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Definition of interior point

General non linear programming problem

Equality and Inequality Equality and non-negativity
minimize fj(x) minimize fj(x)
subjectto  g(x) <0 subjectto  f(x) =

h( ) =0 Xr > 0

@ Interior point: x > 0.
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Definition of interior point

General non linear programming problem

Equality and Inequality Equality and non-negativity
minimize fj(x) minimize fj(x)
subjectto  g(x) <0 subjectto  f(x) =

h( ) =0 Xr > 0

@ Interior point: x > 0.

@ Solution: f(x) =0.

@ Feasible solution: f(x) =0, x; > 0.

@ Interior (feasible) solution: f(x) = 0, x; > 0.



Example of interior infeasible point

Inequality Equality and non-negativity
minimize fj(x) minimize fy(x1,x2)
subjectto x <3 subjectto x;+x; =3

x>0 xXp,x2 20
3
(3.5,1)
o
? 0 3



The Affine-Scaling direction

Projection matrix
Given ¢ € R" and a matrix A,

¢ can be decomposed as
c=Puc+ATy,

where Poc € N(A) is the projection of ¢ into AV/(A).



The Affine-Scaling direction

Linearly constrained problem:

minimize f(x)
subjectto Ax=05b
x>0

Define ¢ = Vf(x"). The projected gradient (Cauchy) direction is
cp = Pyc,

and the steepest descent direction is d = —cp. It solves the trust region
problem

minimize{c'h |Ah =0, ||d|| < A}.















The Affine-Scaling direction

Given a feasible point xo, X = diag(xo) and ¢ = Vf(xo)

minimize c¢’x ~
subjectto Ax=b x o= Xx
x>0 d = Xd

Scaled steepest descent direction:

EZ == —PAXxC

d = Xd=—XPaxXc

Dikin’s direction:

Ql
|

—PAXxC
d = —=Xd/|d|.

minimize
subject to

(Xc)Tx
AXx=1D>
x>0



Dikin’s algorithm

Problem P1
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Affine scaling algorithm

Problem P1
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The logarithmic barrier function

n
xeRL, —px)=— Zlogxi.
i=1
Scaling: for a diagonal matrix D > 0

p(Dx) = p(x)+ constant,
p(Dx)—p(Dy) = p(x)—p(y).
Derivatives:
Vp(x) = —x ' Vple) = —e
V2p(x) X2 Viple) = I
At x = ¢, the Hessian matrix is the identity, and hence the Newton
direction coincides with the Cauchy direction.



The logarithmic barrier function

xeR —px)=— Zlogx,-.
i=1
Scaling: for a diagonal matrix D > 0

p(Dx) = p(x)+ constant,
p(Dx) —p(Dy) = p(x)—p(y).
Derivatives:
Vp(x) = —x' Vple) = —e
Vip(x) = X2 Viple) = I
At x = e, the Hessian matrix is the identity, and hence the Newton
direction coincides with the Cauchy direction.

At any x > 0, the affine scaling direction coincides with the Newton
direction.



The penalized function in linear programming
Forx>0,u>0anda=1/y4,

fo(x) =ac’x4+p(x) or Sulx) = cTx+up(x)

minimize c¢’x minimize c¢Tx+p(x)
subjectto Ax=0»b subjectto Ax=10>
x>0 x>0

e For a > 0 fy is strictly convex and grows indefinitely near the
boundary of the feasible set.
@ Whenever the minimizers exist, they are defined uniquely by

Xo, = argmin, . fo (X).
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The penalized function in linear programming
Forx>0,u>0anda=1/y4,

fo(x) =ac’x4+p(x) or Sulx) = cTx+up(x)

minimize c¢’x minimize c¢Tx+p(x)
subjectto Ax=0»b subjectto Ax=10>
x>0 x>0

e For a > 0 fy is strictly convex and grows indefinitely near the
boundary of the feasible set.
@ Whenever the minimizers exist, they are defined uniquely by

Xo, = argmin, . fo (X).

e In particular, if Q is bounded, x is the analytic center of Q
o If the optimal face of the problem is bounded, then the curve

a>0— xq

is well defined and is called the primal central path.



