A branch-and-cut algorithm for the Ring-Star Problem

Viet Hung Nguyen and Safia Kedad-Sidhoum

LIP6-Université Pierre et Marie Curie

Outline

- Definition and application
- Previous work
- Our formulation
- Polyhedral analysis
- Premilinary experiments
- Conclusion

Definition

Let $G=(V, E, A)$ be a mixed complete graph where

- $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$,
- E is the edge set and A is the arc set.

The node v_{1} is referred to as the root.

Definition

Let $G=(V, E, A)$ be a mixed complete graph where

- $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$,
- E is the edge set and A is the arc set.

The node v_{1} is referred to as the root.
There are :

- nonnegative ring cost $c_{i j}$ associated with each edge $v_{i} v_{j} \in E$,
- nonnegative assignment cost $d_{i j}$ associated with each arc

$$
\left(v_{i}, v_{j}\right) \in A .
$$

Ring Star Problem (RSP)

Finding a simple cycle (ring) containing the root v_{1} and an assignment of all other nodes (which do not belong to the ring) to some node on the cycle such that the sum of ring cost and assignment cost is minimized. The problem is $N P$-hard.

Ring Star Problem (RSP)

Finding a simple cycle (ring) containing the root v_{1} and an assignment of all other nodes (which do not belong to the ring) to some node on the cycle such that the sum of ring cost and assignment cost is minimized. The problem is $N P$-hard.

A solution

Variables and objective function

We define

$$
x_{i j}= \begin{cases}1 & \text { if the edge } v_{i} v_{j} \text { belongs to the cycle } \\ 0 & \text { otherwise }\end{cases}
$$

Variables and objective function

We define

$$
x_{i j}= \begin{cases}1 & \text { if the edge } v_{i} v_{j} \text { belongs to the cycle } \\ 0 & \text { otherwise }\end{cases}
$$

$$
y_{i j}= \begin{cases}1 & \text { if } v_{i} \text { is assigned to } v_{j} \\ 0 & \text { otherwise }\end{cases}
$$

In particular, $y_{i i}=1$ if v_{i} belongs to the cycle.

Variables and objective function

We define

$$
\begin{aligned}
& x_{i j}= \begin{cases}1 & \text { if the edge } v_{i} v_{j} \text { belongs to the cycle } \\
0 & \text { otherwise }\end{cases} \\
& y_{i j}= \begin{cases}1 & \text { if } v_{i} \text { is assigned to } v_{j} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

In particular, $y_{i i}=1$ if v_{i} belongs to the cycle.
Objective function:

$$
\operatorname{minimize} \sum_{v_{i} v_{j} \in E} c_{i j} x_{i j}+\sum_{\left(v_{i}, v_{j}\right) \in A} d_{i j} y_{i j}
$$

Applications

- Telecommunication: In Digital Data Service design where concentrators are installed on some user locations and interconnected on a ring (internet). Remaining user locations are assigned to those concentrators (intranet). The total cost of all connections must be minimized.

Applications

- Telecommunication: In Digital Data Service design where concentrators are installed on some user locations and interconnected on a ring (internet). Remaining user locations are assigned to those concentrators (intranet). The total cost of all connections must be minimized.
- Location, transport: Facilities are installed on the nodes of the ring and the remaining nodes are assigned to those facilities. The supplying cost is the cost of the Hamiltonian cycles on node-facility and the serving cost is the assignment cost of remaining vertices. The sum of the two costs must be minimized.

Previous work

The problem is defined and solved firstly by M. Labbé, G. Laporte, I.R. Martin and J.J.S. Gonzalez: The Ring Star Problem: Polyhedral Analysis and Exact Algorithm, Networks, 2004.

Previous work

The problem is defined and solved firstly by M. Labbé, G. Laporte, I.R. Martin and J.J.S. Gonzalez: The Ring Star Problem: Polyhedral Analysis and Exact Algorithm, Networks, 2004.
They designed a branch-and-cut algorithm to solve instances up to 200 nodes with CPLEX 6.0 and Abacus respectively as linear solver and branch-and-cut framework.
Their appoach is mainly based on the cycle polytope (Bauer 1997) for the variables x and stable set polytope (Padberg 1973) for the variables y.

