Decisions with multiple attributes

A brief introduction

Denis Bouyssou

CNRS-LAMSADE Paris, France

JFRO — December 2006

Aims

mainly pedagogical

- present elements of the classical theory
- position some extensions wrt this classical theory

Comparing holiday packages												
		cost	# of days	$_{ m time}^{ m travel}$	category of hotel	distance to beach	Wifi	cultural interest				
	A	200€	15	12 h	***	$45\mathrm{km}$	Y	++				
	B	425€	18	$15\mathrm{h}$	****	$0\mathrm{km}$	N					
	C	150€	4	$7\mathrm{h}$	**	$250\mathrm{km}$	N	+				
	D	300€	5	$10\mathrm{h}$	***	$5\mathrm{km}$	Y	_				

Central problems

- helping a DM choose between these packages
- helping a DM structure his preferences

Comparing holiday packages												
		cost	# of days	$_{ m time}^{ m travel}$	category of hotel	distance to beach	Wifi	cultural interest				
	A	200€	15	$12\mathrm{h}$	***	$45\mathrm{km}$	Y	++				
	B	425€	18	$15\mathrm{h}$	****	$0\mathrm{km}$	N					
	C	150€	4	$7\mathrm{h}$	**	$250\mathrm{km}$	N	+				
	D	300€	5	$10\mathrm{h}$	***	$5\mathrm{km}$	Y	_				

Central problems

- helping a DM choose between these packages
- helping a DM structure his preferences

Two different contexts

- decision aiding
 - careful analysis of objectives
 - careful analysis of attributes
 - careful selection of alternatives
 - availability of the DM
- 2 recommendation systems
 - no analysis of objectives
 - attributes as available
 - alternatives as available
 - limited access to the user

Two different contexts

- decision aiding
 - careful analysis of objectives
 - careful analysis of attributes
 - careful selection of alternatives
 - availability of the DM
- 2 recommendation systems
 - no analysis of objectives
 - attributes as available
 - alternatives as available
 - limited access to the user

Two different contexts

- decision aiding
 - careful analysis of objectives
 - careful analysis of attributes
 - careful selection of alternatives
 - availability of the DM
- 2 recommendation systems
 - no analysis of objectives
 - attributes as available
 - alternatives as available
 - limited access to the user

Basic model

• additive value function model

$$x \gtrsim y \Leftrightarrow \sum_{i=1}^{n} v_i(x_i) \ge \sum_{i=1}^{n} v_i(y_i)$$

x, y: alternatives

 x_i : evaluation of alternative x on attribute i

 $v_i(x_i)$: number

• underlies most existing MCDM techniques

Underlying theory: conjoint measurement

- Economics (Debreu, 1960)
- Psychology (Luce & Tukey, 1964)
- tools to help structure preferences

Basic model

• additive value function model

$$x \gtrsim y \Leftrightarrow \sum_{i=1}^{n} v_i(x_i) \ge \sum_{i=1}^{n} v_i(y_i)$$

x, y: alternatives

 x_i : evaluation of alternative x on attribute i

 $v_i(x_i)$: number

• underlies most existing MCDM techniques

Underlying theory: conjoint measurement

- Economics (Debreu, 1960)
- Psychology (Luce & Tukey, 1964)
- tools to help structure preferences

Basic model

• additive value function model

$$x \gtrsim y \Leftrightarrow \sum_{i=1}^{n} v_i(x_i) \ge \sum_{i=1}^{n} v_i(y_i)$$

x, y: alternatives

 x_i : evaluation of alternative x on attribute i

 $v_i(x_i)$: number

• underlies most existing MCDM techniques

Underlying theory: conjoint measurement

- Economics (Debreu, 1960)
- Psychology (Luce & Tukey, 1964)
- tools to help structure preferences

- 1 An aside: measurement in Physics
- 2 An example: even swaps
- 3 Notation
- Additive value functions: outline of theory

- 1 An aside: measurement in Physics
- 2 An example: even swaps
- 3 Notation
- 4 Additive value functions: outline of theory

- An aside: measurement in Physics
- 2 An example: even swaps
- 3 Notation
- 4 Additive value functions: outline of theory

- An aside: measurement in Physics
- 2 An example: even swaps
- 3 Notation
- 4 Additive value functions: outline of theory

Outline: Extensions

- 6 Models with interactions
- 6 Ordinal models

Outline: Extensions

- 6 Models with interactions
- 6 Ordinal models

Part I

Classical theory: conjoint measurement

Outline

- 1 An aside: measurement in Physics
- 2 An example: even swaps
- 3 Notation
- Additive value functions: outline of theory

Aside: measurement of physical quantities

Lonely individual on a desert island

- no tools, no books, no knowledge of Physics
- wants to rebuild a system of physical measures

A collection a rigid straight rods

- \bullet problem: measuring the length of these rods
 - pre-theoretical intuition
 - length
 - softness, beauty

3 main steps

- comparing objects
- creating and comparing new objects
- creating standard sequences

Aside: measurement of physical quantities

Lonely individual on a desert island

- no tools, no books, no knowledge of Physics
- wants to rebuild a system of physical measures

A collection a rigid straight rods

- problem: measuring the length of these rods
 - pre-theoretical intuition
 - length
 - softness, beauty

3 main steps

- comparing objects
- creating and comparing new objects
- creating standard sequences

Aside: measurement of physical quantities

Lonely individual on a desert island

- no tools, no books, no knowledge of Physics
- wants to rebuild a system of physical measures

A collection a rigid straight rods

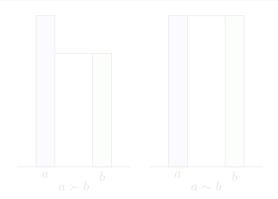
- problem: measuring the length of these rods
 - pre-theoretical intuition
 - length
 - softness, beauty

3 main steps

- comparing objects
- creating and comparing new objects
- creating standard sequences

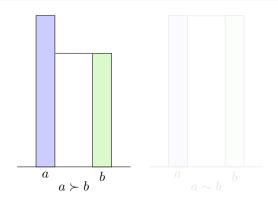
Step 1: comparing objects

- experimental to conclude which rod has "more length"
- rods side by side on the same horizontal plane



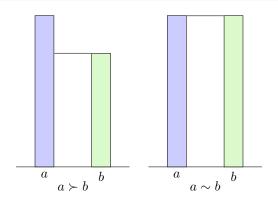
Step 1: comparing objects

- experimental to conclude which rod has "more length"
- rods side by side on the same horizontal plane



Step 1: comparing objects

- experimental to conclude which rod has "more length"
- rods side by side on the same horizontal plane



Results

- $a \succ b$: extremity of rod a is higher than extremity of rod b
- $a \sim b$: extremity of rod a is as high as extremity of rod b

- $a \succ b$, $a \sim b$ or $b \succ a$
- ≻ is asymmetric
- \sim is symmetric
- ≻ is transitive
- $\bullet \sim$ is transitive
- \succ and \sim combine "nicely"
 - $a \succ b$ and $b \sim c \Rightarrow a \succ c$
 - $a \sim b$ and $b \succ c \Rightarrow a \sim c$

Results

- $a \succ b$: extremity of rod a is higher than extremity of rod b
- $a \sim b$: extremity of rod a is as high as extremity of rod b

- $a \succ b$, $a \sim b$ or $b \succ a$
- $\bullet \succ$ is asymmetric
- $\bullet \sim \text{is symmetric}$
- ➤ is transitive
- $\bullet \sim$ is transitive
- \succ and \sim combine "nicely"
 - $a \succ b$ and $b \sim c \Rightarrow a \succ c$
 - $a \sim b$ and $b \succ c \Rightarrow a \sim c$

Results

- $a \succ b$: extremity of rod a is higher than extremity of rod b
- $a \sim b$: extremity of rod a is as high as extremity of rod b

- $a \succ b$, $a \sim b$ or $b \succ a$
- \bullet \succ is asymmetric
- \bullet \sim is symmetric
- $\bullet \sim$ is transitive
- ≻ and ~ combine "nicely"
 - $a \succ b$ and $b \sim c \Rightarrow a \succ c$
 - $a \sim b$ and $b \succ c \Rightarrow a \sim c$

Results

- $a \succ b$: extremity of rod a is higher than extremity of rod b
- $a \sim b$: extremity of rod a is as high as extremity of rod b

- $a \succ b$, $a \sim b$ or $b \succ a$
- \bullet \succ is asymmetric
- \sim is symmetric
- ➤ is transitive
- $\bullet \sim$ is transitive
- \succ and \sim combine "nicely"
 - $a \succ b$ and $b \sim c \Rightarrow a \succ c$
 - $a \sim b$ and $b \succ c \Rightarrow a \sim c$

Results

- $a \succ b$: extremity of rod a is higher than extremity of rod b
- $a \sim b$: extremity of rod a is as high as extremity of rod b

- $a \succ b$, $a \sim b$ or $b \succ a$
- \bullet \succ is asymmetric
- \bullet \sim is symmetric
- \bullet \succ is transitive
- $\bullet \sim \text{is transitive}$
- \succ and \sim combine "nicely"
 - $a \succ b$ and $b \sim c \Rightarrow a \succ c$
 - $a \sim b$ and $b \succ c \Rightarrow a \sim c$

Results

- $a \succ b$: extremity of rod a is higher than extremity of rod b
- $a \sim b$: extremity of rod a is as high as extremity of rod b

- $a \succ b$, $a \sim b$ or $b \succ a$
- \bullet \succ is asymmetric
- \sim is symmetric
- \bullet \succ is transitive
- $\bullet \sim \text{is transitive}$
- \succ and \sim combine "nicely"
 - $a \succ b$ and $b \sim c \Rightarrow a \succ c$
 - $a \sim b$ and $b \succ c \Rightarrow a \sim c$

Summary of experiments

- binary relation $\succeq = \succ \cup \sim$ that is a weak order
 - complete $(a \succsim b \text{ or } b \succsim a)$
 - transitive $(a \succsim b \text{ and } b \succsim c \Rightarrow a \succsim c)$

Consequences

- associate a real number $\Phi(a)$ to each object a
- the comparison of numbers faithfully reflects the results of experiments

$$a \succ b \Leftrightarrow \Phi(a) > \Phi(b)$$
 $a \sim b \Leftrightarrow \Phi(a) = \Phi(b)$

- the function Φ defines an ordinal scale
 - applying an increasing transformation to Φ leads to a scale that has the same properties
 - any two scales having the same properties are related by an increasing transformation

Summary of experiments

- binary relation $\succeq = \succ \cup \sim$ that is a weak order
 - complete $(a \succsim b \text{ or } b \succsim a)$
 - transitive $(a \succsim b \text{ and } b \succsim c \Rightarrow a \succsim c)$

Consequences

- associate a real number $\Phi(a)$ to each object a
- the comparison of numbers faithfully reflects the results of experiments

$$a \succ b \Leftrightarrow \Phi(a) > \Phi(b) \qquad a \sim b \Leftrightarrow \Phi(a) = \Phi(b)$$

- the function Φ defines an ordinal scale
 - applying an increasing transformation to Φ leads to a scale that has the same properties
 - any two scales having the same properties are related by an increasing transformation

Comments

Nature of the scale

- \bullet Φ is quite far from a full-blown measure of length...
- useful though since it allows the experiments to be done only once

Hypotheses are stringent

- highly precise comparisons
- several practical problems
 - any two objects can be compared
 - connections between experiments
 - comparisons may vary in time
- idealization of the measurement process

Comments

Nature of the scale

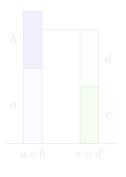
- ullet Φ is quite far from a full-blown measure of length...
- useful though since it allows the experiments to be done only once

Hypotheses are stringent

- highly precise comparisons
- several practical problems
 - any two objects can be compared
 - connections between experiments
 - comparisons may vary in time
- idealization of the measurement process

Step 2: creating and comparing new objects

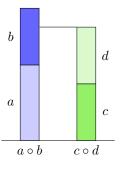
- use the available objects to create new ones
- concatenate objects by placing two or more rods "in a row"



 $a \circ b \succ c \circ d$

Step 2: creating and comparing new objects

- use the available objects to create new ones
- concatenate objects by placing two or more rods "in a row"



 $a \circ b \succ c \circ d$

Concatenation

- we want to be able to deduce $\Phi(a \circ b)$ from $\Phi(a)$ and $\Phi(b)$
- \bullet simplest requirement

$$\Phi(a \circ b) = \Phi(a) + \Phi(b)$$

monotonicity constraints

$$a \succ b$$
 and $c \sim d \Rightarrow a \circ c \succ b \circ d$

Concatenation

- we want to be able to deduce $\Phi(a \circ b)$ from $\Phi(a)$ and $\Phi(b)$
- simplest requirement

$$\Phi(a \circ b) = \Phi(a) + \Phi(b)$$

• monotonicity constraints

$$a \succ b$$
 and $c \sim d \Rightarrow a \circ c \succ b \circ d$

- five rods: $r_1, r_2, ..., r_5$
- we may only concatenate two rods (space reasons)
- we may only experiment with different rods
- data:

$$r_1 \circ r_5 \succ r_3 \circ r_4 \succ r_1 \circ r_2 \succ r_5 \succ r_4 \succ r_3 \succ r_2 \succ r_1$$

