x^*, y^*) = (2, 4)$ and LP-cone, take $\hat{y} = 2$
- solve $\overline{\text{HPR}}$ again \rightarrow obtain $(x^*, y^*) = (6, 2)$ and LP-cone, take $\hat{y} = 1$

- application sketch on the example from Moore and Bard [1990]
- solve $\overline{\text{HPR}} \rightarrow \text{obtain} (x^*, y^*) = (2, 4)$ and LP-cone, take $\hat{y} = 2$
- solve $\overline{\text{HPR}}$ again \rightarrow obtain $(x^*, y^*) = (6, 2)$ and LP-cone, take $\hat{y} = 1$

- application sketch on the example from Moore and Bard [1990]
- solve $\overline{\text{HPR}} \rightarrow \text{obtain} (x^*, y^*) = (2, 4)$ and LP-cone, take $\hat{y} = 2$
- solve $\overline{\text{HPR}}$ again \rightarrow obtain $(x^*, y^*) = (6, 2)$ and LP-cone, take $\hat{y} = 1$

Separating Intersection Cuts

- given bilevel infeasible (x^*, y^*) , how do we determine convex bilevel-free set $S^+(\hat{y})$?
- a natural option: use the **optimal solution** \hat{y} **of the follower subproblem** for $x = x^*$
 - needs to be solved in any case to check bilevel-feasibility of (x^*, y^*)
- separation procedure is a MILP:

$$\begin{aligned} \mathbf{SEP} - \mathbf{1}: \quad \hat{y} \in \arg\min\{d^{\mathsf{T}}y \\ & Ax^* + By \leq b \\ & y_j \text{ integer} \qquad \forall j \in J_y \end{aligned}$$

SEP-1 maximizes distance of (x^*, y^*) to $d^T y \ge d^T \hat{y}$.

Separating Intersection Cuts

- given bilevel infeasible (x^*, y^*) , how do we determine convex bilevel-free set $S^+(\hat{y})$?
- a natural option: use the **optimal solution** \hat{y} of the follower subproblem for $x = x^*$
 - needs to be solved in any case to check bilevel-feasibility of (x^*, y^*)

• separation procedure is a MILP:

$$\begin{aligned} \mathbf{SEP} - \mathbf{1} : \quad \hat{y} \in \arg\min\{d^{\top}y\\ Ax^* + By \leq b\\ y_j \text{ integer} \qquad \forall j \in J_y \end{aligned}$$

SEP-1 maximizes distance of (x^*, y^*) to $d^T y \ge d^T \hat{y}$.

Separating Intersection Cuts

- given bilevel infeasible (x^*, y^*) , how do we determine convex bilevel-free set $S^+(\hat{y})$?
- a natural option: use the **optimal solution** \hat{y} of the follower subproblem for $x = x^*$
 - needs to be solved in any case to check bilevel-feasibility of (x^*, y^*)
- separation procedure is a MILP:

$$\begin{aligned} \mathbf{SEP} - \mathbf{1} : \quad \hat{y} \in \arg\min\{d^{\mathsf{T}}y \\ & Ax^* + By \leq b \\ & y_j \text{ integer} \end{aligned} \quad \forall j \in J_y \end{aligned}$$

SEP-1 maximizes distance of (x^*, y^*) to $d^T y \ge d^T \hat{y}$.

COMPUTATIONAL RESULTS (First insights about usefulness of intersection cuts)

C, CPLEX 12.6.3, Intel Xeon E3-1220V2 3.1 GHz, four threads

Table: Our testbed. Column **#inst** reports the total number of instances in the class, while column **type** indicates whether the instances are binary (B) or integer (I).

		type	Notes			
DeNegre [2011] DeNegre [2011] Fischetti et al. [2016]			randomly generated interdiction inst.s from MIPLIB 3.0			

Table: Our tested settings.

#*cuts*r/#*cuts*o: maximum number of cuts added at root node/all other nodes

Name			
	SEP-1 SEP-1		
		chmark code	

C, CPLEX 12.6.3, Intel Xeon E3-1220V2 3.1 GHz, four threads

Table: Our testbed. Column **#inst** reports the total number of instances in the class, while column **type** indicates whether the instances are binary (B) or integer (I).

Class	source	# inst	type	Notes
DENEGRE	DeNegre [2011]	50	I	randomly generated
INTERDICTION	DeNegre [2011]	125	B	interdiction inst.s
MIPLIB	Fischetti et al. [2016]	57	B	from MIPLIB 3.0

Table: Our tested settings.

