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Semide�nite matrices

A ∈ Sn(R), ∀λ eigenvalue of A , λ ≥ 0, Notation A º 0,

1. The set of semide�nite matrices SDPn is a cone
2. If A is semide�nite matrix (sdp), then

* its associated quadratic form xtAx is positive for all x ∈ Rn.
* it has Cholesky factorization LU such that U = Lt

3. A • B is the inner product
4. The quadratic form xtAx can be written as A • xxt.
5. Since the extreme rays of SDPn are of the form xxt, we derive A • B ≥ 0, ∀A º

0, ∀B º 0.
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What is a Semide�nite programming problem ?

• A LP can be de�ned as

z = inf{ctx : Ax = b, x ∈ K} where K is a convex set

• A semide�nite program is an LP over the positive semide�nite Cone :

inf{C • Y : Ai • Y = bi, ∀i ∈ {i, . . . , m}, Y º 0.}

• and its dual is : sup{∑m
i=1 biyi :

∑
i yiAi ¹ C}

• Polynomial algorithms exist for solving SDP problems e.g. IPM and ellipsoid
methods
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Lovasz's Theta function

De�nition 1. Let a graph G = (V, E), a stable or (independent) set is subset
S of vertices such that no two vertices of S are adjacent.

De�nition 2. The maximum cardinality of stable set is the stability number
of G and is denoted α(G)

In this example, α(G) = 3.
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Lovasz's Theta function

• Lovasz (1979) proposed an upper bound on α(G) known as the theta function
ϑ(G).

• The theta function can be expressed in many equivalent ways:

� as an eigenvalue bound,
� as semide�nite program,
� or in terms of orthogonal representations.
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Lovasz's Theta function : An eigenvalue Bound
• Consider P = {A ∈ Sn : aij = 1 if (i, j) /∈ E ( or i = j)}

• If there exists a stable set of size k, the corresponding principal submatrix of any A ∈ P

will be Jk, the all ones matrix of size k.
• By a classical results on symmetric matrices, we derive ∀A ∈ P, λmax(A) ≥ λmax(Jk).
• As a result, ϑ(G) = minA∈Pλmax(A) is an upper bound on α(G) and then an

equivalent formulation for the theta function.
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Lovasz's Theta function : A SDP formulation
• A largest eigenvalue of a matrix can be formulated as semide�nite program i.e.

λmax(A) = min{t : tI − A º 0}. (the eigenvalues of tI − A are t − λi

where λi are the eigenvalues of A).

• To express ϑ(G) as SDP, observe that A ∈ P is equivalent to A−J generated
by Eij, (i, j) ∈ E where all entries are zero except for (i, j) and (j, i).

• ϑ(G) = min{t : tI +
∑

(i,j)∈E xijEij º J}.

• By strong duality, we can also write the dual

ϑ(G) = max{J • Y : yij = 0 for (i, j) ∈ E, I • Y = 1, Y º 0}.

• α(G) ≤ ϑ(G)

7



Lovasz's Theta function : Orthonormal representation

• An orthonormal representation of G is a system (v1, . . . , vn) ∈ Rn such that
vi and vj are orthogonal (i.e. vt

ivj = 0) whenever i and j are not adjacent.

• The value of the orthonormal representation of G is z =
minc:‖c‖=1maxi∈V

1
(ctvi)2

.

• z is an upper bound on α(G) i.e. z ≥ α(G) (since ‖c‖2 ≥ ∑
i∈S(ctvi)2 ≥

|S|/z)

• ϑ(G) = inf{z : orthonormal representation} (See Lovasz).
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Lovasz's Theta function : Orthonormal representation

• Let x = (x1, . . . , xn) denotes the incidence vector of stable set, then we have

∑

i

(ctvi)2xi ≤ 1,∀c : ‖c‖ = 1,∀ orthonormal representation V (1)

• The orthonormal representation constraints (1) are valid inequalities for
STAB(G) where STAB(G) is the convex hull of incidence vectors of
stable sets of G.

