Exact General-Purpose Solvers for Mixed-Integer Bilevel Linear Programs

Tutorial

I. Ljubić

ESSEC Business School of Paris, France

JFRO 2018, March 26, Paris

Based on the papers:

- Part I: M. Fischetti, I. Ljubić, M. Monaci, M. Sinnl: On the Use of Intersection Cuts for Bilevel Optimization, Mathematical Programming, to appear, 2018
- Part II: M. Fischetti, I. Ljubić, M. Monaci, M. Sinnl: A new general-purpose algorithm for mixed-integer bilevel linear programs, Operations Research 65(6): 1615-1637, 2017

Bilevel Optimization

General bilevel optimization problem

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{n_{1}}, y \in \mathbb{R}^{n_{2}}} & F(x, y) \\
& G(x, y) \leq 0 \\
& y \in \arg \min _{y^{\prime} \in \mathbb{R}^{n_{2}}}\left\{f\left(x, y^{\prime}\right): g\left(x, y^{\prime}\right) \leq 0\right\} \tag{3}
\end{array}
$$

- Stackelberg game: two-person sequential game
- Leader takes follower's optimal reaction into account
- $n=n_{1}+n_{2}$: total number of decision variables

Bilevel Optimization

General bilevel optimization problem

- Stackelberg game: two-person sequential game
- Leader takes follower's optimal reaction into account
- $n=n_{1}+n_{2}$: total number of decision variables

Bilevel Optimization

General bilevel optimization problem

- Stackelberg game: two-person sequential game
- Leader takes follower's optimal reaction into account
- $N_{x}=\left\{1, \ldots, n_{1}\right\}, N_{y}=\left\{1, \ldots, n_{2}\right\}$
- $n=n_{1}+n_{2}$: total number of decision variables

Optimistic vs Pessimistic Solution

The Stackelberg game under:

- Perfect information: both agents have perfect knowledge of each others strategy
- Rationality: agents act optimally, according to their respective goals - What if there are multiple optimal solutions for the follower?
- Optimistic Solution: among the follower's solution, the one leading to the best outcome for the leader is assumed
- Pessimistic Solution: among the follower's solution, the one leading to the worst outcome for the leader is assumed

Optimistic vs Pessimistic Solution

The Stackelberg game under:

- Perfect information: both agents have perfect knowledge of each others strategy
- Rationality: agents act optimally, according to their respective goals
- What if there are multiple optimal solutions for the follower?
- Optimistic Solution: among the follower's solution, the one leading to the best outcome for the leader is assumed
- Pessimistic Solution: among the follower's solution, the one leading to the worst outcome for the leader is assumed

Our Focus: Mixed-Integer Bilevel Linear Programs (MIBLP)

$$
\begin{gather*}
\text { (MIBLP) } \quad \min c_{x}^{T} x+c_{y}^{T} y \tag{4}\\
G_{x} x+G_{y} y \leq 0 \tag{5}\\
y \in \arg \min \left\{d^{T} y: A x+B y \leq 0,\right. \tag{6}\\
\left.y_{j} \text { integer, } \forall j \in J_{y}\right\} \tag{7}\\
x_{j} \text { integer, } \forall j \in J_{x} \tag{8}\\
(x, y) \in \mathbb{R}^{n} \tag{9}
\end{gather*}
$$

where $c_{x}, c_{y}, G_{x}, G_{y}, A, B$ are given rational matrices/vectors of appropriate size.

Complexity

Bilevel Linear Programs

Bilevel LPs are strongly NP-hard (Audet et al. [1997], Hansen et al. [1992]).

$$
\begin{aligned}
\min c^{T} x \\
A x=b \\
x \in\{0,1\}
\end{aligned} \quad \Leftrightarrow \quad \begin{array}{r}
\min c^{T} x \\
A x=b \\
v=0
\end{array} \quad \begin{aligned}
& \\
&
\end{aligned} \quad v \in \arg \max \{w: w \leq x, w \leq 1-x, w \geq 0\}
$$

Complexity

Bilevel Mixed-Integer Linear Programs

MIBLP is Σ_{2}^{P}-hard (Lodi et al. [2014]): there is no way of formulating MIBLP as a MILP of polynomial size unless the polynomial hierarchy collapses.

Overview

Part I

- Develop a finitely convergent branch-and-bound approach (under certain conditions)
- Capable of dealing with unboundedness and infeasibility
- Introduce intersection cuts to speed-up convergence

Part II

- Introduce a fully-fledged branch-and-cut for MIBLPs

STEP 1: VALUE FUNCTION REFORMULATION

Our Focus: Mixed-Integer Bilevel Linear Programs (MIBLP) Value Function Reformulation:

$$
\begin{align*}
(\mathrm{MIBLP}) \min c_{x}^{T} x+c_{y}^{T} y & \tag{10}\\
G_{x} x+G_{y} y & \leq 0 \tag{11}\\
A x+B y & \leq 0 \tag{12}\\
(x, y) & \in \mathbb{R}^{n} \tag{13}\\
d^{T} y & \leq \Phi(x) \tag{14}\\
x_{j} & \text { integer, } \quad \forall j \in J_{x} \tag{15}\\
y_{j} & \text { integer, } \quad \forall j \in J_{y} \tag{16}
\end{align*}
$$

where $\Phi(x)$ is non-convex, non-continuous:

$$
\Phi(x)=\min \left\{d^{T} y: A x+B y \leq 0, \quad y_{j} \text { integer, } \forall j \in J_{y}\right\}
$$

- dropping $d^{T} y \leq \Phi(x) \rightarrow$ High Point Relaxation (HPR) which is a MILP \rightarrow we can use MILP solvers with all their tricks

Our Focus: Mixed-Integer Bilevel Linear Programs (MIBLP)

Value Function Reformulation:

I am a Mixed-Integer Linear Program (MILP) :)

$$
\begin{align*}
(\mathrm{HPR}) \quad \min c_{x}^{\top} x+c_{y}^{\top} y & \tag{10}\\
G_{x} x+G_{y} y & \leq 0 \tag{11}\\
A x+B y & \leq 0 \tag{12}\\
(x, y) & \in \mathbb{R}^{n} \tag{13}
\end{align*}
$$

x_{j} integer, $\forall j \in J_{x}$
y_{j} integer, $\forall j \in J_{y}$
where $\Phi(x)$ is non-convex, non-continuous:

$$
\Phi(x)=\min \left\{d^{T} y: A x+B y \leq 0, \quad y_{j} \text { integer, } \forall j \in J_{y}\right\}
$$

- dropping $d^{T} y \leq \Phi(x) \rightarrow$ High Point Relaxation (HPR) which is a MILP \rightarrow we can use MILP solvers with all their tricks

Our Focus: Mixed-Integer Bilevel Linear Programs (MIBLP)

Value Function Reformulation:

$$
\begin{align*}
(\overline{\mathrm{HPR}}) \quad \min c_{x}^{T} x+c_{y}^{T} y & \tag{10}\\
G_{x} x+G_{y} y & \leq 0 \tag{11}\\
A x+B y & \leq 0 \tag{12}\\
(x, y) & \in \mathbb{R}^{n} \tag{13}
\end{align*}
$$

where $\Phi(x)$ is non-convex, non-continuous:

$$
\Phi(x)=\min \left\{d^{T} y: A x+B y \leq 0, \quad y_{j} \text { integer, } \forall j \in J_{y}\right\}
$$

- dropping $d^{T} y \leq \Phi(x) \rightarrow$ High Point Relaxation (HPR) which is a MILP \rightarrow we can use MILP solvers with all their tricks
- let $\overline{\text { HPR }}$ be LP-relaxation of HPR