The central path

Problem P1




Equivalent definitions of the central path

There are four equivalent ways of defining central points:
@ Minimizers of the penalized function:

argmin, o fulx).

@ Analytic centers of constant cost slices

argmin, o {p(x) | "x = K}

@ Renegar centers: Analytic centers of Q with an extra constraint ¢’x < .

argmin,_q {p(x) —log(K —c’x) | "x < K}

@ Primal-dual central points (seen ahead).



Constant cost slices

Enter the new cut position (one point) and then the initial point




Constant cost slices

Enter the new cut position (one point) and then the initial point




Constant cost slices

Enter the new cut position (one point) and then the initial point




Renegar cuts

Problem Ptemp




Renegar cuts
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Renegar cuts
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Centering

The most important problem in interior point methods is the following:
Centering problem

Given a feasible interior point x° and a value o > 0, solve approximately the
problem

minimize, g0 0tc” x + p(x).




Centering

The most important problem in interior point methods is the following:
Centering problem

Given a feasible interior point x° and a value o > 0, solve approximately the
problem

minimize, o 0tc” x4 p(x).

The Newton direction from x° coincides with the affine-scaling direction, and

hence is the best possible. It is given by

d = Xd,

d = —PAXx(OCC—Xil):—(XPAXxC'—‘y-PAxe.



Efficiency of the Newton step for centering

Newton direction:
d Xd,
d = —PAXx(OCC —Xﬁl) = —0PyxXc+ Pyxe.
We define the Proximity to the central point as
8(x, ) = ||d|| = || — aPaxXc + Paxell.

The following important theorem says how efficient it is:

Theorem

Consider a feasible point x and a parameter . Letx™ = x4 d be the point
resulting from a Newton centering step. If 8(x,o) = 8 < 1, then 8(x, ) < &°.

f 8(x, ) < 0.5, then this value is a very good approximation to the euclidean
distance between e and X 'x,, i. €., between x and x, in the scaled space.



Efficiency of the Newton step for centering

Newton direction:
d Xd,
d = —PAXx(OCC—Xil) = —0PyxXc+ Pyxe.

We define the Proximity to the central point as
8(x, ) = ||d|| = || — aPaxXc + Paxell.

The following important theorem says how efficient it is:

Theorem

Consider a feasible point x and a parameter . Letx™ = x4 d be the point
resulting from a Newton centering step. If 8(x,o) = 8 < 1, then 8(x, ) < &°.

If 8(x,a) < 0.5, then this value is a very good approximation to the euclidean
distance between e and X 'x,, i. €., between x and x, in the scaled space.



Primal results as we saw are important to give a geometrical meaning to the
procedures, and to develop the intuition. Also, these results can be generalized
to a large class of problems, by generalizing the idea of barrier functions.

From now on we shall deal with primal-dual results, which are more efficient for
linear and non-linear programming.



The Linear Programming Problem

LP LD
minimize c¢’x
subjectto Ax=0»b
x>0

maximize b’y
subjectto ATy <c
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The Linear Programming Problem

LP
minimize c¢’x
subjectto Ax=0»b
x>0

KKT: multipliers y, s

ATy +s
Ax
XS

VIl
SIS

X,S

LD

maximize b’y
subjectto ATy+s=c¢
s>0




The Linear Programming Problem

LP

T

minimize c¢'x
subjectto Ax=0»b

x>0

KKT: multipliers y, s

ATy +s
Ax
XS
X,

VIl
SIS

LD

maximize b’y
subjectto ATy+s=c¢
s>0

KKT: multipliers x

ATyt
Ax

XS

X,

VAR
S oo




The Linear Programming Problem

LP LD
minimize c¢’x maximize b’y
subjectto Ax=1b subjectto ATy+s=c
x>0 s>0
Primal-dual optimality Duality gap
Aly+s = ¢ For x,y, s feasible,
Ax = b
xs = 0 CTX—bTy:xTS >0
x,s > 0




The Linear Programming Problem

LP LD
minimize ¢’x maximize b’y
subjectto Ax=b subjectto ATy+s=c
x>0 s>0
Primal-dual optimality Duality gap
ATy+s = ¢ For x,y, s feasible,
Ax = b
xs = 0 x—bly=x"s>0
x,s > 0

(LP) has solution x and (LD) has solution y, s if and only if
the optimality conditions have solution x,y, s.