#cuts_r/#cuts_o: maximum number of cuts added at root node/all other nodes

Name			
	SEP-1 SEP-1		
		chmark code	

C, CPLEX 12.6.3, Intel Xeon E3-1220V2 3.1 GHz, four threads

Table: Our testbed. Column **#inst** reports the total number of instances in the class, while column **type** indicates whether the instances are binary (B) or integer (I).

Class	source	# inst	type	Notes
DENEGRE	DeNegre [2011]	50	I	randomly generated
INTERDICTION	DeNegre [2011]	125	B	interdiction inst.s
MIPLIB	Fischetti et al. [2016]	57	B	from MIPLIB 3.0

Table: Our tested settings.

 $\#cuts_r/\#cuts_o$: maximum number of cuts added at root node/all other nodes

Name	Sep.	#cuts _r	$\#cuts_o$
SEP-1a SEP-1b	SEP-1 SEP-1	20 20	20 0
BENCHMARK	our bend	chmark coc	le implementing cuts in DeNegre [2011]

Table: Summary of obtained results. We report the number of solved instances (#), the shifted geometric mean for computing time (t[s]) and for number of nodes (*nodes*), and the average gaps (g[%]).

	MIPLIB (57 inst.s)				INTERDICTION (125 inst.s)				DENEGRE (50 inst.s)			
setting	#	t[s]	nodes	g[%]		#	t[s]	nodes	g[%] #	t[s]	nodes	g[%]
SEP-1a	20	599	9655.9	27.65	1	83	148	36769.3	33.06 42	40	574.0	4.61
SEP-1b	18	660	100475.8	27.85		64	245	240859.4	48.39 45	35	12452.1	3.89
BENCHMARK	15	954	234670.7	31.78		44	496	1310639.5	63.45 38	58	27918.5	9.20

Figure: Performance profile plot over all instances (classes DENEGRE, INTERDICTION and MIPLIB).

The leftmost point of the graph for a setting s shows the percentage of instances for which s is the fastest setting.

The rightmost point shows the percentage of instances solved to optimality by s.

PART II: MILP-BASED SOLVER for MIBLP

MILP-based solver for MIBLP

Basic Solution Scheme

- standard simplex-based branch-and-cut algorithm
- ... that enforces $d^T y \leq \Phi(x)$, on the fly, by adding cutting planes.

New features:

- Follower preprocessing.
- Follower Upper-Bound cuts.
- Intersection Cuts (ICs):
 - New families of ICs;
 - Separation of ICs.

Follower Preprocessing

$$\begin{split} \hat{y} \in \arg\min\{d^{\mathsf{T}}y \\ Ax + By \leq b \\ I \leq y \leq u \\ y_j \text{ integer } \quad \forall j \in J_y \rbrace \end{split}$$

Theorem

Let y_j be a follower variable and let l_j be its lower bound in the follower.

If $d_j > 0$ and $B_j \ge 0$ then $y_j = l_j$ in any optimal solution.

- Idea: for any $x^* \in \mathbb{R}^{n_1}$, fixing variable y_j to the lower bound decreases the follower cost and does not reduce the associated feasible set.
- Fix $y_j = l_j$ in the HPR as well.
- Large impact in the performance of the algorithm.
- Observation: to preserve equivalent optimal solutions for the follower, we require *d_j* be *strictly* positive.

Follower Preprocessing

$$\begin{split} \hat{y} \in \arg\min\{d^{\mathsf{T}}y \\ Ax + By \leq b \\ I \leq y \leq u \\ y_j \text{ integer } \quad \forall j \in J_y \rbrace \end{split}$$

Theorem

Let y_j be a follower variable and let u_j be its upper bound in the follower.

If $d_i < 0$ and $B_i \leq 0$ then $y_i = u_i$ in any optimal solution.

- Idea: for any x^{*} ∈ ℝⁿ, fixing variable y_j to the upper bound decreases the follower cost and does not reduce the associated feasible set.
- Fix $y_j = u_j$ in the HPR as well.
- Large impact in the performance of the algorithm.
- Observation: to preserve equivalent optimal solutions for the follower, we require *d_i* be *strictly* negative.

Follower Upper-Bound (FUB) cuts

Observation:

Let FUB be an upper bound for the value of the follower's solution, independently on the choice of x. Then:

$$d^T y \leq F U B$$

is a valid cut for HPR.