Example

- notorious example from Moore and Bard [1990]

$$
\begin{aligned}
& \min _{x \in \mathbb{Z}}-x-10 y \\
& y \in \arg \min _{y^{\prime} \in \mathbb{Z}}\left\{y^{\prime}\right. \\
&-25 x+20 y^{\prime} \leq 30 \\
& x+2 y^{\prime} \leq 10 \\
& 2 x-y^{\prime} \leq 15 \\
& 2 x+10 y^{\prime}\geq 15\}
\end{aligned}
$$

Example

- notorious example from Moore and Bard [1990]
- HPR

$$
\begin{aligned}
\min _{x, y \in \mathbb{Z}}-x-10 y & \\
-25 x+20 y & \geq 30 \\
x+2 y & \leq 10 \\
2 x-y & \leq 15 \\
2 x+10 y & \geq 15
\end{aligned}
$$

Example

- notorious example from Moore and Bard [1990]
- HPR
- value-function reformulation

$$
\begin{aligned}
\min _{x, y \in \mathbb{Z}}-x-10 y & \\
-25 x+20 y & \geq 30 \\
x+2 y & \leq 10 \\
2 x-y & \leq 15 \\
2 x+10 y & \geq 15 \\
y & \leq \Phi(x)
\end{aligned}
$$

General Idea

General Procedure

- Start with the HPR- (or HPR-)relaxation
- Get rid of bilevel infeasible solutions on the fly
- Apply branch-and-bound or branch-and-cut algorithm

There are some unexpected difficulties along the way...

- Optimal solution can be unattainable
- HPR can be unbounded

(Un)expected Difficulties: Unattainable Solutions

Example from Köppe et al. [2010]

Continuous variables in the leader, integer variables in the follower \Rightarrow optimal solution may be unattainable

$$
\begin{array}{rl}
\inf _{x, y} & x-y \\
& 0 \leq x \leq 1 \\
& y \in \arg \min _{y^{\prime}}\left\{y^{\prime}: y^{\prime} \geq x, 0 \leq y^{\prime} \leq 1, y^{\prime} \in \mathbb{Z}\right\} .
\end{array}
$$

Equivalent to

$$
\inf _{x}\{x-\lceil x\rceil: 0 \leq x \leq 1\}
$$

(Un)expected Difficulties: Unattainable Solutions

Example from Köppe et al. [2010]

Continuous variables in the leader, integer variables in the follower \Rightarrow optimal solution may be unattainable

$$
\begin{array}{rl}
\inf _{x, y} & x-y \\
& 0 \leq x \leq 1 \\
& y \in \arg \min _{y^{\prime}}\left\{y^{\prime}: y^{\prime} \geq x, 0 \leq y^{\prime} \leq 1, y^{\prime} \in \mathbb{Z}\right\} .
\end{array}
$$

Equivalent to

$$
\inf _{x}\{x-\lceil x\rceil: 0 \leq x \leq 1\}
$$

Bilevel feasible set is neither convex nor closed.
Crucial assumption for us: follower subproblem depends only on integer leader variables $J_{F} \subseteq J_{x}$.

(Un)expected Difficulties: Unbounded HPR-Relaxation

Example from Xu and Wang [2014]

Unboundness of HPR-relaxation does not allow to draw conclusions on the optimal solution of MIBLP

- unbounded
- infeasible
- admit an optimal solution

$$
\begin{array}{rl}
\max _{x, y} & x+y \\
& 0 \leq x \leq 2 \\
& x \in \mathbb{Z} \\
& y \in \arg \max _{y^{\prime}}\left\{d \cdot y^{\prime}: y^{\prime} \geq x, y^{\prime} \in \mathbb{Z}\right\} .
\end{array}
$$

$\max _{x, y} \quad x+y$
$0 \leq x \leq 2$
$y \geq x$
$x, y \in \mathbb{Z}$

(Un)expected Difficulties: Unbounded HPR-Relaxation

Example from Xu and Wang [2014]

Unboundness of HPR-relaxation does not allow to draw conclusions on the optimal solution of MIBLP

- unbounded
- infeasible
- admit an optimal solution

$$
\begin{array}{ll}
\max _{x, y} & x+y \\
& 0 \leq x \leq 2 \\
x \in \mathbb{Z} & \max _{x, y} x+y \\
y \in \arg \max _{y^{\prime}}\left\{d \cdot y^{\prime}: y^{\prime} \geq x, y^{\prime} \in \mathbb{Z}\right\} . & 0 \leq x \leq 2 \\
y \geq x \\
d=1 & \Rightarrow \Phi(x)=\infty \text { (MIBLP infeasible) } \\
d=0 & \Rightarrow \Phi(x) \text { feasible for all } y \in \mathbb{Z} \text { (MIBLP unbounded) } \\
d=-1 & \Rightarrow x^{*}=2, y^{*}=2 \text { (optimal MIBLP solution) }
\end{array}
$$

STEP 2: BRANCH-AND-CUT ALGORITHM

Assumption

All the integer-constrained variables x and y have finite lower and upper bounds both in HPR and in the follower MILP.

Assumption

Continuous leader variables x_{j} (if any) do not appear in the follower problem.
If for all HPR solutions, the follower MILP is unbounded \Rightarrow MIBLP is infeasible. Preprocessing (solving a single LP) allows to check this. Hence:

Assumption

For an arbitrary HPR solution, the follower MILP is well defined.

Algorithm 1: A basic branch-and-bound scheme for MIBLP
Apply a standard LP-based B\&B to HPR, inhibit incumbent update, and node-fathoming due to unboundedness of HPR
for each unfathomed B\&B node where standard branching cannot be performed do
if $\overline{\mathrm{HPR}}$ is not unbounded then
Let $\left(x^{*}, y^{*}\right)$ be the HPR solution at the current node;
Compute $\Phi\left(x^{*}\right)$ by solving the follower MILP for $x=x^{*}$;
if $d^{T} y^{*} \leq \Phi\left(x^{*}\right)$ then
The current solution $\left(x^{*}, y^{*}\right)$ is bilevel feasible: update the incumbent, fathom the current node, and continue with another node end
end
if all variables x_{j} with $j \in J_{F}$ are fixed by branching (x_{F}^{*}) then
Refinement: Solve HPR with $x=x_{F}^{*}, d^{T} y \leq \Phi\left(x_{F}^{*}\right)$. If unbounded return UNBOUNDED;
Possibly update the incumbent with the resulting solution (\hat{x}, \hat{y}), if any;
Fathom the current node
else
Branch on any $x_{j}\left(j \in J_{F}\right)$ not fixed by branching yet (even if x_{j}^{*} is integer in the LP-solution at the node)
end
end

Our Goal: Design MILP-based solver for MIBLP

For the rest of presentation: Assume HPR value is bounded.

Our Goal

solve MIBLP by using a standard simplex-based branch-and-cut algorithm; enforce $d^{T} y \leq \Phi(x)$ on the fly, by adding cutting planes

Our Goal: Design MILP-based solver for MIBLP

For the rest of presentation: Assume HPR value is bounded.