• all constraints are satisfied: weak ordering and monotonicity

$$r_1 \circ r_5 \succ r_3 \circ r_4 \succ r_1 \circ r_2 \succ r_5 \succ r_4 \succ r_3 \succ r_2 \succ r_1$$

	Φ	Φ'	Φ''
$\overline{r_1}$	14	10	14
r_2	15	91	16
r_3	20	92	17
r_4	21	93	18
r_5	28	100	29

- Φ , Φ' and Φ'' are equally good to compare simple rods
- only Φ and Φ'' capture the comparison of concatenated rods
- going from Φ to Φ'' does not involve a "change of units"
- it is tempting to use Φ or Φ'' to infer comparisons that have not been performed...
- disappointing

$$\Phi: r_2 \circ r_3 \sim r_1 \circ r_4 \quad \Phi'': r_2 \circ r_3 \succ r_1 \circ r_4$$

$$r_1 \circ r_5 \succ r_3 \circ r_4 \succ r_1 \circ r_2 \succ r_5 \succ r_4 \succ r_3 \succ r_2 \succ r_1$$

	Φ	Φ'	Φ''
r_1	14	10	14
r_2	15	91	16
r_3	20	92	17
r_4	21	93	18
r_5	28	100	29

- Φ , Φ' and Φ'' are equally good to compare simple rods
- only Φ and Φ'' capture the comparison of concatenated rods
- going from Φ to Φ'' does not involve a "change of units"
- it is tempting to use Φ or Φ'' to infer comparisons that have not been performed...
- disappointing

$$\Phi: r_2 \circ r_3 \sim r_1 \circ r_4 \quad \Phi'': r_2 \circ r_3 \succ r_1 \circ r_4$$

$$r_1 \circ r_5 \succ r_3 \circ r_4 \succ r_1 \circ r_2 \succ r_5 \succ r_4 \succ r_3 \succ r_2 \succ r_1$$

	Φ	Φ'	Φ''
$\overline{r_1}$	14	10	14
r_2	15	91	16
r_3	20	92	17
r_4	21	93	18
r_5	28	100	29

- Φ , Φ' and Φ'' are equally good to compare simple rods
- only Φ and Φ'' capture the comparison of concatenated rods
- going from Φ to Φ'' does not involve a "change of units"
- it is tempting to use Φ or Φ'' to infer comparisons that have not been performed...
- disappointing

$$\Phi: r_2 \circ r_3 \sim r_1 \circ r_4 \quad \Phi'': r_2 \circ r_3 \succ r_1 \circ r_4$$

$$r_1 \circ r_5 \succ r_3 \circ r_4 \succ r_1 \circ r_2 \succ r_5 \succ r_4 \succ r_3 \succ r_2 \succ r_1$$

	Φ	Φ'	Φ''
$\overline{r_1}$	14	10	14
r_2	15	91	16
r_3	20	92	17
r_4	21	93	18
r_5	28	100	29

- Φ , Φ' and Φ'' are equally good to compare simple rods
- only Φ and Φ'' capture the comparison of concatenated rods
- going from Φ to Φ'' does not involve a "change of units"
- it is tempting to use Φ or Φ'' to infer comparisons that have not been performed. . .
- disappointing

$$\Phi: r_2 \circ r_3 \sim r_1 \circ r_4 \quad \Phi'': r_2 \circ r_3 \succ r_1 \circ r_4$$

Step 3: creating and using standard sequences

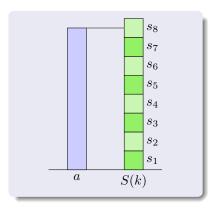
- choose a standard rod
- be able to build perfect copies of the standard
- concatenate the standard rod with its perfects copies

$$S(8) \succ a \succ S(7)$$

 $\Phi(s) = 1 \Rightarrow 7 < \Phi(a) < 8$

Step 3: creating and using standard sequences

- choose a standard rod
- be able to build perfect copies of the standard
- concatenate the standard rod with its perfects copies

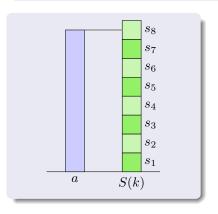


$$S(8) \succ a \succ S(7)$$

 $\Phi(s) = 1 \Rightarrow 7 < \Phi(a) < 8$

Step 3: creating and using standard sequences

- choose a standard rod
- be able to build perfect copies of the standard
- concatenate the standard rod with its perfects copies



$$S(8) \succ a \succ S(7)$$

 $\Phi(s) = 1 \Rightarrow 7 < \Phi(a) < 8$

Convergence

First method

- choose a smaller standard rod
- repeat the process

Second method

- prepare a perfect copy of the object
- concatenate the object with its perfect copy
- compare the "doubled" object to the original standard sequence
- repeat the process

Convergence

First method

- choose a smaller standard rod
- repeat the process

Second method

- prepare a perfect copy of the object
- concatenate the object with its perfect copy
- compare the "doubled" object to the original standard sequence
- repeat the process

Summary

Extensive measurement

• Krantz, Luce, Suppes & Tversky (1971, chap. 3)

4 Ingredients

- ① well-behaved relations \succ and \sim
- ② concatenation operation ∘
- ③ consistency requirements linking \succ , \sim and \circ
- ability to prepare perfect copies of some objects in order to build standard sequences

Neglected problems

• many!

Summary

Extensive measurement

• Krantz, Luce, Suppes & Tversky (1971, chap. 3)

4 Ingredients

- \bullet well-behaved relations \succ and \sim
- 2 concatenation operation o
- ullet consistency requirements linking \succ , \sim and \circ
- ability to prepare perfect copies of some objects in order to build standard sequences

Neglected problems

• many!

Summary

Extensive measurement

• Krantz, Luce, Suppes & Tversky (1971, chap. 3)

4 Ingredients

- \bullet well-behaved relations \succ and \sim
- 2 concatenation operation o
- **3** consistency requirements linking \succ , \sim and \circ
- ability to prepare perfect copies of some objects in order to build standard sequences

Neglected problems

• many!

Question

Can this be applied outside Physics?

• no concatenation operation (intelligence!)

What is conjoint measurement?

Conjoint measurement

- mimicking the operations of extensive measurement
 - when there are no concatenation operation readily available
 - when several dimensions are involved

Seems overly ambitious

• let us start with a simple example

What is conjoint measurement?

Conjoint measurement

- mimicking the operations of extensive measurement
 - when there are no concatenation operation readily available
 - when several dimensions are involved

Seems overly ambitious

• let us start with a simple example

Outline

- 1 An aside: measurement in Physics
- 2 An example: even swaps
- 3 Notation
- 4 Additive value functions: outline of theory

Example: Hammond, Keeney & Raiffa

Choice of an office to rent

- five locations have been identified
- five attributes are being considered
 - Commute time (minutes)
 - Clients: percentage of clients living close to the office
 - Services: ad hoc scale
 - \bullet A (all facilities), B (telephone and fax), C (no facility)
 - Size: square feet ($\simeq 0.1 \text{ m}^2$)
 - Cost: \$ per month

Attributes

- Commute, Size and Cost are natural attributes
- Clients is a proxy attribute
- Services is a constructed attribute

Example: Hammond, Keeney & Raiffa

Choice of an office to rent

- five locations have been identified
- five attributes are being considered
 - Commute time (minutes)
 - Clients: percentage of clients living close to the office
 - Services: ad hoc scale
 - \bullet A (all facilities), B (telephone and fax), C (no facility)
 - Size: square feet ($\simeq 0.1 \text{ m}^2$)
 - Cost: \$ per month

Attributes

- Commute, Size and Cost are natural attributes
- Clients is a proxy attribute
- Services is a constructed attribute

	a	b	c	d	e
Commute	45	25	20	25	30
Clients	50	80	70	85	75
Services	A	B	C	A	C
Size	800	700	500	950	700
Cost	1850	1700	1500	1900	1750

- a single cooperative DM
- choice of a single office
- ceteris paribus reasoning seems possible
 Commute: decreasing
 Clients: increasing
 Services: increasing
 Size: increasing
 Cost: decreasing
- dominance has meaning

	a	b	c	d	e
Commute	45	25	20	25	30
Clients	50	80	70	85	75
Services	A	B	C	A	C
Size	800	700	500	950	700
Cost	1850	1700	1500	1900	1750

- \bullet a single cooperative DM
- choice of a single office
- ceteris paribus reasoning seems possible
 Commute: decreasing Clients: increasing
 Services: increasing Size: increasing
 Cost: decreasing
- dominance has meaning

	a	b	c	d	e
Commute	45	25	20	25	30
Clients	50	80	70	85	75
Services	A	B	C	A	C
Size	800	700	500	950	700
Cost	1850	1700	1500	1900	1750

- a single cooperative DM
- choice of a single office
- ceteris paribus reasoning seems possible
 Commute: decreasing
 Clients: increasing
 Services: increasing
 Size: increasing
 Cost: decreasing
- dominance has meaning

	a	b	c	d	e
Commute	45	25	20	25	30
Clients	50	80	70	85	75
Services	A	B	C	A	C
Size	800	700	500	950	700
Cost	1850	1700	1500	1900	1750

- a single cooperative DM
- choice of a single office
- ceteris paribus reasoning seems possible
 Commute: decreasing
 Clients: increasing
 Services: increasing
 Size: increasing
 Cost: decreasing
- dominance has meaning

	a	b	c	d	e
Commute	45	25	20	25	30
Clients	50	80	70	85	75
Services	A	B	C	A	C
Size	800	700	500	950	700
Cost	1850	1700	1500	1900	1750

\bullet b dominates alternative e

- d is "close" to dominating a
- divide and conquer: dropping alternatives
 - drop a and ϵ

	a	b	c	d	e
Commute	45	25	20	25	30
Clients	50	80	70	85	75
Services	A	B	C	A	C
Size	800	700	500	950	700
Cost	1850	1700	1500	1900	1750

- \bullet b dominates alternative e
- \bullet d is "close" to dominating a
- divide and conquer: dropping alternatives
 - \bullet drop a and e

	a	b	c	d	e
Commute	45	25	20	25	30
Clients	50	80	70	85	75
Services	A	B	C	A	C
Size	800	700	500	950	700
Cost	1850	1700	1500	1900	1750

- \bullet b dominates alternative e
- \bullet d is "close" to dominating a
- divide and conquer: dropping alternatives
 - ullet drop a and e

	b	c	d
Commute	25	20	25
Clients	80	70	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

- no more dominance
- assessing tradeoffs
- all alternatives except c have a common evaluation on Commute
- modify c in order to bring it to this level
 - starting with c, what is the gain on *Clients* that would exactly compensate a loss of 5 min on *Commute*?
 - difficult but central question

	b	c	d
Commute	25	20	25
Clients	80	70	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

- no more dominance
- assessing tradeoffs
- \bullet all alternatives except c have a common evaluation on Commute
- \bullet modify c in order to bring it to this level
 - starting with c, what is the gain on Clients that would exactly compensate a loss of 5 min on Commute?
 - difficult but central question

	b	c	d
Commute	25	20	25
Clients	80	70	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

- no more dominance
- assessing tradeoffs
- \bullet all alternatives except c have a common evaluation on Commute
- \bullet modify c in order to bring it to this level
 - starting with c, what is the gain on Clients that would exactly compensate a loss of 5 min on Commute?
 - difficult but central question

	b	c	d
Commute	25	20	25
Clients	80	70	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

- no more dominance
- assessing tradeoffs
- \bullet all alternatives except c have a common evaluation on Commute
- \bullet modify c in order to bring it to this level
 - starting with c, what is the gain on Clients that would exactly compensate a loss of 5 min on Commute?
 - difficult but central question

	c	c'
Commute	20	25
Clients	70	$70 + \delta$
Services	C	C
Size	500	500
Cost	1500	1500

find δ such that $c' \sim c$

${ m Answer}$

- for $\delta = 8$, I am indifferent between c and c'
- replace c with c'

	c	c'
Commute	20	25
Clients	70	$70 + \delta$
Services	C	C
Size	500	500
Cost	1500	1500

find δ such that $c' \sim c$

Answer

- for $\delta = 8$, I am in different between c and c'
- replace c with c'

	b	c'	d
Commute	25	25	25
Clients	80	78	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

- all alternatives have a common evaluation on *Commute*
- divide and conquer: dropping attributes
 - ullet drop attribute Commute

	b	c'	d
Commute	25	25	25
Clients	80	78	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

- all alternatives have a common evaluation on Commute
- divide and conquer: dropping attributes
 - drop attribute Commute

	b	c'	d
Clients	80	78	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

	b	c'	d
Commute	25	25	25
Clients	80	78	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

- all alternatives have a common evaluation on Commute
- divide and conquer: dropping attributes
 - ullet drop attribute Commute

	b	c'	d
Clients	80	78	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

	b	c'	d
Clients	80	78	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

- check again for dominance
- unfruitful
- assess new tradeoffs
 - neutralize Service using Cost as reference

	b	c'	d
Clients	80	78	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

- check again for dominance
- unfruitful
- assess new tradeoffs
 - neutralize Service using Cost as reference

	b	c'	d
Clients	80	78	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

- check again for dominance
- unfruitful
- assess new tradeoffs
 - $\bullet\,$ neutralize Service using Cost as reference

	b	c'	d
Clients	80	78	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

- what maximal increase in monthly cost would you be prepared to pay to go from C to B on service for c'?
 - answer: 250 \$
- what minimal decrease in monthly cost would you ask if we go from A to B on service for d?
 - answer: 100 \$

	b	c'	d
Clients	80	78	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

- what maximal increase in monthly cost would you be prepared to pay to go from C to B on service for c'?
 - answer: 250 \$
- what minimal decrease in monthly cost would you ask if we go from A to B on service for d?
 - answer: 100 \$

	b	c'	d
Clients	80	78	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

• what maximal increase in monthly cost would you be prepared to pay to go from C to B on service for c'?