• Grotchel et al. show that if we let TH(G) = {x : x satis�es (1) and x ≥ 0}
then ϑ(G) = max{∑i xi : x ∈ TH(G)}.
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Schrijver's strenghthening of Lovasz's Theta function

• ϑ(G) = min{λmax(A) : A ∈ Sn, aij = 1 for (i, j) /∈ E ( or i = j)}

• ϑ′(G) = min{λmax(A) : A ∈ Sn, aij ≥ 1 for (i, j) /∈ E ( or i = j)}

• ϑ(G) = max{J • Y : yij = 0 for (i, j) ∈ E, I • Y = 1, Y º 0}.

• ϑ′(G) = max{J•Y : yij = 0 for (i, j) ∈ E, yij ≥ 0 for (i, j) /∈ E, I•Y =
1, Y º 0}.

α(G) ≤ ϑ′(G) ≤ ϑ(G)
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Lovasz's Theta function and perfect graphs

• Chromatic Number and Clique

• A graph G is perfect if, for every induced sub-graph G′, its chromatic number
is equal to the size of the largest clique in G′.

• Theta function gives some important characterizations of perfect graphs.
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Lovasz's Theta function and perfect graphs

Theorem 1. The following are equivalent:

• G is perfect,

• TH(G) = {x ≥ 0 :
∑

i∈C xi ≤ 1 for all cliques C}

• TH(G) is polyhedral.

- We can �nd a largest stable set in perfect graph in polynomial time by
computing the theta function using semide�nite programming.

- For perfect graphs, we have α(G) = ϑ(G).
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Max Cut Problem

De�nition 3. Given a graph G, the cut δ(S) induced by vertex set S is the
set of edges with exactly one endpoint in S.

• The Max Cut Problem consists in �nding a cut of maximum weight in a
weighted undirected graph.

• The weight of δ(S) is ω(δ(S)) =
∑

e∈δ(S) ωe.

• OPT = Max(ω(δ(S))).
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Max Cut Problem

• Delorme and Poljak conjecture : OPT
SDP ∼ 0.88445.

• Goemans and Williamson randomized approximation algorithm: OPT
SDP ≥

0.87856.
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FAP

FAP problem : Assign n frequencies to m sites in order to satisfy
given demands for frequencies and minimize the interferences between di�erent
frequencies.

The frequencies are represented as a set of positive integers i = 1, .., n.

For every pair (i, j) of frequencies the distance ρij is de�ned:

ρij = |i− j|
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Deterministic FAP. contd

Let di be the demand for frequencies for the site i,

wkl
ij is the interference attained if frequency k is assigned to site i and

frequency l is assigned to site j,

and xk
i is a decision binary variable which equals 1 if frequency k is assigned

to site i and zero otherwise;

Let N be the set of sites and M the set of frequencies.

The FAP can be written as :
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FAP

min
xk

i∈{0,1}

∑

i,j,k,l

wkl
ijx

k
i x

l
j (2)

subject to : ∑

k

xk
i = di, ∀i (3)

xk
i + xl

j ≤ 1, ∀i, j, k, l : i, j adjacent, |k − l| ≤ c1 (4)

xk
i + xl

i ≤ 1, ∀i, k, l : |k − l| ≤ c2
1 (5)

1It is common to set c1 = 2 and c2 = 3 in practice. We will use such constants both for our modelling or
numerical experiments.
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FAP Semide�nite relaxation

Let yl,k
i,j = xl

ix
k
j . The FAP can be written as :

m∑

l=1

yl,l
i,i = di,∀i ∈ N

yl,k
i,i = 0,∀i ∈ N, and |l − k| ≤ 3.

or 



yl,l+1
i,i = 0

yl,l+2
i,i = 0 ∀i ∈ N, ∀l ∈ M

yl,l+3
i,i = 0
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FAP Semide�nite relaxation

and
yl,k

i,j = 0,∀i ∈ N, and |l − k| ≤ 2.

