Decisions with multiple attributes

A brief introduction

Denis Bouyssou

CNRS-LAMSADE
Paris, France

JFRO - December 2006

Introduction

Aims

mainly pedagogical

- present elements of the classical theory
- position some extensions wrt this classical theory

Comparing holiday packages

	cost	\# of days	travel time	category of hotel	distance to beach	Wifi	cultural interest
A	$200 €$	15	12 h	$* * *$	45 km	Y	++
B	$425 €$	18	15 h	$* * * *$	0 km	N	--
C	$150 €$	4	7 h	$* *$	250 km	N	+
D	$300 €$	5	10 h	$* * *$	5 km	Y	-

cemocile

- helping a DM structure his preferences

Introduction

Comparing holiday packages

	cost	\# of days	travel time	category of hotel	distance to beach	Wifi	cultural interest
A	$200 €$	15	12 h	$* * *$	45 km	Y	++
B	$425 €$	18	15 h	$* * * *$	0 km	N	--
C	$150 €$	4	7 h	$* *$	250 km	N	+
D	$300 €$	5	10 h	$* * *$	5 km	Y	-

Central problems

- helping a DM choose between these packages
- helping a DM structure his preferences

Introduction

Two different contexts

© decision aiding

- careful analysis of objectives
- careful analysis of attributes
- careful selection of alternatives
- availability of the DM
© recommendation systems
- no analysis of objectives
- attributes as available
- alternatives as available
- limited access to the user

Introduction

Two different contexts
(1) decision aiding

- careful analysis of objectives
- careful analysis of attributes
- careful selection of alternatives
- availability of the DM
(2) recommendation systems
- no analysis of objectives
- attributes as available
- alternatives as available
- limited access to the user

Two different contexts

(1) decision aiding

- careful analysis of objectives
- careful analysis of attributes
- careful selection of alternatives
- availability of the DM
(2) recommendation systems
- no analysis of objectives
- attributes as available
- alternatives as available
- limited access to the user

Basic model

- additive value function model

$$
\begin{gathered}
x \succsim y \Leftrightarrow \sum_{i=1}^{n} v_{i}\left(x_{i}\right) \geq \sum_{i=1}^{n} v_{i}\left(y_{i}\right) \\
x, y: \text { alternatives } \\
x_{i}: \text { evaluation of alternative } x \text { on attribute } i \\
v_{i}\left(x_{i}\right): \text { number }
\end{gathered}
$$

- underlies most existing MCDM techniques

Introduction

Basic model

- additive value function model

$$
x \succsim y \Leftrightarrow \sum_{i=1}^{n} v_{i}\left(x_{i}\right) \geq \sum_{i=1}^{n} v_{i}\left(y_{i}\right)
$$

x, y : alternatives
x_{i} : evaluation of alternative x on attribute i

$$
v_{i}\left(x_{i}\right): \text { number }
$$

- underlies most existing MCDM techniques

Underlying theory: conjoint measurement

- Economics (Debreu, 1960)
- Psychology (Luce \& Tukey, 1964)

Introduction

Basic model

- additive value function model

$$
x \succsim y \Leftrightarrow \sum_{i=1}^{n} v_{i}\left(x_{i}\right) \geq \sum_{i=1}^{n} v_{i}\left(y_{i}\right)
$$

x, y : alternatives
x_{i} : evaluation of alternative x on attribute i

$$
v_{i}\left(x_{i}\right): \text { number }
$$

- underlies most existing MCDM techniques

Underlying theory: conjoint measurement

- Economics (Debreu, 1960)
- Psychology (Luce \& Tukey, 1964)
- tools to help structure preferences

Outline: Classical theory

(1) An aside: measurement in Physics

Outline: Classical theory

(1) An aside: measurement in Physics
(2) An example: even swaps

0Additive value functions: outline of theory

Outline: Classical theory

(1) An aside: measurement in Physics
(2) An example: even swaps
(3) Notation

Outline: Classical theory

(1) An aside: measurement in Physics
(2) An example: even swaps
(3) Notation

44 Additive value functions: outline of theory

Outline: Extensions

(5) Models with interactions

Outline: Extensions

(5) Models with interactions
(6) Ordinal models

Part I

Classical theory: conjoint measurement

Outline

(1) An aside: measurement in Physics
(2) An example: even swaps
(3) Notation
(4) Additive value functions: outline of theory
$4 \square>4$ 可 \downarrow "

Aside: measurement of physical quantities

Lonely individual on a desert island

- no tools, no books, no knowledge of Physics
- wants to rebuild a system of physical measures

Aside: measurement of physical quantities

Lonely individual on a desert island

- no tools, no books, no knowledge of Physics
- wants to rebuild a system of physical measures

A collection a rigid straight rods

- problem: measuring the length of these rods
- pre-theoretical intuition
- length
- softness, beauty

Aside: measurement of physical quantities

Lonely individual on a desert island

- no tools, no books, no knowledge of Physics
- wants to rebuild a system of physical measures

A collection a rigid straight rods

- problem: measuring the length of these rods
- pre-theoretical intuition
- length
- softness, beauty

3 main steps

- comparing objects
- creating and comparing new objects
- creating standard sequences

Step 1: comparing objects

- experimental to conclude which rod has "more length"
- rods side by side on the same horizontal plane

Step 1: comparing objects

- experimental to conclude which rod has "more length"
- rods side by side on the same horizontal plane

Step 1: comparing objects

- experimental to conclude which rod has "more length"
- rods side by side on the same horizontal plane

Comparing objects

Results

- $a \succ b$: extremity of rod a is higher than extremity of $\operatorname{rod} b$
- $a \sim b$: extremity of $\operatorname{rod} a$ is as high as extremity of $\operatorname{rod} b$
- \succ is asymmetric
$-\sim$ is symmetric
- \succ is transitive
- \sim is transitive
- \succ and \sim combine "nicely"

Comparing objects

Results

- $a \succ b$: extremity of rod a is higher than extremity of $\operatorname{rod} b$
- $a \sim b$: extremity of $\operatorname{rod} a$ is as high as extremity of $\operatorname{rod} b$

Expected properties

- $a \succ b, a \sim b$ or $b \succ a$

Comparing objects

Results

- $a \succ b$: extremity of rod a is higher than extremity of $\operatorname{rod} b$
- $a \sim b$: extremity of $\operatorname{rod} a$ is as high as extremity of $\operatorname{rod} b$

Expected properties

- $a \succ b, a \sim b$ or $b \succ a$
- \succ is asymmetric
- ~ is symmetric

Comparing objects

Results

- $a \succ b$: extremity of rod a is higher than extremity of $\operatorname{rod} b$
- $a \sim b$: extremity of $\operatorname{rod} a$ is as high as extremity of $\operatorname{rod} b$

Expected properties

- $a \succ b, a \sim b$ or $b \succ a$
- \succ is asymmetric
- ~ is symmetric
- \succ is transitive

Comparing objects

Results

- $a \succ b$: extremity of rod a is higher than extremity of $\operatorname{rod} b$
- $a \sim b$: extremity of $\operatorname{rod} a$ is as high as extremity of $\operatorname{rod} b$

Expected properties

- $a \succ b, a \sim b$ or $b \succ a$
- \succ is asymmetric
- ~ is symmetric
- \succ is transitive
- \sim is transitive

Comparing objects

Results

- $a \succ b$: extremity of $\operatorname{rod} a$ is higher than extremity of $\operatorname{rod} b$
- $a \sim b$: extremity of $\operatorname{rod} a$ is as high as extremity of $\operatorname{rod} b$

Expected properties

- $a \succ b, a \sim b$ or $b \succ a$
- \succ is asymmetric
- ~ is symmetric
- \succ is transitive
- \sim is transitive
- \succ and \sim combine "nicely"
- $a \succ b$ and $b \sim c \Rightarrow a \succ c$
- $a \sim b$ and $b \succ c \Rightarrow a \sim c$

Comparing objects

Summary of experiments

- binary relation $\succsim=\succ \cup \sim$ that is a weak order
- complete ($a \succsim b$ or $b \succsim a$)
- transitive $(a \succsim b$ and $b \succsim c \Rightarrow a \succsim c$)
\square
- the function Φ defines an
- annlvino an increasino transformation to Φ leads to a scale that
has the same properties
- any two scales having the same properties are related by an
increasing transformation

Comparing objects

Summary of experiments

- binary relation $\succsim=\succ \cup \sim$ that is a weak order
- complete $(a \succsim b$ or $b \succsim a)$
- transitive $(a \succsim b$ and $b \succsim c \Rightarrow a \succsim c)$

Consequences

- associate a real number $\Phi(a)$ to each object a
- the comparison of numbers faithfully reflects the results of experiments

$$
a \succ b \Leftrightarrow \Phi(a)>\Phi(b) \quad a \sim b \Leftrightarrow \Phi(a)=\Phi(b)
$$

- the function Φ defines an ordinal scale
- applying an increasing transformation to Φ leads to a scale that has the same properties
- any two scales having the same properties are related by an increasing transformation

Comments

Nature of the scale

- Φ is quite far from a full-blown measure of length. . .
- useful though since it allows the experiments to be done only once

[^0]
Comments

Nature of the scale

- Φ is quite far from a full-blown measure of length. . .
- useful though since it allows the experiments to be done only once

Hypotheses are stringent

- highly precise comparisons
- several practical problems
- any two objects can be compared
- connections between experiments
- comparisons may vary in time
- idealization of the measurement process

Step 2: creating and comparing new objects

- use the available objects to create new ones
- concatenate objects by placing two or more rods "in a row"

Step 2: creating and comparing new objects

- use the available objects to create new ones
- concatenate objects by placing two or more rods "in a row"

Concatenation

- we want to be able to deduce $\Phi(a \circ b)$ from $\Phi(a)$ and $\Phi(b)$
- simplest requirement

$$
\Phi(a \circ b)=\Phi(a)+\Phi(b)
$$

Concatenation

- we want to be able to deduce $\Phi(a \circ b)$ from $\Phi(a)$ and $\Phi(b)$
- simplest requirement

$$
\Phi(a \circ b)=\Phi(a)+\Phi(b)
$$

- monotonicity constraints

$$
a \succ b \text { and } c \sim d \Rightarrow a \circ c \succ b \circ d
$$

Example

- five rods: $r_{1}, r_{2}, \ldots, r_{5}$
- we may only concatenate two rods (space reasons)
- we may only experiment with different rods
- data:

$$
r_{1} \circ r_{5} \succ r_{3} \circ r_{4} \succ r_{1} \circ r_{2} \succ r_{5} \succ r_{4} \succ r_{3} \succ r_{2} \succ r_{1}
$$

- all constraints are satisfied: weak ordering and monotonicity

Example

$$
\begin{gathered}
r_{1} \circ r_{5} \succ r_{3} \circ r_{4} \succ r_{1} \circ r_{2} \succ r_{5} \succ r_{4} \succ r_{3} \succ r_{2} \succ r_{1} \\
\qquad \begin{array}{cccc}
\Phi & \Phi^{\prime} & \Phi^{\prime \prime} \\
\hline r_{1} & 14 & 10 & 14 \\
r_{2} & 15 & 91 & 16 \\
r_{3} & 20 & 92 & 17 \\
r_{4} & 21 & 93 & 18 \\
r_{5} & 28 & 100 & 29
\end{array}
\end{gathered}
$$

- Φ, Φ^{\prime} and $\Phi^{\prime \prime}$ are equally good to compare simple rods