• answer: 250 \$

 what minimal decrease in monthly cost would you ask if we go from A to B on service for d?

• answer: 100 \$

	b	c'	d
Clients	80	78	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

• what maximal increase in monthly cost would you be prepared to pay to go from C to B on service for c'?

• answer: 250 \$

 what minimal decrease in monthly cost would you ask if we go from A to B on service for d?

• answer: 100 \$

	b	c'	c''	d	d'
Clients	80	78	78	85	85
Services	B	C	${f B}$	A	${f B}$
Size	700	500	500	950	950
Cost	1700	1500	1500 + 250	1900	1900 - 100

- replacing c' with c''
- replacing d with d'
- dropping Service

	b	c''	d'
Clients	80	78	85
Size	700	500	950
Cost	1700	1750	1800

- checking for dominance: c'' is dominated by b
- c'' can be dropped

- replacing c' with c''
- replacing d with d'
- dropping Service

	b	c''	d'
Clients	80	78	85
Size	700	500	950
Cost	1700	1750	1800

- checking for dominance: c'' is dominated by b
- c'' can be dropped

	b	d'
Clients	80	85
Size	700	950
Cost	1700	1800

- no dominance
- question: starting with b what is the additional cost that you would be prepared to pay to increase size by 250?
 - answer: 250 \$

	b	d'
Clients	80	85
Size	700	950
Cost	1700	1800

• no dominance

• question: starting with b what is the additional cost that you would be prepared to pay to increase size by 250?

• answer: 250 \$

	b	d'
Clients	80	85
Size	700	950
Cost	1700	1800

• no dominance

• question: starting with b what is the additional cost that you would be prepared to pay to increase size by 250?

• answer: 250 \$

	b	d'
Clients	80	85
Size	700	950
Cost	1700	1800

- no dominance
- question: starting with b what is the additional cost that you would be prepared to pay to increase size by 250?

• answer: 250 \$

	b	b'	d'
Clients	80	80	85
Size	700	950	950
Cost	1700	1700 + 250	1800

- replace b with b'
- drop Size

	b'	d'
Clients	80	85
Size	950	950
Cost	1950	1800
	b'	d'
Clients	80	85
Cost	1950	1800

- check for dominance
- d' dominates b'

Conclusion

• Recommend d as the final choice

- replace b with b'
- drop Size

	b'	d'
Clients	80	85
Size	950	950
Cost	1950	1800
	b'	d'
Clients	80	85
Cost	1950	1800

- check for dominance
- d' dominates b'

Conclusion

• Recommend d as the final choice

- replace b with b'
- drop Size

	b'	d'
Clients	80	85
Size	950	950
Cost	1950	1800
	b'	d'
Clients	b' 80	$\frac{d'}{85}$

- check for dominance
- d' dominates b'

Conclusion

 \bullet Recommend d as the final choice

Remarks

- very simple process
- ullet process entirely governed by \succ and \sim
- no question on "intensity of preference"
- notice that importance plays absolutely no rôle
- why be interested in something more complex?

- set of alternative is small
 - many questions otherwise
- output is not a preference model
 - if new alternatives appear, the process should be restarted
- what are the underlying hypotheses?

Remarks

- very simple process
- ullet process entirely governed by \succ and \sim
- no question on "intensity of preference"
- notice that importance plays absolutely no rôle
- why be interested in something more complex?

- set of alternative is small
 - many questions otherwise
- output is not a preference model
 - if new alternatives appear, the process should be restarted
- what are the underlying hypotheses?

Remarks

- very simple process
- process entirely governed by \succ and \sim
- no question on "intensity of preference"
- notice that importance plays absolutely no rôle
- why be interested in something more complex?

- set of alternative is small
 - many questions otherwise
- output is not a preference model
 - if new alternatives appear, the process should be restarted
- what are the underlying hypotheses?

Remarks

- very simple process
- process entirely governed by \succ and \sim
- no question on "intensity of preference"
- notice that importance plays absolutely no rôle
- why be interested in something more complex?

- set of alternative is small
 - many questions otherwise
- output is not a preference model
 - if new alternatives appear, the process should be restarted
- what are the underlying hypotheses?

Remarks

- very simple process
- process entirely governed by \succ and \sim
- no question on "intensity of preference"
- notice that importance plays absolutely no rôle
- why be interested in something more complex?

- set of alternative is small
 - many questions otherwise
- output is not a preference model
 - if new alternatives appear, the process should be restarted
- what are the underlying hypotheses?

Remarks

- very simple process
- ullet process entirely governed by \succ and \sim
- no question on "intensity of preference"
- notice that importance plays absolutely no rôle
- why be interested in something more complex?

- set of alternative is small
 - many questions otherwise
- output is not a preference model
 - if new alternatives appear, the process should be restarted
- what are the underlying hypotheses?

Remarks

- very simple process
- process entirely governed by \succ and \sim
- no question on "intensity of preference"
- notice that importance plays absolutely no rôle
- why be interested in something more complex?

- set of alternative is small
 - many questions otherwise
- output is not a preference model
 - if new alternatives appear, the process should be restarted
- what are the underlying hypotheses?

Similarity with extensive measurement

- \bullet \succ : preference, \sim : indifference
- we have implicitly supposed that they combine nicely

- we should be able to prove that $d \succ a, d \succ b, d \succ c$ and $d \succ e$
- dominance: $b \succ e$ and $d \succ a$
- tradeoffs + dominance: $b \succ c'', c \sim c', c' \sim c, d' \sim d, b' \sim b, d' \succ b'$

$$d \succ a, b \succ e$$

$$c'' \sim c', c' \sim c, b \succ c''$$

$$\Rightarrow b \succ c$$

$$d \sim d', b \sim b', d' \succ b'$$

$$\Rightarrow d \succ b$$

Similarity with extensive measurement

- \bullet \succ : preference, \sim : indifference
- we have implicitly supposed that they combine nicely

- we should be able to prove that $d \succ a, d \succ b, d \succ c$ and $d \succ e$
- dominance: $b \succ e$ and $d \succ a$
- tradeoffs + dominance: $b \succ c''$, $c \sim c'$, $c' \sim c$, $d' \sim d$, $b' \sim b$, $d' \succ b'$

Similarity with extensive measurement

- \succ : preference, \sim : indifference
- we have implicitly supposed that they combine nicely

- we should be able to prove that $d \succ a$, $d \succ b$, $d \succ c$ and $d \succ e$
- dominance: $b \succ e$ and $d \succ a$
- tradeoffs + dominance: $b \succ c'', c \sim c', c' \sim c, d' \sim d, b' \sim b, d' \succ b'$

Similarity with extensive measurement

- \bullet \succ : preference, \sim : indifference
- we have implicitly supposed that they combine nicely

- we should be able to prove that $d \succ a, d \succ b, d \succ c$ and $d \succ e$
- dominance: $b \succ e$ and $d \succ a$
- tradeoffs + dominance: $b \succ c''$, $c \sim c'$, $c' \sim c$, $d' \sim d$, $b' \sim b$, $d' \succ b'$

$$d \succ a, b \succ e$$

$$c'' \sim c', c' \sim c, b \succ c''$$

$$\Rightarrow b \succ c$$

$$d \sim d', b \sim b', d' \succ b'$$

$$\Rightarrow d \succ b$$

Similarity with extensive measurement

- \bullet \succ : preference, \sim : indifference
- we have implicitly supposed that they combine nicely

- we should be able to prove that $d \succ a$, $d \succ b$, $d \succ c$ and $d \succ e$
- dominance: $b \succ e$ and $d \succ a$
- tradeoffs + dominance: $b \succ c'', \ c \sim c', \ c' \sim c, \ d' \sim d, \ b' \sim b, \ d' \succ b'$

$$d \succ a, b \succ e$$

$$c'' \sim c', c' \sim c, b \succ c''$$

$$\Rightarrow b \succ c$$

$$d \sim d', b \sim b', d' \succ b'$$

$$\Rightarrow d \succ b$$

Similarity with extensive measurement

- \bullet \succ : preference, \sim : indifference
- we have implicitly supposed that they combine nicely

- we should be able to prove that $d \succ a$, $d \succ b$, $d \succ c$ and $d \succ e$
- dominance: $b \succ e$ and $d \succ a$
- tradeoffs + dominance: $b \succ c'', \ c \sim c', \ c' \sim c, \ d' \sim d, \ b' \sim b, \ d' \succ b'$

$$d \succ a, b \succ e$$

$$c'' \sim c', c' \sim c, b \succ c''$$

$$\Rightarrow b \succ c$$

$$d \sim d', b \sim b', d' \succ b'$$

$$\Rightarrow d \succ b$$

Similarity with extensive measurement

- \succ : preference, \sim : indifference
- we have implicitly supposed that they combine nicely

- we should be able to prove that $d \succ a$, $d \succ b$, $d \succ c$ and $d \succ e$
- dominance: $b \succ e$ and $d \succ a$
- tradeoffs + dominance: $b \succ c'', \ c \sim c', \ c' \sim c, \ d' \sim d, \ b' \sim b, \ d' \succ b'$

$$d \succ a, b \succ e$$

$$c'' \sim c', c' \sim c, b \succ c''$$

$$\Rightarrow b \succ c$$

$$d \sim d', b \sim b', d' \succ b'$$

Similarity with extensive measurement

- \succ : preference, \sim : indifference
- we have implicitly supposed that they combine nicely

- we should be able to prove that $d \succ a, d \succ b, d \succ c$ and $d \succ e$
- dominance: $b \succ e$ and $d \succ a$
- tradeoffs + dominance: $b \succ c''$, $c \sim c'$, $c' \sim c$, $d' \sim d$, $b' \sim b$, $d' \succ b'$

$$d \succ a, b \succ e$$

$$c'' \sim c', c' \sim c, b \succ c''$$

$$\Rightarrow b \succ c$$

$$d \sim d', b \sim b', d' \succ b'$$

$$\Rightarrow d \succ b$$

$\operatorname{OK}...$ but where are the standard sequences?

- hidden... but really there!
- standard sequence for length: objects that have exactly the same length
- tradeoffs: preference intervals on distinct attributes that have the same length
 - $c \sim c'$
 - [25, 20] on Commute has the same length as [70, 78] on Client

$\operatorname{OK}...$ but where are the standard sequences?

- hidden... but really there!
- standard sequence for length: objects that have exactly the same length
- tradeoffs: preference intervals on distinct attributes that have the same length
 - $c \sim c'$
 - \bullet [25, 20] on Commute has the same length as [70, 78] on Client

OK... but where are the standard sequences?

- hidden... but really there!
- standard sequence for length: objects that have exactly the same length
- tradeoffs: preference intervals on distinct attributes that have the same length
 - $c \sim c'$
 - $\bullet~[25,20]$ on Commute has the same length as [70,78] on Client

OK... but where are the standard sequences?

- hidden... but really there!
- standard sequence for length: objects that have exactly the same length
- tradeoffs: preference intervals on distinct attributes that have the same length
 - $c \sim c'$
 - $\bullet~[25,20]$ on Commute has the same length as [70,78] on Client

	c	c'	f	f'
Commute	20	25	20	25
Clients	70	78	78	82
Services	C	C	C	C
Size	500	500	500	500
Cost	1500	1500	1500	1500

Monsieur Jourdain doing conjoint measurement

OK... but where are the standard sequences?