or 



yl,l
i,j = 0

yl,l+1
i,j = 0 1 ≤ i, j ≤ n, j co-site of i and l ∈ M

yl,l+2
i,j = 0
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FAP Semide�nite relaxation

Let the matrices Y and W de�ned as :

Y =




Y1,1 · · · Y1,n... . . . ...
Yn,1 · · · Yn,n


 , where Yi,j =




y1,1
i,j · · · y1,m

i,j... . . . ...
ym,1

i,j · · · ym,m
i,j


 ,

and W =




W1,1 · · · W1,n... . . . ...
Wn,1 · · · Wn,n


 , where Wi,j =




w1,1
i,j · · · w1,m

i,j... . . . ...
wm,1

i,j · · · wm,m
i,j



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The SDP relaxed FAP can be written as :

(SDPFAP )





Min Trace(W ∗ Y )
s.c Trace(Yii) = di i ∈ N




yl,l+1
i,i = 0

yl,l+2
i,i = 0

yl,l+3
i,i = 0

i ∈ N, l ∈ M





yl,l
i,j = 0

yl,l+1
i,j = 0

yl,l+2
i,j = 0

1 ≤ i, j ≤ n, j co-site of i and l ∈ M

diag(Y ) = y
Y − yyt º 0.

(6)
where y = (xl

i)1≤l≤m,1≤i≤n is the decision variable vector.
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FAP SDP relaxation

Let Zil and Zijl be a determined matrices for each co-site and co-station
constraint respectively. The (6) can be also written as :

(SDPFAP1)





Min Trace(W ∗ Y )
s.c

Trace(Yii) = di i ∈ N
Trace(ZilYil) = 0 ∀i, l
T race(ZijlYijl) = 0 ∀i, j, l, i and j are cosite
diag(Y ) = y
Y − yyt º 0

(7)
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Stochastic problem

The main uncertainty sources in the FAP are the following :

• Interference may change due to changing atmospheric conditions, time of the
day and of the year, etc.
It is more realistic to assume that interferences are described by joint
probabilistic distribution H(w).

• Assume that demand at sites i = 1, , ,m is a random vector with joint
distribution P (d).

We consider the case where the frequency assignment is based on the
probabilistic description of demand and interference patterns i.e. non adaptive
case.
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Non adaptive FAP

Frequency assignment decision is made before any speci�c demand realization
becomes known and is not changed afterwards.

The objective function can be written as:

min
xk

i

Ew

∑

i,j,k,l

wkl
ijx

k
i x

l
j + cEd

∑

i

max

{
0, di −

∑

k

xk
i

}
(8)

As

Ew

∑

i,j,k,l

wkl
ijx

k
i x

l
j =

∑

i,j,k,l

(
Ewwkl

ij

)
xk

i x
l
j =

∑

i,j,k,l

w̄kl
ijx

k
i x

l
j
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Non adaptive Case

• The demand distribution P (d) is concentrated in a �nite number of points
dr = (dr

1, ..., d
r
m) with weights pr, r = 1, ..., R.

• These points will be called demand scenarios.

The problem (8) is equivalent to the following:

min
xk

i

∑

i,j,k,l

w̄kl
ijx

k
i x

l
j + c

∑
r

∑

i

pr max

{
0, di −

∑

k

xk
i

}
(9)
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Non adaptive Case

After introducing auxiliary variables vr
i for each site i = 1, ..., m and for each

scenario r = 1, ..., R, we obtain the following familiar quadratic problem:

min
xk

i ,vr
i

∑

i,j,k,l

w̄kl
ijx

k
i x

l
j + c

∑
r

∑

i

prv
r
i (10)

∑

k

xk
i + vr

i = dr
i , ∀i, r (11)

where vr
i is integer and nonnegative. Constraints (4)-(5) can be added to this

formulation.
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Semide�nite relaxations for stochastic FAP