Previous work

The problem is defined and solved firstly by M. Labbé, G. Laporte, I.R. Martin and J.J.S. Gonzalez: The Ring Star Problem: Polyhedral Analysis and Exact Algorithm, Networks, 2004.
They designed a branch-and-cut algorithm to solve instances up to 200 nodes with CPLEX 6.0 and Abacus respectively as linear solver and branch-and-cut framework.
Their appoach is mainly based on the cycle polytope (Bauer 1997) for the variables x and stable set polytope (Padberg 1973) for the variables y.

The cycle polytope here is the convex hull of the incidence vectors of all the cycles of G. Remark that the cycles considered in the problem is those containing v_{1}.

Some observations

The stable set polytope associated to the incompatiblity of the variables $y_{i j}, y_{i k}$ and $y_{i j}, y_{j k}$.

Some observations

The stable set polytope associated to the incompatiblity of the variables $y_{i j}, y_{i k}$ and $y_{i j}, y_{j k}$.

- The cycle polytope is very complex. In our knowledge, complete characterization of its dominant, the cycle polyhedron which correspond to polynomial cases (when costs are nonnegative) is not known (Bauer 1997). Coefficients of facet-defining inequalities are exponential on the number of nodes (Nguyen et al. 2001).

Some observations

The stable set polytope associated to the incompatiblity of the variables $y_{i j}, y_{i k}$ and $y_{i j}, y_{j k}$.

- The cycle polytope is very complex. In our knowledge, complete characterization of its dominant, the cycle polyhedron which correspond to polynomial cases (when costs are nonnegative) is not known (Bauer 1997). Coefficients of facet-defining inequalities are exponential on the number of nodes (Nguyen et al. 2001).
- Facets of the cycle polytope \Rightarrow facets of RSP?

Some observations

The stable set polytope associated to the incompatiblity of the variables $y_{i j}, y_{i k}$ and $y_{i j}, y_{j k}$.

- The cycle polytope is very complex. In our knowledge, complete characterization of its dominant, the cycle polyhedron which correspond to polynomial cases (when costs are nonnegative) is not known (Bauer 1997). Coefficients of facet-defining inequalities are exponential on the number of nodes (Nguyen et al. 2001).
- Facets of the cycle polytope \Rightarrow facets of RSP?
- The same observations on the stable set polytope.

Our approach on the variables x

The cycle in a solution of RSP must contain $v_{1}=s$. If we add an artificial node $v_{1}^{\prime}=t$ which is a clone of v_{1}, the cycle can be transformed to a st-path.

Our approach on the variables x

The cycle in a solution of RSP must contain $v_{1}=s$. If we add an artificial node $v_{1}^{\prime}=t$ which is a clone of v_{1}, the cycle can be transformed to a st-path.
This can have advantages because the dominance of the st-paths

$$
\operatorname{conv}\left(x+\mathbb{R}^{|E|} \mid \mathrm{X} \text { is incidence vector of a st-path }\right)
$$

is completely characterized by

$$
x(\delta(S)) \geq 1 S \subset V, s \in S \text { and } t \in V \backslash S
$$

These inequalities are called st-cut inequalities.

Integer formulation for the variables x

The st-cut inequalities characterize the dominant points of $s t$-path, not only the $s t$-paths.

Integer formulation for the variables x

The st-cut inequalities characterize the dominant points of $s t$-path, not only the $s t$-paths.

Thus we would obtain solutions with one st-path + disjoint cycles.

Integer formulation for the variables x

The $s t$-cut inequalities characterize the dominant points of $s t$-path, not only the $s t$-paths.

Thus we would obtain solutions with one $s t$-path + disjoint cycles. We add the following constraints to cut off them :

$$
x(\delta(S)) \geq 2 y_{i i} \forall S \subset V \backslash\{s, t\} \text { and } \forall v_{i} \in S
$$

Let us call connexity inequalities these inequalities.