- hidden... but really there!
- standard sequence for length: objects that have exactly the same length
- tradeoffs: preference intervals on distinct attributes that have the same length
 - $c \sim c'$
 - $\bullet~[25,20]$ on Commute has the same length as [70,78] on Client

	c	c'	f	f'
Commute	20	25	20	25
Clients	70	78	78	82
Services	C	C	C	C
Size	500	500	500	500
Cost	1500	1500	1500	1500

[70, 78] has the same length [78, 82] on *Client*

Outline

- 1 An aside: measurement in Physics
- 2 An example: even swaps
- 3 Notation
- 4 Additive value functions: outline of theory

Setting

- $N = \{1, 2, \dots, n\}$ set of attributes
- X_i : set of possible levels on the *i*th attribute
- $X = \prod_{i=1}^{n} X_i$: set of all conceivable alternatives
 - ullet X include the alternatives under study... and many others
- $J \subseteq N$: subset of attributes
- $X_J = \prod_{j \in J} X_j, X_{-J} = \prod_{j \notin J} X_j$
- $(x_J, y_{-J}) \in X$
- $\bullet \ (x_i, y_{-i}) \in X$
- \succeq : binary relation on X: "at least as good as"
- $x \succ y \Leftrightarrow x \succsim y \text{ and } Not[y \succsim x]$
- $x \sim y \Leftrightarrow x \succsim y \text{ and } y \succsim x$

Setting

- $N = \{1, 2, \dots, n\}$ set of attributes
- X_i : set of possible levels on the *i*th attribute
- $X = \prod_{i=1}^{n} X_i$: set of all conceivable alternatives
 - ullet X include the alternatives under study... and many others
- $J \subseteq N$: subset of attributes
- $X_J = \prod_{j \in J} X_j, X_{-J} = \prod_{j \notin J} X_j$
- $(x_J, y_{-J}) \in X$
- $\bullet (x_i, y_{-i}) \in X$
- \succeq : binary relation on X: "at least as good as"
- $x \succ y \Leftrightarrow x \succsim y \text{ and } Not[y \succsim x]$
- $x \sim y \Leftrightarrow x \succsim y \text{ and } y \succsim x$

Setting

- $N = \{1, 2, \dots, n\}$ set of attributes
- X_i : set of possible levels on the *i*th attribute
- $X = \prod_{i=1}^{n} X_i$: set of all conceivable alternatives
 - ullet X include the alternatives under study... and many others
- $J \subseteq N$: subset of attributes
- $\bullet X_J = \prod_{j \in J} X_j, X_{-J} = \prod_{j \notin J} X_j$
- $(x_J, y_{-J}) \in X$
- $\bullet (x_i, y_{-i}) \in X$
- \succeq : binary relation on X: "at least as good as"
- $x \succ y \Leftrightarrow x \succsim y$ and $Not[y \succsim x]$
- $x \sim y \Leftrightarrow x \succeq y \text{ and } y \succeq x$

Preference relations on Cartesian products

Applications

- Economics: consumers comparing bundles of goods
- Decision under uncertainty: consequences in several states
- Inter-temporal decision making: consequences at several moments in time
- Inequality measurement: distribution of wealth across individuals
- Decision making with multiple attributes
 - in all other cases, the Cartesian product is homogeneous

Preference relations on Cartesian products

Applications

- Economics: consumers comparing bundles of goods
- Decision under uncertainty: consequences in several states
- Inter-temporal decision making: consequences at several moments in time
- Inequality measurement: distribution of wealth across individuals
- Decision making with multiple attributes
 - in all other cases, the Cartesian product is homogeneous

Preference relations on Cartesian products

Applications

- Economics: consumers comparing bundles of goods
- Decision under uncertainty: consequences in several states
- Inter-temporal decision making: consequences at several moments in time
- Inequality measurement: distribution of wealth across individuals
- Decision making with multiple attributes
 - in all other cases, the Cartesian product is homogeneous

What will be ignored today

Ignored

- structuring of objectives
- from objectives to attributes
- adequate family of attributes
- risk, uncertainty, imprecision

Keenev's view

- fundamental objectives: why?
- means objectives: how?

What will be ignored today

Ignored

- structuring of objectives
- from objectives to attributes
- adequate family of attributes
- risk, uncertainty, imprecision

skip examples

Keenev's view

- fundamental objectives: why?
- means objectives: how?

What will be ignored today

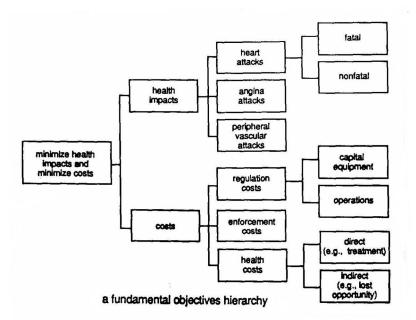
Ignored

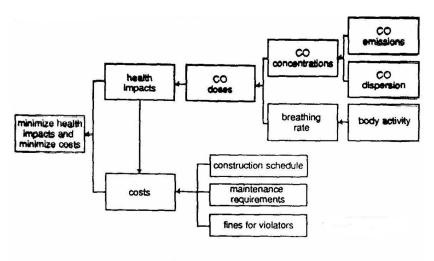
- structuring of objectives
- from objectives to attributes
- adequate family of attributes
- risk, uncertainty, imprecision

▶ skip examples

Keeney's view

- fundamental objectives: why?
- means objectives: how?





a means-ends objectives network

Table I. Preclosure Objectives and Performance Measures

Objective		Perfe	Performance measure			
Health-and-safety impacts						
. Minimize worker her radiation exposure repository		<i>X</i> ₁ :	repository-worker radiological fatalities			
 Minimize public hear radiation exposure repository 		X ₂ :	public radiological fatalities from repository			
 Minimize worker (a) nonradiological corepository 		<i>X</i> ₃ :	repository-worker nonradiological fatalities			
 Minimize public fat nonradiological corepository 		X ₄ :	public nonradiological fatalities from repository			
 Minimize worker he radiation exposur transportation 		X ₅ :	transportation-worker radiological fatalities			
 Minimize public her radiation exposur transportation 		X ₆ :	public radiological fatalities from transportation			
 Minimize worker fa nonradiological c transportation 		<i>X</i> ₇ :	transportation-worker nonradiologica fatalities			
 Minimize public far nonradiological c transportation 		<i>X</i> ₈ :	public nonradiological (atalities from transportation			
	Environmental	impacts				
9. Minimize aesthetic	degradation	Xa:	constructed scale"			
historical, and cu			constructed scale"			
 Minimize biologica 	l degradation	x,,	constructed scale"			
	Socioeconomic	impacts				
2. Minimize adverse s	ocioeconomic impacts	X12	: constructed scale"			
	Economic is	mpacts				
3. Minimize repositor	y costs	X	: millions of dollars			
4. Minimize waste-tra			millions of dollars			

Table 4.1. A constructed attribute for public attitudes

Attribute level	Description of attribute level		
1	Support: No groups are opposed to the facility and at least one group has organized support for the facility.		
0	Neutrality: All groups are indifferent or uninterested.		
- 1	Controversy: One or more groups have organized opposition, although no groups have action-oriented opposition. Other groups may either be neutral or support the facility.		
-2	Action-oriented opposition: Exactly one group has action- oriented opposition. The other groups have organized support, indifference or organized opposition.		
-3	Strong action-oriented opposition: Two or more groups have action-oriented opposition.		

Scale to Measure Biological Impact

- Loss of 1.0 mi² of entirely agricultural or urban "habitat" with no loss of any "native" communities.
- Loss of 1.0 mi² of primarily (75%) agricultural habitat with loss of 25% of second growth; no measurable loss of wetlands or endangered species habitat.
- Loss of 1.0 mi² of farmed (50%) and disturbed (i.e., logged or new second-growth) (50%) habitat; no measurable loss of wetlands or endangered species habitat.
- Loss of 1.0 mi² of recently disturbed (logged, plowed) habitat with disturbance to surrounding (within 1.0 mi of site border) previously disturbed habitat; 15% loss of wetlands and/or endangered species habitat.
- Loss of 1.0 mi² of farmed or disturbed area (50%) and mature second-growth or other undisturbed community (50%); 15% loss of wetlands and/or endangered species.
- Loss of 1.0 mi² of primarily (75%) undisturbed mature desert community (i.e., sagebrush);
 15% loss of wetlands and/or endangered species habitat.
- Loss of 1.0 mi² of mature second-growth (but not virgin) forest community; 50% loss of big game and upland game birds; 50% loss of local wetlands and local endangered species habitat.
- Loss of 1.0 mi² of mature second-growth forest community; 90% loss of local productive wetlands and local endangered species habitat.
- Complete loss of 1.0 mi² of mature virgin forest; 100% loss of local wetlands and local endangered species habitat.

Impact level	Impacts on historical properties in the effected area"		
0	There are no impacts on any significant historical properties		
1	One historical property of major significance or 5 historical properties of minor significance are subjected to minimal adverse impacts		
2	Two historical properties of major significance or 10 historical properties of minor significance are subjected to minimal adverse impacts		
3	Two historical properties of major significance or 10 historical properties of minor significance are subjected to major adverse impacts		
4	Three historical properties of major significance or 15 historical properties of minor significance are subjected to major adverse impacts		
5	Four historical properties of major significance or 20 historical properties of minor significance are subjected to major adverse impacts		

Marginal preference and independence

Marginal preferences

- $J \subseteq N$: subset of attributes
- \succsim_J marginal preference relation induced by \succsim on X_J

$$x_J \succsim_J y_J \Leftrightarrow (x_J, z_{-J}) \succsim (y_J, z_{-J}), \text{ for all } z_{-J} \in X_{-J}$$

Independence

 \bullet J is independent for \succsim if

$$[(x_J, z_{-J}) \succsim (y_J, z_{-J}), \text{ for some } z_{-J} \in X_{-J}] \Rightarrow x_J \succsim_J y$$

ullet common levels on attributes other than J do not affect preference

Separability

• J is separable for \succeq if

$$[(x_J, z_{-J}) \succ (y_J, z_{-J}), \text{ for some } z_{-J} \in X_{-J}] \Rightarrow x_J \succsim_J y_J$$

ullet varying common levels on attributes other than J do reverse strict preference

Marginal preference and independence

Marginal preferences

- $J \subseteq N$: subset of attributes
- \succsim_J marginal preference relation induced by \succsim on X_J

$$x_J \succsim_J y_J \Leftrightarrow (x_J, z_{-J}) \succsim (y_J, z_{-J}), \text{ for all } z_{-J} \in X_{-J}$$

Independence

- J is independent for \succsim if $[(x_J, z_{-J}) \succsim (y_J, z_{-J}), \text{ for some } z_{-J} \in X_{-J}] \Rightarrow x_J \succsim_J y_J$
- ullet common levels on attributes other than J do not affect preference

Separability

- J is separable for \gtrsim if
 - $[(x_J, z_{-J}) \succ (y_J, z_{-J}), \text{ for some } z_{-J} \in X_{-J}] \Rightarrow x_J \succsim_J y_J$
- ullet varying common levels on attributes other than J do reverse strict preference

Marginal preference and independence

Marginal preferences

- $J \subseteq N$: subset of attributes
- \succsim_J marginal preference relation induced by \succsim on X_J

$$x_J \succsim_J y_J \Leftrightarrow (x_J, z_{-J}) \succsim (y_J, z_{-J}), \text{ for all } z_{-J} \in X_{-J}$$

Independence

- J is independent for \succsim if $[(x_J, z_{-J}) \succsim (y_J, z_{-J}), \text{ for some } z_{-J} \in X_{-J}] \Rightarrow x_J \succsim_J y_J$
- ullet common levels on attributes other than J do not affect preference

Separability

- J is separable for \succsim if $[(x_J, z_{-J}) \succ (y_J, z_{-J}), \text{ for some } z_{-J} \in X_{-J}] \Rightarrow x_J \succsim_J y_J$
- ullet varying common levels on attributes other than J do reverse strict preference

Independence

Definition

- for all $i \in N$, $\{i\}$ is independent, \succeq is weakly independent
- for all $J \subseteq N$, J is independent, \succeq is independent

Proposition

Let \succeq be a weakly independent weak order on $X = \prod_{i=1}^n X_i$. Then:

- \succsim_i is a weak order on X_i
- $[x_i \succsim_i y_i, \text{ for all } i \in N] \Rightarrow x \succsim y$
- $[x_i \succsim_i y_i, \text{ for all } i \in N \text{ and } x_j \succ_j y_j \text{ for some } j \in N] \Rightarrow x \succ y$ or all $x, y \in X$