Example

$$
\begin{gathered}
r_{1} \circ r_{5} \succ r_{3} \circ r_{4} \succ r_{1} \circ r_{2} \succ r_{5} \succ r_{4} \succ r_{3} \succ r_{2} \succ r_{1} \\
\qquad \begin{array}{cccc}
\Phi & \Phi^{\prime} & \Phi^{\prime \prime} \\
\hline r_{1} & 14 & 10 & 14 \\
r_{2} & 15 & 91 & 16 \\
r_{3} & 20 & 92 & 17 \\
r_{4} & 21 & 93 & 18 \\
r_{5} & 28 & 100 & 29
\end{array}
\end{gathered}
$$

- Φ, Φ^{\prime} and $\Phi^{\prime \prime}$ are equally good to compare simple rods
- only Φ and $\Phi^{\prime \prime}$ capture the comparison of concatenated rods

Example

$$
\begin{gathered}
r_{1} \circ r_{5} \succ r_{3} \circ r_{4} \succ r_{1} \circ r_{2} \succ r_{5} \succ r_{4} \succ r_{3} \succ r_{2} \succ r_{1} \\
\begin{array}{cccc}
& \Phi & \Phi^{\prime} & \Phi^{\prime \prime} \\
r_{1} & 14 & 10 & 14 \\
r_{2} & 15 & 91 & 16 \\
r_{3} & 20 & 92 & 17 \\
r_{4} & 21 & 93 & 18 \\
r_{5} & 28 & 100 & 29
\end{array}
\end{gathered}
$$

- Φ, Φ^{\prime} and $\Phi^{\prime \prime}$ are equally good to compare simple rods
- only Φ and $\Phi^{\prime \prime}$ capture the comparison of concatenated rods
- going from Φ to $\Phi^{\prime \prime}$ does not involve a "change of units"

$$
\begin{gathered}
r_{1} \circ r_{5} \succ r_{3} \circ r_{4} \succ r_{1} \circ r_{2} \succ r_{5} \succ r_{4} \succ r_{3} \succ r_{2} \succ r_{1} \\
\qquad \begin{array}{cccc}
\Phi & \Phi^{\prime} & \Phi^{\prime \prime} \\
\hline r_{1} & 14 & 10 & 14 \\
r_{2} & 15 & 91 & 16 \\
r_{3} & 20 & 92 & 17 \\
r_{4} & 21 & 93 & 18 \\
r_{5} & 28 & 100 & 29
\end{array}
\end{gathered}
$$

- Φ, Φ^{\prime} and $\Phi^{\prime \prime}$ are equally good to compare simple rods
- only Φ and $\Phi^{\prime \prime}$ capture the comparison of concatenated rods
- going from Φ to $\Phi^{\prime \prime}$ does not involve a "change of units"
- it is tempting to use Φ or $\Phi^{\prime \prime}$ to infer comparisons that have not been performed...
- disappointing

$$
\Phi: r_{2} \circ r_{3} \sim r_{1} \circ r_{4} \quad \Phi^{\prime \prime}: r_{2} \circ r_{3} \succ r_{1} \circ r_{4}
$$

Step 3: creating and using standard sequences

- choose a standard rod
- be able to build perfect copies of the standard
- concatenate the standard rod with its perfects copies

Step 3: creating and using standard sequences

- choose a standard rod
- be able to build perfect copies of the standard
- concatenate the standard rod with its perfects copies

Step 3: creating and using standard sequences

- choose a standard rod
- be able to build perfect copies of the standard
- concatenate the standard rod with its perfects copies

$$
\begin{gathered}
S(8) \succ a \succ S(7) \\
\Phi(s)=1 \Rightarrow 7<\Phi(a)<8
\end{gathered}
$$

Convergence

First method

- choose a smaller standard rod
- repeat the process

```
Second method
    - m.m.mame a porfect copy of the object
    - concatenate the object with its perfect copy
    * comnare the "dombled" nhiect to the orioinal standard sequence
    - repeat the process
```


Convergence

First method

- choose a smaller standard rod
- repeat the process

Second method

- prepare a perfect copy of the object
- concatenate the object with its perfect copy
- compare the "doubled" object to the original standard sequence
- repeat the process

Extensive measurement

- Krantz, Luce, Suppes \& Tversky (1971, chap. 3)

\square
o many'

Extensive measurement

- Krantz, Luce, Suppes \& Tversky (1971, chap. 3)

4 Ingredients

(1) well-behaved relations \succ and \sim
(2) concatenation operation \circ
(3) consistency requirements linking \succ, \sim and \circ
(1) ability to prepare perfect copies of some objects in order to build standard sequences

Extensive measurement

- Krantz, Luce, Suppes \& Tversky (1971, chap. 3)

4 Ingredients

(1) well-behaved relations \succ and \sim
(2) concatenation operation \circ
(3) consistency requirements linking \succ, \sim and \circ
(1) ability to prepare perfect copies of some objects in order to build standard sequences

Neglected problems

- many!

Question

Can this be applied outside Physics?

- no concatenation operation (intelligence!)

What is conjoint measurement?

Conjoint measurement

- mimicking the operations of extensive measurement
- when there are no concatenation operation readily available
- when several dimensions are involved

What is conjoint measurement?

Conjoint measurement

- mimicking the operations of extensive measurement
- when there are no concatenation operation readily available
- when several dimensions are involved

Seems overly ambitious

- let us start with a simple example

Outline

(1) An aside: measurement in Physics
(2) An example: even swaps

3 Notation

4 Additive value functions: outline of theory

Example: Hammond, Keeney \& Raiffa

Choice of an office to rent

- five locations have been identified
- five attributes are being considered
- Commute time (minutes)
- Clients: percentage of clients living close to the office
- Services: ad hoc scale
- A (all facilities), B (telephone and fax), C (no facility)
- Size: square feet $\left(\simeq 0.1 \mathrm{~m}^{2}\right)$
- Cost: \$ per month
\qquad
\qquad

Example: Hammond, Keeney \& Raiffa

Choice of an office to rent

- five locations have been identified
- five attributes are being considered
- Commute time (minutes)
- Clients: percentage of clients living close to the office
- Services: ad hoc scale
- A (all facilities), B (telephone and fax), C (no facility)
- Size: square feet $\left(\simeq 0.1 \mathrm{~m}^{2}\right)$
- Cost: \$ per month

Attributes

- Commute, Size and Cost are natural attributes
- Clients is a proxy attribute
- Services is a constructed attribute

	a	b	c	d	e
Commute	45	25	20	25	30
Clients	50	80	70	85	75
Services	A	B	C	A	C
Size	800	700	500	950	700
Cost	1850	1700	1500	1900	1750

	a	b	c	d	e
Commute	45	25	20	25	30
Clients	50	80	70	85	75
Services	A	B	C	A	C
Size	800	700	500	950	700
Cost	1850	1700	1500	1900	1750

Hypotheses and context

- a single cooperative DM
- choice of a single office
- ceteris paribus reasoning seems possible

Commute: decreasing Clients: increasing
Services: increasing Size: increasing
Cost: decreasing

- dominance has meaning

	a	b	c	d	e
Commute	45	25	20	25	30
Clients	50	80	70	85	75
Services	A	B	C	A	C
Size	800	700	500	950	700
Cost	1850	1700	1500	1900	1750

Hypotheses and context

- a single cooperative DM
- choice of a single office
- ceteris paribus reasoning seems possible

Commute: decreasing Clients: increasing
Services: increasing Size: increasing
Cost: decreasing

	a	b	c	d	e
Commute	45	25	20	25	30
Clients	50	80	70	85	75
Services	A	B	C	A	C
Size	800	700	500	950	700
Cost	1850	1700	1500	1900	1750

Hypotheses and context

- a single cooperative DM
- choice of a single office
- ceteris paribus reasoning seems possible

Commute: decreasing Clients: increasing
Services: increasing Size: increasing
Cost: decreasing

- dominance has meaning

	a	b	c	d	e
Commute	45	25	20	25	30
Clients	50	80	70	85	75
Services	A	B	C	A	C
Size	800	700	500	950	700
Cost	1850	1700	1500	1900	1750

- b dominates alternative e

	a	b	c	d	e
Commute	45	25	20	25	30
Clients	50	80	70	85	75
Services	A	B	C	A	C
Size	800	700	500	950	700
Cost	1850	1700	1500	1900	1750

- b dominates alternative e
- d is "close" to dominating a

	a	b	c	d	e
Commute	45	25	20	25	30
Clients	50	80	70	85	75
Services	A	B	C	A	C
Size	800	700	500	950	700
Cost	1850	1700	1500	1900	1750

- b dominates alternative e
- d is "close" to dominating a
- divide and conquer: dropping alternatives
- drop a and e

	b	c	d
Commute	25	20	25
Clients	80	70	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

- no more dominance
- assessing tradeoffs

	b	c	d
Commute	25	20	25
Clients	80	70	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

- no more dominance
- assessing tradeoffs
- all alternatives except c have a common evaluation on Commute
- modify c in order to bring it to this level

	b	c	d
Commute	25	20	25
Clients	80	70	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

- no more dominance
- assessing tradeoffs
- all alternatives except c have a common evaluation on Commute
- modify c in order to bring it to this level
- starting with c, what is the gain on Clients that would exactly compensate a loss of 5 min on Commute?

	b	c	d
Commute	25	20	25
Clients	80	70	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

- no more dominance
- assessing tradeoffs
- all alternatives except c have a common evaluation on Commute
- modify c in order to bring it to this level
- starting with c, what is the gain on Clients that would exactly compensate a loss of 5 min on Commute?
- difficult but central question

	c	c^{\prime}
Commute	20	$\mathbf{2 5}$
Clients	70	$\mathbf{7 0}+\delta$
Services	C	C
Size	500	500
Cost	1500	1500
find δ such that $c^{\prime} \sim c$		

	c	c^{\prime}
Commute	20	$\mathbf{2 5}$
Clients	70	$\mathbf{7 0}+\delta$
Services	C	C
Size	500	500
Cost	1500	1500
find δ such that $c^{\prime} \sim c$		

Answer

- for $\delta=8$, I am indifferent between c and c^{\prime}
- replace c with c^{\prime}

	b	c^{\prime}	d
Commute	25	25	25
Clients	80	78	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

- all alternatives have a common evaluation on Commute
- divide and conquor: dropping attributes
- drop attribute Commute

	b	c^{\prime}	d
Commute	25	25	25
Clients	80	78	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

- all alternatives have a common evaluation on Commute

	b	c^{\prime}	d
Commute	25	25	25
Clients	80	78	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

- all alternatives have a common evaluation on Commute
- divide and conquer: dropping attributes
- drop attribute Commute

	b	c^{\prime}	d
Clients	80	78	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

	b	c^{\prime}	d
Clients	80	78	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

- check again for dominance

	b	c^{\prime}	d
Clients	80	78	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

- check again for dominance
- unfruitful

	b	c^{\prime}	d
Clients	80	78	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

- check again for dominance
- unfruitful
- assess new tradeoffs
- neutralize Service using Cost as reference

	b	c^{\prime}	d
Clients	80	78	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

Questions

- what maximal increase in monthly cost would you be prepared to pay to go from C to B on service for c^{\prime} ?

	b	c^{\prime}	d
Clients	80	78	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

Questions

- what maximal increase in monthly cost would you be prepared to pay to go from C to B on service for c^{\prime} ?
- answer: $250 \$$

	b	c^{\prime}	d
Clients	80	78	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

Questions

- what maximal increase in monthly cost would you be prepared to pay to go from C to B on service for c^{\prime} ?
- answer: $250 \$$
- what minimal decrease in monthly cost would you ask if we go from A to B on service for d ?
- answer: $100 \$$

	b	c^{\prime}	d
Clients	80	78	85
Services	B	C	A
Size	700	500	950
Cost	1700	1500	1900