Assume that vr
i ∈ {0, 1}. As for the deterministic FAP, we introduce

yl,k
i,j = xl

ix
k
j together with the following notations:

Y =




Y1,1 · · · Y1,n... . . . ...
Yn,1 · · · Yn,n


 , with Yi,j =




y1,1
i,j · · · y1,m

i,j... . . . ...
ym,1

i,j · · · ym,m
i,j


 ,

W̃ =




W̃1,1 · · · W̃1,n... . . . ...
W̃n,1 · · · W̃n,n


 , with W̃i,j =




w̃1,1
i,j · · · w̃1,m

i,j... . . . ...
w̃m,1

i,j · · · w̃m,m
i,j




27



Vr = (vr
1, ..., v

r
N), U =




Y 0 · · · 0
0 V1V

T
1 · · · 0

... ... . . . ...
0 0 · · · VRV T

R




D =




W̃ 0 · · · 0
0 cp1IN · · · 0
... ... . . . ...
0 0 · · · cpNIN


where IN is NxN unit matrix.

To represent demand constraints, we consider a submatrix Uir of matrix U
de�ned by:

Uir =
[

Yii 0
0 (vr

i )
2

]

Then the corresponding constraint is

trace(Uir) ≥ dr
i , ∀i, r (12)
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Then SDP lifting of (10)-(11) is the following:

min
U

trace(D ∗ U) (13)

subject to
trace(Uir) ≥ dr

i , ∀i, r (14)
U − diag(U)diag(U)T º 0 (15)

Thus, positive semide�nite relaxation of the stochastic FAP is the problem
(13)-(15) where co-cite and co-station constraints should be added similarly to
the deterministic FAP.
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SDP relaxation within decomposition algorithm

Generic scheme for the Benders decomposition algorithm is:

• Initialization.
Select a feasible frequency assignment xk0

i and let u+0 = +∞, u−0 = −∞
be the current upper and lower bound respectively.

• Generic step.
At step s, let xks

i be the current frequency assignment and u+s, u−s the
upper and lower bounds resp. Then at step s we do the following:

� Solve subproblem,
� Add new cut to the master program.
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Benders decomposition steps

Solve the subproblem

min
vr

i

cprv
r
i (16)

∑

k

xks
i + vr

i ≥ dr
i , ∀i, r (17)

whose dual

max
µr

i≥0

∑
r

∑

i

µr
i

(
dr

i −
∑

k

xks
i

)

0 ≤ µr
i ≤ cpr, ∀i, r
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has an explicit solution

µrs
i =





cpr if dr
i ≥

∑

k

xks
i

0 otherwise
(18)

Then, Add the cut

z0 ≥
∑

i,j,k,l

w̄kl
ijx

k
i x

l
j +

∑

i

∑
r

(
dr

i −
∑

k

xk
i

)
µrs

i

to the master problem and compute the upper bound by

u+0 = min



u+0,

∑

i,j,k,l

w̄kl
ijx

ks
i xls

j +
∑

i

∑
r

(
dr

i −
∑

k

xks
i

)
µrs

i




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Solve the master problem using SDP relaxation :

z̄0 = min
z0,xk

i

z0 (19)

z0 −
∑

i,j,k,l

w̄kl
ijx

k
i x

l
j +

∑

i

∑

k

xk
i

∑
r

µrq
i ≥

∑

i

∑
r

dr
iµ

rq
i , q = 1, ..., s (20)

and

• let u−0 = z̄0.

• Stop if u−0 − u−0 < ε where ε is some prespeci�ed tolerance.