Primal-dual centering

Let us write the KKT conditions for the centering problem (now using u instead
of = 1/p).

minimize c’x —uY logx;
subjectto Ax=0»b

x>0

A feasible point x is a minimizer if and only if the gradient of the objective
function is orthogonal to the null space of A, which means

c—px ' =—ATy,

for some y € R™. Defining s = ux~!, we get the conditions for a primal-dual
center:



Primal-dual centering
Let us write the KKT conditions for the centering problem (now using u instead
of = 1/p).
minimize c’x —uY logx;
subjectto Ax=0»b
x>0

A feasible point x is a minimizer if and only if the gradient of the objective
function is orthogonal to the null space of A, which means

e =—ATy,
for some y € R™. Defining s = ux~!, we get the conditions for a primal-dual
center:

Primal-dual center

xs = pue

ATy+s = ¢
Ax = b
x,s > 0




Generalization
Let us write the KKT conditions for the convex quadratic programming problem

minimize ¢Ix+ %xTHx
subjectto Ax=05b
x>0
The first KKT condition is written as

c+Hx—ATy—5=0

To obtain a symmetrical formulation for the problem, we may multiply this
equation by a matrix B whose rows for a basis for the null space of A. Then
BATy = 0, and we obtain the following conditions conditions:

xs = 0
—BHx+Bs = Bc

Ax = b

x,s > 0



Horizontal linear complementarity problem

In any case, the problem can be written as

xs = 0
Ox+Rs = b
x,s > 0

This is a linear complementarity problem, which includes linear and quadratic
programming as particular problems. The techniques studied here apply to
these problems, as long as the following monotonicity condition holds:

For any feasible pair of directions (u,v) such that Qu -+ Rv = 0, we have
T
uv>0.



Horizontal linear complementarity problem

In any case, the problem can be written as

xs = 0
Ox+Rs = b
x,s > 0

This is a linear complementarity problem, which includes linear and quadratic
programming as particular problems. The techniques studied here apply to
these problems, as long as the following monotonicity condition holds:

For any feasible pair of directions (u,v) such that Qu -+ Rv = 0, we have
’
uv>0.

The optimal face: the optimal solutions must satisfy x;s; =0 fori=1,...,n.
This is a combinatorial constraint, responsible for all the difficulty in the solution.



Primal-dual centering: the Newton step

Given x, s feasible and u > 0, find

xt = x+4u
sT o= x4v
such that
xTst = ue XS + Su—+xv+ uy

Oxt+Rst = b Qu+Ry

ue



Primal-dual centering: the Newton step

Given x, s feasible and u > 0, find

xt = x+u
sT o= x+v
such that
xTst = ue XS + Su+xv+ uv
Oxt+Rst = b Qu+Ry
Newton step
Xv+Su = —xs+pue

|
o

Qu+ Ry

ue




Primal-dual centering: the Newton step

Given x, s feasible and u > 0, find

xt = x+u
sT o= x+v
such that
xTst = ue xs+su+xv+uv = ue
Oxt+Rst = b Qu+Rv = 0
Newton step
Xv+Su = —xs+pue
Qu+Rv = 0

Solving this linear system is all the work. In the case of linear programming one
should keep the multipliers y and simplify the resulting system of equations



Primal-dual centering: Proximity measure
Given x, s feasible and u > 0, we want

XS
Xxs = pe or equivalently — —e =0
u

The actual error in this equation gives the proximity measure:

Proximity measure

XS
X, S, — S(X,S,,U) = H_ _e”




Primal-dual centering: Proximity measure
Given x, s feasible and u > 0, we want

pA
Xxs = pe or equivalently — —e =0
u
The actual error in this equation gives the proximity measure:
Proximity measure

xs
X, 8,1 — O(x,s,u) = HZ —e|l.