Questions

- what maximal increase in monthly cost would you be prepared to pay to go from C to B on service for c^{\prime} ?
- answer: $250 \$$
- what minimal decrease in monthly cost would you ask if we go from A to B on service for d ?
- answer: $100 \$$

	b	c^{\prime}	$c^{\prime \prime}$	d	d^{\prime}
Clients	80	78	78	85	85
Services	B	C	\mathbf{B}	A	\mathbf{B}
Size	700	500	500	950	950
Cost	1700	1500	$1500+\mathbf{2 5 0}$	1900	$1900-\mathbf{1 0 0}$

- replacing c^{\prime} with $c^{\prime \prime}$
- replacing d with d^{\prime}
- dropping Service

	b	$c^{\prime \prime}$	d^{\prime}
Clients	80	78	85
Size	700	500	950
Cost	1700	1750	1800

- replacing c^{\prime} with $c^{\prime \prime}$
- replacing d with d^{\prime}
- dropping Service

	b	$c^{\prime \prime}$	d^{\prime}
Clients	80	78	85
Size	700	500	950
Cost	1700	1750	1800

- checking for dominance: $c^{\prime \prime}$ is dominated by b
- $c^{\prime \prime}$ can be dropped
- dropping $c^{\prime \prime}$

	b	d^{\prime}
Clients	80	85
Size	700	950
Cost	1700	1800

- question: starting with b what is the additional cost that you would be prepared to pay to increase size by 250 ?
- dropping $c^{\prime \prime}$

	b	d^{\prime}
Clients	80	85
Size	700	950
Cost	1700	1800

- no dominance

- dropping $c^{\prime \prime}$

	b	d^{\prime}
Clients	80	85
Size	700	950
Cost	1700	1800

- no dominance
- question: starting with b what is the additional cost that you would be prepared to pay to increase size by 250 ?
- answer: $250 \$$
- dropping $c^{\prime \prime}$

	b	d^{\prime}
Clients	80	85
Size	700	950
Cost	1700	1800

- no dominance
- question: starting with b what is the additional cost that you would be prepared to pay to increase size by 250 ?
- answer: $250 \$$

	b	b^{\prime}	d^{\prime}
Clients	80	80	85
Size	700	$\mathbf{9 5 0}$	950
Cost	1700	$1700+\mathbf{2 5 0}$	1800

- replace b with b^{\prime}
- drop Size

	b^{\prime}	d^{\prime}
Clients	80	85
Size	950	950
Cost	1950	1800

	b^{\prime}	d^{\prime}
Clients	80	85
Cost	1950	1800

- replace b with b^{\prime}
- drop Size

	b^{\prime}	d^{\prime}
Clients	80	85
Size	950	950
Cost	1950	1800

	b^{\prime}	d^{\prime}
Clients	80	85
Cost	1950	1800

- check for dominance
- d^{\prime} dominates b^{\prime}
- replace b with b^{\prime}
- drop Size

	b^{\prime}	d^{\prime}
Clients	80	85
Size	950	950
Cost	1950	1800

	b^{\prime}	d^{\prime}
Clients	80	85
Cost	1950	1800

- check for dominance
- d^{\prime} dominates b^{\prime}

Conclusion

- Recommend d as the final choice

Remarks

- very simple process
- process entirely governed by \succ and

- notice that importance plays absolutely no rôle
- output is not a preference model
- if new alternatives annear, the nrocess should be restarted
- what are the underlying hypotheses?

Remarks

- very simple process
- process entirely governed by \succ and \sim
- no question on "intensity of preference"
- notice that importance plays absolutely no rôle - why be interested in something more complex?
- output is not a preference model - if new alternatives annear the nrocess should be restarted
- what are the underlying hypotheses?

Remarks

- very simple process
- process entirely governed by \succ and \sim
- no question on "intensity of preference"
- notice that importance plays absolutely no rôle

Problems

\square
\square

- output is not a proforence model - if new alternatives appear, the process should be restarted
- what are the underlying hypotheses?

Remarks

- very simple process
- process entirely governed by \succ and \sim
- no question on "intensity of preference"
- notice that importance plays absolutely no rôle
- why be interested in something more complex?
\square
- set of alternative is small
- output is not a preference model
- if new alternatives appear, the process should be restarted
- what are the underlying hypotheses?

Remarks

- very simple process
- process entirely governed by \succ and \sim
- no question on "intensity of preference"
- notice that importance plays absolutely no rôle
- why be interested in something more complex?

Problems

- set of alternative is small
- many questions otherwise

Remarks

- very simple process
- process entirely governed by \succ and \sim
- no question on "intensity of preference"
- notice that importance plays absolutely no rôle
- why be interested in something more complex?

Problems

- set of alternative is small
- many questions otherwise
- output is not a preference model
- if new alternatives appear, the process should be restarted

Remarks

- very simple process
- process entirely governed by \succ and \sim
- no question on "intensity of preference"
- notice that importance plays absolutely no rôle
- why be interested in something more complex?

Problems

- set of alternative is small
- many questions otherwise
- output is not a preference model
- if new alternatives appear, the process should be restarted
- what are the underlying hypotheses?

Monsieur Jourdain doing conjoint measurement

Similarity with extensive measurement

- \succ : preference, \sim : indifference
- we have implicitly supposed that they combine nicely
- dominance: $b \succ e$ and $d \succ a$
- tradeorrs i dominance: $b \succ c^{\prime \prime}, c \sim c^{\prime}, c^{\prime} \sim c, d^{\prime} \sim d, b^{\prime} \sim b$. $d^{\prime} \succ b^{\prime}$

Monsieur Jourdain doing conjoint measurement

Similarity with extensive measurement

- \succ : preference, \sim : indifference
- we have implicitly supposed that they combine nicely

Recommendation: d

- we should be able to prove that $d \succ a, d \succ b, d \succ c$ and $d \succ e$

Monsieur Jourdain doing conjoint measurement

Similarity with extensive measurement

- \succ : preference, \sim : indifference
- we have implicitly supposed that they combine nicely

Recommendation: d

- we should be able to prove that $d \succ a, d \succ b, d \succ c$ and $d \succ e$
- dominance: $b \succ e$ and $d \succ a$
- tradeoffs + dominance: $b \succ c^{\prime \prime}, c \sim c^{\prime}, c^{\prime} \sim c, d^{\prime} \sim d, b^{\prime} \sim b$, $d^{\prime} \succ b^{\prime}$

Monsieur Jourdain doing conjoint measurement

Similarity with extensive measurement

- \succ : preference, \sim : indifference
- we have implicitly supposed that they combine nicely

Recommendation: d

- we should be able to prove that $d \succ a, d \succ b, d \succ c$ and $d \succ e$
- dominance: $b \succ e$ and $d \succ a$
- tradeoffs + dominance: $b \succ c^{\prime \prime}, c \sim c^{\prime}, c^{\prime} \sim c, d^{\prime} \sim d, b^{\prime} \sim b$, $d^{\prime} \succ b^{\prime}$

$$
d \succ a, b \succ e
$$

Monsieur Jourdain doing conjoint measurement

Similarity with extensive measurement

- \succ : preference, \sim : indifference
- we have implicitly supposed that they combine nicely

Recommendation: d

- we should be able to prove that $d \succ a, d \succ b, d \succ c$ and $d \succ e$
- dominance: $b \succ e$ and $d \succ a$
- tradeoffs + dominance: $b \succ c^{\prime \prime}, c \sim c^{\prime}, c^{\prime} \sim c, d^{\prime} \sim d, b^{\prime} \sim b$, $d^{\prime} \succ b^{\prime}$

$$
\begin{gathered}
d \succ a, b \succ e \\
c^{\prime \prime} \sim c^{\prime}, c^{\prime} \sim c, b \succ c^{\prime \prime}
\end{gathered}
$$

Monsieur Jourdain doing conjoint measurement

Similarity with extensive measurement

- \succ : preference, \sim : indifference
- we have implicitly supposed that they combine nicely

Recommendation: d

- we should be able to prove that $d \succ a, d \succ b, d \succ c$ and $d \succ e$
- dominance: $b \succ e$ and $d \succ a$
- tradeoffs + dominance: $b \succ c^{\prime \prime}, c \sim c^{\prime}, c^{\prime} \sim c, d^{\prime} \sim d, b^{\prime} \sim b$, $d^{\prime} \succ b^{\prime}$

$$
\begin{gathered}
d \succ a, b \succ e \\
c^{\prime \prime} \sim c^{\prime}, c^{\prime} \sim c, b \succ c^{\prime \prime} \\
\Rightarrow b \succ c
\end{gathered}
$$

Monsieur Jourdain doing conjoint measurement

Similarity with extensive measurement

- \succ : preference, \sim : indifference
- we have implicitly supposed that they combine nicely

Recommendation: d

- we should be able to prove that $d \succ a, d \succ b, d \succ c$ and $d \succ e$
- dominance: $b \succ e$ and $d \succ a$
- tradeoffs + dominance: $b \succ c^{\prime \prime}, c \sim c^{\prime}, c^{\prime} \sim c, d^{\prime} \sim d, b^{\prime} \sim b$, $d^{\prime} \succ b^{\prime}$

$$
\begin{gathered}
d \succ a, b \succ e \\
c^{\prime \prime} \sim c^{\prime}, c^{\prime} \sim c, b \succ c^{\prime \prime} \\
\Rightarrow b \succ c \\
d \sim d^{\prime}, b \sim b^{\prime}, d^{\prime} \succ b^{\prime}
\end{gathered}
$$

Monsieur Jourdain doing conjoint measurement

Similarity with extensive measurement

- \succ : preference, \sim : indifference
- we have implicitly supposed that they combine nicely

Recommendation: d

- we should be able to prove that $d \succ a, d \succ b, d \succ c$ and $d \succ e$
- dominance: $b \succ e$ and $d \succ a$
- tradeoffs + dominance: $b \succ c^{\prime \prime}, c \sim c^{\prime}, c^{\prime} \sim c, d^{\prime} \sim d, b^{\prime} \sim b$, $d^{\prime} \succ b^{\prime}$

$$
\begin{gathered}
d \succ a, b \succ e \\
c^{\prime \prime} \sim c^{\prime}, c^{\prime} \sim c, b \succ c^{\prime \prime} \\
\Rightarrow b \succ c \\
d \sim d^{\prime}, b \sim b^{\prime}, d^{\prime} \succ b^{\prime} \\
\Rightarrow d \succ b
\end{gathered}
$$

Monsieur Jourdain doing conjoint measurement

OK... but where are the standard sequences?

- hidden. . . but really there!
- standard sequence for length: objects that have exactly the same length
- tradeoffs: preference intervals on distinct attributes that have the same length

Monsieur Jourdain doing conjoint measurement

OK... but where are the standard sequences?

- hidden.. . but really there!
- standard sequence for length: objects that have exactly the same length
- tradeoffs: preference intervals on distinct attributes that have the same length

Monsieur Jourdain doing conjoint measurement

OK... but where are the standard sequences?

- hidden. . . but really there!
- standard sequence for length: objects that have exactly the same length
- tradeoffs: preference intervals on distinct attributes that have the same length
- $c \sim c^{\prime}$
- $[25,20]$ on Commute has the same length as $[70,78]$ on Client

Monsieur Jourdain doing conjoint measurement

OK... but where are the standard sequences?

- hidden.. . but really there!
- standard sequence for length: objects that have exactly the same length
- tradeoffs: preference intervals on distinct attributes that have the same length
- $c \sim c^{\prime}$
- $[25,20]$ on Commute has the same length as $[70,78]$ on Client

	c	c^{\prime}	f	f^{\prime}
Commute	20	$\mathbf{2 5}$	20	$\mathbf{2 5}$
Clients	70	$\mathbf{7 8}$	78	$\mathbf{8 2}$
Services	C	C	C	C
Size	500	500	500	500
Cost	1500	1500	1500	1500

Monsieur Jourdain doing conjoint measurement

OK... but where are the standard sequences?