Our Goal

solve MIBLP by using a standard simplex-based branch-and-cut algorithm; enforce $d^{T} y \leq \Phi(x)$ on the fly, by adding cutting planes

- given optimal vertex $\left(x^{*}, y^{*}\right)$ of $\overline{\text { HPR }}$
- $\left(x^{*}, y^{*}\right)$ infeasible for HPR (i.e., fractional) \rightarrow branch as usual
- $\left(x^{*}, y^{*}\right)$ feasible for HPR and $f\left(x^{*}, y^{*}\right) \leq \Phi\left(x^{*}\right) \rightarrow$ update the incumbent as usual
- $\left(x^{*}, y^{*}\right)$ feasible for HPR and $f\left(x^{*}, y^{*}\right)>\Phi\left(x^{*}\right)$, i.e., bilevel-infeasible \rightarrow we need to do something!

Our Goal: Design MILP-based solver for MIBLP

For the rest of presentation: Assume HPR value is bounded.

Our Goal

solve MIBLP by using a standard simplex-based branch-and-cut algorithm; enforce $d^{T} y \leq \Phi(x)$ on the fly, by adding cutting planes

- given optimal vertex $\left(x^{*}, y^{*}\right)$ of $\overline{\text { HPR }}$
- $\left(x^{*}, y^{*}\right)$ infeasible for HPR (i.e., fractional) \rightarrow branch as usual
- $\left(x^{*}, y^{*}\right)$ feasible for HPR and $f\left(x^{*}, y^{*}\right) \leq \Phi\left(x^{*}\right) \rightarrow$ update the incumbent as usual
- $\left(x^{*}, y^{*}\right)$ feasible for HPR and $f\left(x^{*}, y^{*}\right)>\Phi\left(x^{*}\right)$, i.e., bilevel-infeasible \rightarrow we need to do something!
- Moore and Bard [1990] (Branch-and-Bound)
- branching to cut-off bilevel infeasible solutions
- no y-variables in leader-constraints
- either all x-variables integer or all y-variables continuous

Our Goal: Design MILP-based solver for MIBLP

For the rest of presentation: Assume HPR value is bounded.

Our Goal

solve MIBLP by using a standard simplex-based branch-and-cut algorithm; enforce $d^{T} y \leq \Phi(x)$ on the fly, by adding cutting planes

- given optimal vertex $\left(x^{*}, y^{*}\right)$ of $\overline{\text { HPR }}$
- $\left(x^{*}, y^{*}\right)$ infeasible for HPR (i.e., fractional) \rightarrow branch as usual
- $\left(x^{*}, y^{*}\right)$ feasible for HPR and $f\left(x^{*}, y^{*}\right) \leq \Phi\left(x^{*}\right) \rightarrow$ update the incumbent as usual
- $\left(x^{*}, y^{*}\right)$ feasible for HPR and $f\left(x^{*}, y^{*}\right)>\Phi\left(x^{*}\right)$, i.e., bilevel-infeasible \rightarrow we need to do something!
- DeNegre [2011], DeNegre \& Ralphs (Branch-and-Cut)
- cuts based on slack
- needs all variables and coefficients to be integer
- open-source solver MibS

Our Goal: Design MILP-based solver for MIBLP

For the rest of presentation: Assume HPR value is bounded.

Our Goal

solve MIBLP by using a standard simplex-based branch-and-cut algorithm; enforce $d^{T} y \leq \Phi(x)$ on the fly, by adding cutting planes

- given optimal vertex $\left(x^{*}, y^{*}\right)$ of $\overline{\text { HPR }}$
- $\left(x^{*}, y^{*}\right)$ infeasible for HPR (i.e., fractional) \rightarrow branch as usual
- $\left(x^{*}, y^{*}\right)$ feasible for HPR and $f\left(x^{*}, y^{*}\right) \leq \Phi\left(x^{*}\right) \rightarrow$ update the incumbent as usual
- $\left(x^{*}, y^{*}\right)$ feasible for HPR and $f\left(x^{*}, y^{*}\right)>\Phi\left(x^{*}\right)$, i.e., bilevel-infeasible \rightarrow we need to do something!
- Xu and Wang [2014], Wang and Xu [2017] (Branch-and-Bound)
- multiway branching to cut-off bilevel infeasible solutions
- all x-variables integer and bounded, follower coefficients of x-variables must be integer

Our Goal: Design MILP-based solver for MIBLP

For the rest of presentation: Assume HPR value is bounded.

Our Goal

solve MIBLP by using a standard simplex-based branch-and-cut algorithm; enforce $d^{T} y \leq \Phi(x)$ on the fly, by adding cutting planes

- given optimal vertex $\left(x^{*}, y^{*}\right)$ of $\overline{\text { HPR }}$
- $\left(x^{*}, y^{*}\right)$ infeasible for HPR (i.e., fractional) \rightarrow branch as usual
- $\left(x^{*}, y^{*}\right)$ feasible for HPR and $f\left(x^{*}, y^{*}\right) \leq \Phi\left(x^{*}\right) \rightarrow$ update the incumbent as usual
- $\left(x^{*}, y^{*}\right)$ feasible for HPR and $f\left(x^{*}, y^{*}\right)>\Phi\left(x^{*}\right)$, i.e., bilevel-infeasible \rightarrow we need to do something!
- Our Approach (Branch-and-Cut)
- Use Intersection Cuts (Balas [1971]) to cut off bilevel infeasible solutions

STEP 3: INTERSECTION CUTS

Intersection Cuts (ICs)

- powerful tool to separate a bilevel infeasible point $\left(x^{*}, y^{*}\right)$ from a set of bilevel feasible points (X, Y) by a linear cut
- what we need to derive ICs

Intersection Cuts (ICs)

- powerful tool to separate a bilevel infeasible point $\left(x^{*}, y^{*}\right)$ from a set of bilevel feasible points (X, Y) by a linear cut

- • • • • •
- what we need to derive ICs

```
- a cone pointed at \(\left(x^{*}, y^{*}\right)\) containing all \((X, Y)\) (if \(\left(x^{*}, y^{*}\right)\) is a vertex of
HPR-relaxation, a possible cone comes from LP-basis)
- a convex set \(S\) with \(\left(x^{*}, y^{*}\right)\) but no bilevel feasible points \(((x, y) \in(X, Y))\) in
its interior
- important: \(\left(x^{*}, y^{*}\right)\) should not be on the frontier of \(S\)
```


Intersection Cuts (ICs)

- powerful tool to separate a bilevel infeasible point $\left(x^{*}, y^{*}\right)$ from a set of bilevel feasible points (X, Y) by a linear cut

- what we need to derive ICs
- a cone pointed at $\left(x^{*}, y^{*}\right)$ containing all (X, Y) (if $\left(x^{*}, y^{*}\right)$ is a vertex of $\overline{H P R}$-relaxation, a possible cone comes from LP-basis)
its interior
- important: $\left(x, y^{*}\right)$ should not be on the frontier of S

Intersection Cuts (ICs)

- powerful tool to separate a bilevel infeasible point $\left(x^{*}, y^{*}\right)$ from a set of bilevel feasible points (X, Y) by a linear cut

- what we need to derive ICs
- a cone pointed at $\left(x^{*}, y^{*}\right)$ containing all (X, Y) (if $\left(x^{*}, y^{*}\right)$ is a vertex of HPR-relaxation, a possible cone comes from LP-basis)
- a convex set S with $\left(x^{*}, y^{*}\right)$ but no bilevel feasible points $((x, y) \in(X, Y))$ in its interior
- important: $\left(x^{*}, y^{*}\right)$ should not be on the frontier of S.