Dominance

- as soon as I have a weakly independent weak order
- dominance arguments apply

Independence

Definition

- for all $i \in N$, $\{i\}$ is independent, \succeq is weakly independent
- for all $J \subseteq N$, J is independent, \succeq is independent

Proposition

Let \succeq be a weakly independent weak order on $X = \prod_{i=1}^{n} X_i$. Then:

- \succsim_i is a weak order on X_i
- $[x_i \succsim_i y_i, \text{ for all } i \in N] \Rightarrow x \succsim y$
- $[x_i \succsim_i y_i, \text{ for all } i \in N \text{ and } x_j \succ_j y_j \text{ for some } j \in N] \Rightarrow x \succ y$

for all $x, y \in X$

Dominance

- as soon as I have a weakly independent weak order
- dominance arguments apply

Independence

Definition

- for all $i \in N$, $\{i\}$ is independent, \succeq is weakly independent
- for all $J \subseteq N$, J is independent, \succeq is independent

Proposition

Let \succeq be a weakly independent weak order on $X = \prod_{i=1}^{n} X_i$. Then:

- \succsim_i is a weak order on X_i
- $[x_i \succsim_i y_i, \text{ for all } i \in N] \Rightarrow x \succsim y$
- $[x_i \succsim_i y_i, \text{ for all } i \in N \text{ and } x_j \succ_j y_j \text{ for some } j \in N] \Rightarrow x \succ y$

for all $x, y \in X$

Dominance

- as soon as I have a weakly independent weak order
- dominance arguments apply

Independence

- ullet it is easy to imagine examples in which independence is violated
 - Main course and Wine example
- it is nearly hopeless to try to work if weak independence (at least weak separability) is not satisfied
- some (e.g., R. L. Keeney) think that the same is true for independence
- ullet in all cases if independence is violated, things get complicated
 - decision aiding vs AI

May be excessive

${\bf Independence}$

- \bullet it is easy to imagine examples in which independence is violated
 - Main course and Wine example
- it is nearly hopeless to try to work if weak independence (at least weak separability) is not satisfied
- some (e.g., R. L. Keeney) think that the same is true for independence
- in all cases if independence is violated, things get complicated
 - decision aiding vs AI

May be excessive

Independence

- \bullet it is easy to imagine examples in which independence is violated
 - Main course and Wine example
- it is nearly hopeless to try to work if weak independence (at least weak separability) is not satisfied
- some (e.g., R. L. Keeney) think that the same is true for independence
- in all cases if independence is violated, things get complicated
 - decision aiding vs AI

May be excessive

Independence

- it is easy to imagine examples in which independence is violated
 - Main course and Wine example
- it is nearly hopeless to try to work if weak independence (at least weak separability) is not satisfied
- some (e.g., R. L. Keeney) think that the same is true for independence
- in all cases if independence is violated, things get complicated
 - decision aiding vs AI

May be excessive

Independence

- it is easy to imagine examples in which independence is violated
 - Main course and Wine example
- it is nearly hopeless to try to work if weak independence (at least weak separability) is not satisfied
- some (e.g., R. L. Keeney) think that the same is true for independence
- in all cases if independence is violated, things get complicated
 - decision aiding vs AI

May be excessive

Outline

- An aside: measurement in Physics
- 2 An example: even swaps
- 3 Notation
- 4 Additive value functions: outline of theory
 - The case of 2 attributes
 - More than 2 attributes

Outline of theory: 2 attributes

Question

- suppose I can "observe" \succeq on $X = X_1 \times X_2$
- what must be supposed to guarantee that I can represent \succeq in the additive value function model

$$\begin{aligned} v_1: X_1 &\to \mathbb{R} \\ v_2: X_2 &\to \mathbb{R} \\ (x_1, x_2) &\succsim (y_1, y_2) \Leftrightarrow v_1(x_1) + v_2(x_2) \geq v_1(y_1) + v_2(y_2) \end{aligned}$$

 $\bullet \succeq$ must be an independent weak order

Method

• try building standard sequences and see if it works!

Outline of theory: 2 attributes

Question

- suppose I can "observe" \succeq on $X = X_1 \times X_2$
- what must be supposed to guarantee that I can represent \succeq in the additive value function model

$$\begin{aligned} v_1: X_1 &\to \mathbb{R} \\ v_2: X_2 &\to \mathbb{R} \\ (x_1, x_2) &\succsim (y_1, y_2) \Leftrightarrow v_1(x_1) + v_2(x_2) \geq v_1(y_1) + v_2(y_2) \end{aligned}$$

• \(\sum \) must be an independent weak order

Method

• try building standard sequences and see if it works!

Outline of theory: 2 attributes

Question

- suppose I can "observe" \succeq on $X = X_1 \times X_2$
- what must be supposed to guarantee that I can represent ≿ in the additive value function model

$$\begin{aligned} v_1: X_1 &\to \mathbb{R} \\ v_2: X_2 &\to \mathbb{R} \\ (x_1, x_2) &\succsim (y_1, y_2) \Leftrightarrow v_1(x_1) + v_2(x_2) \geq v_1(y_1) + v_2(y_2) \end{aligned}$$

• \(\sum \) must be an independent weak order

Method

• try building standard sequences and see if it works!

Why an additive model?

Answei

- v_1 and v_2 will be built so that additivity holds
- equivalent multiplicative model

$$(x_1, x_2) \succsim (y_1, y_2) \Leftrightarrow w_1(x_1)w_2(x_2) \ge w_1(y_1)w_2(y_2)$$
$$w_1 = \exp(v_1)$$
$$w_2 = \exp(v_2)$$

Why an additive model?

Answer

- v_1 and v_2 will be built so that additivity holds
- equivalent multiplicative model

$$(x_1, x_2) \succsim (y_1, y_2) \Leftrightarrow w_1(x_1)w_2(x_2) \ge w_1(y_1)w_2(y_2)$$
$$w_1 = \exp(v_1)$$
$$w_2 = \exp(v_2)$$

Why an additive model?

Answer

- v_1 and v_2 will be built so that additivity holds
- equivalent multiplicative model

$$(x_1, x_2) \succsim (y_1, y_2) \Leftrightarrow w_1(x_1)w_2(x_2) \ge w_1(y_1)w_2(y_2)$$

 $w_1 = \exp(v_1)$
 $w_2 = \exp(v_2)$

Uniqueness

Important observation

Suppose that there are v_1 and v_2 such that

$$(x_1, x_2) \succsim (y_1, y_2) \Leftrightarrow v_1(x_1) + v_2(x_2) \ge v_1(y_1) + v_2(y_2)$$

If $\alpha > 0$

$$w_1 = \alpha v_1 + \beta_1 \quad w_2 = \alpha v_2 + \beta_2$$

is also a valid representation

Consequences

- fixing $v_1(x_1) = v_2(x_2) = 0$ is harmless
- fixing $v_1(y_1) = 1$ is harmless if $y_1 \succ_1 x_1$

Uniqueness

Important observation

Suppose that there are v_1 and v_2 such that

$$(x_1, x_2) \succsim (y_1, y_2) \Leftrightarrow v_1(x_1) + v_2(x_2) \ge v_1(y_1) + v_2(y_2)$$

If $\alpha > 0$

$$w_1 = \alpha v_1 + \beta_1 \quad w_2 = \alpha v_2 + \beta_2$$

is also a valid representation

Consequences

- fixing $v_1(x_1) = v_2(x_2) = 0$ is harmless
- fixing $v_1(y_1) = 1$ is harmless if $y_1 \succ_1 x_1$

Standard sequences

Preliminaries

- choose arbitrarily two levels $x_1^0, x_1^1 \in X_1$
- make sure that $x_1^1 \succ_1 x_1^0$
- choose arbitrarily one level $x_2^0 \in X_2$
- $(x_1^0, x_2^0) \in X$ is the reference point (origin)
- the preference interval $[x_1^0, x_1^1]$ is the unit

- find a "preference interval" on X_2 that has the same "length" as the reference interval $[x_1^0,x_1^1]$
- find x_2^1 such that

$$(x_1^0, x_2^1) \sim (x_1^1, x_2^0)$$
 $v_1(x_1^0) + v_2(x_2^1) = v_1(x_1^1) + v_2(x_2^0)$ so that $v_2(x_2^1) - v_2(x_2^0) = v_1(x_1^1) - v_1(x_1^0)$

- find a "preference interval" on X_2 that has the same "length" as the reference interval $[x_1^0, x_1^1]$
- find x_2^1 such that

$$(x_1^0, \mathbf{x_2^1}) \sim (x_1^1, x_2^0)$$

$$v_1(x_1^0) + v_2(x_2^1) = v_1(x_1^1) + v_2(x_2^0)$$
 so that
 $v_2(x_2^1) - v_2(x_2^0) = v_1(x_1^1) - v_1(x_1^0)$

- find a "preference interval" on X_2 that has the same "length" as the reference interval $[x_1^0, x_1^1]$
- find x_2^1 such that

$$(x_1^0, x_2^1) \sim (x_1^1, x_2^0)$$

$$v_1(x_1^0) + v_2(x_2^1) = v_1(x_1^1) + v_2(x_2^0) \text{ so that}$$

$$v_2(x_2^1) - v_2(x_2^0) = v_1(x_1^1) - v_1(x_1^0)$$

- find a "preference interval" on X_2 that has the same "length" as the reference interval $[x_1^0, x_1^1]$
- find x_2^1 such that

$$(x_1^0, x_2^1) \sim (x_1^1, x_2^0)$$

$$v_1(x_1^0) + v_2(x_2^1) = v_1(x_1^1) + v_2(x_2^0) \text{ so that}$$

$$v_2(x_2^1) - v_2(x_2^0) = v_1(x_1^1) - v_1(x_1^0)$$

Standard sequences

Consequences

$$(x_1^0, x_2^1) \sim (x_1^1, x_2^0)$$
$$v_2(x_2^1) - v_2(x_2^0) = v_1(x_1^1) - v_1(x_1^0)$$

• it can be supposed that

$$v_1(x_1^0) = v_2(x_2^0) = 0$$

 $v_1(x_1^1) = 1$

$$\Rightarrow v_2(x_2^1) = 1$$

Standard sequences

Consequences

$$(x_1^0, x_2^1) \sim (x_1^1, x_2^0)$$

$$v_2(x_2^1) - v_2(x_2^0) = v_1(x_1^1) - v_1(x_1^0)$$

• it can be supposed that

$$v_1(x_1^0) = v_2(x_2^0) = 0$$

 $v_1(x_1^1) = 1$

$$\Rightarrow v_2(x_2^1) = 1$$

Going on

$$(x_1^0, x_2^1) \sim (x_1^1, x_2^0)$$

$$(x_1^0, x_2^2) \sim (x_1^1, x_2^1)$$

$$(x_1^0, x_2^3) \sim (x_1^1, x_2^2)$$

$$\cdots$$

$$(x_1^0, x_2^k) \sim (x_1^1, x_2^{k-1})$$

$$v_2(x_2^1) - v_2(x_2^0) = v_1(x_1^1) - v_1(x_1^0) = 1$$

$$v_2(x_2^2) - v_2(x_2^1) = v_1(x_1^1) - v_1(x_1^0) = 1$$

$$v_2(x_2^3) - v_2(x_2^2) = v_1(x_1^1) - v_1(x_1^0) = 1$$

$$\cdots$$

$$v_2(x_2^k) - v_2(x_2^{k-1}) = v_1(x_1^1) - v_1(x_1^0) = 1$$

$$v_2(x_2^k) - v_2(x_2^{k-1}) = v_1(x_1^1) - v_1(x_1^0) = 1$$

$$v_2(x_2^k) - v_2(x_2^{k-1}) = v_1(x_1^1) - v_1(x_1^0) = 1$$

Going on

$$(x_1^0, x_2^1) \sim (x_1^1, x_2^0)$$

$$(x_1^0, x_2^2) \sim (x_1^1, x_2^1)$$

$$(x_1^0, x_2^3) \sim (x_1^1, x_2^2)$$

$$\cdots$$

$$(x_1^0, x_2^k) \sim (x_1^1, x_2^{k-1})$$

$$v_2(x_2^1) - v_2(x_2^0) = v_1(x_1^1) - v_1(x_1^0) = 1$$

$$v_2(x_2^2) - v_2(x_2^1) = v_1(x_1^1) - v_1(x_1^0) = 1$$

$$v_2(x_2^3) - v_2(x_2^2) = v_1(x_1^1) - v_1(x_1^0) = 1$$

$$\cdots$$

$$v_2(x_2^k) - v_2(x_2^{k-1}) = v_1(x_1^1) - v_1(x_1^0) = 1$$

$$\cdots$$

$$v_2(x_2^k) - v_2(x_2^{k-1}) = v_1(x_1^1) - v_1(x_1^0) = 1$$

$$v_2(x_2^k) = 2, v_2(x_2^k) = 3, \dots, v_2(x_2^k) = k$$

Going on

$$(x_1^0, x_2^1) \sim (x_1^1, x_2^0)$$

$$(x_1^0, x_2^2) \sim (x_1^1, x_2^1)$$

$$(x_1^0, x_2^3) \sim (x_1^1, x_2^2)$$

$$\cdots$$

$$(x_1^0, x_2^k) \sim (x_1^1, x_2^{k-1})$$

$$v_2(x_2^1) - v_2(x_2^0) = v_1(x_1^1) - v_1(x_1^0) = 1$$

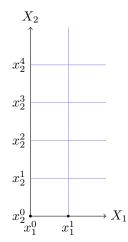
$$v_2(x_2^2) - v_2(x_2^1) = v_1(x_1^1) - v_1(x_1^0) = 1$$