- hidden. . . but really there!
- standard sequence for length: objects that have exactly the same length
- tradeoffs: preference intervals on distinct attributes that have the same length
- $c \sim c^{\prime}$
- $[25,20]$ on Commute has the same length as $[70,78]$ on Client

	c	c^{\prime}	f	f^{\prime}
Commute	20	$\mathbf{2 5}$	20	$\mathbf{2 5}$
Clients	70	$\mathbf{7 8}$	78	$\mathbf{8 2}$
Services	C	C	C	C
Size	500	500	500	500
Cost	1500	1500	1500	1500

$[70,78]$ has the same length $[78,82]$ on Client

Outline

(1) An aside: measurement in Physics
(2) An example: even swaps
(3) Notation

4 Additive value functions: outline of theory

Setting

- $N=\{1,2, \ldots, n\}$ set of attributes
- X_{i} : set of possible levels on the i th attribute
- $X=\prod_{i=1}^{n} X_{i}$: set of all conceivable alternatives
- X include the alternatives under study... and many others
- \succsim binary relation on $X:$ "at least as good as"

Setting

- $N=\{1,2, \ldots, n\}$ set of attributes
- X_{i} : set of possible levels on the i th attribute
- $X=\prod_{i=1}^{n} X_{i}$: set of all conceivable alternatives
- X include the alternatives under study... and many others
- $J \subseteq N$: subset of attributes
- $X_{J}=\prod_{j \in J} X_{j}, X_{-J}=\prod_{j \notin J} X_{j}$
- $\left(x_{J}, y_{-J}\right) \in X$
- $\left(x_{i}, y_{-i}\right) \in X$
- $N=\{1,2, \ldots, n\}$ set of attributes
- X_{i} : set of possible levels on the i th attribute
- $X=\prod_{i=1}^{n} X_{i}$: set of all conceivable alternatives
- X include the alternatives under study... and many others
- $J \subseteq N$: subset of attributes
- $X_{J}=\prod_{j \in J} X_{j}, X_{-J}=\prod_{j \notin J} X_{j}$
- $\left(x_{J}, y_{-J}\right) \in X$
- $\left(x_{i}, y_{-i}\right) \in X$
- \succsim : binary relation on X : "at least as good as"
- $x \succ y \Leftrightarrow x \succsim y$ and $\operatorname{Not}[y \succsim x]$
- $x \sim y \Leftrightarrow x \succsim y$ and $y \succsim x$

Preference relations on Cartesian products

Applications

- Economics: consumers comparing bundles of goods
- Decision under uncertainty: consequences in several states
- Inter-temporal decision making: consequences at several moments in time
- Inequality measurement: distribution of wealth across individuals
- Decision making with multiple attributes - in all other cases, the Cartesian product is homogeneous

Preference relations on Cartesian products

Applications

- Economics: consumers comparing bundles of goods
- Decision under uncertainty: consequences in several states
- Inter-temporal decision making: consequences at several moments in time
- Inequality measurement: distribution of wealth across individuals
- Decision making with multiple attributes

Preference relations on Cartesian products

Applications

- Economics: consumers comparing bundles of goods
- Decision under uncertainty: consequences in several states
- Inter-temporal decision making: consequences at several moments in time
- Inequality measurement: distribution of wealth across individuals
- Decision making with multiple attributes
- in all other cases, the Cartesian product is homogeneous

What will be ignored today

Ignored

- structuring of objectives
- from objectives to attributes
- adequate family of attributes
- risk, uncertainty, imprecision

What will be ignored today

Ignored

- structuring of objectives
- from objectives to attributes
- adequate family of attributes
- risk, uncertainty, imprecision
- skip examples

-

What will be ignored today

Ignored

- structuring of objectives
- from objectives to attributes
- adequate family of attributes
- risk, uncertainty, imprecision
* skip examples

Keeney's view

- fundamental objectives: why?
- means objectives: how?

a means-ends objectives network

Tuble 1. Preclosure Objectives and Performance Measures

Objective	Performance measure	
Health-and-safery impacts		
1. Minimize worker heafth effects from radiation exposure at the repository	X_{1} :	repository-worker radiological fatalities
2. Minimize public health effects from radiation exposure at the repository	x_{2} :	public radiological fatalities from repository
3. Minimize worker fatalities from nonradiological causes at the repository	X_{3};	repository-worker nonradiological fatalizies
4. Minimize public fatalities from nonradiological causes at the repository	X_{4} :	public nonradiological fatalities from repository
5. Minimize worker health effects from radiation exposure in waste transportation	X_{5} :	transportation-worker radiological fatalities
6. Minimize public health effects from radiation exposure in waste ransportation	x_{6} :	public radiological fatalities from transportation
7. Minimize worker fatalities from nonradiological causes in waste transportation	$\boldsymbol{X}_{\boldsymbol{\prime}}$:	transportation-worker nonradiological fatalities
8. Minimize public fatalities from nonradiological causes in waste iransportation	$\boldsymbol{X}_{\mathbf{k}}$:	public nonradiological fatalities from transportation
Environmental impacts		
9. Minimize aesthetic degradation	X_{9} :	constructed scale*
10. Minimize the degradation of archaeological. historical, and cultural properties	X_{10} :	constructed scale"
11. Minimize biological degradation	x_{11}	constructed scale*
Socioeconomic impacts		
12. Minimize adverse socioeconomic impacts	x_{12} :	constracted scalea
Economic impacts		
13. Minimize repository costs	x_{13} :	millions of dollars
14. Minimuze waste-transportation costs	x_{14}	millions of dollars

Table 4.1. A constructed attribute for public attitudes

Attribute level	Description of attribute level
1	Support: No groups are opposed to the facility and at least one group has organized support for the facility.
-1	Neutrality: All groups are indifferent or uninterested. Comtroversy: One or more groups have organized oppo- sition, although no groups have action-oriented opposi- tion. Other groups may either be neutral or support the facility.
-2	Action-oriented opposition: Exactly one group has action- oriented opposition. The other groups have organized support, indifference or organized opposition.
-3	Strong action-oriented opposition: Two or more groups have action-oriented opposition.

0 . Loss of 1.0 mi of entirely agricultural or urban "habitat" with no loss of any "native" communities.

1. Loss of $1.0 \mathrm{mi}^{2}$ of primarily (75%) arricultural haisitat with luss of 25% of second growth; no meusurable loss of wetlands or endangered species habitat.
2. Loss of $1.0 \mathrm{mi}^{2}$ of farmed (50%) and disturbed (i.e., logged or new second-growth) ($\left.50 \% \mathrm{c}\right)$ habitat; no measurable loss of wetlands or endangered species habitat.
3. Loss of 1.0 mi of recently disturbed (logged, plowed) habitat with disturbance to surrounding (within 1.0 mi of site border) previousiy disturbed habitat; 15% luss of wethands and/ur endangered speciex habitat.
4. Luss of 1.0 mi of farmed or disturbed area (50%) and mature second-ifowth or other undisturbed community (50%) ; 15% loss of welands and/or emiangered apeeies.
5. Luss of $1.0 \mathrm{mi}^{2}$ of primarily (75%) undisturbed mature desert community (i.e., sagebrush); 15% luss of wetlands and/or endangered species habitat.
G. Luss of 1.0 mi: of inature second-growth (but not virgim) forest commanity; $300_{c}^{\circ} \mathrm{loss}$ of big game and uphand game birds; 50\% loss of heal wetlands und loeal endangered species habitat.
6. Loss of $1.0 \mathrm{mi}^{2}$ of mature second-growth forest community; 90% loss of local productive wetlands and local endangered species habitat.
S. Complete loss of $1.0 \mathrm{mi}^{2}$ of mature virgin forest; 100% linss of local wetlands and local endangered specter habitat.

Impact level	Impacts on historical properties in the effected area ${ }^{\text {a }}$
0	There are no impacts on any significant historical propertics One historical property of major significance or 5 historical properties of minor significance are subjected to minimal adverse impacts
2	Two historical properties of major significance or 10 historical
properties of minor significance are subjected to minimal adverse impacts	
Two historical properties of major significance or 10 historical	
4	properties of minor significance are subjected to major adverse impacts Three historical properties of major significance or 15 historical
5	properties of minor significance are subjected to major adverse impacts Four historical properties ol major significance or 20 historical properties of minor significance are subjected to major adverse impacts

Marginal preference and independence

Marginal preferences

- $J \subseteq N$: subset of attributes
- $\succsim{ }_{J}$ marginal preference relation induced by \succsim on X_{J}

$$
x_{J} \succsim{ }_{J} y_{J} \Leftrightarrow\left(x_{J}, z_{-J}\right) \succsim\left(y_{J}, z_{-J}\right), \text { for all } z_{-J} \in X_{-J}
$$

Marginal preference and independence

Marginal preferences

- $J \subseteq N$: subset of attributes
- $\succsim J$ marginal preference relation induced by \succsim on X_{J}

$$
x_{J} \succsim_{J} y_{J} \Leftrightarrow\left(x_{J}, z_{-J}\right) \succsim\left(y_{J}, z_{-J}\right), \text { for all } z_{-J} \in X_{-J}
$$

Independence

- J is independent for \succsim if

$$
\left[\left(x_{J}, z_{-J}\right) \succsim\left(y_{J}, z_{-J}\right), \text { for some } z_{-J} \in X_{-J}\right] \Rightarrow x_{J} \succsim J y_{J}
$$

- common levels on attributes other than J do not affect preference
\qquad

Marginal preference and independence

Marginal preferences

- $J \subseteq N$: subset of attributes
- $\succsim J$ marginal preference relation induced by \succsim on X_{J}

$$
x_{J} \succsim{ }_{J} y_{J} \Leftrightarrow\left(x_{J}, z_{-J}\right) \succsim\left(y_{J}, z_{-J}\right), \text { for all } z_{-J} \in X_{-J}
$$

Independence

- J is independent for \succsim if

$$
\left[\left(x_{J}, z_{-J}\right) \succsim\left(y_{J}, z_{-J}\right), \text { for some } z_{-J} \in X_{-J}\right] \Rightarrow x_{J} \succsim J y_{J}
$$

- common levels on attributes other than J do not affect preference

Separability

- J is separable for \succsim if

$$
\left[\left(x_{J}, z_{-J}\right) \succ\left(y_{J}, z_{-J}\right), \text { for some } z_{-J} \in X_{-J}\right] \Rightarrow x_{J} \succsim J y_{J}
$$

- varying common levels on attributes other than J do reverse strict preference

Independence

Definition

- for all $i \in N,\{i\}$ is independent, \succsim is weakly independent
- for all $J \subseteq N, J$ is independent, \succsim is independent

Independence

Definition

- for all $i \in N,\{i\}$ is independent, \succsim is weakly independent
- for all $J \subseteq N, J$ is independent, \succsim is independent

Proposition

Let \succsim be a weakly independent weak order on $X=\prod_{i=1}^{n} X_{i}$. Then:

- \succsim_{i} is a weak order on X_{i}
- $\left[x_{i} \succsim_{i} y_{i}\right.$, for all $\left.i \in N\right] \Rightarrow x \succsim y$
- $\left[x_{i} \succsim_{i} y_{i}\right.$, for all $i \in N$ and $x_{j} \succ_{j} y_{j}$ for some $\left.j \in N\right] \Rightarrow x \succ y$ for all $x, y \in X$

Independence

Definition

- for all $i \in N,\{i\}$ is independent, \succsim is weakly independent
- for all $J \subseteq N, J$ is independent, \succsim is independent

Proposition

Let \succsim be a weakly independent weak order on $X=\prod_{i=1}^{n} X_{i}$. Then:

- \succsim_{i} is a weak order on X_{i}
- $\left[x_{i} \succsim_{i} y_{i}\right.$, for all $\left.i \in N\right] \Rightarrow x \succsim y$
- $\left[x_{i} \succsim_{i} y_{i}\right.$, for all $i \in N$ and $x_{j} \succ_{j} y_{j}$ for some $\left.j \in N\right] \Rightarrow x \succ y$ for all $x, y \in X$

Dominance

- as soon as I have a weakly independent weak order
- dominance arguments apply

Independence in practice

Independence

- it is easy to imagine examples in which independence is violated
- Main course and Wine example
- it is nearly hopeless to try to work if weak independence (at least weak separability) is not satisfied
- anme (cm D T Kannary) think the the same is thue for independence

Independence in practice

Independence

- it is easy to imagine examples in which independence is violated
- Main course and Wine example
- it is nearly hopeless to try to work if weak independence (at least weak separability) is not satisfied

Independence in practice

Independence

- it is easy to imagine examples in which independence is violated
- Main course and Wine example
- it is nearly hopeless to try to work if weak independence (at least weak separability) is not satisfied
- some (e.g., R. L. Keeney) think that the same is true for independence

Independence in practice

Independence

- it is easy to imagine examples in which independence is violated
- Main course and Wine example
- it is nearly hopeless to try to work if weak independence (at least weak separability) is not satisfied
- some (e.g., R. L. Keeney) think that the same is true for independence
- in all cases if independence is violated, things get complicated
- decision aiding vs AI

Independence in practice

Independence

- it is easy to imagine examples in which independence is violated
- Main course and Wine example
- it is nearly hopeless to try to work if weak independence (at least weak separability) is not satisfied
- some (e.g., R. L. Keeney) think that the same is true for independence
- in all cases if independence is violated, things get complicated
- decision aiding vs AI

May be excessive

- much more on independence this afternoon

Outline

(1) An aside: measurement in Physics

(2) An example: even swaps
(3) Notation

44 Additive value functions: outline of theory

- The case of 2 attributes
- More than 2 attributes

Outline of theory: 2 attributes

Question

- suppose I can "observe" \succsim on $X=X_{1} \times X_{2}$
- what must be supposed to guarantee that I can represent \succsim in the additive value function model

$$
\begin{gathered}
v_{1}: X_{1} \rightarrow \mathbb{R} \\
v_{2}: X_{2} \rightarrow \mathbb{R} \\
\left(x_{1}, x_{2}\right) \succsim\left(y_{1}, y_{2}\right) \Leftrightarrow v_{1}\left(x_{1}\right)+v_{2}\left(x_{2}\right) \geq v_{1}\left(y_{1}\right)+v_{2}\left(y_{2}\right)
\end{gathered}
$$

Outline of theory: 2 attributes

Question

- suppose I can "observe" \succsim on $X=X_{1} \times X_{2}$
- what must be supposed to guarantee that I can represent \succsim in the additive value function model

$$
\begin{gathered}
v_{1}: X_{1} \rightarrow \mathbb{R} \\
v_{2}: X_{2} \rightarrow \mathbb{R} \\
\left(x_{1}, x_{2}\right) \succsim\left(y_{1}, y_{2}\right) \Leftrightarrow v_{1}\left(x_{1}\right)+v_{2}\left(x_{2}\right) \geq v_{1}\left(y_{1}\right)+v_{2}\left(y_{2}\right)
\end{gathered}
$$

- \succsim must be an independent weak order

Outline of theory: 2 attributes

Question

- suppose I can "observe" \succsim on $X=X_{1} \times X_{2}$
- what must be supposed to guarantee that I can represent \succsim in the additive value function model

$$
\begin{gathered}
v_{1}: X_{1} \rightarrow \mathbb{R} \\
v_{2}: X_{2} \rightarrow \mathbb{R} \\
\left(x_{1}, x_{2}\right) \succsim\left(y_{1}, y_{2}\right) \Leftrightarrow v_{1}\left(x_{1}\right)+v_{2}\left(x_{2}\right) \geq v_{1}\left(y_{1}\right)+v_{2}\left(y_{2}\right)
\end{gathered}
$$

- \succsim must be an independent weak order

Method

- try building standard sequences and see if it works!

```
Answer
    a o. an.l U2 will be built so that additivity holds
    - equivalent multiplicative model
```

 \(w_{1}=\exp \left(v_{1}\right)\)
 \(\cdots n_{2}-\operatorname{non}\left(n_{2}\right)\)

Why an additive model?

Answer

- v_{1} and v_{2} will be built so that additivity holds
- equivalent multiplicative model

Why an additive model?

Answer

- v_{1} and v_{2} will be built so that additivity holds
- equivalent multiplicative model

$$
\begin{aligned}
\left(x_{1}, x_{2}\right) \succsim\left(y_{1}, y_{2}\right) & \Leftrightarrow w_{1}\left(x_{1}\right) w_{2}\left(x_{2}\right) \geq w_{1}\left(y_{1}\right) w_{2}\left(y_{2}\right) \\
& w_{1}=\exp \left(v_{1}\right) \\
& w_{2}=\exp \left(v_{2}\right)
\end{aligned}
$$

Uniqueness

Important observation
Suppose that there are v_{1} and v_{2} such that

$$
\left(x_{1}, x_{2}\right) \succsim\left(y_{1}, y_{2}\right) \Leftrightarrow v_{1}\left(x_{1}\right)+v_{2}\left(x_{2}\right) \geq v_{1}\left(y_{1}\right)+v_{2}\left(y_{2}\right)
$$

If $\alpha>0$

$$
w_{1}=\alpha v_{1}+\beta_{1} \quad w_{2}=\alpha v_{2}+\beta_{2}
$$

is also a valid representation

Uniqueness

Important observation

Suppose that there are v_{1} and v_{2} such that

$$
\left(x_{1}, x_{2}\right) \succsim\left(y_{1}, y_{2}\right) \Leftrightarrow v_{1}\left(x_{1}\right)+v_{2}\left(x_{2}\right) \geq v_{1}\left(y_{1}\right)+v_{2}\left(y_{2}\right)
$$

If $\alpha>0$

$$
w_{1}=\alpha v_{1}+\beta_{1} \quad w_{2}=\alpha v_{2}+\beta_{2}
$$

is also a valid representation

Consequences

- fixing $v_{1}\left(x_{1}\right)=v_{2}\left(x_{2}\right)=0$ is harmless
- fixing $v_{1}\left(y_{1}\right)=1$ is harmless if $y_{1} \succ_{1} x_{1}$

Preliminaries

- choose arbitrarily two levels $x_{1}^{0}, x_{1}^{1} \in X_{1}$
- make sure that $x_{1}^{1} \succ_{1} x_{1}^{0}$
- choose arbitrarily one level $x_{2}^{0} \in X_{2}$
- $\left(x_{1}^{0}, x_{2}^{0}\right) \in X$ is the reference point (origin)
- the preference interval $\left[x_{1}^{0}, x_{1}^{1}\right]$ is the unit

Building a standard sequence on X_{2}

- find a "preference interval" on X_{2} that has the same "length" as the reference interval $\left[x_{1}^{0}, x_{1}^{1}\right]$

Building a standard sequence on X_{2}

- find a "preference interval" on X_{2} that has the same "length" as the reference interval $\left[x_{1}^{0}, x_{1}^{1}\right]$
- find x_{2}^{1} such that

$$
\left(x_{1}^{0}, x_{2}^{1}\right) \sim\left(x_{1}^{1}, x_{2}^{0}\right)
$$

Building a standard sequence on X_{2}

- find a "preference interval" on X_{2} that has the same "length" as the reference interval $\left[x_{1}^{0}, x_{1}^{1}\right]$
- find x_{2}^{1} such that

$$
\begin{gathered}
\left(x_{1}^{0}, x_{2}^{1}\right) \sim\left(x_{1}^{1}, x_{2}^{0}\right) \\
v_{1}\left(x_{1}^{0}\right)+v_{2}\left(x_{2}^{1}\right)=v_{1}\left(x_{1}^{1}\right)+v_{2}\left(x_{2}^{0}\right) \text { so that } \\
v_{2}\left(x_{2}^{1}\right)-v_{2}\left(x_{2}^{0}\right)=v_{1}\left(x_{1}^{1}\right)-v_{1}\left(x_{1}^{0}\right)
\end{gathered}
$$

Building a standard sequence on X_{2}

- find a "preference interval" on X_{2} that has the same "length" as the reference interval $\left[x_{1}^{0}, x_{1}^{1}\right]$
- find x_{2}^{1} such that

$$
\begin{gathered}
\left(x_{1}^{0}, x_{2}^{1}\right) \sim\left(x_{1}^{1}, x_{2}^{0}\right) \\
v_{1}\left(x_{1}^{0}\right)+v_{2}\left(x_{2}^{1}\right)=v_{1}\left(x_{1}^{1}\right)+v_{2}\left(x_{2}^{0}\right) \text { so that } \\
v_{2}\left(x_{2}^{1}\right)-v_{2}\left(x_{2}^{0}\right)=v_{1}\left(x_{1}^{1}\right)-v_{1}\left(x_{1}^{0}\right)
\end{gathered}
$$

- the structure of X_{2} has to be "rich enough"

Consequences

$$
\begin{aligned}
\left(x_{1}^{0}, x_{2}^{1}\right) & \sim\left(x_{1}^{1}, x_{2}^{0}\right) \\
v_{2}\left(x_{2}^{1}\right)-v_{2}\left(x_{2}^{0}\right) & =v_{1}\left(x_{1}^{1}\right)-v_{1}\left(x_{1}^{0}\right)
\end{aligned}
$$

- it can be supposed that

$$
\begin{gathered}
v_{1}\left(x_{1}^{0}\right)=v_{2}\left(x_{2}^{0}\right)=0 \\
v_{1}\left(x_{1}^{1}\right)=1
\end{gathered}
$$

Consequences

$$
\begin{aligned}
\left(x_{1}^{0}, x_{2}^{1}\right) & \sim\left(x_{1}^{1}, x_{2}^{0}\right) \\
v_{2}\left(x_{2}^{1}\right)-v_{2}\left(x_{2}^{0}\right) & =v_{1}\left(x_{1}^{1}\right)-v_{1}\left(x_{1}^{0}\right)
\end{aligned}
$$