Intersection Cuts (ICs)

- powerful tool to separate a bilevel infeasible point $\left(x^{*}, y^{*}\right)$ from a set of bilevel feasible points (X, Y) by a linear cut

- what we need to derive ICs
- a cone pointed at $\left(x^{*}, y^{*}\right)$ containing all (X, Y) (if $\left(x^{*}, y^{*}\right)$ is a vertex of HPR-relaxation, a possible cone comes from LP-basis)
- a convex set S with $\left(x^{*}, y^{*}\right)$ but no bilevel feasible points $((x, y) \in(X, Y))$ in its interior
- important: $\left(x^{*}, y^{*}\right)$ should not be on the frontier of S.

Intersection Cuts for Bilevel Optimization

- we need a bilevel-free set S

```
Theorem
For any feasible solution of the follower \hat{y}\in\mp@subsup{\mathbb{R}}{}{\mp@subsup{n}{2}{}}\mathrm{ , the set}
S(\hat{y})={(x,y)\in\mp@subsup{\mathbb{R}}{}{n}:\mp@subsup{d}{}{\top}y>\mp@subsup{d}{}{T}\hat{y},Ax+B\hat{y}\leqb}
does not contain any bilevet-feasible point (not even on its frontier).
```


Intersection Cuts for Bilevel Optimization

- we need a bilevel-free set S

Theorem

For any feasible solution of the follower $\hat{y} \in \mathbb{R}^{n_{2}}$, the set

$$
S(\hat{y})=\left\{(x, y) \in \mathbb{R}^{n}: d^{T} y>d^{T} \hat{y}, A x+B \hat{y} \leq b\right\}
$$

does not contain any bilevel-feasible point (not even on its frontier).

- note: $S(\hat{y})$ is a polyhedron
- problem: bilevel-infeasible (x^{*}, y^{*}) can be on the frontier of bilevel-free set $S \rightarrow$ IC based on $S(\hat{y})$ may not be able to cut off $\left(x^{*}, y^{*}\right)$

Intersection Cuts for Bilevel Optimization

- we need a bilevel-free set S

Theorem

For any feasible solution of the follower $\hat{y} \in \mathbb{R}^{n_{2}}$, the set

$$
S(\hat{y})=\left\{(x, y) \in \mathbb{R}^{n}: d^{T} y>d^{T} \hat{y}, A x+B \hat{y} \leq b\right\}
$$

does not contain any bilevel-feasible point (not even on its frontier).

- note: $S(\hat{y})$ is a polyhedron
- problem: bilevel-infeasible $\left(x^{*}, y^{*}\right)$ can be on the frontier of bilevel-free set $S \rightarrow$ IC based on $S(\hat{y})$ may not be able to cut off $\left(x^{*}, y^{*}\right)$

Intersection Cuts for Bilevel Optimization

Assumption

$A x+B y-b$ is integer for all HPR solutions (x, y).

Theorem

Under the previous assumption, for any feasible solution of the follower $\hat{y} \in \mathbb{R}^{n_{2}}$ the extended polyhedron

$$
\begin{equation*}
S^{+}(\hat{y})=\left\{(x, y) \in \mathbb{R}^{n}: d^{\top} y \geq d^{\top} \hat{y}, A x+B \hat{y} \leq b+\mathbf{1}\right\}, \tag{17}
\end{equation*}
$$

```
where \(\mathbf{1}=(1, \cdots, 1)\) denote a vector of all ones of suitable size, does not contain
any bilevel feasible point in its interior.
```


Intersection Cuts for Bilevel Optimization

Assumption

$A x+B y-b$ is integer for all HPR solutions (x, y).

Theorem

Under the previous assumption, for any feasible solution of the follower $\hat{y} \in \mathbb{R}^{n_{2}}$, the extended polyhedron

$$
\begin{equation*}
S^{+}(\hat{y})=\left\{(x, y) \in \mathbb{R}^{n}: d^{\top} y \geq d^{\top} \hat{y}, A x+B \hat{y} \leq b+\mathbf{1}\right\}, \tag{17}
\end{equation*}
$$

where $\mathbf{1}=(1, \cdots, 1)$ denote a vector of all ones of suitable size, does not contain any bilevel feasible point in its interior.

Intersection Cuts for Bilevel Optimization

- application sketch on the example from Moore and Bard [1990]
- solve HPR \rightarrow obtain $\left(x^{*}, y^{*}\right)=(2,4)$ and LP-cone, take
- solve HPR again \rightarrow obtain $\left(x^{*}, y^{*}\right)=(6,2)$ and LP-cone, take

$$
\begin{aligned}
& \min _{x \in \mathbb{Z}}-x-10 y \\
& y \in \arg \min _{y^{\prime} \in \mathbb{Z}}\left\{y^{\prime}\right. \\
&-25 x+20 y^{\prime} \leq 30 \\
& x+2 y^{\prime} \leq 10 \\
& 2 x-y^{\prime} \leq 15 \\
& 2 x+10 y^{\prime}\geq 15\}
\end{aligned}
$$

Intersection Cuts for Bilevel Optimization

- application sketch on the example from Moore and Bard [1990]
- solve $\overline{\mathrm{HPR}} \rightarrow$ obtain $\left(x^{*}, y^{*}\right)=(2,4)$ and LP-cone, take $\hat{y}=2$
- solve HPR again \rightarrow obtain $\left(x^{*}, y^{*}\right)=(6,2)$ and LP-cone, take

$$
\begin{aligned}
& \min _{x \in \mathbb{Z}}-x-10 y \\
& y \in \arg \min _{y^{\prime} \in \mathbb{Z}}\left\{y^{\prime}\right. \\
&-25 x+20 y^{\prime} \leq 30 \\
& x+2 y^{\prime} \leq 10 \\
& 2 x-y^{\prime} \leq 15 \\
& 2 x+10 y^{\prime}\geq 15\}
\end{aligned}
$$

Intersection Cuts for Bilevel Optimization

- application sketch on the example from Moore and Bard [1990]
- solve $\overline{\mathrm{HPR}} \rightarrow$ obtain $\left(x^{*}, y^{*}\right)=(2,4)$ and LP-cone, take $\hat{y}=2$
- solve HPR again \rightarrow obtain $\left(x^{*}, y^{*}\right)=(6,2)$ and LP-cone, take

$$
\begin{aligned}
& \min _{x \in \mathbb{Z}}-x-10 y \\
& y \in \arg \min _{y^{\prime} \in \mathbb{Z}}\left\{y^{\prime}\right. \\
&-25 x+20 y^{\prime} \leq 30 \\
& x+2 y^{\prime} \leq 10 \\
& 2 x-y^{\prime} \leq 15 \\
& 2 x+10 y^{\prime}\geq 15\}
\end{aligned}
$$

Intersection Cuts for Bilevel Optimization

- application sketch on the example from Moore and Bard [1990]
- solve $\overline{\mathrm{HPR}} \rightarrow$ obtain $\left(x^{*}, y^{*}\right)=(2,4)$ and LP-cone, take $\hat{y}=2$
- solve HPR again \rightarrow obtain $\left(x^{*}, y^{*}\right)=(6,2)$ and LP-cone, take

$$
\begin{aligned}
& \min _{x \in \mathbb{Z}}-x-10 y \\
& y \in \arg \min _{y^{\prime} \in \mathbb{Z}}\left\{y^{\prime}\right. \\
&-25 x+20 y^{\prime} \leq 30 \\
& x+2 y^{\prime} \leq 10 \\
& 2 x-y^{\prime} \leq 15 \\
& 2 x+10 y^{\prime}\geq 15\}
\end{aligned}
$$