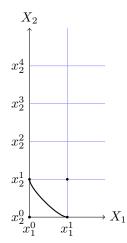
$$v_2(x_2^3) - v_2(x_2^2) = v_1(x_1^1) - v_1(x_1^0) = 1$$

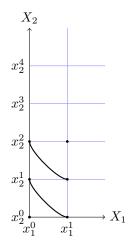
$$\cdots$$

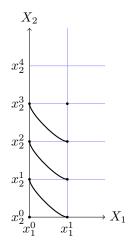
$$v_2(x_2^k) - v_2(x_2^{k-1}) = v_1(x_1^1) - v_1(x_1^0) = 1$$

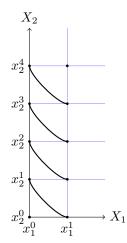
$$\Rightarrow v_2(x_2^2) = 2, v_2(x_2^3) = 3, \dots, v_2(x_2^k) = k$$











Standard sequence

Archimedean

- implicit hypothesis for length
 - the standard sequence can reach any the length of any object

$$\forall x,y \in \mathbb{R}, \exists n \in \mathbb{N} : x > ny$$

- a similar hypothesis has to hold here
- rough interpretation
 - there are not "infinitely" liked or disliked consequences

$$(x_1^2, x_2^0) \sim (x_1^1, x_2^1)$$

$$(x_1^3, x_2^0) \sim (x_1^2, x_2^1)$$

$$\cdots$$

$$(x_1^k, x_2^0) \sim (x_1^{k-1}, x_2^1)$$

$$v_1(x_1^2) - v_1(x_1^1) = v_2(x_2^1) - v_2(x_2^0) = 1$$

$$v_1(x_1^3) - v_1(x_1^2) = v_2(x_2^1) - v_2(x_2^0) = 1$$

$$\cdots$$

$$(x_1^k) - v_1(x_1^{k-1}) = v_2(x_2^1) - v_2(x_2^0) = 1$$

$$(x_1^k) = 2, v_1(x_1^3) = 3, \dots, v_1(x_1^k) = k$$

$$(x_1^2, x_2^0) \sim (x_1^1, x_2^1)$$

$$(x_1^3, x_2^0) \sim (x_1^2, x_2^1)$$

$$\cdots$$

$$(x_1^k, x_2^0) \sim (x_1^{k-1}, x_2^1)$$

$$v_1(x_1^2) - v_1(x_1^1) = v_2(x_2^1) - v_2(x_2^0) = 1$$

$$v_1(x_1^3) - v_1(x_1^2) = v_2(x_2^1) - v_2(x_2^0) = 1$$

$$\cdots$$

$$v_1(x_1^k) - v_1(x_1^{k-1}) = v_2(x_2^1) - v_2(x_2^0) = 1$$

$$v_1(x_1^k) - v_1(x_1^{k-1}) = v_2(x_2^1) - v_2(x_2^0) = 1$$

$$(x_1^2, x_2^0) \sim (x_1^1, x_2^1)$$

$$(x_1^3, x_2^0) \sim (x_1^2, x_2^1)$$

$$\cdots$$

$$(x_1^k, x_2^0) \sim (x_1^{k-1}, x_2^1)$$

$$v_1(x_1^2) - v_1(x_1^1) = v_2(x_2^1) - v_2(x_2^0) = 1$$

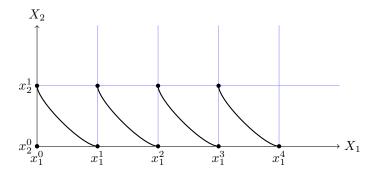
$$v_1(x_1^3) - v_1(x_1^2) = v_2(x_2^1) - v_2(x_2^0) = 1$$

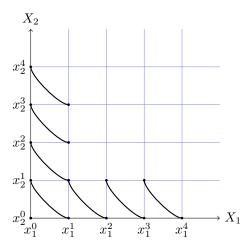
$$\cdots$$

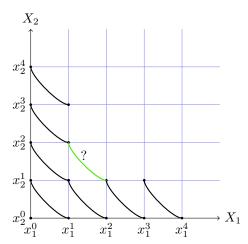
$$v_1(x_1^k) - v_1(x_1^{k-1}) = v_2(x_2^1) - v_2(x_2^0) = 1$$

$$v_1(x_1^k) - v_1(x_1^{k-1}) = v_2(x_2^1) - v_2(x_2^0) = 1$$

$$v_1(x_1^k) = 2, v_1(x_1^3) = 3, \dots, v_1(x_1^k) = k$$



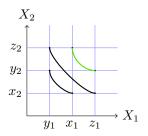




Thomsen condition

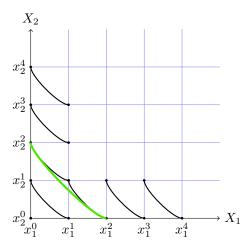
$$(x_1, x_2) \sim (y_1, y_2)$$

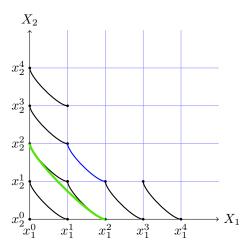
and $\Rightarrow (x_1, z_2) \sim (z_1, y_2)$



Consequence

• there is an additive value function on the grid

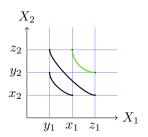




Thomsen condition

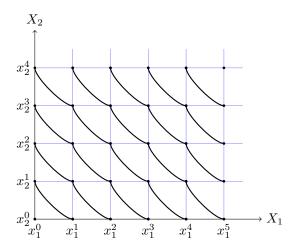
$$(x_1, x_2) \sim (y_1, y_2)$$

and $\Rightarrow (x_1, z_2) \sim (z_1, y_2)$



Consequence

• there is an additive value function on the grid



Summary

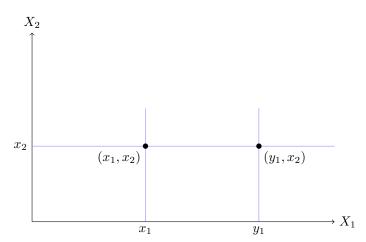
- we have defined a "grid"
- there is an additive value function on the grid
- iterate the whole process with a "denser grid"

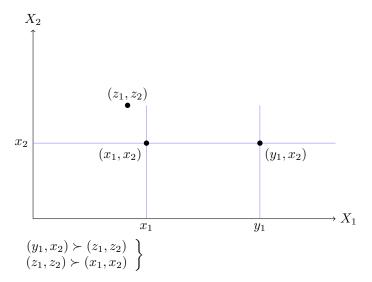
Summary

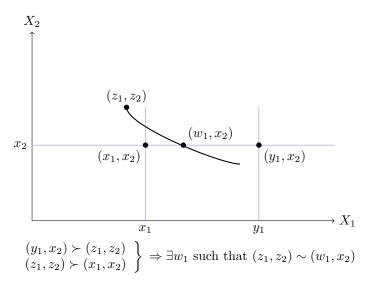
- we have defined a "grid"
- there is an additive value function on the grid
- iterate the whole process with a "denser grid"

Hypotheses

- Archimedean: every strictly bounded standard sequence is finite
- essentiality: both \succ_1 and \succ_2 are nontrivial
- restricted solvability







Basic result

Theorem (2 attributes)

If

- restricted solvability holds
- each attribute is essential

then

the additive value function model holds

if and only if

≿ is an independent weak order satisfying the Thomsen and the Archimedean conditions

The representation is unique up to scale and location

General case

Good news

- entirely similar...
- with a very nice surprise: Thomsen can be forgotten
 - if n=2, independence is identical with weak independence
 - if n > 3, independence is much stronger than weak independence

 X_1 : % of nights at home X_2 : attractiveness of city X_3 : salary increase weak independence holds $\succ b$ and $d \succ c$ is reasonable

Good news

- entirely similar...
- with a very nice surprise: Thomsen can be forgotten
 - if n=2, independence is identical with weak independence
 - if n > 3, independence is much stronger than weak independence

 X_1 : % of nights at home X_2 : attractiveness of city X_3 : salary increase weak independence holds $\succ b$ and $d \succ c$ is reasonable

Good news

- entirely similar...
- with a very nice surprise: Thomsen can be forgotten
 - if n=2, independence is identical with weak independence
 - \bullet if n > 3, independence is much stronger than weak independence

 X_1 : % of nights at home X_2 : attractiveness of city X_3 : salary increase weak independence holds $\succ b$ and $d \succ c$ is reasonable

Good news

- entirely similar...
- with a very nice surprise: Thomsen can be forgotten
 - if n=2, independence is identical with weak independence
 - if n > 3, independence is much stronger than weak independence

	X_1	X_2	X_3
\overline{a}	75	10	0
b	100	2	0
c	75	10	40
d	100	2	40

 X_1 : % of nights at home X_2 : attractiveness of city X_3 : salary increase

weak independence holds $a \succ b$ and $d \succ c$ is reasonable

Good news

- entirely similar...
- with a very nice surprise: Thomsen can be forgotten
 - if n=2, independence is identical with weak independence
 - if n > 3, independence is much stronger than weak independence

	X_1	X_2	X_3
\overline{a}	75	10	0
b	100	2	0
c	75	10	40
d	100	2	40

 X_1 : % of nights at home X_2 : attractiveness of city X_3 : salary increase weak independence holds $a \succ b$ and $d \succ c$ is reasonable

Basic result

Theorem (more than 2 attributes)

If

- restricted solvability holds
- at least three attributes are essential

then

the additive value function model holds if and only if

 \succsim is an independent weak order satisfying the Archimedean condition

The representation is unique up to scale and location

Independence and even swaps

Even swaps technique

- assessing tradeoffs...
- after having suppressed attributes

Implicit hypothesis

- what happens on these attributes do not influence tradeoffs
- this is another way to formulate independence

Independence and even swaps

Even swaps technique

- assessing tradeoffs...
- after having suppressed attributes

Implicit hypothesis

- what happens on these attributes do not influence tradeoffs
- this is another way to formulate independence

Part II

A glimpse at possible extensions

Summary

Additive value function model

- requires independence
- requires a finely grained analysis of preferences

Two main types of extensions

- models with interactions
- @ more ordinal models

Summary

Additive value function model

- requires independence
- requires a finely grained analysis of preferences

Two main types of extensions

- models with interactions
- more ordinal models

Outline

- 6 Models with interactions
 - Rough sets
 - GAI networks
 - Fuzzy integrals
- 6 Ordinal models

Interactions

Two extreme models

- additive value function model
 - independence
- decomposable model
 - only weak independence

$$x \succsim y \Leftrightarrow \sum_{i=1}^{n} v_i(x_i) \ge \sum_{i=1}^{n} v_i(y_i)$$
$$x \succsim y \Leftrightarrow F[v_1(x_1), \dots v_n(x_n)] \ge F[v_1(y_1), \dots v_n(y_n)]$$

Decomposable models

$$x \succsim y \Leftrightarrow F[v_1(x_1), \dots v_n(x_n)] \ge F[v_1(y_1), \dots v_n(y_n)]$$

 F increasing in all arguments

Result

Under mild conditions, any weakly independent weak order may be represented in the decomposable model

Problem.

