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Definition

Let G = (V, E, A) be a mixed complete graph where

• V = {v1, v2, . . . , vn},

• E is the edge set and A is the arc set.

The node v1 is referred to as the root.
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Definition

Let G = (V, E, A) be a mixed complete graph where

• V = {v1, v2, . . . , vn},

• E is the edge set and A is the arc set.

The node v1 is referred to as the root.
There are :

• nonnegative ring cost cij associated with each edge vivj ∈ E,

• nonnegative assignment cost dij associated with each arc
(vi, vj) ∈ A.
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Ring Star Problem (RSP)

Finding a simple cycle (ring) containing the root v1 and an assignment
of all other nodes (which do not belong to the ring) to some node on
the cycle such that the sum of ring cost and assignment cost is
minimized. The problem is NP -hard.
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Ring Star Problem (RSP)

Finding a simple cycle (ring) containing the root v1 and an assignment
of all other nodes (which do not belong to the ring) to some node on
the cycle such that the sum of ring cost and assignment cost is
minimized. The problem is NP -hard.

v1

A solution
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Variables and objective function

We define

xij =







1 if the edge vivj belongs to the cycle

0 otherwise
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Variables and objective function

We define

xij =







1 if the edge vivj belongs to the cycle

0 otherwise

yij =







1 if vi is assigned to vj

0 otherwise

In particular, yii = 1 if vi belongs to the cycle.
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Variables and objective function

We define

xij =







1 if the edge vivj belongs to the cycle

0 otherwise

yij =







1 if vi is assigned to vj

0 otherwise

In particular, yii = 1 if vi belongs to the cycle.
Objective function:

minimize
∑

vivj∈E

cijxij +
∑

(vi,vj)∈A

dijyij
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Applications

• Telecommunication: In Digital Data Service design where
concentrators are installed on some user locations and
interconnected on a ring (internet). Remaining user locations are
assigned to those concentrators (intranet). The total cost of all
connections must be minimized.
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Applications

• Telecommunication: In Digital Data Service design where
concentrators are installed on some user locations and
interconnected on a ring (internet). Remaining user locations are
assigned to those concentrators (intranet). The total cost of all
connections must be minimized.

• Location, transport: Facilities are installed on the nodes of the ring
and the remaining nodes are assigned to those facilities. The
supplying cost is the cost of the Hamiltonian cycles on
node-facility and the serving cost is the assignment cost of
remaining vertices. The sum of the two costs must be minimized.
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Previous work

The problem is defined and solved firstly by M. Labbé, G. Laporte, I.R.
Martin and J.J.S. Gonzalez: The Ring Star Problem: Polyhedral
Analysis and Exact Algorithm, Networks, 2004.
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Previous work

The problem is defined and solved firstly by M. Labbé, G. Laporte, I.R.
Martin and J.J.S. Gonzalez: The Ring Star Problem: Polyhedral
Analysis and Exact Algorithm, Networks, 2004.
They designed a branch-and-cut algorithm to solve instances up to
200 nodes with CPLEX 6.0 and Abacus respectively as linear solver
and branch-and-cut framework.
Their appoach is mainly based on the cycle polytope (Bauer 1997) for
the variables x and stable set polytope (Padberg 1973) for the
variables y.
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Previous work

The problem is defined and solved firstly by M. Labbé, G. Laporte, I.R.
Martin and J.J.S. Gonzalez: The Ring Star Problem: Polyhedral
Analysis and Exact Algorithm, Networks, 2004.
They designed a branch-and-cut algorithm to solve instances up to
200 nodes with CPLEX 6.0 and Abacus respectively as linear solver
and branch-and-cut framework.
Their appoach is mainly based on the cycle polytope (Bauer 1997) for
the variables x and stable set polytope (Padberg 1973) for the
variables y.