Tighter Bounds

Tighter FUB values could be obtained inside the B&B tree, but these cuts are only locally valid.

Overrestricting the Follower

By replacing original constraints $Ax + By \le b$ by more restricting ones (independent on the choice of x), a *FUB* can be obtained.

Follower Upper-Bound cuts

Theorem

Let (x^-, x^+) denote the bounds for the x variables at the current B&B node. The following inequality

 $d^T y \leq FUB(x^-, x^+)$

is locally valid for the current node, where

$$FUB(x^{-}, x^{+}) := \min\{d^{T}y\}$$

$$\sum_{i \in N_{x}} \max\{A_{ij}x_{j}^{-}, A_{ij}x_{j}^{+}\} + \sum_{j \in N_{y}} B_{ij}y_{j} \leq b_{i}, \qquad i = 1, \dots, m$$

$$y_{j} \text{ integer}, \qquad \forall j \in J_{y}\}.$$

• *FUB*(*x*⁻, *x*⁺) is an overestimator of the follower objective at the current node (all *x*'s are set to their worst value).

Follower Upper-Bound cuts

Theorem

Let (x^-, x^+) denote the bounds for the x variables at the current B&B node. The following inequality

$$d^T y \leq FUB(x^-, x^+)$$

is locally valid for the current node, where

$$FUB(x^{-}, x^{+}) := \min\{d^{T}y$$

$$\sum_{j \in N_{x}} \max\{A_{ij}x_{j}^{-}, A_{ij}x_{j}^{+}\} + \sum_{j \in N_{y}} B_{ij}y_{j} \leq b_{i}, \qquad i = 1, \dots, m$$

$$y_{j} \text{ integer}, \qquad \forall j \in J_{y}\}.$$

 FUB(x⁻, x⁺) is an overestimator of the follower objective at the current node (all x's are set to their worst value).

MORE ON INTERSECTION CUTS

Intersection Cuts (ICs)

- Main ingredient of our basic branch-and-cut algorithm.
- Given an infeasible x^* and the associated simplex cone, the definition of an IC asks for the definition of a *convex set* S with x^* but no bilevel-feasible $x \in X$ in its *interior*.
- The choice of bilevel-free polyhedra is not unique.
- The larger the bilevel-free set, the better the IC.

Theorem (Fischetti et al. [2018])

Given $\hat{y} \in \mathbb{R}_2^n$ such that \hat{y}_j integer $\forall j \in J_y$, the following set

$$S^+(\hat{y}) = \{(x, y) \in \mathbb{R}^n : d^T y \ge d^T \hat{y}, Ax + B\hat{y} \le b + \mathbf{1}\}$$

is bilevel-feasible free.

Other Bilevel-Free Sets can be defined

Motivated by the results Xu [2012], Wang and Xu [2017]: Assumption: Ax + By - b is integer for all HPR solutions (x, y).

Theorem (Fischetti et al. [2017])

Given $\Delta \hat{y} \in \mathbb{R}_2^n$ such that $d^T \Delta \hat{y} < 0$ and $\Delta \hat{y}_j$ integer $\forall j \in J_y$, the following set

$$X^+(\Delta \hat{y}) = \{(x,y) \in \mathbb{R}^n : Ax + By + B\Delta \hat{y} \leq b + \mathbf{1}\}$$

has no bilevel-feasible points in its interior.

Proof: by contradiction. Assume $(\tilde{x}, \tilde{y}) \in X^+(\Delta \hat{y})$ is bilevel-feasible. But then, $d^T \tilde{y} > d^T (\tilde{y} + \Delta \hat{y})$ and $(\tilde{x}, \tilde{y} + \Delta \hat{y})$ is feasible for the follower, hence contradiction.

SEPARATION of INTERSECTION CUTS

Separation of ICs associated to $S^+(\hat{y})$

Given $\hat{y} \in \mathbb{R}_2^n$ such that \hat{y}_j integer $\forall j \in J_y$, the following set

$$S^+(\hat{y}) = \{(x, y) \in \mathbb{R}^n : d^T y \ge d^T \hat{y}, Ax + B\hat{y} \le b + \mathbf{1}\}$$

is bilevel-feasible free. How to compute \hat{y} ?