- all possible types of interactions are admitted
- assessment is a very challenging task

Decomposable models

$$x \succsim y \Leftrightarrow F[v_1(x_1), \dots v_n(x_n)] \ge F[v_1(y_1), \dots v_n(y_n)]$$

 F increasing in all arguments

Result

Under mild conditions, any weakly independent weak order may be represented in the decomposable model

Problem

- all possible types of interactions are admitted
- assessment is a very challenging task

Two main directions

Extensions

- work with the decomposable model
 - rough sets
- 2 find models "in between additive" and decomposable
 - CP-nets, GAI
 - fuzzy integrals

Rough sets

Basic ideas

- work within the general decomposable model
- use the same principle as in UTA
- replacing the numerical model by a symbolic one
- infer decision rules

IF
$$x_1 \geq a_1, \dots, x_i \geq a_i, \dots, x_n \geq a_n$$
 and $y_1 \leq b_1, \dots, y_i \leq b_i, \dots, y_n \leq b_n$ Then $x \succsim y$

- many possible variants
- Greco, Matarazzo, Słowiński

Rough sets

Basic ideas

- work within the general decomposable model
- use the same principle as in UTA
- replacing the numerical model by a symbolic one
- infer decision rules

If
$$x_1 \geq a_1, \dots, x_i \geq a_i, \dots, x_n \geq a_n \text{ and } \\ y_1 \leq b_1, \dots, y_i \leq b_i, \dots, y_n \leq b_n \\$$
 Then
$$x \succsim y$$

- many possible variants
- Greco, Matarazzo, Słowiński

GAI: Example

Choice of a meal: 3 attributes

 $X_1 = \{ \text{Steak}, \text{Fish} \}$ $X_2 = \{ \text{Red}, \text{White} \}$ $X_3 = \{ \text{Cake}, \text{sherBet} \}$

Preferences

$$x^{1} = (S, R, C)$$
 $x^{2} = (S, R, B)$ $x^{3} = (S, W, C)$ $x^{4} = (S, W, B)$
 $x^{5} = (F, R, C)$ $x^{6} = (F, R, B)$ $x^{7} = (F, W, C)$ $x^{8} = (F, W, B)$

$$x^2 \succ x^1 \succ x^7 \succ x^8 \succ x^4 \succ x^3 \succ x^5 \succ x^6$$

- the important is to match main course and wine
- I prefer Steak to Fish
- I prefer Cake to sherBet if Fish
- I prefer sherBet to Cake if Steak

GAI: Example

Choice of a meal: 3 attributes

 $X_1 = \{ \text{Steak}, \text{Fish} \}$ $X_2 = \{ \text{Red}, \text{White} \}$ $X_3 = \{ \text{Cake}, \text{sherBet} \}$

Preferences

$$x^{1} = (S, R, C)$$
 $x^{2} = (S, R, B)$ $x^{3} = (S, W, C)$ $x^{4} = (S, W, B)$
 $x^{5} = (F, R, C)$ $x^{6} = (F, R, B)$ $x^{7} = (F, W, C)$ $x^{8} = (F, W, B)$

$$x^2 \succ x^1 \succ x^7 \succ x^8 \succ x^4 \succ x^3 \succ x^5 \succ x^6$$

- the important is to match main course and wine
- I prefer Steak to Fish
- I prefer Cake to sherBet if Fish
- I prefer sherBet to Cake if Steak

GAI: Example

Choice of a meal: 3 attributes

 $X_1 = \{ \text{Steak}, \text{Fish} \}$ $X_2 = \{ \text{Red}, \text{White} \}$ $X_3 = \{ \text{Cake}, \text{sherBet} \}$

Preferences

$$x^{1} = (S, R, C) \quad x^{2} = (S, R, B) \quad x^{3} = (S, W, C) \quad x^{4} = (S, W, B)$$

$$x^{5} = (F, R, C) \quad x^{6} = (F, R, B) \quad x^{7} = (F, W, C) \quad x^{8} = (F, W, B)$$

$$x^{2} \succeq x^{1} \succeq x^{7} \succeq x^{8} \succeq x^{4} \succeq x^{3} \succeq x^{5} \succeq x^{6}$$

- the important is to match main course and wine
- I prefer Steak to Fish
- I prefer Cake to sherBet if Fish
- I prefer sherBet to Cake if Steak

$$x^{1} = (S, R, C)$$
 $x^{2} = (S, R, B)$ $x^{3} = (S, W, C)$ $x^{4} = (S, W, B)$ $x^{5} = (F, R, C)$ $x^{6} = (F, R, B)$ $x^{7} = (F, W, C)$ $x^{8} = (F, W, B)$

$$x^2 \succ x^1 \succ x^7 \succ x^8 \succ x^4 \succ x^3 \succ x^5 \succ x^6$$

Independence

$$x^1 \succ x^5 \Rightarrow v_1(S) > v_1(F)$$

 $x^7 \succ x^3 \Rightarrow v_1(F) > v_1(S)$

Grouping main course and wine?

$$x^7 \succ x^8 \Rightarrow v_3(C) > v_3(B)$$

 $x^2 \succ x^1 \Rightarrow v_3(B) > v_3(C)$

$$x^{1} = (S, R, C)$$
 $x^{2} = (S, R, B)$ $x^{3} = (S, W, C)$ $x^{4} = (S, W, B)$ $x^{5} = (F, R, C)$ $x^{6} = (F, R, B)$ $x^{7} = (F, W, C)$ $x^{8} = (F, W, B)$

$$x^2 \succ x^1 \succ x^7 \succ x^8 \succ x^4 \succ x^3 \succ x^5 \succ x^6$$

Independence

$$x^1 \succ x^5 \Rightarrow v_1(S) > v_1(F)$$

 $x^7 \succ x^3 \Rightarrow v_1(F) > v_1(S)$

Grouping main course and wine?

$$x^7 \succ x^8 \Rightarrow v_3(C) > v_3(B)$$

 $x^2 \succ x^1 \Rightarrow v_3(B) > v_3(C)$

$$x^{1} = (S, R, C)$$
 $x^{2} = (S, R, B)$ $x^{3} = (S, W, C)$ $x^{4} = (S, W, B)$ $x^{5} = (F, R, C)$ $x^{6} = (F, R, B)$ $x^{7} = (F, W, C)$ $x^{8} = (F, W, B)$

$$x^2 \succ x^1 \succ x^7 \succ x^8 \succ x^4 \succ x^3 \succ x^5 \succ x^6$$

Independence

$$x^1 \succ x^5 \Rightarrow v_1(S) > v_1(F)$$

 $x^7 \succ x^3 \Rightarrow v_1(F) > v_1(S)$

Grouping main course and wine?

$$x^7 \succ x^8 \Rightarrow v_3(C) > v_3(B)$$

 $x^2 \succ x^1 \Rightarrow v_3(B) > v_3(C)$

$$x^1 = (S, R, C)$$
 $x^2 = (S, R, B)$ $x^3 = (S, W, C)$ $x^4 = (S, W, B)$ $x^5 = (F, R, C)$ $x^6 = (F, R, B)$ $x^7 = (F, W, C)$ $x^8 = (F, W, B)$

$$x^2 \succ x^1 \succ x^7 \succ x^8 \succ x^4 \succ x^3 \succ x^5 \succ x^6$$

Model

$$x \gtrsim y \Leftrightarrow u_{12}(x_1, x_2) + u_{13}(x_1, x_3) \ge u_{12}(y_1, y_2) + u_{13}(y_1, y_3)$$

$$u_{12}(S,R) = 6$$
 $u_{12}(F,W) = 4$ $u_{12}(S,W) = 2$ $u_{12}(F,R) = 0$
 $u_{13}(S,C) = 0$ $u_{13}(S,B) = 1$ $u_{13}(F,C) = 1$ $u_{13}(F,S) = 0$

$$\begin{split} x^1 &= (S,R,C) \quad x^2 = (S,R,B) \quad x^3 = (S,W,C) \quad x^4 = (S,W,B) \\ x^5 &= (F,R,C) \quad x^6 = (F,R,B) \quad x^7 = (F,W,C) \quad x^8 = (F,W,B) \end{split}$$

$$x^2 \succ x^1 \succ x^7 \succ x^8 \succ x^4 \succ x^3 \succ x^5 \succ x^6$$

Model

$$x \gtrsim y \Leftrightarrow u_{12}(x_1, x_2) + u_{13}(x_1, x_3) \ge u_{12}(y_1, y_2) + u_{13}(y_1, y_3)$$

$$u_{12}(S,R) = 6$$
 $u_{12}(F,W) = 4$ $u_{12}(S,W) = 2$ $u_{12}(F,R) = 0$
 $u_{13}(S,C) = 0$ $u_{13}(S,B) = 1$ $u_{13}(F,C) = 1$ $u_{13}(F,S) = 0$

GAI (Gonzales & Perny)

- axiomatic analysis
- if interdependences are known
 - assessment techniques
 - efficient algorithms (compactness of representation)
- the attribute "sichward" of mod is
- interdependence within a framework that is quite similar to that of classical theory
- powerful generalization of recent models in Computer Science

GAI (Gonzales & Perny)

- axiomatic analysis
- if interdependences are known
 - assessment techniques
 - efficient algorithms (compactness of representation)

What R. L. Keeney would probably say

• the attribute "richness" of meal is missing

- interdependence within a framework that is quite similar to that of classical theory
- powerful generalization of recent models in Computer Science

GAI (Gonzales & Perny)

- axiomatic analysis
- if interdependences are known
 - assessment techniques
 - efficient algorithms (compactness of representation)

What R. L. Keeney would probably say

• the attribute "richness" of meal is missing

GAI

- interdependence within a framework that is quite similar to that of classical theory
- powerful generalization of recent models in Computer Science

GAI (Gonzales & Perny)

- axiomatic analysis
- if interdependences are known
 - assessment techniques
 - efficient algorithms (compactness of representation)

What R. L. Keeney would probably say

• the attribute "richness" of meal is missing

GAI

- interdependence within a framework that is quite similar to that of classical theory
- powerful generalization of recent models in Computer Science

Fuzzy integrals

Origins

- decision making under uncertainty
 - homogeneous Cartesian product
- mathematics
 - integrating w.r.t. a non-additive measure
- game theory
 - cooperative TU games
- multiattribute decisions
 - generalizing the weighted sum

	Physics	Maths	Economics
\overline{a}	18	12	6
b	18	7	11
c	5	17	8
d	5	12	13

 $a \succ b$ $d \succ c$

Preferences

a is fine for Engineering d is fine for Economics

Interpretation: interaction

- having good grades in both
 - Math and Physics or
 - Maths and Economics
- better than having good grades in both
 - Physics and Economics

	Physics	Maths	Economics
a	18	12	6
b	18	7	11
c	5	17	8
d	5	12	13

 $a \succ b \quad d \succ c$

Preferences

a is fine for Engineering — d is fine for Economics

Interpretation: interaction

- having good grades in both
 - Math and Physics or
 - Maths and Economics
- better than having good grades in both
 - Physics and Economics

	Physics	Maths	Economics
a	18	12	6
b	18	7	11
c	5	17	8
d	5	12	13

 $a \succ b \quad d \succ c$

Preferences

a is fine for Engineering d is fine for Economics

Interpretation: interaction

- having good grades in both
 - Math and Physics or
 - Maths and Economics
- better than having good grades in both
 - Physics and Economics

Weighted sum

	Physics	Maths	Economics
a	18	12	6
b	18	7	11
c	5	17	8
d	5	12	13

$$a \succ b \Rightarrow 18w_1 + 12w_2 + 6w_3 > 18w_1 + 7w_2 + 11w_3 \Rightarrow w_2 > w_3$$

 $d \succ c \Rightarrow 5w_1 + 17w_2 + 8w_3 > 5w_1 + 12w_2 + 13w_3 \Rightarrow w_3 > w_2$