• Otherwise, let xk,s+1
i be the solution of (19)-(20) and go to the step s + 1.
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We have to lift inequality (20) into the cone of positive semide�nite matrices.
Observe that this inequality can be expressed as follows:

trace

([
1 bT

q

bq −W̃

]
∗

[
z0 xT

x Y

])
≥

∑

i

∑
r

dr
iµ

rq
i

with

trace

([
0 −1

21
T
nm

−1
21nm Inm

]
∗

[
z0 xT

x Y

])
= 0

where

x = (x1
1, ..., x

m
1 , ..., x1

n, ..., xm
n ), bq =

1
2

(
n times︷ ︸︸ ︷

b1q, ..., b1q, ...,

n times︷ ︸︸ ︷
bnq, ..., bnq

)
, biq =

∑
r

µrq
i
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Denoting now

U =
[

z0 xT

x Y

]
, A =

[
1 0T

nm

0nm 0nmxnm

]
,

Bq =
[

1 bT
q

bq −W̃

]
, C =

[
0 −1

21
T
nm

−1
21nm Inm

]
, D =

[
0 0nm

0nm Inm

]

we obtain the following relaxation of the master problem:

min
U

trace(AU) (21)

trace(BqU) ≥
∑

i

∑
r

dr
iµ

rq
i , q = 1, ..., s (22)

trace(CU) = 0 (23)
DU − diag(DU)diag(DU)T º 0 (24)
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Numerical Results

Our �rst numerical experiments concerned small instances.

Table 1: Instances testés
Instances #sites #frequencies

Fap1 3 12
Fap2 5 14
Fap3 6 16
Fap4 8 20

We solved 4 variants of each instance with 5, 10, 15 and 30 scenarios
respectively.
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LP equivalent problems

Table 2: LP equivalent sizes
Instances S=5 S=10 S=15 S=30

#var #const #var #const #var #const #var #const

Fap1 717 2076 732 2091 747 2106 792 2151
Fap2 2580 7765 2605 7790 2630 7815 2705 7890
Fap3 4782 14172 4812 14202 4842 14232 4932 14322
Fap4 13080 38976 13120 39016 13160 39056 13280 39176

• Linearization leads to a large number of binary variables and constraints,

• CPLEX solved to optimality only the �rst two instances,

• Weak lower bounds of the LP relaxation.
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Benders results

Table 3: Test SDP Sizes
Instances Master SDP Program

#var #const MP iterations number
S=5 S=10 S=15 S=30

Fap1 666 100 4 3 7 4
Fap2 2484 356 7 7 10 9
Fap3 4656 271 7 9 6 7
Fap4 12880 457 15 19 16 17

• The number of constraints is related to the last master program solved,

• SDP master program iterations are less than 20 for all instances.
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Numerical Results

Table 4: Lower and Upper Bounds
Data S=5 S=10

LB Opt UB Gap LB Opt UB Gap
Fap1 312 320 324 3.7 292 301 310 5.8
Fap2 766 776 803 4.6 741 759 807 8.1
Fap3 915 940† 955 4.1 820 863† 907 9.5
Fap4 9772 11157† 10186 4.0 9850 ‡ 10250 3.9

Table 5: Lower and Upper Bounds
Data S=15 S=30

LB Opt UB Gap LB Opt UB Gap
Fap1 296 302 304 2.6 299 299 299 0
Fap2 932 965 1002 6.9 970 983 1004 3.3
Fap3 875 903† 910 3.6 996 1017† 1029 3.2
Fap4 10336 ‡ 11036 6.3 9428 ‡ 9837 4.1

†: Best solution given by CPLEX ‡: No solution given by CPLEX
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Numerical Results

Table 6: Costs vs penalties
Data S=5 S=10 S=15 S=30

UB cost Penalty UB cost Penalty UB cost Penalty UB cost Penalty
Fap1 324 164 160 310 145 165 304 122 182 299 80 219
Fap2 803 223 620 807 267 540 1002 214 978 832 200 632
Fap3 955 279 676 907 237 570 910 250 660 1029 199 830
Fap4 10186 2286 7900 10250 3050 7200 11036 1122 9914 9837 1016 8821
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Conclusion

• SDP helps better solving the stochastic FAP than LP approaches,

• Size limit depends of the ability of SDP packages,

• New stochastic FAP variants are under tests.
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