Theorem

Given a feasible pair (x,s) and a parameter u, Let x* = x+u and s™ = s+ vbe
the point resulting from a Newton centering step. If 8(x,s,u) = & < 1, then

T 1 &
X

8( S HU)<%1*6

In particular, if 8 < 0.7, then 8(x ", s, u) < &%,




Primal-dual path following: Traditional approach

@ Assume that we have x,s,u such that (x, s) is feasible and
S(x,s,u) << 1

@ Choose u™ = yu, with y < 1.

@ Use Newton’s algorithm (with line searches to avoid infeasible points) to
find (x*,s™) such that 8(x™,sT,u") < a
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Neighborhood of the central path

Given B € (0, 1), we define the neighborhood n (o) as the set of all feasible
pairs (x,s) such that for some u > 0

8(x, s, 1) < B



Primal-dual path following: Traditional approach

@ Assume that we have x,s,u such that (x, s) is feasible and
S(x,s,u) << 1

@ Choose u™ = yu, with y < 1.

@ Use Newton’s algorithm (with line searches to avoid infeasible points) to
find (x*,s™) such that 8(x™,sT,u") < a

Neighborhood of the central path
Given B € (0, 1), we define the neighborhood n (o) as the set of all feasible
pairs (x,s) such that for some u > 0

S(x,s,1) < B

The methods must ensure that all points are in such a neighborhood, using line
searches



A neighborhood of the central path




Short steps

Using v near 1, we obtain short steps. With Y= 0.4/1/n, only one Newton step

is needed at each iteration, and the algorithm is polynomial: it finds a solution
with precision 27 in O(,/nL) iterations.

(%)

xin,)

X(%.,)



Short steps

Problem P1




Large steps

Using y small, say Y= 0.1, we obtain large steps. This uses to work well in
practice, but some sort of line search is needed, to avoid leaving the
neighborhood. Predictor-corrector methods are better, as we shall see.




Large steps




Adaptive methods

Assume that (x, s) feasible is given in (), but no value of u is given. Then we
know:

@ if (x,s) is a central point, then xs = ue implies x”s = nu. Hence the best
choice for wis u = s7s/n.

@ If (x,s) is not a central point, the value u(x,s) = x’'s/n gives a parameter
value which in a certain sense is the best possible.

@ An adaptive algorithm does not use a value of u coming from a former
iteration: it computes u(x,s) and then chooses a value yu(x,s) as new
target.

@ The target may be far. Compute a direction («,v) and follow it until

S(x+Au,s+Av, u(x+Au, s +Av)) =






Predictor-corrector methods

Alternate two kinds of iterations:
@ Predictor: An iteration starts with (x,s) near the central path, and
computes a Newton step (u,v) with goal yu(x, s), vy small.
@ Follow it until
S(x+Au, s+ Av, u(x+Au,s +Av)) =

@ Corrector: Set x™ = x+Au, st = s+ Av, compute u = u(x",s") and take
a Newton step with target u



Predictor-corrector methods

Alternate two kinds of iterations:
@ Predictor: An iteration starts with (x,s) near the central path, and
computes a Newton step (u,v) with goal yu(x, s), vy small.

@ Follow it until
S(x+Au, s+ Av, u(x+Au,s +Av)) =

@ Corrector: Set x™ = x+Au, st = s+ Av, compute u = u(x",s") and take
a Newton step with target u

@ If the predictor uses y =0, it is called the affine scaling step. It has no
centering, and tries to solve the original problem in one step.

@ Using a neighborhood with § = 0.5, the resulting algorithm (the
Mizuno-Todd-Ye algorithm) converges quadratically to an optimal solution,
keeping the complexity at its best value of O(,/nL) iterations.



Predictor-corrector



Mehrotra Predictor-corrector method: second order

When computing the Newton step, we eliminated the nonlinear term uv in the
equation
XS +su+xv+uy = ue
Qu+Rv = 0

The second order method corrects the values of u,v by estimating the value of
the term uv by a predictor step.

@ Predictor: An iteration starts with (x,s) near the central path, and
computes a Newton step (u,v) with goal u™, small. The first equation is

xv+su=—xs+ute
@ Compute a correction (Au,Av) by
XAv + sAu = —uv.

@ Line search: Set x™ = x4+ A+ A?Au, sT = s+ Av+A%Av, by a line
search so that 8(x™, s, u(x*,s7)) = B.



Mehrotra Predictor-corrector