- it can be supposed that

$$
\begin{gathered}
v_{1}\left(x_{1}^{0}\right)=v_{2}\left(x_{2}^{0}\right)=0 \\
v_{1}\left(x_{1}^{1}\right)=1 \\
\Rightarrow v_{2}\left(x_{2}^{1}\right)=1
\end{gathered}
$$

$$
\begin{aligned}
\left(x_{1}^{0}, x_{2}^{1}\right) & \sim\left(x_{1}^{1}, x_{2}^{0}\right) \\
\left(x_{1}^{0}, x_{2}^{2}\right) & \sim\left(x_{1}^{1}, x_{2}^{1}\right) \\
\left(x_{1}^{0}, x_{2}^{3}\right) & \sim\left(x_{1}^{1}, x_{2}^{2}\right) \\
& \cdots \\
\left(x_{1}^{0}, x_{2}^{k}\right) & \sim\left(x_{1}^{1}, x_{2}^{k-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
&\left(x_{1}^{0}, x_{2}^{1}\right) \sim\left(x_{1}^{1}, x_{2}^{0}\right) \\
&\left(x_{1}^{0}, x_{2}^{2}\right) \sim\left(x_{1}^{1}, x_{2}^{1}\right) \\
&\left(x_{1}^{0}, x_{2}^{3}\right) \sim\left(x_{1}^{1}, x_{2}^{2}\right) \\
& \cdots \\
&\left(x_{1}^{0}, x_{2}^{k}\right) \sim\left(x_{1}^{1}, x_{2}^{k-1}\right) \\
& v_{2}\left(x_{2}^{1}\right)-v_{2}\left(x_{2}^{0}\right)=v_{1}\left(x_{1}^{1}\right)-v_{1}\left(x_{1}^{0}\right)=1 \\
& v_{2}\left(x_{2}^{2}\right)-v_{2}\left(x_{2}^{1}\right)=v_{1}\left(x_{1}^{1}\right)-v_{1}\left(x_{1}^{0}\right)=1 \\
& v_{2}\left(x_{2}^{3}\right)-v_{2}\left(x_{2}^{2}\right)=v_{1}\left(x_{1}^{1}\right)-v_{1}\left(x_{1}^{0}\right)=1 \\
& \cdots \\
& v_{2}\left(x_{2}^{k}\right)-v_{2}\left(x_{2}^{k-1}\right)=v_{1}\left(x_{1}^{1}\right)-v_{1}\left(x_{1}^{0}\right)=1
\end{aligned}
$$

$$
\begin{aligned}
&\left(x_{1}^{0}, x_{2}^{1}\right) \sim\left(x_{1}^{1}, x_{2}^{0}\right) \\
&\left(x_{1}^{0}, x_{2}^{2}\right) \sim\left(x_{1}^{1}, x_{2}^{1}\right) \\
&\left(x_{1}^{0}, x_{2}^{3}\right) \sim\left(x_{1}^{1}, x_{2}^{2}\right) \\
& \cdots \\
&\left(x_{1}^{0}, x_{2}^{k}\right) \sim\left(x_{1}^{1}, x_{2}^{k-1}\right) \\
& v_{2}\left(x_{2}^{1}\right)-v_{2}\left(x_{2}^{0}\right)=v_{1}\left(x_{1}^{1}\right)-v_{1}\left(x_{1}^{0}\right)=1 \\
& v_{2}\left(x_{2}^{2}\right)-v_{2}\left(x_{2}^{1}\right)=v_{1}\left(x_{1}^{1}\right)-v_{1}\left(x_{1}^{0}\right)=1 \\
& v_{2}\left(x_{2}^{3}\right)-v_{2}\left(x_{2}^{2}\right)=v_{1}\left(x_{1}^{1}\right)-v_{1}\left(x_{1}^{0}\right)=1 \\
& \cdots \\
& v_{2}\left(x_{2}^{k}\right)-v_{2}\left(x_{2}^{k-1}\right)=v_{1}\left(x_{1}^{1}\right)-v_{1}\left(x_{1}^{0}\right)=1 \\
& \Rightarrow v_{2}\left(x_{2}^{2}\right)=2, v_{2}\left(x_{2}^{3}\right)=3, \ldots, v_{2}\left(x_{2}^{k}\right)=k
\end{aligned}
$$

Standard sequence

Archimedean

- implicit hypothesis for length
- the standard sequence can reach any the length of any object

$$
\forall x, y \in \mathbb{R}, \exists n \in \mathbb{N}: x>n y
$$

- a similar hypothesis has to hold here
- rough interpretation
- there are not "infinitely" liked or disliked consequences

Building a standard sequence on X_{1}

$$
\begin{aligned}
\left(x_{1}^{2}, x_{2}^{0}\right) & \sim\left(x_{1}^{1}, x_{2}^{1}\right) \\
\left(x_{1}^{3}, x_{2}^{0}\right) & \sim\left(x_{1}^{2}, x_{2}^{1}\right) \\
& \cdots \\
\left(x_{1}^{k}, x_{2}^{0}\right) & \sim\left(x_{1}^{k-1}, x_{2}^{1}\right)
\end{aligned}
$$

Building a standard sequence on X_{1}

$$
\begin{aligned}
&\left(x_{1}^{2}, x_{2}^{0}\right) \sim\left(x_{1}^{1}, x_{2}^{1}\right) \\
&\left(x_{1}^{3}, x_{2}^{0}\right) \sim\left(x_{1}^{2}, x_{2}^{1}\right) \\
& \cdots \\
&\left(x_{1}^{k}, x_{2}^{0}\right) \sim\left(x_{1}^{k-1}, x_{2}^{1}\right) \\
& v_{1}\left(x_{1}^{2}\right)-v_{1}\left(x_{1}^{1}\right)=v_{2}\left(x_{2}^{1}\right)-v_{2}\left(x_{2}^{0}\right)=1 \\
& v_{1}\left(x_{1}^{3}\right)-v_{1}\left(x_{1}^{2}\right)=v_{2}\left(x_{2}^{1}\right)-v_{2}\left(x_{2}^{0}\right)=1 \\
& \cdots \\
& v_{1}\left(x_{1}^{k}\right)-v_{1}\left(x_{1}^{k-1}\right)=v_{2}\left(x_{2}^{1}\right)-v_{2}\left(x_{2}^{0}\right)=1
\end{aligned}
$$

Building a standard sequence on X_{1}

$$
\begin{aligned}
\left(x_{1}^{2}, x_{2}^{0}\right) & \sim\left(x_{1}^{1}, x_{2}^{1}\right) \\
\left(x_{1}^{3}, x_{2}^{0}\right) & \sim\left(x_{1}^{2}, x_{2}^{1}\right) \\
& \cdots \\
\left(x_{1}^{k}, x_{2}^{0}\right) & \sim\left(x_{1}^{k-1}, x_{2}^{1}\right) \\
v_{1}\left(x_{1}^{2}\right)-v_{1}\left(x_{1}^{1}\right) & =v_{2}\left(x_{2}^{1}\right)-v_{2}\left(x_{2}^{0}\right)=1 \\
v_{1}\left(x_{1}^{3}\right)-v_{1}\left(x_{1}^{2}\right) & =v_{2}\left(x_{2}^{1}\right)-v_{2}\left(x_{2}^{0}\right)=1 \\
& \cdots \\
v_{1}\left(x_{1}^{k}\right)-v_{1}\left(x_{1}^{k-1}\right) & =v_{2}\left(x_{2}^{1}\right)-v_{2}\left(x_{2}^{0}\right)=1 \\
v_{1}\left(x_{1}^{2}\right)=2, v_{1}\left(x_{1}^{3}\right) & =3, \ldots, v_{1}\left(x_{1}^{k}\right)=k
\end{aligned}
$$

$$
\begin{aligned}
&\left(x_{1}, x_{2}\right) \sim\left(y_{1}, y_{2}\right) \\
& \text { and } \\
&\left(y_{1}, z_{2}\right) \sim\left(z_{1}, x_{2}\right)
\end{aligned} \Rightarrow\left(x_{1}, z_{2}\right) \sim\left(z_{1}, y_{2}\right)
$$

$$
\begin{aligned}
& \left(x_{1}, x_{2}\right) \sim\left(y_{1}, y_{2}\right) \\
& \quad \text { and } \\
& \left(y_{1}, z_{2}\right) \sim\left(z_{1}, x_{2}\right)
\end{aligned} \Rightarrow\left(x_{1}, z_{2}\right) \sim\left(z_{1}, y_{2}\right)
$$

Consequence

- there is an additive value function on the grid

Summary

- we have defined a "grid"
- there is an additive value function on the grid
- iterate the whole process with a "denser grid"

Summary

- we have defined a "grid"
- there is an additive value function on the grid
- iterate the whole process with a "denser grid"

Hypotheses

- Archimedean: every strictly bounded standard sequence is finite
- essentiality: both \succ_{1} and \succ_{2} are nontrivial
- restricted solvability

$$
\left.\begin{array}{l}
\left(y_{1}, x_{2}\right) \succ\left(z_{1}, z_{2}\right) \\
\left(z_{1}, z_{2}\right) \succ\left(x_{1}, x_{2}\right)
\end{array}\right\} \Rightarrow \exists w_{1} \text { such that }\left(z_{1}, z_{2}\right) \sim\left(w_{1}, x_{2}\right)
$$

Basic result

Theorem (2 attributes)

If

- restricted solvability holds
- each attribute is essential
then
the additive value function model holds
if and only if
\succsim is an independent weak order satisfying the Thomsen and the Archimedean conditions

The representation is unique up to scale and location

General case

Good news

- entirely similar...
- with a very nice surprise: Thomsen can be forgotten
- if $n=2$, independence is identical with weak independence - if $n>3$, independence is much stronger than weak independer ce

General case

Good news

- entirely similar...
- with a very nice surprise: Thomsen can be forgotten
\square

General case

Good news

- entirely similar...
- with a very nice surprise: Thomsen can be forgotten
- if $n=2$, independence is identical with weak independence
- if $n>3$, independence is much stronger than weak independence

General case

Good news

- entirely similar...
- with a very nice surprise: Thomsen can be forgotten
- if $n=2$, independence is identical with weak independence
- if $n>3$, independence is much stronger than weak independence

	X_{1}	X_{2}	X_{3}
a	75	10	0
b	100	2	0
c	75	10	40
d	100	2	40

X_{1} : \% of nights at home
X_{2} : attractiveness of city
X_{3} : salary increase

General case

Good news

- entirely similar...
- with a very nice surprise: Thomsen can be forgotten
- if $n=2$, independence is identical with weak independence
- if $n>3$, independence is much stronger than weak independence

	X_{1}	X_{2}	X_{3}
a	75	10	0
b	100	2	0
c	75	10	40
d	100	2	40

$X_{1}: \%$ of nights at home
$X_{2}:$ attractiveness of city
$X_{3}:$ salary increase
weak independence holds
$a \succ b$ and $d \succ c$ is reasonable

Basic result

Theorem (more than 2 attributes)
If

- restricted solvability holds
- at least three attributes are essential
then
the additive value function model holds
if and only if
\succsim is an independent weak order satisfying the Archimedean condition
The representation is unique up to scale and location

Independence and even swaps

Even swaps technique

- assessing tradeoffs. . .
- after having suppressed attributes

Implicit hypothesis

- what happens on these attributes do not influence tradeoffs
- this is another way to formulate independence

Independence and even swaps

Even swaps technique

- assessing tradeoffs. . .
- after having suppressed attributes

Implicit hypothesis

- what happens on these attributes do not influence tradeoffs
- this is another way to formulate independence

Part II

A glimpse at possible extensions

Additive value function model

- requires independence
- requires a finely grained analysis of preferences

Additive value function model

- requires independence
- requires a finely grained analysis of preferences

Two main types of extensions
(1) models with interactions
(2) more ordinal models

Outline

(5) Models with interactions

- Rough sets
- GAI networks
- Fuzzy integrals
(6) Ordinal models

Interactions

Two extreme models

- additive value function model
- independence
- decomposable model
- only weak independence

$$
\begin{aligned}
x \succsim y \Leftrightarrow \sum_{i=1}^{n} v_{i}\left(x_{i}\right) & \geq \sum_{i=1}^{n} v_{i}\left(y_{i}\right) \\
x \succsim y \Leftrightarrow F\left[v_{1}\left(x_{1}\right), \ldots v_{n}\left(x_{n}\right)\right] & \geq F\left[v_{1}\left(y_{1}\right), \ldots v_{n}\left(y_{n}\right)\right]
\end{aligned}
$$

Decomposable models

$$
\begin{gathered}
x \succsim y \Leftrightarrow F\left[v_{1}\left(x_{1}\right), \ldots v_{n}\left(x_{n}\right)\right] \geq F\left[v_{1}\left(y_{1}\right), \ldots v_{n}\left(y_{n}\right)\right] \\
F \text { increasing in all arguments }
\end{gathered}
$$

Result

Under mild conditions, any weakly independent weak order may be represented in the decomposable model