Intersection Cuts for Bilevel Optimization

- application sketch on the example from Moore and Bard [1990]
- solve $\overline{\mathrm{HPR}} \rightarrow$ obtain $\left(x^{*}, y^{*}\right)=(2,4)$ and LP-cone, take $\hat{y}=2$
- solve HPR again \rightarrow obtain $\left(x^{*}, y^{*}\right)=(6,2)$ and LP-cone, take

$$
\begin{aligned}
& \min _{x \in \mathbb{Z}}-x-10 y \\
& y \in \arg \min _{y^{\prime} \in \mathbb{Z}}\left\{y^{\prime}\right. \\
&-25 x+20 y^{\prime} \leq 30 \\
& x+2 y^{\prime} \leq 10 \\
& 2 x-y^{\prime} \leq 15 \\
& 2 x+10 y^{\prime}\geq 15\}
\end{aligned}
$$

Intersection Cuts for Bilevel Optimization

- application sketch on the example from Moore and Bard [1990]
- solve $\overline{\mathrm{HPR}} \rightarrow$ obtain $\left(x^{*}, y^{*}\right)=(2,4)$ and LP-cone, take $\hat{y}=2$
- solve $\overline{\mathrm{HPR}}$ again \rightarrow obtain $\left(x^{*}, y^{*}\right)=(6,2)$ and LP-cone, take $\hat{y}=1$

$$
\begin{aligned}
& \min _{x \in \mathbb{Z}}-x-10 y \\
& y \in \arg \min _{y^{\prime} \in \mathbb{Z}}\left\{y^{\prime}\right. \\
&-25 x+20 y^{\prime} \leq 30 \\
& x+2 y^{\prime} \leq 10 \\
& 2 x-y^{\prime} \leq 15 \\
& 2 x+10 y^{\prime}\geq 15\}
\end{aligned}
$$

Intersection Cuts for Bilevel Optimization

- application sketch on the example from Moore and Bard [1990]
- solve $\overline{\mathrm{HPR}} \rightarrow$ obtain $\left(x^{*}, y^{*}\right)=(2,4)$ and LP-cone, take $\hat{y}=2$
- solve $\overline{\mathrm{HPR}}$ again \rightarrow obtain $\left(x^{*}, y^{*}\right)=(6,2)$ and LP-cone, take $\hat{y}=1$

$$
\begin{aligned}
& \min _{x \in \mathbb{Z}}-x-10 y \\
& y \in \arg \min _{y^{\prime} \in \mathbb{Z}}\left\{y^{\prime}\right. \\
&-25 x+20 y^{\prime} \leq 30 \\
& x+2 y^{\prime} \leq 10 \\
& 2 x-y^{\prime} \leq 15 \\
& 2 x+10 y^{\prime}\geq 15\}
\end{aligned}
$$

Intersection Cuts for Bilevel Optimization

- application sketch on the example from Moore and Bard [1990]
- solve $\overline{\mathrm{HPR}} \rightarrow$ obtain $\left(x^{*}, y^{*}\right)=(2,4)$ and LP-cone, take $\hat{y}=2$
- solve $\overline{\mathrm{HPR}}$ again \rightarrow obtain $\left(x^{*}, y^{*}\right)=(6,2)$ and LP-cone, take $\hat{y}=1$

$$
\begin{aligned}
& \min _{x \in \mathbb{Z}}-x-10 y \\
& y \in \arg \min _{y^{\prime} \in \mathbb{Z}}\left\{y^{\prime}\right. \\
&-25 x+20 y^{\prime} \leq 30 \\
& x+2 y^{\prime} \leq 10 \\
& 2 x-y^{\prime} \leq 15 \\
& 2 x+10 y^{\prime}\geq 15\}
\end{aligned}
$$

Separating Intersection Cuts

- given bilevel infeasible $\left(x^{*}, y^{*}\right)$, how do we determine convex bilevel-free set $S^{+}(\hat{y})$?
- a natural option: use the optimal solution \hat{y} of the follower subproblem for $x=x^{*}$
- needs to be solved in any case to check bilevel-feasibility of (x^{*}, y^{*})
- separation procedure is a MILP:

y_{j} integer

SEP-1 maximizes distance of $\left(x^{*}, y^{*}\right)$ to $d^{T} y \geq d^{T} \hat{y}$.

Separating Intersection Cuts

- given bilevel infeasible $\left(x^{*}, y^{*}\right)$, how do we determine convex bilevel-free set $S^{+}(\hat{y})$?
- a natural option: use the optimal solution \hat{y} of the follower subproblem for $x=x^{*}$
- needs to be solved in any case to check bilevel-feasibility of $\left(x^{*}, y^{*}\right)$
- separation procedure is a MILP:

SEP-1 maximizes distance of $\left(x^{*}, y^{*}\right)$ to $d^{T} y \geq d^{T} \hat{y}$.

Separating Intersection Cuts

- given bilevel infeasible $\left(x^{*}, y^{*}\right)$, how do we determine convex bilevel-free set $S^{+}(\hat{y})$?
- a natural option: use the optimal solution \hat{y} of the follower subproblem for $x=x^{*}$
- needs to be solved in any case to check bilevel-feasibility of $\left(x^{*}, y^{*}\right)$
- separation procedure is a MILP:

$$
\begin{aligned}
& \text { SEP }-1: \hat{y} \in \arg \min \left\{d^{T} y\right. \\
& A x^{*}+B y \leq b \\
& \left.y_{j} \text { integer } \quad \forall j \in J_{y}\right\}
\end{aligned}
$$

SEP-1 maximizes distance of $\left(x^{*}, y^{*}\right)$ to $d^{T} y \geq d^{T} \hat{y}$.

COMPUTATIONAL RESULTS (First insights about usefulness of intersection cuts)

Computational Results

C, CPLEX 12.6.3, Intel Xeon E3-1220V2 3.1 GHz, four threads

Table: Our testbed. Column \#inst reports the total number of instances in the class, while column type indicates whether the instances are binary (B) or integer (I).

Class	source	\# inst	type	Notes
DENEGRE	DeNegre [2011]	50	I	randomly generated
INTERDICTION	DeNegre [2011]	125	B	interdiction inst.s
MIPLIB	Fischetti et al. [2016]	57	B	from MIPLIB 3.0

Table: Our tested settings.
\#cuts $/$ \#cutso: maximum number of cuts added at root node/all other nodes

Name	Sep.	\#cuts	\#cutso
SEP-1a	SEP-1	20	20
SEP-1b	SEP-1	20	0
BENCHMARK	our benchmark code implementing cuts in DeNegre [2011]		

Computational Results

C, CPLEX 12.6.3, Intel Xeon E3-1220V2 3.1 GHz, four threads

Table: Our testbed. Column \#inst reports the total number of instances in the class, while column type indicates whether the instances are binary (B) or integer (I).

Class	source	\# inst	type	Notes
DENEGRE	DeNegre [2011]	50	I	randomly generated
INTERDICTION	DeNegre [2011]	125	B	interdiction inst.s
MIPLIB	Fischetti et al. [2016]	57	B	from MIPLIB 3.0

Table: Our tested settings.
\#cuts $/$ /\#cuts cus $_{0}$: maximum number of cuts added at root node/all other nodes

Name	Sep.	\#cuts	\#cutso
SEP-1a	SEP-1	20	20
SEP-1b	SEP-1	20	0
BENCHMARK	our benchmark code implementing cuts in DeNegre [2011]		

Computational Results

C, CPLEX 12.6.3, Intel Xeon E3-1220V2 3.1 GHz, four threads

Table: Our testbed. Column \#inst reports the total number of instances in the class, while column type indicates whether the instances are binary (B) or integer (I).