SEP1

$$\hat{y} \in \arg\min_{y \in \mathbb{R}^{n_2}} \{ d^{\mathsf{T}}y : By \leq b - Ax^*, y_j \text{ integer } \forall j \in J_y \}.$$

- \hat{y} is the optimal solution of the follower when $x = x^*$.
- Maximize the distance of (x^*, y^*) from the facet $d^T y \ge d^T \hat{y}$ of $S(\hat{y})$.
- SEP2 Alternatively, try to find \hat{y} such that some of the facets in $Ax + b\hat{y} \le b$ can be removed (making thus $S(\hat{y})$ larger!)
Separation of ICs associated to $S^+(\hat{y})$

Given $\hat{y} \in \mathbb{R}_2^n$ such that \hat{y}_j integer $\forall j \in J_y$, the following set

$$S^+(\hat{y}) = \{(x, y) \in \mathbb{R}^n : d^T y \ge d^T \hat{y}, Ax + B\hat{y} \le b + \mathbf{1}\}$$

is bilevel-feasible free. How to compute \hat{y} ?

• SEP2 (Fischetti et al. [2018])

$$\begin{split} \hat{y} \in \arg\min\sum_{i=1}^{m} w_i \\ d^T y \leq d^T y^* - 1 \\ By + s = b \\ s_i + (L_i^{max} - L_i^*) w_i \geq L_i^{max}, & \forall i = 1, \dots, m \\ y_j \text{ integer}, & \forall j \in J_y \\ s \text{ free }, w \in \{0, 1\}^m \end{split}$$

where

$$L_i^* := \sum_{j \in N_x} A_{ij} x_j^* \le L_i^{max} := \sum_{j \in N_x} \max\{A_{ij} x_j^-, A_{ij} x_j^+\}.$$

• $w_i = 0$ if *i*-th facet of $Ax + B\hat{y} \leq b$ can be removed

• the number of "removable facets" is maximized \rightarrow larger $S^+(\hat{y})$.

Separation of ICs associated to $X^+(\Delta \hat{y})$

Given $\Delta \hat{y} \in \mathbb{R}_2^n$ such that $d^T \Delta \hat{y} < 0$ and $\Delta \hat{y}_i$ integer $\forall j \in J_y$, the following set

$$X^+(\Delta \hat{y}) = \{(x, y) \in \mathbb{R}^n : Ax + By + B\Delta \hat{y} \le b + 1\}$$

has no bilevel-feasible points in its interior. How to compute $\Delta \hat{y}$?

• XU (Xu [2012])

$$\begin{split} \Delta \hat{y} \in \arg\min\sum_{i=1}^{\tilde{m}} t_i \\ d^T \Delta y &\leq -1 \\ B \Delta y \leq b - A x^* - B y^* \\ \Delta y_j \text{ integer}, \\ B \Delta y \leq t \text{ and } t \geq 0. \end{split} \quad \forall j \in J_y \end{split}$$

- ▶ variable t_i has value 0 in case $(\tilde{B}\Delta y)_i \leq 0$ ("removable facet");
- "maximize the size" of the bilevel-feasible set associated with $\Delta \hat{y}$.

COMPUTATIONAL STUDY

Settings

C, CPLEX 12.6.3, Intel Xeon E3-1220V2 3.1 GHz, four threads.

Class	Source	Туре	#Inst	#OptB	#Opt
DENEGRE	DeNegre [2011],Ralphs and Adams [2016]	I	50	45	50
MIPLIB	Fischetti et al. [2016]	В	57	20	27
XUWANG	Xu and Wang [2014]	I,C	140	140	140
INTER-KP	DeNegre [2011],Ralphs and Adams [2016]	В	160	79	138
INTER-KP2	Tang et al. [2016]	В	150	53	150
INTER-ASSIG	DeNegre [2011], Ralphs and Adams [2016]	В	25	25	25
INTER-RANDOM	DeNegre [2011], Ralphs and Adams [2016]	В	80	-	80
INTER-CLIQUE	Tang et al. [2016]	В	80	10	80
INTER-FIRE	Baggio et al. [2016]	В	72	-	72
total			814	372	762

- #OptB = number of optimal solutions known before our work.
- #Opt = number of optimal solutions known after our work.

Effects of FUB cuts

• Speed-ups achieved by FUB cuts for the instance set DENEGRE.

Effects of follower preprocessing

• Speed-ups achieved using follower preprocessing.

Combining FUB cuts and follower preprocessing

• Final gaps for settings SEP2 and SEP2++ for instance set MIPLIB, obtained when the time-limit of one hour is reached.

Effects of different ICs

- MIX++: combination of settings SEP2++ and XU++ (both ICs being separated at each separation call).
- Performance profile on the subsets of (bilevel and interdiction) instances that could be solved to optimality by all three settings within the given time-limit of one hour.