Decomposable models

$$
\begin{gathered}
x \succsim y \Leftrightarrow F\left[v_{1}\left(x_{1}\right), \ldots v_{n}\left(x_{n}\right)\right] \geq F\left[v_{1}\left(y_{1}\right), \ldots v_{n}\left(y_{n}\right)\right] \\
F \text { increasing in all arguments }
\end{gathered}
$$

Result

Under mild conditions, any weakly independent weak order may be represented in the decomposable model

Problem

- all possible types of interactions are admitted
- assessment is a very challenging task

Two main directions

Extensions

(1) work with the decomposable model

- rough sets
(2 find models "in between additive" and decomposable
- CP-nets, GAI
- fuzzy integrals

Rough sets

Basic ideas

- work within the general decomposable model
- use the same principle as in UTA
- replacing the numerical model by a symbolic one
- infer decision rules

Rough sets

Basic ideas

- work within the general decomposable model
- use the same principle as in UTA
- replacing the numerical model by a symbolic one
- infer decision rules

$$
\begin{aligned}
& \text { IF } \\
& x_{1} \geq a_{1}, \ldots, x_{i} \geq a_{i}, \ldots, x_{n} \geq a_{n} \text { and } \\
& y_{1} \leq b_{1}, \ldots, y_{i} \leq b_{i}, \ldots, y_{n} \leq b_{n} \\
& \text { THEN } \\
& x \succsim y
\end{aligned}
$$

- many possible variants
- Greco, Matarazzo, Słowiński

GAI: Example

Choice of a meal: 3 attributes
$X_{1}=\{$ Steak, Fish $\}$
$X_{2}=\{$ Red, White $\}$
$X_{3}=\{$ Cake, sherBet $\}$

Preferences

$$
\begin{array}{clll}
x^{1}=(S, R, C) & x^{2}=(S, R, B) & x^{3}=(S, W, C) & x^{4}=(S, W, B) \\
x^{5}=(F, R, C) & x^{6}=(F, R, B) & x^{7}=(F, W, C) & x^{8}=(F, W, B)
\end{array}
$$

GAI: Example

Choice of a meal: 3 attributes
$X_{1}=\{$ Steak, Fish $\}$
$X_{2}=\{$ Red, White $\}$
$X_{3}=\{$ Cake, sherBet $\}$

Preferences

$$
\begin{gathered}
x^{1}=(S, R, C) \quad x^{2}=(S, R, B) \quad x^{3}=(S, W, C) \quad x^{4}=(S, W, B) \\
x^{5}=(F, R, C) \quad x^{6}=(F, R, B) \quad x^{7}=(F, W, C) \quad x^{8}=(F, W, B) \\
x^{2} \succ x^{1} \succ x^{7} \succ x^{8} \succ x^{4} \succ x^{3} \succ x^{5} \succ x^{6}
\end{gathered}
$$

GAI: Example

Choice of a meal: 3 attributes
$X_{1}=\{$ Steak, Fish $\}$
$X_{2}=\{$ Red, White $\}$
$X_{3}=\{$ Cake, sherBet $\}$

Preferences

$$
\begin{gathered}
x^{1}=(S, R, C) \quad x^{2}=(S, R, B) \quad x^{3}=(S, W, C) \quad x^{4}=(S, W, B) \\
x^{5}=(F, R, C) \quad x^{6}=(F, R, B) \quad x^{7}=(F, W, C) \quad x^{8}=(F, W, B) \\
x^{2} \succ x^{1} \succ x^{7} \succ x^{8} \succ x^{4} \succ x^{3} \succ x^{5} \succ x^{6}
\end{gathered}
$$

- the important is to match main course and wine
- I prefer Steak to Fish
- I prefer Cake to sherBet if Fish
- I prefer sherBet to Cake if Steak

Example

$$
\begin{array}{rlll}
x^{1}=(S, R, C) & x^{2}=(S, R, B) & x^{3}=(S, W, C) & x^{4}=(S, W, B) \\
x^{5}=(F, R, C) & x^{6}=(F, R, B) & x^{7}=(F, W, C) & x^{8}=(F, W, B)
\end{array}
$$

$$
x^{2} \succ x^{1} \succ x^{7} \succ x^{8} \succ x^{4} \succ x^{3} \succ x^{5} \succ x^{6}
$$

Example

$$
\begin{array}{rlll}
x^{1}=(S, R, C) & x^{2}=(S, R, B) & x^{3}=(S, W, C) & x^{4}=(S, W, B) \\
x^{5}=(F, R, C) & x^{6}=(F, R, B) & x^{7}=(F, W, C) & x^{8}=(F, W, B)
\end{array}
$$

$$
x^{2} \succ x^{1} \succ x^{7} \succ x^{8} \succ x^{4} \succ x^{3} \succ x^{5} \succ x^{6}
$$

Independence

$$
\begin{aligned}
& x^{1} \succ x^{5} \Rightarrow v_{1}(S)>v_{1}(F) \\
& x^{7} \succ x^{3} \Rightarrow v_{1}(F)>v_{1}(S)
\end{aligned}
$$

Example

$$
\begin{array}{rlll}
x^{1}=(S, R, C) & x^{2}=(S, R, B) & x^{3}=(S, W, C) & x^{4}=(S, W, B) \\
x^{5}=(F, R, C) & x^{6}=(F, R, B) & x^{7}=(F, W, C) & x^{8}=(F, W, B)
\end{array}
$$

$$
x^{2} \succ x^{1} \succ x^{7} \succ x^{8} \succ x^{4} \succ x^{3} \succ x^{5} \succ x^{6}
$$

Independence

$$
\begin{aligned}
& x^{1} \succ x^{5} \Rightarrow v_{1}(S)>v_{1}(F) \\
& x^{7} \succ x^{3} \Rightarrow v_{1}(F)>v_{1}(S)
\end{aligned}
$$

Grouping main course and wine?

$$
\begin{aligned}
& x^{7} \succ x^{8} \Rightarrow v_{3}(C)>v_{3}(B) \\
& x^{2} \succ x^{1} \Rightarrow v_{3}(B)>v_{3}(C)
\end{aligned}
$$

Example

$$
\begin{array}{rlll}
x^{1}=(S, R, C) & x^{2}=(S, R, B) & x^{3}=(S, W, C) & x^{4}=(S, W, B) \\
x^{5}=(F, R, C) & x^{6}=(F, R, B) & x^{7}=(F, W, C) & x^{8}=(F, W, B)
\end{array}
$$

$$
x^{2} \succ x^{1} \succ x^{7} \succ x^{8} \succ x^{4} \succ x^{3} \succ x^{5} \succ x^{6}
$$

Example

$$
\begin{array}{clll}
x^{1}=(S, R, C) & x^{2}=(S, R, B) & x^{3}=(S, W, C) & x^{4}=(S, W, B) \\
x^{5}=(F, R, C) & x^{6}=(F, R, B) & x^{7}=(F, W, C) & x^{8}=(F, W, B)
\end{array}
$$

$$
x^{2} \succ x^{1} \succ x^{7} \succ x^{8} \succ x^{4} \succ x^{3} \succ x^{5} \succ x^{6}
$$

Model

$$
\begin{gathered}
x \succsim y \Leftrightarrow u_{12}\left(x_{1}, x_{2}\right)+u_{13}\left(x_{1}, x_{3}\right) \geq u_{12}\left(y_{1}, y_{2}\right)+u_{13}\left(y_{1}, y_{3}\right) \\
u_{12}(S, R)=6 \quad u_{12}(F, W)=4 \quad u_{12}(S, W)=2 \\
u_{13}(S, C)=0 \quad u_{12}(F, R)=0 \\
u_{13}(S, B)=1
\end{gathered} \quad u_{13}(F, C)=1 \quad u_{13}(F, S)=0 \text {, }
$$

Generalized Additive Independence

GAI (Gonzales \& Perny)

- axiomatic analysis
- if interdependences are known
- assessment techniques
- efficient algorithms (com pactness of representation)

Generalized Additive Independence

GAI (Gonzales \& Perny)

- axiomatic analysis
- if interdependences are known
- assessment techniques
- efficient algorithms (compactness of representation)

Generalized Additive Independence

GAI (Gonzales \& Perny)

- axiomatic analysis
- if interdependences are known
- assessment techniques
- efficient algorithms (compactness of representation)

What R. L. Keeney would probably say

- the attribute "richness" of meal is missing
- interdependence within a framework that is quite similar to that
\qquad
\qquad

Generalized Additive Independence

GAI (Gonzales \& Perny)

- axiomatic analysis
- if interdependences are known
- assessment techniques
- efficient algorithms (compactness of representation)

What R. L. Keeney would probably say

- the attribute "richness" of meal is missing

GAI

- interdependence within a framework that is quite similar to that of classical theory
- powerful generalization of recent models in Computer Science

Fuzzy integrals

Origins

- decision making under uncertainty
- homogeneous Cartesian product
- mathematics
- integrating w.r.t. a non-additive measure
- game theory
- cooperative TU games
- multiattribute decisions
- generalizing the weighted sum

Example

	Physics	Maths	Economics
a	18	12	6
b	18	7	11
c	5	17	8
d	5	12	13

[^1]Interpretation: interaction

- havine onnd oradas in hoth
- Math and Physics or
- Maths and Economics
- bettor than havine mood rrades in both
- Physics and Economics

Example

	Physics	Maths	Economics
a	18	12	6
b	18	7	11
c	5	17	8
d	5	12	13
		$a \succ b$	$d \succ c$

Preferences

a is fine for Engineering d is fine for Economics

Interpretation: interaction

- having good grades in both
- Math and Physics or
- Maths and Economics

Example

	Physics	Maths	Economics
a	18	12	6
b	18	7	11
c	5	17	8
d	5	12	13
		$a \succ b$	$d \succ c$

Preferences

a is fine for Engineering d is fine for Economics

Interpretation: interaction

- having good grades in both
- Math and Physics or
- Maths and Economics
- better than having good grades in both
- Physics and Economics

Weighted sum

$$
\begin{array}{cccc}
& \text { Physics } & \text { Maths } & \text { Economics } \\
\cline { 2 - 4 } a & 18 & 12 & 6 \\
b & 18 & 7 & 11 \\
c & 5 & 17 & 8 \\
d & 5 & 12 & 13 \\
a \succ b \Rightarrow 18 w_{1}+12 w_{2}+6 w_{3}>18 w_{1}+7 w_{2}+11 w_{3} \Rightarrow w_{2}>w_{3} \\
d \succ c \Rightarrow 5 w_{1}+17 w_{2}+8 w_{3}>5 w_{1}+12 w_{2}+13 w_{3} \Rightarrow w_{3}>w_{2}
\end{array}
$$

Choquet integral

Capacity

$$
\begin{aligned}
& \mu: 2^{N} \rightarrow[0,1] \\
& \mu(\varnothing)=0, \mu(N)=1 \\
& A \subseteq B \Rightarrow \mu(A) \leq \mu(B)
\end{aligned}
$$

Choquet integral

$$
0=x_{(0)} \leq x_{(1)} \leq \cdots \leq x_{(n)}
$$

Choquet integral

$$
0=x_{(0)} \leq x_{(1)} \leq \cdots \leq x_{(n)}
$$

$$
x_{(1)}-x_{(0)} \quad \mu(\{(1),(2),(3),(4) \ldots,(n)\})
$$

Choquet integral

$$
0=x_{(0)} \leq x_{(1)} \leq \cdots \leq x_{(n)}
$$

$$
\begin{array}{rr}
x_{(1)}-x_{(0)} & \mu(\{(1),(2),(3),(4) \ldots,(n)\}) \\
x_{(2)}-x_{(1)} & \mu(\{(2),(3),(4) \ldots,(n)\})
\end{array}
$$