Our approach on the variables y

In a solution of RSP, on the variables y we can have following configuration:

Our approach on the variables y

In a solution of RSP, on the variables y we can have following configuration:

An isolated vertex v_{i} having $y_{i i}=1$. If we consider $y_{i i}$ as an arc from v_{i} to some artificial root node v_{0}, a solution on variables y will be a directed spanning tree with paths from root v_{0} to every other node of length at most 2 (with inversion on the arc's orientation).

Our approach on the variables y

In a solution of RSP, on the variables y we can have following configuration:

An isolated vertex v_{i} having $y_{i i}=1$. If we consider $y_{i i}$ as an arc from v_{i} to some artificial root node v_{0}, a solution on variables y will be a directed spanning tree with paths from root v_{0} to every other node of length at most 2 (with inversion on the arc's orientation). These spanning trees are called hop-constrained spanning trees.

Integer formulation for the variables y

We consider the hop-constrained spanning trees with $H=2$.
The Hop-constrained Minimum Spanning Tree Problem (HMST) with $H=2$ is $N P$-hard as it is equivalent to the Simple Uncapaciated Facility Location.

Integer formulation for the variables

We consider the hop-constrained spanning trees with $H=2$.
The Hop-constrained Minimum Spanning Tree Problem (HMST) with
$H=2$ is $N P$-hard as it is equivalent to the Simple Uncapaciated
Facility Location.
G. Dahl (1998) gave the following integer formulation for the problem:

$$
\begin{gathered}
\sum_{i \in V \backslash\{j\}} y_{i j}=1, \quad j \in V \backslash\{0\} \\
y_{0 j} \geq y_{j k}, \text { for every arc }(\mathrm{j}, \mathrm{k}) \\
y_{i j} \in\{0,1\}
\end{gathered}
$$

It is easy to convert this formulation to an integer formulation for the

Remarks and formulation

- $s t-\mathrm{PP}=\operatorname{Proj}_{x}(R S P), \mathrm{HMST}=\operatorname{Proj}_{y}(R S P)$.

Remarks and formulation

- $s t-\mathrm{PP}=\operatorname{Proj}_{x}(R S P), \mathrm{HMST}=\operatorname{Proj}_{y}(R S P)$.
- Integer formulation for HMST

$$
\begin{gathered}
\sum_{v_{j} \in V} y_{i j}=1 \text { for all } v_{i} \in V \\
y_{i i} \geq y_{j i} \text { for all arc }(\mathrm{j}, \mathrm{i})
\end{gathered}
$$

Remarks and formulation

- $s t-\mathrm{PP}=\operatorname{Proj}_{x}(R S P), \mathrm{HMST}=\operatorname{Proj}_{y}(R S P)$.
- Integer formulation for HMST

$$
\begin{gathered}
\sum_{v_{j} \in V} y_{i j}=1 \text { for all } v_{i} \in V \\
y_{i i} \geq y_{j i} \text { for all arc (j,i) }
\end{gathered}
$$

- Integer formulation for st-paths: st-cut inequalities, connexity inequalities.

Remarks and formulation

- $s t-\mathrm{PP}=\operatorname{Proj}_{x}(R S P), \mathrm{HMST}=\operatorname{Proj}_{y}(R S P)$.
- Integer formulation for HMST

$$
\begin{gathered}
\sum_{v_{j} \in V} y_{i j}=1 \text { for all } v_{i} \in V \\
y_{i i} \geq y_{j i} \text { for all arc (j,i) }
\end{gathered}
$$

- Integer formulation for $s t$-paths: st-cut inequalities, connexity inequalities.
- The connection between the variables $y_{i i}$ et les variables $x_{i j}$:

$$
x\left(\delta\left(v_{i}\right)\right)=2 y_{i i} \text { for all } v_{i} \in V
$$