Class	source	$\#$ inst	type	Notes
DENEGRE	DeNegre [2011]	50	I	randomly generated
INTERDICTION	DeNegre [2011]	125	B	interdiction inst.s
MIPLIB	Fischetti et al. [2016]	57	B	from MIPLIB 3.0

Table: Our tested settings.
\#cuts $/$ \# cuts ${ }_{o}$: maximum number of cuts added at root node/all other nodes

Name	Sep.	\#cuts $_{r}$	\#cuts ${ }_{o}$
SEP-1a	SEP-1	20	20
SEP-1b	SEP-1	20	0
BENCHMARK	our benchmark code implementing cuts in DeNegre [2011]		

Computational Results

Table: Summary of obtained results. We report the number of solved instances (\#), the shifted geometric mean for computing time ($t[s]$) and for number of nodes (nodes), and the average gaps ($g[\%]$).

	MIPLIB (57 inst.s)				INTERDICTION (125 inst.s)					DENEGRE (50 inst.s)			
setting	$\#$	$t[s]$	nodes	$g[\%]$	$\#$	$t[s]$	nodes	$g[\%]$	$\#$	$t[s]$	$n o d e s$	$g[\%]$	
SEP-1a	20	599	9655.9	27.65	83	148	36769.3	33.06	42	40	574.0	4.61	
SEP-1b	18	660	100475.8	27.85	64	245	240859.4	48.39	45	35	12452.1	3.89	
BENCHMARK	15	954	234670.7	31.78	44	496	1310639.5	63.45	38	58	27918.5	9.20	

Computational Results

Figure: Performance profile plot over all instances (classes DENEGRE, INTERDICTION and MIPLIB).

The leftmost point of the graph for a setting s shows the percentage of instances for which s is the fastest setting.
The rightmost point shows the percentage of instances solved to optimality by s.

PART II: MILP-BASED SOLVER for MIBLP

MILP-based solver for MIBLP

Basic Solution Scheme

- standard simplex-based branch-and-cut algorithm ...
- ... that enforces $d^{T} y \leq \Phi(x)$, on the fly, by adding cutting planes.

New features:

- Follower preprocessing.
- Follower Upper-Bound cuts.
- Intersection Cuts (ICs):
- New families of ICs;
- Separation of ICs.

Follower Preprocessing

$$
\begin{aligned}
& \hat{y} \in \arg \min \left\{d^{\top} y\right. \\
& A x+B y \leq b \\
& I \leq y \leq u \\
& \left.y_{j} \text { integer } \quad \forall j \in J_{y}\right\}
\end{aligned}
$$

Theorem

Let y_{j} be a follower variable and let l_{j} be its lower bound in the follower.
If $d_{j}>0$ and $B_{j} \geq 0$ then $y_{j}=I_{j}$ in any optimal solution.

- Idea: for any $x^{*} \in \mathbb{R}^{n_{1}}$, fixing variable y_{j} to the lower bound decreases the follower cost and does not reduce the associated feasible set.
- Fix $y_{j}=l_{j}$ in the HPR as well.
- Large impact in the performance of the algorithm.
- Observation: to preserve equivalent optimal solutions for the follower, we require d_{j} be strictly positive.

Follower Preprocessing

$$
\begin{aligned}
& \hat{y} \in \arg \min \left\{d^{\top} y\right. \\
& A x+B y \leq b \\
& I \leq y \leq u \\
& \left.y_{j} \text { integer } \quad \forall j \in J_{y}\right\}
\end{aligned}
$$

Theorem

Let y_{j} be a follower variable and let u_{j} be its upper bound in the follower.
If $d_{j}<0$ and $B_{j} \leq 0$ then $y_{j}=u_{j}$ in any optimal solution.

- Idea: for any $x^{*} \in \mathbb{R}^{n_{1}}$, fixing variable y_{j} to the upper bound decreases the follower cost and does not reduce the associated feasible set.
- Fix $y_{j}=u_{j}$ in the HPR as well.
- Large impact in the performance of the algorithm.
- Observation: to preserve equivalent optimal solutions for the follower, we require d_{j} be strictly negative.

Follower Upper-Bound (FUB) cuts

Observation:

Let FUB be an upper bound for the value of the follower's solution, independently on the choice of x. Then:

$$
d^{T} y \leq F U B
$$

is a valid cut for HPR.

Tighter Bounds

Tighter FUB values could be obtained inside the B\&B tree, but these cuts are only locally valid.

Overrestricting the Follower

By replacing original constraints $A x+B y \leq b$ by more restricting ones (independent on the choice of x), a $F U B$ can be obtained.

Follower Upper-Bound cuts

Theorem

Let $\left(x^{-}, x^{+}\right)$denote the bounds for the x variables at the current $B \& B$ node. The following inequality

$$
d^{T} y \leq F U B\left(x^{-}, x^{+}\right)
$$

is locally valid for the current node, where

y_{j} integer,

- $F U B\left(x^{-}, x^{+}\right)$is an overestimator of the follower objective at the current node (all x 's are set to their worst value).

Follower Upper-Bound cuts

Theorem

Let $\left(x^{-}, x^{+}\right)$denote the bounds for the x variables at the current $B \& B$ node. The following inequality

$$
d^{T} y \leq F U B\left(x^{-}, x^{+}\right)
$$

is locally valid for the current node, where

$$
\begin{array}{cc}
F U B\left(x^{-}, x^{+}\right):=\min \left\{d^{\top} y\right. & \\
\sum_{j \in N_{x}} \max \left\{A_{i j} x_{j}^{-}, A_{i j} x_{j}^{+}\right\}+\sum_{j \in N_{y}} B_{i j} y_{j} \leq b_{i}, & i=1, \ldots, m \\
y_{j} \text { integer, } & \left.\forall j \in J_{y}\right\} .
\end{array}
$$

- $F U B\left(x^{-}, x^{+}\right)$is an overestimator of the follower objective at the current node (all x 's are set to their worst value).

MORE ON INTERSECTION CUTS

- Main ingredient of our basic branch-and-cut algorithm.
- Given an infeasible x^{*} and the associated simplex cone, the definition of an IC asks for the definition of a convex set S with x^{*} but no bilevel-feasible $x \in X$ in its interior.
- The choice of bilevel-free polyhedra is not unique.
- The larger the bilevel-free set, the better the IC.

Theorem (Fischetti et al. [2018])

Given $\hat{y} \in \mathbb{R}_{2}^{n}$ such that \hat{y}_{j} integer $\forall j \in J_{y}$, the following set

$$
S^{+}(\hat{y})=\left\{(x, y) \in \mathbb{R}^{n}: d^{T} y \geq d^{T} \hat{y}, A x+B \hat{y} \leq b+\mathbf{1}\right\}
$$

is bilevel-feasible free.

Other Bilevel-Free Sets can be defined

Motivated by the results Xu [2012], Wang and Xu [2017]:
Assumption: $A x+B y-b$ is integer for all HPR solutions (x, y).

Theorem (Fischetti et al. [2017])

Given $\Delta \hat{y} \in \mathbb{R}_{2}^{n}$ such that $d^{T} \Delta \hat{y}<0$ and $\Delta \hat{y}_{j}$ integer $\forall j \in J_{y}$, the following set

$$
X^{+}(\Delta \hat{y})=\left\{(x, y) \in \mathbb{R}^{n}: A x+B y+B \Delta \hat{y} \leq b+\mathbf{1}\right\}
$$

has no bilevel-feasible points in its interior.
Proof: by contradiction. Assume $(\tilde{x}, \tilde{y}) \in X^{+}(\Delta \hat{y})$ is bilevel-feasible. But then, $d^{T} \tilde{y}>d^{T}(\tilde{y}+\Delta \hat{y})$ and $(\tilde{x}, \tilde{y}+\Delta \hat{y})$ is feasible for the follower, hence contradiction.