The cycle polytope here is the convex hull of the incidence vectors of

all the cycles of G. Remark that the cycles considered in the problem is

those containing v1.
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Some observations

The stable set polytope associated to the incompatiblity of the
variables yij , yik and yij , yjk.

yij

yik yjk
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Some observations

The stable set polytope associated to the incompatiblity of the
variables yij , yik and yij , yjk.

yij

yik yjk

• The cycle polytope is very complex. In our knowledge, complete
characterization of its dominant, the cycle polyhedron which
correspond to polynomial cases (when costs are nonnegative) is
not known (Bauer 1997). Coefficients of facet-defining inequalities
are exponential on the number of nodes (Nguyen et al. 2001).
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Some observations

The stable set polytope associated to the incompatiblity of the
variables yij , yik and yij , yjk.

yij

yik yjk

• The cycle polytope is very complex. In our knowledge, complete
characterization of its dominant, the cycle polyhedron which
correspond to polynomial cases (when costs are nonnegative) is
not known (Bauer 1997). Coefficients of facet-defining inequalities
are exponential on the number of nodes (Nguyen et al. 2001).

• Facets of the cycle polytope ⇒ facets of RSP?
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Some observations

The stable set polytope associated to the incompatiblity of the
variables yij , yik and yij , yjk.

yij

yik yjk

• The cycle polytope is very complex. In our knowledge, complete
characterization of its dominant, the cycle polyhedron which
correspond to polynomial cases (when costs are nonnegative) is
not known (Bauer 1997). Coefficients of facet-defining inequalities
are exponential on the number of nodes (Nguyen et al. 2001).

• Facets of the cycle polytope ⇒ facets of RSP?

• The same observations on the stable set polytope.
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Our approach on the variablesx

The cycle in a solution of RSP must contain v1 = s. If we add an
artificial node v′1 = t which is a clone of v1, the cycle can be
transformed to a st-path.
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Our approach on the variablesx

The cycle in a solution of RSP must contain v1 = s. If we add an
artificial node v′1 = t which is a clone of v1, the cycle can be
transformed to a st-path.
This can have advantages because the dominance of the st-paths

conv(x + R
|E||x is incidence vector of a st-path)

is completely characterized by

x(δ(S)) ≥ 1 S ⊂ V , s ∈ S and t ∈ V \ S

These inequalities are called st-cut inequalities.
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Integer formulation for the variables x

The st-cut inequalities characterize the dominant points of st-path, not
only the st-paths.
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Integer formulation for the variables x

The st-cut inequalities characterize the dominant points of st-path, not
only the st-paths.

S

ts

vi

Thus we would obtain solutions with one st-path + disjoint cycles.
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Integer formulation for the variables x

The st-cut inequalities characterize the dominant points of st-path, not
only the st-paths.

S

ts

vi

Thus we would obtain solutions with one st-path + disjoint cycles. We
add the following constraints to cut off them :

x(δ(S)) ≥ 2yii ∀S ⊂ V \ {s, t} and ∀vi ∈ S

Let us call connexity inequalities these inequalities.
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Our approach on the variablesy

In a solution of RSP, on the variables y we can have following
configuration:
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Our approach on the variablesy

In a solution of RSP, on the variables y we can have following
configuration:

An isolated vertex vi having yii = 1. If we consider yii as an arc from vi

to some artificial root node v0, a solution on variables y will be a directed

spanning tree with paths from root v0 to every other node of length at

most 2 (with inversion on the arc’s orientation).
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Our approach on the variablesy

In a solution of RSP, on the variables y we can have following
configuration:

An isolated vertex vi having yii = 1. If we consider yii as an arc from vi

to some artificial root node v0, a solution on variables y will be a directed

spanning tree with paths from root v0 to every other node of length at

most 2 (with inversion on the arc’s orientation). These spanning trees

are called hop-constrained spanning trees.
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Integer formulation for the variables y

We consider the hop-constrained spanning trees with H = 2.
The Hop-constrained Minimum Spanning Tree Problem (HMST) with
H = 2 is NP -hard as it is equivalent to the Simple Uncapaciated
Facility Location.
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Integer formulation for the variables y

We consider the hop-constrained spanning trees with H = 2.
The Hop-constrained Minimum Spanning Tree Problem (HMST) with
H = 2 is NP -hard as it is equivalent to the Simple Uncapaciated
Facility Location.
G. Dahl (1998) gave the following integer formulation for the problem:

∑

i∈V \{j}

yij = 1, j ∈ V \ {0}

y0j ≥ yjk, for every arc (j,k)

yij ∈ {0, 1}

It is easy to convert this formulation to an integer formulation for the

variable y in RSP.
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Remarks and formulation

• st-PP = Projx(RSP ), HMST = Projy(RSP ).
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Remarks and formulation

• st-PP = Projx(RSP ), HMST = Projy(RSP ).