Remarks and formulation

- $s t-\mathrm{PP}=\operatorname{Proj}_{x}(R S P), \mathrm{HMST}=\operatorname{Proj}_{y}(R S P)$.
- Integer formulation for HMST

$$
\begin{gathered}
\sum_{v_{j} \in V} y_{i j}=1 \text { for all } v_{i} \in V \\
y_{i i} \geq y_{j i} \text { for all arc (j,i) }
\end{gathered}
$$

- Integer formulation for $s t$-paths: st-cut inequalities, connexity inequalities.
- The connection between the variables $y_{i i}$ et les variables $x_{i j}$:

$$
x\left(\delta\left(v_{i}\right)\right)=2 y_{i i} \text { for all } v_{i} \in V
$$

Integer formulation and dimension of R

We propose the following integer formulation of RSP:

$$
\begin{gathered}
\sum_{v_{j} \in V} y_{i j}=1 \text { for all } v_{i} \in V \backslash\{s, t\} \\
x\left(\delta\left(v_{i}\right)\right)=2 y_{i i} \text { for all } v_{i} \in V
\end{gathered}
$$

Integer formulation and dimension of R

We propose the following integer formulation of RSP:

$$
\begin{gathered}
\sum_{v_{j} \in V} y_{i j}=1 \text { for all } v_{i} \in V \backslash\{s, t\} \\
x\left(\delta\left(v_{i}\right)\right)=2 y_{i i} \text { for all } v_{i} \in V \\
x(\delta(S)) \geq 1 S \subset V, s \in S \text { and } t \in V \backslash S \\
x(\delta(S)) \geq 2 y_{i i} \forall S \subset V \backslash\{s, t\} \text { and } \forall v_{i} \in S
\end{gathered}
$$

Integer formulation and dimension of R

We propose the following integer formulation of RSP:

$$
\begin{gathered}
\sum_{v_{j} \in V} y_{i j}=1 \text { for all } v_{i} \in V \backslash\{s, t\} \\
x\left(\delta\left(v_{i}\right)\right)=2 y_{i i} \text { for all } v_{i} \in V \\
x(\delta(S)) \geq 1 S \subset V, s \in S \text { and } t \in V \backslash S \\
x(\delta(S)) \geq 2 y_{i i} \forall S \subset V \backslash\{s, t\} \text { and } \forall v_{i} \in S \\
y_{s s}=1, y_{t t}=1, y_{s i}=y_{t i}=0 \text { for all } v_{i} \in V \backslash\{s, t\}
\end{gathered}
$$

Integer formulation and dimension of R

We propose the following integer formulation of RSP:

$$
\begin{gathered}
\sum_{v_{j} \in V} y_{i j}=1 \text { for all } v_{i} \in V \backslash\{s, t\} \\
x\left(\delta\left(v_{i}\right)\right)=2 y_{i i} \text { for all } v_{i} \in V \\
x(\delta(S)) \geq 1 S \subset V, s \in S \text { and } t \in V \backslash S \\
x(\delta(S)) \geq 2 y_{i i} \forall S \subset V \backslash\{s, t\} \text { and } \forall v_{i} \in S \\
y_{s s}=1, y_{t t}=1, y_{s i}=y_{t i}=0 \text { for all } v_{i} \in V \backslash\{s, t\}
\end{gathered}
$$

The dimension of RSP is $|E|+|A|-(4 n-4)=|E|+|A|-4 n+4$.

Facets for RSP : Blossom inequalities

A T-join with $T=\{s, t\}$ is composed by a st-path and eventually some additional cycles.

Thus a T-join dominates a st-path.
The convex hull of the T-joins is completely characterized by $0 \leq x_{i j} \leq 1$ and the blossom inequalities
$x(\delta(S))-x(F) \geq(1-|F|) \mid S \subseteq V, F \subseteq \delta(S)$ and $|S \cap T|+|F|$ is odd.

Facets for RSP : Blossom inequalities

A T-join with $T=\{s, t\}$ is composed by a st-path and eventually some additional cycles.