SEPARATION of INTERSECTION CUTS

Separation of ICs associated to $S^{+}(\hat{y})$

Given $\hat{y} \in \mathbb{R}_{2}^{n}$ such that \hat{y}_{j} integer $\forall j \in J_{y}$, the following set

$$
S^{+}(\hat{y})=\left\{(x, y) \in \mathbb{R}^{n}: d^{T} y \geq d^{T} \hat{y}, A x+B \hat{y} \leq b+\mathbf{1}\right\}
$$

is bilevel-feasible free. How to compute \hat{y} ?

- SEP1

$$
\hat{y} \in \arg \min _{y \in \mathbb{R}^{n_{2}}}\left\{d^{T} y: B y \leq b-A x^{*}, \quad y_{j} \text { integer } \forall j \in J_{y}\right\}
$$

- \hat{y} is the optimal solution of the follower when $x=x^{*}$.
- Maximize the distance of $\left(x^{*}, y^{*}\right)$ from the facet $d^{T} y \geq d^{T} \hat{y}$ of $S(\hat{y})$.
- SEP2 Alternatively, try to find \hat{y} such that some of the facets in $A x+b \hat{y} \leq b$ can be removed (making thus $S(\hat{y})$ larger!)

Separation of ICs associated to $S^{+}(\hat{y})$

Given $\hat{y} \in \mathbb{R}_{2}^{n}$ such that \hat{y}_{j} integer $\forall j \in J_{y}$, the following set

$$
S^{+}(\hat{y})=\left\{(x, y) \in \mathbb{R}^{n}: d^{T} y \geq d^{T} \hat{y}, A x+B \hat{y} \leq b+\mathbf{1}\right\}
$$

is bilevel-feasible free. How to compute \hat{y} ?

- SEP2 (Fischetti et al. [2018])

$$
\begin{array}{rlrl}
\hat{y} \in \arg \min \sum_{i=1}^{m} & w_{i} & & \\
d^{T} y & \leq d^{T} y^{*}-1 & & \\
B y+s & =b & & \\
s_{i}+\left(L_{i}^{\max }-L_{i}^{*}\right) w_{i} & \geq L_{i}^{\text {max }}, & \forall i=1, \ldots, m \\
y_{j} & \text { integer, } & \forall j \in J_{y} \\
s \text { free }, w \in\{0,1\}^{m} & &
\end{array}
$$

where

$$
L_{i}^{*}:=\sum_{j \in N_{x}} A_{i j} x_{j}^{*} \leq L_{i}^{\max }:=\sum_{j \in N_{x}} \max \left\{A_{i j} x_{j}^{-}, A_{i j} x_{j}^{+}\right\} .
$$

- $w_{i}=0$ if i-th facet of $A x+B \hat{y} \leq b$ can be removed
- the number of "removable facets" is maximized \rightarrow larger $S^{+}(\hat{y})$.

Separation of ICs associated to $X^{+}(\Delta \hat{y})$

Given $\Delta \hat{y} \in \mathbb{R}_{2}^{n}$ such that $d^{T} \Delta \hat{y}<0$ and $\Delta \hat{y}_{j}$ integer $\forall j \in J_{y}$, the following set

$$
X^{+}(\Delta \hat{y})=\left\{(x, y) \in \mathbb{R}^{n}: A x+B y+B \Delta \hat{y} \leq b+\mathbf{1}\right\}
$$

has no bilevel-feasible points in its interior. How to compute $\Delta \hat{y}$?

- XU (Xu [2012])

$$
\begin{aligned}
& \Delta \hat{y} \in \arg \min \sum_{i=1}^{\tilde{m}} t_{i} \\
& d^{T} \Delta y \leq-1 \\
& B \Delta y \leq b-A x^{*}-B y^{*} \\
& \Delta y_{j} \text { integer, } \quad \forall j \in J_{y}
\end{aligned}
$$

- variable t_{i} has value 0 in case $(\tilde{B} \Delta y)_{i} \leq 0$ ("removable facet");
- "maximize the size" of the bilevel-feasible set associated with $\Delta \hat{y}$.

COMPUTATIONAL STUDY

Settings

C, CPLEX 12.6.3, Intel Xeon E3-1220V2 3.1 GHz, four threads.

Class	Source	Type	\#Inst	\#OptB	\#Opt
DENEGRE	DeNegre [2011],Ralphs and Adams [2016]	I	50	45	$\mathbf{5 0}$
MIPLIB	Fischetti et al. [2016]	B	57	20	27
XUWANG	Xu and Wang [2014]	I,C	140	140	$\mathbf{1 4 0}$
INTER-KP	DeNegre [2011],Ralphs and Adams [2016]	B	160	79	138
INTER-KP2	Tang et al. [2016]	B	150	53	$\mathbf{1 5 0}$
INTER-ASSIG	DeNegre [2011],Ralphs and Adams [2016]	B	25	25	$\mathbf{2 5}$
INTER-RANDOM	DeNegre [2011],Ralphs and Adams [2016]	B	80	-	$\mathbf{8 0}$
INTER-CLIQUE	Tang et al. [2016]	B	80	10	$\mathbf{8 0}$
INTER-FIRE	Baggio et al. [2016]	B	72	-	$\mathbf{7 2}$
total			814	$\mathbf{3 7 2}$	$\mathbf{7 6 2}$

- \#OptB = number of optimal solutions known before our work.
- \#Opt = number of optimal solutions known after our work.

Effects of FUB cuts

- Speed-ups achieved by FUB cuts for the instance set DENEGRE.

Setting
\rightarrow SEP1/SEP1 +
$-_$SEP2/SEP2 +

Effects of follower preprocessing

- Speed-ups achieved using follower preprocessing.

Combining FUB cuts and follower preprocessing

- Final gaps for settings SEP2 and SEP2++ for instance set MIPLIB, obtained when the time-limit of one hour is reached.

Effects of different ICs

- MIX++: combination of settings SEP2++ and XU++ (both ICs being separated at each separation call).
- Performance profile on the subsets of (bilevel and interdiction) instances that could be solved to optimality by all three settings within the given time-limit of one hour.

Comparison with the literature (1)

- Results for the instance set XUWANG

n_{1}	$i=1 i=$		$=3$	$=4$	$=5$	$\begin{gathered} \text { IX++ } \\ =6 \end{gathered}$	$=7$			$=10$		Xu and Wang [2014] avg
10	3	3	3	3	2	3	2	3	2	3	2.6	1.4
60	2	0	0	1	1	1	1	1	2	2	0.9	45.6
110	2	1	2	2	1	2	1	2	2	12	2.8	111.9
160	2	2	3	2	3	1	4	1	1	3	2.1	177.9
210	2	3	1	1	3	3	3	2	5	3	2.6	1224.5
260	3	4	3	6	3	5	6	2	7	11	5.0	1006.7
310	5	10	11	14	7	16	15	8	5	3	9.4	4379.3
360	17	28	11	13	11	15	7	19	9	14	14.4	2972.4
410	19	10	29	8	21	10	9	15	23	42	18.7	4314.2
460	22	10	22	35	21	21	32	22	23	23	23.1	6581.4
B1-110	0	0	0	0	0	1	0	1	0	9	1.3	132.3
B1-160	1	1	3	1	2	1	3	0	0	2	1.3	184.4
B2-110	16	2	2	8	1	25	15	5	1	122	19.7	4379.8
B2-160	8	38	21	91	34	4	40	3	12	123	37.4	22999.7