Comparison with the literature (1)

• Results for the instance set XUWANG

						MIX++						Xu and Wang [2014]
<i>n</i> ₁	i = 1	<i>i</i> = 2	<i>i</i> = 3	<i>i</i> = 4	<i>i</i> = 5	i = 6	i = 7	<i>i</i> = 8	i = 9	<i>i</i> = 10	avg	avg
10	3	3	3	3	2	3	2	3	2	3	2.6	1.4
60	2	0	0	1	1	1	1	1	2	2	0.9	45.6
110	2	1	2	2	1	2	1	2	2	12	2.8	111.9
160	2	2	3	2	3	1	4	1	1	3	2.1	177.9
210	2	3	1	1	3	3	3	2	5	3	2.6	1224.5
260	3	4	3	6	3	5	6	2	7	11	5.0	1006.7
310	5	10	11	14	7	16	15	8	5	3	9.4	4379.3
360	17	28	11	13	11	15	7	19	9	14	14.4	2972.4
410	19	10	29	8	21	10	9	15	23	42	18.7	4314.2
460	22	10	22	35	21	21	32	22	23	23	23.1	6581.4
B1-110	0	0	0	0	0	1	0	1	0	9	1.3	132.3
B1-160	1	1	3	1	2	1	3	0	0	2	1.3	184.4
B2-110	16	2	2	8	1	25	15	5	1	122	19.7	4379.8
B2-160	8	38	21	91	34	4	40	3	12	123	37.4	22999.7

Comparison with the literature (2)

• Results for the instance sets INTER-KP2 (left) and INTER-CLIQUE (right)

<i>n</i> ₁	k	MIX++ t[s]	Tang et t[s]	al. [2016] #unsol
20	5	5.4	721.4	0
20	10	1.7	2992.6	3
20	15	0.2	129.5	0
22	6	10.3	1281.2	6
22	11	2.3	3601.8	10
22	17	0.2	248.2	0
25	7	33.6	3601.4	10
25	13	8.0	3602.3	10
25	19	0.4	1174.6	0
28	7	97.9	3601.0	10
28	14	22.6	3602.5	10
28	21	0.5	3496.9	8
30	8	303.0	3601.0	10
30	15	31.8	3602.3	10
30	23	0.6	3604.5	10

ν	d	MIX++ t[s]	Tang et t t[s]	al. [2016] #unsol
8	0.7	0.1	373.0	0
8	0.9	0.2	3600.0	10
10	0.7	0.3	3600.1	10
10	0.9	0.7	3600.2	10
12	0.7	0.8	3600.3	10
12	0.9	1.9	3600.4	10
15	0.7	2.2	3600.3	10
15	0.9	12.6	3600.2	10

- We presented an enhanced branch-and-cut algorithm, based on
 - follower preprocessing;
 - new locally-valid cuts;
 - new separation procedures for ICs.
- Detailed computational analysis (available on the paper) shows that
 - both preprocessing and FUB cuts can have a large impact on branch-and-cut performance;
 - the new algorithm outperforms previous methods from the literature (including our original branch-and-cut) by a large margin.
- Byproduct: the optimal solution for more than 300 instances previously unsolved instances from literature is now available.

Code is publicly available:

https://msinnl.github.io/pages/bilevel.html

Thanks for Your Attention! Questions?

- We presented an enhanced branch-and-cut algorithm, based on
 - follower preprocessing;
 - new locally-valid cuts;
 - new separation procedures for ICs.
- Detailed computational analysis (available on the paper) shows that
 - both preprocessing and FUB cuts can have a large impact on branch-and-cut performance;
 - the new algorithm outperforms previous methods from the literature (including our original branch-and-cut) by a large margin.

• Byproduct: the optimal solution for more than 300 instances previously unsolved instances from literature is now available.

Code is publicly available:

https://msinnl.github.io/pages/bilevel.html

Thanks for Your Attention! Questions?

- We presented an enhanced branch-and-cut algorithm, based on
 - follower preprocessing;
 - new locally-valid cuts;
 - new separation procedures for ICs.
- Detailed computational analysis (available on the paper) shows that
 - both preprocessing and FUB cuts can have a large impact on branch-and-cut performance;
 - the new algorithm outperforms previous methods from the literature (including our original branch-and-cut) by a large margin.

• Byproduct: the optimal solution for more than 300 instances previously unsolved instances from literature is now available.