Thus a T-join dominates a st-path.
The convex hull of the T-joins is completely characterized by $0 \leq x_{i j} \leq 1$ and the blossom inequalities
$x(\delta(S))-x(F) \geq(1-|F|) \mid S \subseteq V, F \subseteq \delta(S)$ and $|S \cap T|+|F|$ is odd.
From the cycle polytope, Labbé et al. obtain a subset of blossom inequalities, the 2-matching inequalities which require F to be a

Facets for $s t-\mathrm{PP} \Rightarrow$ facets for RSP

Let $a^{T} x \geq b$ define a facet of $s t$-PP. The $|E|-2 s t$-paths affinely independent satisfying $a^{T} x=b$ transformed to solutions of RSP:

Facets for $s t-\mathrm{PP} \Rightarrow$ facets for RSP

Let $a^{T} x \geq b$ define a facet of $s t$-PP. The $|E|-2 s t$-paths affinely independent satisfying $a^{T} x=b$ transformed to solutions of RSP:

Facets for $s t-P P \Rightarrow$ facets for RSP

Let $a^{T} x \geq b$ define a facet of $s t$-PP. The $|E|-2$ st-paths affinely independent satisfying $a^{T} x=b$ transformed to solutions of RSP:

Each arc (v_{i}, v_{j}) correspond to the following point:

From that, we obtain $|\bar{y}|=|A|-(n+2 n-4+n-2)=|A|-4 n+6$ points affinely independent.

Facets for $s t-P P \Rightarrow$ facets for RSP

Let $a^{T} x \geq b$ define a facet of $s t$-PP. The $|E|-2$ st-paths affinely independent satisfying $a^{T} x=b$ transformed to solutions of RSP:

Each arc $\left(v_{i}, v_{j}\right)$ correspond to the following point:

From that, we obtain $|\bar{y}|=|A|-(n+2 n-4+n-2)=|A|-4 n+6$ points affinely independent. In total, we have $|E|+|A|-4 n+4$ points

Our branch-and-cut algorithm

About the code of Labbe et al. (2004)

- Branch-and-Cut framework: ABACUS,
- Linear Solver: CPLEX 6.0
- used cuts : connexity, 2-matching and some other "small" inequalities.
- Very good initial heuristic: Often very near optimal solution (101\%), primal heuristic.

About our code

- Branch-and-Cut framework: COIN/Bcp,
- Linear Solver: CPLEX 9.0
- Used cuts: st-cut inequalities, connexity inequalities, blossom inequalities.
- Separation of blossom inequalities by using Grotschel and Holland's heuristic (only 2-matching inequalities generated) (concorde).
- Initial heuristic, primal heuristic (not integrated yet).

Our branch-and-cut algorithm

About the code of Labbe et al. (2004)

- Branch-and-Cut framework: ABACUS,
- Linear Solver: CPLEX 6.0
- used cuts : connexity, 2-matching and some other "small" inequalities.
- Very good initial heuristic: Often very near optimal solution (101\%), primal heuristic.

About our code

- Branch-and-Cut framework: COIN/Bcp,
- Linear Solver: CPLEX 9.0
- Used cuts: st-cut inequalities, connexity inequalities, blossom inequalities.
- Separation of blossom inequalities by using Grotschel and Holland's heuristic (only 2-matching inequalities generated) (concorde).
- Initial heuristic, primal heuristic (not integrated yet).

Premilinary experiments

- We have tested our code on TSP instances with at most 100 nodes.
- In general, the code is from 5 until 10 times faster than the code of Labbé et al.
- There is one instance on that our code is slower!

Conclusion and future works

- We have established the correspondance between facets of RSP and the ones of it's projections respectively on x-space and y-space.
- Our formulation allows to derive interesting facets for RSP included some well-studied inequalities: $s t$-cut, blossom.
- Better separate the blossom inequalities.
- Better initial and primal heuristics.
- New inequalities for the st-path polytopes and the HMST polytope.