• Integer formulation for HMST

∑

vj∈V

yij = 1 for all vi ∈ V

yii ≥ yji for all arc (j,i)
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Remarks and formulation

• st-PP = Projx(RSP ), HMST = Projy(RSP ).

• Integer formulation for HMST

∑

vj∈V

yij = 1 for all vi ∈ V

yii ≥ yji for all arc (j,i)

• Integer formulation for st-paths: st-cut inequalities, connexity
inequalities.
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Remarks and formulation

• st-PP = Projx(RSP ), HMST = Projy(RSP ).

• Integer formulation for HMST

∑

vj∈V

yij = 1 for all vi ∈ V

yii ≥ yji for all arc (j,i)

• Integer formulation for st-paths: st-cut inequalities, connexity
inequalities.

• The connection between the variables yii et les variables xij :

x(δ(vi)) = 2yii for all vi ∈ V
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Remarks and formulation

• st-PP = Projx(RSP ), HMST = Projy(RSP ).

• Integer formulation for HMST

∑

vj∈V

yij = 1 for all vi ∈ V

yii ≥ yji for all arc (j,i)

• Integer formulation for st-paths: st-cut inequalities, connexity
inequalities.

• The connection between the variables yii et les variables xij :

x(δ(vi)) = 2yii for all vi ∈ V

In an optimal solution of RSP, if all the variables x are integer then the
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Integer formulation and dimension of RSP

We propose the following integer formulation of RSP:

∑

vj∈V

yij = 1 for all vi ∈ V \ {s, t}

x(δ(vi)) = 2yii for all vi ∈ V
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Integer formulation and dimension of RSP

We propose the following integer formulation of RSP:

∑

vj∈V

yij = 1 for all vi ∈ V \ {s, t}

x(δ(vi)) = 2yii for all vi ∈ V

x(δ(S)) ≥ 1 S ⊂ V , s ∈ S and t ∈ V \ S

x(δ(S)) ≥ 2yii ∀S ⊂ V \ {s, t} and ∀vi ∈ S
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Integer formulation and dimension of RSP

We propose the following integer formulation of RSP:

∑

vj∈V

yij = 1 for all vi ∈ V \ {s, t}

x(δ(vi)) = 2yii for all vi ∈ V

x(δ(S)) ≥ 1 S ⊂ V , s ∈ S and t ∈ V \ S

x(δ(S)) ≥ 2yii ∀S ⊂ V \ {s, t} and ∀vi ∈ S

yss = 1, ytt = 1, ysi = yti = 0 for all vi ∈ V \ {s, t}
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Integer formulation and dimension of RSP

We propose the following integer formulation of RSP:

∑

vj∈V

yij = 1 for all vi ∈ V \ {s, t}

x(δ(vi)) = 2yii for all vi ∈ V

x(δ(S)) ≥ 1 S ⊂ V , s ∈ S and t ∈ V \ S

x(δ(S)) ≥ 2yii ∀S ⊂ V \ {s, t} and ∀vi ∈ S

yss = 1, ytt = 1, ysi = yti = 0 for all vi ∈ V \ {s, t}

The dimension of RSP is |E| + |A| − (4n − 4) = |E| + |A| − 4n + 4.
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Facets for RSP : Blossom inequalities

A T-join with T = {s, t} is composed by a st-path and eventually some
additional cycles.