Choquet integral

Capacity

$$\mu: 2^N \to [0,1]$$

$$\mu(\varnothing) = 0, \mu(N) = 1$$

$$A \subseteq B \Rightarrow \mu(A) \le \mu(B)$$

Choquet integral

$$0 = x_{(0)} \le x_{(1)} \le \dots \le x_{(n)}$$

$$x_{(1)} - x_{(0)} \quad \mu(\{(1), (2), (3), (4) \dots, (n)\})$$

$$x_{(2)} - x_{(1)} \qquad \mu(\{(2), (3), (4) \dots, (n)\})$$

$$x_{(3)} - x_{(2)} \qquad \mu(\{(3), (4) \dots, (n)\})$$

$$\dots \qquad \dots \qquad \dots$$

$$(n) - x_{(n-1)} \qquad \mu(\{(n)\})$$

$$C_{\mu}(x) = \sum_{i=1}^{n} \left[x_{(i)} - x_{(i-1)} \right] \mu(A_{(i)})$$
$$A_{(i)} = \{ (i), (i+1), \dots, (n) \}$$

$$0 = x_{(0)} \le x_{(1)} \le \dots \le x_{(n)}$$

$$x_{(1)} - x_{(0)} \quad \mu(\{(1), (2), (3), (4) \dots, (n)\})$$

$$x_{(2)} - x_{(1)} \qquad \mu(\{(2), (3), (4) \dots, (n)\})$$

$$x_{(3)} - x_{(2)} \qquad \mu(\{(3), (4) \dots, (n)\})$$

$$\dots \qquad \dots$$

$$n) - x_{(n-1)} \qquad \mu(\{(n)\})$$

$$C_{\mu}(x) = \sum_{i=1}^{n} \left[x_{(i)} - x_{(i-1)} \right] \mu(A_{(i)})$$

$$A_{(i)} = \{ (i), (i+1), \dots, (n) \}$$

$$0 = x_{(0)} \le x_{(1)} \le \dots \le x_{(n)}$$

$$x_{(1)} - x_{(0)} \qquad \mu(\{(1), (2), (3), (4) \dots, (n)\})$$

$$x_{(2)} - x_{(1)} \qquad \mu(\{(2), (3), (4) \dots, (n)\})$$

$$x_{(3)} - x_{(2)} \qquad \mu(\{(3), (4) \dots, (n)\})$$

$$\dots$$

$$(n) - x_{(n-1)} \qquad \mu(\{(n)\})$$

$$C_{\mu}(x) = \sum_{i=1}^{n} \left[x_{(i)} - x_{(i-1)} \right] \mu(A_{(i)})$$

$$A_{(i)} = \{ (i), (i+1), \dots, (n) \}$$

$$0 = x_{(0)} \le x_{(1)} \le \dots \le x_{(n)}$$

$$\begin{array}{ll} x_{(1)} - x_{(0)} & \mu(\{(1), (2), (3), (4) \dots, (n)\}) \\ x_{(2)} - x_{(1)} & \mu(\{(2), (3), (4) \dots, (n)\}) \\ x_{(3)} - x_{(2)} & \mu(\{(3), (4) \dots, (n)\}) \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

$$C_{\mu}(x) = \sum_{i=1}^{n} \left[x_{(i)} - x_{(i-1)} \right] \mu(A_{(i)})$$
$$A_{(i)} = \{ (i), (i+1), \dots, (n) \}$$

$$0 = x_{(0)} \le x_{(1)} \le \dots \le x_{(n)}$$

$$x_{(1)} - x_{(0)} \quad \mu(\{(1), (2), (3), (4) \dots, (n)\})$$

$$x_{(2)} - x_{(1)} \qquad \mu(\{(2), (3), (4) \dots, (n)\})$$

$$x_{(3)} - x_{(2)} \qquad \mu(\{(3), (4) \dots, (n)\})$$

$$\dots \qquad \dots \qquad \dots$$

$$x_{(n)} - x_{(n-1)} \qquad \mu(\{(n)\})$$

$$C_{\mu}(x) = \sum_{i=1}^{n} \left[x_{(i)} - x_{(i-1)} \right] \mu(A_{(i)})$$
$$A_{(i)} = \{ (i), (i+1), \dots, (n) \}$$

$$0 = x_{(0)} \le x_{(1)} \le \dots \le x_{(n)}$$

$$x_{(1)} - x_{(0)} \quad \mu(\{(1), (2), (3), (4) \dots, (n)\})$$

$$x_{(2)} - x_{(1)} \qquad \mu(\{(2), (3), (4) \dots, (n)\})$$

$$x_{(3)} - x_{(2)} \qquad \mu(\{(3), (4) \dots, (n)\})$$

$$\dots$$

$$x_{(n)} - x_{(n-1)} \qquad \mu(\{(n)\})$$

$$C_{\mu}(x) = \sum_{i=1}^{n} \left[x_{(i)} - x_{(i-1)} \right] \mu(A_{(i)})$$
$$A_{(i)} = \{ (i), (i+1), \dots, (n) \}$$

Application

	Physics	Maths	Economics
\overline{a}	18	12	6
b	18	7	11
c	5	17	8
d	5	12	13

$$\mu(M) = 0.1, \mu(P) = 0.5, \mu(E) = 0.5$$

$$\mu(M, P) = 1 > \mu(M) + \mu(P)$$

$$\mu(M, E) = 1 > \mu(M) + \mu(E)$$

$$\mu(P, E) = 0.6 < \mu(P) + \mu(E)$$

$$C_{\mu}(a) = 6 \times 1 + (12 - 6) \times 1 + (18 - 12) \times 0.5 = 15.0$$

$$C_{\mu}(b) = 7 + (11 - 7) \times 0.6 + (18 - 11) \times 0.5 = 12.9$$

$$C_{\mu}(c) = 5 + (8 - 5) \times 1 + (17 - 8) \times 0.1 = 8.9$$

$$C_{\mu}(d) = 5 + (12 - 5) \times 1 + (13 - 12) \times 0.5 = 12.5$$

Application

	Physics	Maths	Economics
\overline{a}	18	12	6
b	18	7	11
c	5	17	8
d	5	12	13

$$\mu(M) = 0.1, \mu(P) = 0.5, \mu(E) = 0.5$$

$$\mu(M, P) = 1 > \mu(M) + \mu(P)$$

$$\mu(M, E) = 1 > \mu(M) + \mu(E)$$

$$\mu(P, E) = 0.6 < \mu(P) + \mu(E)$$

$$C_{\mu}(a) = 6 \times 1 + (12 - 6) \times 1 + (18 - 12) \times 0.5 = 15.0$$

$$C_{\mu}(b) = 7 + (11 - 7) \times 0.6 + (18 - 11) \times 0.5 = 12.9$$

$$C_{\mu}(c) = 5 + (8 - 5) \times 1 + (17 - 8) \times 0.1 = 8.9$$

$$C_{\mu}(d) = 5 + (12 - 5) \times 1 + (13 - 12) \times 0.5 = 12.5$$

Choquet integral in MCDM

Properties

- monotone, idempotent, continuous
- preserves weak separability
- tolerates violation of independence
- contains many other aggregation functions as particular cases

Capacities

Fascinating mathematical object:

- Möbius transform
- Shapley value
- interaction indices

Choquet integral in MCDM

Properties

- monotone, idempotent, continuous
- preserves weak separability
- tolerates violation of independence
- contains many other aggregation functions as particular cases

Capacities

Fascinating mathematical object:

- Möbius transform
- Shapley value
- interaction indices

Questions

Hypotheses

- I can compare x_i with x_j
 - attributes are (level) commensurable

Classical model

• I can indirectly compare $[x_i, y_i]$ with $[x_j, y_j]$

Central research question

• how to assess $u: \bigcup_{i=1}^n X_i \to \mathbb{R}$ so that the levels are commensurate?

Questions

Hypotheses

- I can compare x_i with x_j
 - attributes are (level) commensurable

Classical model

• I can indirectly compare $[x_i, y_i]$ with $[x_j, y_j]$

Central research question

• how to assess $u: \bigcup_{i=1}^n X_i \to \mathbb{R}$ so that the levels are commensurate?

Questions

Hypotheses

- I can compare x_i with x_j
 - attributes are (level) commensurable

Classical model

• I can indirectly compare $[x_i, y_i]$ with $[x_j, y_j]$

Central research question

• how to assess $u: \bigcup_{i=1}^n X_i \to \mathbb{R}$ so that the levels are commensurate?

Assessment

• variety of mathematical programming based approaches

Extensions

- Choquet integral with a reference point (statu quo)
- Sugeno integral (median)
- axiomatization as aggregation functions
- k-additive capacities

Assessment

• variety of mathematical programming based approaches

Extensions

- Choquet integral with a reference point (statu quo)
- Sugeno integral (median)
- axiomatization as aggregation functions
- \bullet k-additive capacities

Outline

- 6 Models with interactions
- 6 Ordinal models

Observations

Classical model

- deep analysis of preference that may not be possible
 - preference are not well structured
 - several or no DM
 - prudence

Idea

- it is not very restrictive to suppose that levels on each X_i can be ordered
- aggregate these orders
- possibly taking importance into account

Social choice

• aggregate the preference orders of the voters to build a collective preference

Observations

Classical model

- deep analysis of preference that may not be possible
 - preference are not well structured
 - several or no DM
 - prudence

Idea

- ullet it is not very restrictive to suppose that levels on each X_i can be ordered
- aggregate these orders
- possibly taking importance into account

Social choice

 aggregate the preference orders of the voters to build a collective preference

Observations

Classical model

- deep analysis of preference that may not be possible
 - preference are not well structured
 - several or no DM
 - prudence

Idea

- ullet it is not very restrictive to suppose that levels on each X_i can be ordered
- aggregate these orders
- possibly taking importance into account

Social choice

• aggregate the preference orders of the voters to build a collective preference

Outranking methods

ELECTRE

 $x \succeq y$ if

Concordance a "majority" of attributes support the assertion Discordance the opposition of the minority is not "too strong"

$$x \succsim y \Leftrightarrow \left\{ \begin{array}{l} \sum_{i:x_i \succsim_i y_i} w_i \geq s \\ \\ Not[y_i \ V_i \ x_i], \forall i \in N \end{array} \right.$$

$$\begin{aligned} x \succsim y &\Leftrightarrow |\{i \in N : x_i \succsim_i y_i\}| \geq |\{i \in N : y_i \succsim_i x_i\}| \\ &1 : x_1 \succ_1 y_1 \succ_1 z_1 \\ &2 : z_2 \succ_2 x_2 \succ_2 y_2 \\ &3 : y_3 \succ_3 z_3 \succ_3 x_3 \\ &x = (x_1, x_2, x_3) \\ &y = (y_1, y_2, y_3) \end{aligned}$$

 $z = (z_1, z_2, z_3)$

$$x \gtrsim y \Leftrightarrow |\{i \in N : x_i \gtrsim_i y_i\}| \ge |\{i \in N : y_i \gtrsim_i x_i\}|$$

$$1 : x_1 \succ_1 y_1 \succ_1 z_1$$

$$2 : z_2 \succ_2 x_2 \succ_2 y_2$$

$$3 : y_3 \succ_3 z_3 \succ_3 x_3$$

$$x = (x_1, x_2, x_3)$$

$$y = (y_1, y_2, y_3)$$

$$z = (z_1, z_2, z_3)$$

$$(z)$$

$$x \succsim y \Leftrightarrow |\{i \in N : x_i \succsim_i y_i\}| \ge |\{i \in N : y_i \succsim_i x_i\}|$$

$$1: x_1 \succ_1 y_1 \succ_1 z_1$$

$$2: z_2 \succ_2 x_2 \succ_2 y_2$$

$$3: y_3 \succ_3 z_3 \succ_3 x_3$$

$$x = (x_1, x_2, x_3)$$

$$y = (y_1, y_2, y_3)$$

$$z = (z_1, z_2, z_3)$$

$$x \succsim y \Leftrightarrow |\{i \in N : x_i \succsim_i y_i\}| \ge |\{i \in N : y_i \succsim_i x_i\}|$$

$$1: x_1 \succ_1 y_1 \succ_1 z_1$$

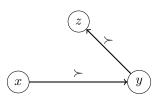
$$2: z_2 \succ_2 x_2 \succ_2 y_2$$

$$3: y_3 \succ_3 z_3 \succ_3 x_3$$

$$x = (x_1, x_2, x_3)$$

$$y = (y_1, y_2, y_3)$$

$$z = (z_1, z_2, z_3)$$



$$x \succsim y \Leftrightarrow |\{i \in N : x_i \succsim_i y_i\}| \ge |\{i \in N : y_i \succsim_i x_i\}|$$

$$1: x_1 \succ_1 y_1 \succ_1 z_1$$

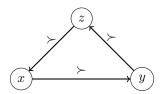
$$2: z_2 \succ_2 x_2 \succ_2 y_2$$

$$3: y_3 \succ_3 z_3 \succ_3 x_3$$

$$x = (x_1, x_2, x_3)$$

$$y = (y_1, y_2, y_3)$$

$$z = (z_1, z_2, z_3)$$



Arrow's theorem

Theorem

The only ways to aggregate weak orders while remaining ordinal are not very attractive. . .

- dictator (weak order)
- oligarchy (transitive ≻)
- veto (acyclic ≻)

Arrow's theorem

Theorem

The only ways to aggregate weak orders while remaining ordinal are not very attractive. . .

- dictator (weak order)
- oligarchy (transitive ≻)
- veto (acyclic ≻)

Ways out

Accepting intransitivity

- find way to extract information in spite of intransitivity
 - ELECTRE I, II, III, IS
 - PROMETHEE I, II

Do not use paired comparisons

- only compare x with carefully selected alternatives
 - ELECTRE TRI
 - methods using reference points

Ways out

Accepting intransitivity

- find way to extract information in spite of intransitivity
 - ELECTRE I, II, III, IS
 - PROMETHEE I, II

Do not use paired comparisons

- ullet only compare x with carefully selected alternatives
 - ELECTRE TRI
 - methods using reference points

Conclusion

Fascinating field

- theoretical point of view
 - measurement theory
 - decision under uncertainty
 - social choice theory
- practical point of view
 - rating firms from a social point of view
 - evaluating H_2 -propelled cars

Conclusion

Fascinating field

- theoretical point of view
 - measurement theory
 - decision under uncertainty
 - social choice theory
- practical point of view
 - rating firms from a social point of view
 - evaluating H_2 -propelled cars