Choquet integral

$$
0=x_{(0)} \leq x_{(1)} \leq \cdots \leq x_{(n)}
$$

$$
\begin{array}{rr}
x_{(1)}-x_{(0)} & \mu(\{(1),(2),(3),(4) \ldots,(n)\}) \\
x_{(2)}-x_{(1)} & \mu(\{(2),(3),(4) \ldots,(n)\}) \\
x_{(3)}-x_{(2)} & \mu(\{(3),(4) \ldots,(n)\})
\end{array}
$$

Choquet integral

$$
0=x_{(0)} \leq x_{(1)} \leq \cdots \leq x_{(n)}
$$

$$
\begin{array}{rr}
x_{(1)}-x_{(0)} & \mu(\{(1),(2),(3),(4) \ldots,(n)\}) \\
x_{(2)}-x_{(1)} & \mu(\{(2),(3),(4) \ldots,(n)\}) \\
x_{(3)}-x_{(2)} & \mu(\{(3),(4) \ldots,(n)\}) \\
\ldots & \ldots \\
x_{(n)}-x_{(n-1)} & \mu(\{(n)\})
\end{array}
$$

Choquet integral

$$
\begin{array}{cr}
0=x_{(0)} \leq x_{(1)} \leq \cdots \leq x_{(n)} \\
x_{(1)}-x_{(0)} & \mu(\{(1),(2),(3),(4) \ldots,(n)\}) \\
x_{(2)}-x_{(1)} & \mu(\{(2),(3),(4) \ldots,(n)\}) \\
x_{(3)}-x_{(2)} & \mu(\{(3),(4) \ldots,(n)\}) \\
\ldots & \cdots(\{(n)\})
\end{array}
$$

$$
\begin{gathered}
\mathcal{C}_{\mu}(x)=\sum_{i=1}^{n}\left[x_{(i)}-x_{(i-1)}\right] \mu\left(A_{(i)}\right) \\
A_{(i)}=\{(i),(i+1), \ldots,(n)\}
\end{gathered}
$$

Application

	Physics	Maths	Economics
a	18	12	6
b	18	7	11
c	5	17	8
d	5	12	13
$\mu(M)=0.1, \mu(P)=0.5, \mu(E)=0.5$			
	$\mu(M, P)=1>\mu(M)+\mu(P)$		
	$\mu(M, E)=1>\mu(M)+\mu(E)$		
	$\mu(P, E)=0.6<\mu(P)+\mu(E)$		

Application

	Physics	Maths	Economics
a	18	12	6
b	18	7	11
c	5	17	8
d	5	12	13
$\mu(M)=0.1, \mu(P)=0.5, \mu(E)=0.5$			
	$\mu(M, P)=1>\mu(M)+\mu(P)$		
	$\mu(M, E)=1>\mu(M)+\mu(E)$		
	$\mu(P, E)=0.6<\mu(P)+\mu(E)$		

$$
\begin{aligned}
& \mathcal{C}_{\mu}(a)=6 \times 1+(12-6) \times 1+(18-12) \times 0.5=15.0 \\
& \mathcal{C}_{\mu}(b)=7+(11-7) \times 0.6+(18-11) \times 0.5=12.9 \\
& \mathcal{C}_{\mu}(c)=5+(8-5) \times 1+(17-8) \times 0.1=8.9 \\
& \mathcal{C}_{\mu}(d)=5+(12-5) \times 1+(13-12) \times 0.5=12.5
\end{aligned}
$$

Choquet integral in MCDM

Properties

- monotone, idempotent, continuous
- preserves weak separability
- tolerates violation of independence
- contains many other aggregation functions as particular cases

Choquet integral in MCDM

Properties

- monotone, idempotent, continuous
- preserves weak separability
- tolerates violation of independence
- contains many other aggregation functions as particular cases

Capacities

Fascinating mathematical object:

- Möbius transform
- Shapley value
- interaction indices

Questions

Hypotheses

- I can compare x_{i} with x_{j}
- attributes are (level) commensurable

Classical model

- I can indirectly compare $\left[x_{i}, y_{i}\right]$ with $\left[x_{j}, y_{j}\right]$

Central research question

commensurate?

Questions

Hypotheses

- I can compare x_{i} with x_{j}
- attributes are (level) commensurable

Classical model

- I can indirectly compare $\left[x_{i}, y_{i}\right]$ with $\left[x_{j}, y_{j}\right]$
\square
commensurate?

Questions

Hypotheses

- I can compare x_{i} with x_{j}
- attributes are (level) commensurable

Classical model

- I can indirectly compare $\left[x_{i}, y_{i}\right]$ with $\left[x_{j}, y_{j}\right]$

Central research question

- how to assess $u: \bigcup_{i=1}^{n} X_{i} \rightarrow \mathbb{R}$ so that the levels are commensurate?

Choquet integral

Assessment

- variety of mathematical programming based approaches

Dxtensions

- Croque" integral with a reference point (statu quo)
- Sugeno integral (median)
- artiomatization as acmuramation functions
- k-additive capacities

Choquet integral

Assessment

- variety of mathematical programming based approaches

Extensions

- Choquet integral with a reference point (statu quo)
- Sugeno integral (median)
- axiomatization as aggregation functions
- k-additive capacities

Outline

(5) Models with interactions
(6) Ordinal models

Observations

Classical model

- deep analysis of preference that may not be possible
- preference are not well structured
- several or no DM
- prudence

Observations

Classical model

- deep analysis of preference that may not be possible
- preference are not well structured
- several or no DM
- prudence

Idea

- it is not very restrictive to suppose that levels on each X_{i} can be ordered
- aggregate these orders
- possibly taking importance into account

Observations

Classical model

- deep analysis of preference that may not be possible
- preference are not well structured
- several or no DM
- prudence

Idea

- it is not very restrictive to suppose that levels on each X_{i} can be ordered
- aggregate these orders
- possibly taking importance into account

Social choice

- aggregate the preference orders of the voters to build a collective preference

Outranking methods

ELECTRE

$x \succsim y$ if
Concordance a "majority" of attributes support the assertion Discordance the opposition of the minority is not "too strong"

$$
x \succsim y \Leftrightarrow\left\{\begin{array}{l}
\sum_{i: x_{i} \succsim i y_{i}} w_{i} \geq s \\
\operatorname{Not}\left[y_{i} V_{i} x_{i}\right], \forall i \in N
\end{array}\right.
$$

Condorcet's paradox

$$
\begin{gathered}
x \succsim y \Leftrightarrow\left|\left\{i \in N: x_{i} \succsim_{i} y_{i}\right\}\right| \geq\left|\left\{i \in N: y_{i} \succsim_{i} x_{i}\right\}\right| \\
1: x_{1} \succ_{1} y_{1} \succ_{1} z_{1} \\
2: z_{2} \succ_{2} x_{2} \succ_{2} y_{2} \\
3: y_{3} \succ_{3} z_{3} \succ_{3} x_{3} \\
x=\left(x_{1}, x_{2}, x_{3}\right) \\
y=\left(y_{1}, y_{2}, y_{3}\right) \\
z=\left(z_{1}, z_{2}, z_{3}\right)
\end{gathered}
$$

Condorcet's paradox

$$
\begin{gather*}
x \succsim y \Leftrightarrow\left|\left\{i \in N: x_{i} \succsim_{i} y_{i}\right\}\right| \geq\left|\left\{i \in N: y_{i} \succsim_{i} x_{i}\right\}\right| \\
1: x_{1} \succ_{1} y_{1} \succ_{1} z_{1} \\
2: z_{2} \succ_{2} x_{2} \succ_{2} y_{2} \\
3: y_{3} \succ_{3} z_{3} \succ_{3} x_{3} \\
x=\left(x_{1}, x_{2}, x_{3}\right) \\
y=\left(y_{1}, y_{2}, y_{3}\right) \\
z=\left(z_{1}, z_{2}, z_{3}\right)
\end{gather*}
$$

Condorcet's paradox

$$
\begin{gather*}
x \succsim y \Leftrightarrow\left|\left\{i \in N: x_{i} \succsim_{i} y_{i}\right\}\right| \geq\left|\left\{i \in N: y_{i} \succsim_{i} x_{i}\right\}\right| \\
1: x_{1} \succ_{1} y_{1} \succ_{1} z_{1} \\
2: z_{2} \succ_{2} x_{2} \succ_{2} y_{2} \\
3: y_{3} \succ_{3} z_{3} \succ_{3} x_{3} \\
x=\left(x_{1}, x_{2}, x_{3}\right) \\
y=\left(y_{1}, y_{2}, y_{3}\right) \\
z=\left(z_{1}, z_{2}, z_{3}\right)
\end{gather*}
$$

Condorcet's paradox

$$
x \succsim y \Leftrightarrow\left|\left\{i \in N: x_{i} \succsim_{i} y_{i}\right\}\right| \geq\left|\left\{i \in N: y_{i} \succsim_{i} x_{i}\right\}\right|
$$

$$
1: x_{1} \succ_{1} y_{1} \succ_{1} z_{1}
$$

$$
2: z_{2} \succ_{2} x_{2} \succ_{2} y_{2}
$$

$$
3: y_{3} \succ_{3} z_{3} \succ_{3} x_{3}
$$

$$
x=\left(x_{1}, x_{2}, x_{3}\right)
$$

$$
y=\left(y_{1}, y_{2}, y_{3}\right)
$$

$$
z=\left(z_{1}, z_{2}, z_{3}\right)
$$

Condorcet's paradox

$$
x \succsim y \Leftrightarrow\left|\left\{i \in N: x_{i} \succsim_{i} y_{i}\right\}\right| \geq\left|\left\{i \in N: y_{i} \succsim_{i} x_{i}\right\}\right|
$$

$$
\begin{aligned}
& 1: x_{1} \succ_{1} y_{1} \succ_{1} z_{1} \\
& 2: z_{2} \succ_{2} x_{2} \succ_{2} y_{2} \\
& 3: y_{3} \succ_{3} z_{3} \succ_{3} x_{3}
\end{aligned}
$$

$$
\begin{array}{r}
x=\left(x_{1}, x_{2}, x_{3}\right) \\
y=\left(y_{1}, y_{2}, y_{3}\right) \\
z=\left(z_{1}, z_{2}, z_{3}\right)
\end{array}
$$

Arrow's theorem

Theorem

The only ways to aggregate weak orders while remaining ordinal are not very attractive...

Arrow's theorem

Theorem

The only ways to aggregate weak orders while remaining ordinal are not very attractive...

- dictator (weak order)
- oligarchy (transitive \succ)
- veto (acyclic \succ)

Ways out

Accepting intransitivity

- find way to extract information in spite of intransitivity
- ELECTRE I, II, III, IS
- PROMETHEE I, II

Do not use paired comparisons

- only compare x with carefully selected alternatives
- ELECTRE TRT
- methods using reference points

Ways out

Accepting intransitivity

- find way to extract information in spite of intransitivity
- ELECTRE I, II, III, IS
- PROMETHEE I, II

Do not use paired comparisons

- only compare x with carefully selected alternatives
- ELECTRE TRI
- methods using reference points

Conclusion

Fascinating field

- theoretical point of view
- measurement theory
- decision under uncertainty
- social choice theory
- practical point of view
- rating firms from a social point of view
- evaluating H_{2}-propelled cars

Conclusion

Fascinating field

- theoretical point of view
- measurement theory
- decision under uncertainty
- social choice theory
- practical point of view
- rating firms from a social point of view
- evaluating H_{2}-propelled cars

[^0]: Hypotheses are stringent - highly precise comparisons - several practical problems - any two objects can be compared - connections between experiments - comparisons may vary in time

 - idealization of the measurement process

[^1]: Preferences
 a is fine for Figineering d is fine for Economics