ts

A T-join with T = {s, t}

Thus a T-join dominates a st-path.
The convex hull of the T-joins is completely characterized by
0 ≤ xij ≤ 1 and the blossom inequalities

x(δ(S))− x(F ) ≥ (1− |F |) | S ⊆ V , F ⊆ δ(S) and |S ∩ T | + |F | is odd.
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Facets for RSP : Blossom inequalities

A T-join with T = {s, t} is composed by a st-path and eventually some
additional cycles.

ts

A T-join with T = {s, t}

Thus a T-join dominates a st-path.
The convex hull of the T-joins is completely characterized by
0 ≤ xij ≤ 1 and the blossom inequalities

x(δ(S))− x(F ) ≥ (1− |F |) | S ⊆ V , F ⊆ δ(S) and |S ∩ T | + |F | is odd.

From the cycle polytope, Labbé et al. obtain a subset of blossom
inequalities, the 2-matching inequalities which require F to be a
matching.
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Facets forst-PP⇒ facets for RSP

Let aT x ≥ b define a facet of st-PP. The |E| − 2 st-paths affinely
independent satisfying aT x = b transformed to solutions of RSP:

s ts t
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Facets forst-PP⇒ facets for RSP

Let aT x ≥ b define a facet of st-PP. The |E| − 2 st-paths affinely
independent satisfying aT x = b transformed to solutions of RSP:

s ts t
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Facets forst-PP⇒ facets for RSP

Let aT x ≥ b define a facet of st-PP. The |E| − 2 st-paths affinely
independent satisfying aT x = b transformed to solutions of RSP:

s ts t

Each arc (vi, vj) correspond to the following point:

s t s t
vj

vi
vi

vj

From that, we obtain |ȳ| = |A| − (n + 2n − 4 + n − 2) = |A| − 4n + 6

points affinely independent.
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Facets forst-PP⇒ facets for RSP

Let aT x ≥ b define a facet of st-PP. The |E| − 2 st-paths affinely
independent satisfying aT x = b transformed to solutions of RSP:

s ts t

Each arc (vi, vj) correspond to the following point:

s t s t
vj

vi
vi

vj

From that, we obtain |ȳ| = |A| − (n + 2n − 4 + n − 2) = |A| − 4n + 6

points affinely independent. In total, we have |E| + |A| − 4n + 4 points

affinely indenpendent ⇒ aT x ≥ b defines a facet for RSP.
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Our branch-and-cut algorithm

About the code of Labbe et al. (2004)

• Branch-and-Cut framework: ABACUS,

• Linear Solver: CPLEX 6.0

• used cuts : connexity, 2-matching and some other "small" inequalities.

• Very good initial heuristic: Often very near optimal solution (101%), primal
heuristic.

About our code

• Branch-and-Cut framework: COIN/Bcp,

• Linear Solver: CPLEX 9.0

• Used cuts: st-cut inequalities, connexity inequalities, blossom inequalities.

• Separation of blossom inequalities by using Grotschel and Holland’s heuristic (only
2-matching inequalities generated) (concorde).

• Initial heuristic, primal heuristic (not integrated yet).
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• Branch-and-Cut framework: ABACUS,
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• Very good initial heuristic: Often very near optimal solution (101%), primal
heuristic.

About our code

• Branch-and-Cut framework: COIN/Bcp,

• Linear Solver: CPLEX 9.0

• Used cuts: st-cut inequalities, connexity inequalities, blossom inequalities.

• Separation of blossom inequalities by using Grotschel and Holland’s heuristic (only
2-matching inequalities generated) (concorde).

• Initial heuristic, primal heuristic (not integrated yet).
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Premilinary experiments

• We have tested our code on TSP instances with at most 100
nodes.

• In general, the code is from 5 until 10 times faster than the code of
Labbé et al.

• There is one instance on that our code is slower!
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Conclusion and future works

• We have established the correspondance between facets of RSP
and the ones of it’s projections respectively on x-space and
y-space.

• Our formulation allows to derive interesting facets for RSP
included some well-studied inequalities: st-cut, blossom.

• Better separate the blossom inequalities.

• Better initial and primal heuristics.

• New inequalities for the st-path polytopes and the HMST polytope.
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