Code is publicly available:

https://msinnl.github.io/pages/bilevel.html

Fhanks for Your Attention! Questions?

- We presented an enhanced branch-and-cut algorithm, based on
 - follower preprocessing;
 - new locally-valid cuts;
 - new separation procedures for ICs.
- Detailed computational analysis (available on the paper) shows that
 - both preprocessing and FUB cuts can have a large impact on branch-and-cut performance;
 - the new algorithm outperforms previous methods from the literature (including our original branch-and-cut) by a large margin.
- Byproduct: the optimal solution for more than 300 instances previously unsolved instances from literature is now available.

Code is publicly available:

https://msinnl.github.io/pages/bilevel.html

Thanks for Your Attention! Questions?

Literature I

- C. Audet, P. Hansen, B. Jaumard, and G. Savard. Links between linear bilevel and mixed 0–1 programming problems. Journal of Optimization Theory and Applications, 93(2):273–300, 1997.
- A. Baggio, M. Carvalho, A. Lodi, and A. Tramontani. Multilevel approaches for the critical node problem. Working paper. École Polytechnique de Montreal, 2016.
- E. Balas. Intersection cuts-a new type of cutting planes for integer programming. **Operations Research**, 19(1):19–39, 1971.
- S. DeNegre. Interdiction and Discrete Bilevel Linear Programming. PhD thesis, Lehigh University, 2011.
- M. Fischetti, I. Ljubic, M. Monaci, and M. Sinnl. Intersection cuts for bilevel optimization. In **IPCO Proceedings**, LNCS. Springer, 2016.
- M. Fischetti, I. Ljubić, M. Monaci, and M. Sinnl. A new general-purpose algorithm for mixed-integer bilevel linear programs. **Operations Research**, 65 (60):1615–1637, 2017.

Literature II

- M. Fischetti, I. Ljubić, M. Monaci, and M. Sinnl. On the use of intersection cuts for bilevel optimization. **Mathematical Programming**, 2018. doi: 10.1007/s10107-017-1189-5.
- P. Hansen, B. Jaumard, and G. Savard. New branch-and-bound rules for linear bilevel programming. SIAM Journal on Scientific and Statistical Computing, 13(5):1194–1217, 1992.
- M. Köppe, M. Queyranne, and C. T. Ryan. Parametric integer programming algorithm for bilevel mixed integer programs. Journal of Optimization Theory and Applications, 146(1):137–150, 2010.
- A. Lodi, T. K. Ralphs, and G. J. Woeginger. Bilevel programming and the separation problem. **Math. Program.**, 146(1-2):437–458, 2014.
- J. Moore and J. Bard. The mixed integer linear bilevel programming problem. **Operations Research**, 38(5):911–921, 1990.
- T. K. Ralphs and E. Adams. Bilevel instance library, 2016. http://coral.ise.lehigh.edu/data-sets/bilevel-instances/.
- Y. Tang, J.-P. P. Richard, and J. C. Smith. A class of algorithms for mixed-integer bilevel min-max optimization. Journal of Global Optimization, 66(2): 225–262, 2016.

Literature III

- L. Wang and P. Xu. The watermelon algorithm for the bilevel integer linear programming problem. **SIAM Journal on Optimization**, 27(3):1403–1430, 2017.
- P. Xu. Three essays on bilevel optimization algorithms and applications. PhD thesis, Iowa State University, 2012.
- P. Xu and L. Wang. An exact algorithm for the bilevel mixed integer linear programming problem under three simplifying assumptions. **Computers & Operations Research**, 41:309–318, 2014.

Hypercube Intersection Cuts

• Simple polyhedron that can be used to generate IC even when Ax + By - b is *NOT* integer.

Theorem

Assume $J_F := \{j \in N_x : A_j \neq 0\} \subseteq J_x$ and let (\hat{x}, \hat{y}) an optimal bilevel-feasible solution with $\hat{x}_j = x_i^* \ \forall j \in J_F$ (if any). Then the following hypercube

$$HC^+(x^*) = \{(x, y) \in \mathbb{R}^n : x_j^* - 1 \le x_j \le x_j^* + 1, \ \forall j \in J_F\}$$

does not contain any bilevel-feasible solution (or any bilevel-feasible solution strictly better than (\hat{x}, \hat{y}) , if the latter is defined) in its interior.

Idea: the interior of HC⁺(x^{*}) only contains bilevel-feasible solutions (x, y) with x_j = x̂_j = x^{*}_j ∀j ∈ J_F