Comparison with the literature (2)

- Results for the instance sets INTER-KP2 (left) and INTER-CLIQUE (right)

		MIX++	Tang et al. [2016]	
n_{1}	k	$\mathrm{t}[\mathrm{s}]$	$\mathrm{t}[\mathrm{s}]$	\#unsol
20	5	5.4	721.4	0
20	10	1.7	2992.6	3
20	15	0.2	129.5	0
22	6	10.3	1281.2	6
22	11	2.3	3601.8	10
22	17	0.2	248.2	0
25	7	33.6	3601.4	10
25	13	8.0	3602.3	10
25	19	0.4	1174.6	0
28	7	97.9	3601.0	10
28	14	22.6	3602.5	10
28	21	0.5	3496.9	8
30	8	303.0	3601.0	10
30	15	31.8	3602.3	10
30	23	0.6	3604.5	10

		MIX++	Tang et al. [2016]	
ν	d	$\mathrm{t}[\mathrm{s}]$	$\mathrm{t}[\mathrm{s}]$	\#unsol
8	0.7	0.1	373.0	0
8	0.9	0.2	3600.0	10
10	0.7	0.3	3600.1	10
10	0.9	0.7	3600.2	10
12	0.7	0.8	3600.3	10
12	0.9	1.9	3600.4	10
15	0.7	2.2	3600.3	10
15	0.9	12.6	3600.2	10

Conclusions

- We presented an enhanced branch-and-cut algorithm, based on
- follower preprocessing;
- new locally-valid cuts;
- new separation procedures for ICs.
\square
- Detailed computational analysis (available on the paper) shows that
- both preprocessing and FUB cuts can have a large impact on branch-and-cut performance;
- the new algorithm outperforms previous methods from the literature (including our original branch-and-cut) by a large margin.

- Byproduct: the optimal solution for more than 300 instances previously unsolved instances from literature is now available.

Conclusions

- We presented an enhanced branch-and-cut algorithm, based on
- follower preprocessing;
- new locally-valid cuts;
- new separation procedures for ICs.
- Detailed computational analysis (available on the paper) shows that
- both preprocessing and FUB cuts can have a large impact on branch-and-cut performance;
- the new algorithm outperforms previous methods from the literature (including our original branch-and-cut) by a large margin.

- Byproduct: the optimal solution for more than 300 instances previously unsolved instances from literature is now available.

https://msinnl.github.io/pages/bilevel.html
Thanks for Your Attention! Questions?

Conclusions

- We presented an enhanced branch-and-cut algorithm, based on
- follower preprocessing;
- new locally-valid cuts;
- new separation procedures for ICs.
- Detailed computational analysis (available on the paper) shows that
- both preprocessing and FUB cuts can have a large impact on branch-and-cut performance;
- the new algorithm outperforms previous methods from the literature (including our original branch-and-cut) by a large margin.
- Byproduct: the optimal solution for more than 300 instances previously unsolved instances from literature is now available.

Code is publicly available:

https://msinnl.github.io/pages/bilevel.html

Conclusions

- We presented an enhanced branch-and-cut algorithm, based on
- follower preprocessing;
- new locally-valid cuts;
- new separation procedures for ICs.
- Detailed computational analysis (available on the paper) shows that
- both preprocessing and FUB cuts can have a large impact on branch-and-cut performance;
- the new algorithm outperforms previous methods from the literature (including our original branch-and-cut) by a large margin.
- Byproduct: the optimal solution for more than 300 instances previously unsolved instances from literature is now available.

Code is publicly available:

https://msinnl.github.io/pages/bilevel.html

Thanks for Your Attention! Questions?

Literature I

C. Audet, P. Hansen, B. Jaumard, and G. Savard. Links between linear bilevel and mixed 0-1 programming problems. Journal of Optimization Theory and Applications, 93(2):273-300, 1997.
A. Baggio, M. Carvalho, A. Lodi, and A. Tramontani. Multilevel approaches for the critical node problem. Working paper. École Polytechnique de Montreal, 2016.
E. Balas. Intersection cuts-a new type of cutting planes for integer programming. Operations Research, 19(1):19-39, 1971.
S. DeNegre. Interdiction and Discrete Bilevel Linear Programming. PhD thesis, Lehigh University, 2011.
M. Fischetti, I. Ljubic, M. Monaci, and M. Sinnl. Intersection cuts for bilevel optimization. In IPCO Proceedings, LNCS. Springer, 2016.
M. Fischetti, I. Ljubić, M. Monaci, and M. Sinnl. A new general-purpose algorithm for mixed-integer bilevel linear programs. Operations Research, 65 (60):1615-1637, 2017.

Literature II

M. Fischetti, I. Ljubić, M. Monaci, and M. Sinnl. On the use of intersection cuts for bilevel optimization. Mathematical Programming, 2018. doi: 10.1007/s10107-017-1189-5.
P. Hansen, B. Jaumard, and G. Savard. New branch-and-bound rules for linear bilevel programming. SIAM Journal on Scientific and Statistical Computing, 13(5):1194-1217, 1992.
M. Köppe, M. Queyranne, and C. T. Ryan. Parametric integer programming algorithm for bilevel mixed integer programs. Journal of Optimization Theory and Applications, 146(1):137-150, 2010.
A. Lodi, T. K. Ralphs, and G. J. Woeginger. Bilevel programming and the separation problem. Math. Program., 146(1-2):437-458, 2014.
J. Moore and J. Bard. The mixed integer linear bilevel programming problem. Operations Research, 38(5):911-921, 1990.
T. K. Ralphs and E. Adams. Bilevel instance library, 2016. http://coral.ise.lehigh.edu/data-sets/bilevel-instances/.
Y. Tang, J.-P. P. Richard, and J. C. Smith. A class of algorithms for mixed-integer bilevel min-max optimization. Journal of Global Optimization, 66(2): 225-262, 2016.

Literature III

L. Wang and P. Xu. The watermelon algorithm for the bilevel integer linear programming problem. SIAM Journal on Optimization, 27(3):1403-1430, 2017.
P. Xu. Three essays on bilevel optimization algorithmsand applications. PhD thesis, lowa State University, 2012.
P. Xu and L. Wang. An exact algorithm for the bilevel mixed integer linear programming problem under three simplifying assumptions. Computers \& Operations Research, 41:309-318, 2014.

Hypercube Intersection Cuts

- Simple polyhedron that can be used to generate IC even when $A x+B y-b$ is NOT integer.

Theorem

Assume $J_{F}:=\left\{j \in N_{x}: A_{j} \neq 0\right\} \subseteq J_{x}$ and let (\hat{x}, \hat{y}) an optimal bilevel-feasible solution with $\hat{x}_{j}=x_{j}^{*} \forall j \in J_{F}$ (if any). Then the following hypercube

$$
H C^{+}\left(x^{*}\right)=\left\{(x, y) \in \mathbb{R}^{n}: x_{j}^{*}-1 \leq x_{j} \leq x_{j}^{*}+1, \forall j \in J_{F}\right\}
$$

does not contain any bilevel-feasible solution (or any bilevel-feasible solution strictly better than (\hat{x}, \hat{y}), if the latter is defined) in its interior.

- Idea: the interior of $\mathrm{HC}^{+}\left(x^{*}\right)$ only contains bilevel-feasible solutions (x, y) with $x_{j}=\hat{x}_{j}=x_{j}^{*} \quad \forall j \in J_{F}$

