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Definition

Input
Complete digraph D = (V ,A) with V = {0, . . . ,n − 1}
Arc costs vectors c1 and c2

k: number of uncapacitated stacks

Problem
Find two hamiltonian circuits C 1 and C 2 s.t.

There exists a loading plan into k stacks
c1(C 1) + c2(C 2) is minimum

Remark
k = 1: reduces to compute one ATSP
k ≥ n − 1: reduces to compute two ATSPs
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Consistency

C 1 and C 2 k-consistent ⇔ there exists a loading plan into k stacks

Proposition (Bonomo et al., Toulouse et al., Casazza et al.)
C 1 and C 2 are k-consistent iff no k + 1 vertices of V \ {0} form
an increasing sequence for both circuits.

Proof: (⇒)
easy.
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C 1 and C 2 k-consistent ⇔ there exists a loading plan into k stacks

Proposition (Bonomo et al., Toulouse et al., Casazza et al.)
C 1 and C 2 are k-consistent iff no k + 1 vertices of V \ {0} form
an increasing sequence for both circuits.

Proof: (⇐)
i ≺ j if i precedes j in C 1 and C 2 for i 6= j ∈ V \ {0}.
G = (V \ {0},E), E = {ij : i ≺ j or j ≺ i}.
Increasing sequence ⇔ clique in G.
Size of a clique in G is at most k.
G is perfect ⇒ χ(G) ≤ k.
Each color (stable set) corresponds to a stack.
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Consistency

C 1 and C 2 k-consistent ⇔ there exists a loading plan into k stacks

Proposition (Bonomo et al., Toulouse et al., Casazza et al.)
C 1 and C 2 are k-consistent iff no k + 1 vertices of V \ {0} form
an increasing sequence for both circuits.

Remark
Checking consistency can be done in polynomial time.
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State of the art

Consistency with stack capacity (Bonomo et al.)
NP-complete in general
Polynomial for fixed k

From stacks to ATSPs (Toulouse et al., Casazza et al.)
NP-complete in general
Polynomial for fixed k (dynamic programming)

Approximation (Toulouse)
Uncapacitated: 1/2 approx for max STSP2S
Capacitated: 1/2 - ε differential approx
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State of the art

Local searches (Petersen et al., Felipe et al., Côté et al.)
VNS
LNS

Results up to n = 67 (3 stacks)

Exact Algorithms
Different ILP (Petersen et al., Alba et al.): B&B, B&C
k best TSPs (Lusby et al.)
B&B for 2 stacks (Carrabs et al.)

Results up to n = 14 (2 stacks)
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Polyhedral results

Lemma
C hamiltonian circuit. S set of circuits k-consistent with C .
If k ≥ 2, then dim(conv(S)) = dim(ATSPn).

Idn = 0,n − 1,n − 2, . . . , 1
Proof:

W.l.o.g., C = Idn . Set dn = dim(ATSPn).
dim(conv(S)) ≤ dn .
Since P2,n ⊆ Pk,n , find dn + 1 affinely independant circuits
2-consistent with Idn .
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Polyhedral results

Lemma
C hamiltonian circuit. S set of circuits k-consistent with C .
If k ≥ 2, then dim(conv(S)) = dim(ATSPn).

Idn = 0,n − 1,n − 2, . . . , 1
Proof: (Induction)

True for n ≤ 4.
Hypothesis: C1, . . . ,Cdn+1 a.i. 2-consistent with Idn .
(Ci ,n) 2-consistent with Idn+1 for i = 1, . . . , dn + 1.

⇒ dn + 1 a.i. circuits 2-consistent with Idn+1.

Remark: Each of them contains the arc (n, 0).

M. Lacroix The Uncapacitated Asymmetric TSP with MS 10 / 23



General results
Focus on two stacks

Introduction
Polyhedral results

Polyhedral results

Lemma
C hamiltonian circuit. S set of circuits k-consistent with C .
If k ≥ 2, then dim(conv(S)) = dim(ATSPn).

Idn = 0,n − 1,n − 2, . . . , 1
Proof: (Induction)
Adding new a.i. circuits:

n

n − 12

0

1 n − 2

Unused arcs
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Theorem (Borne, Grappe, L.)
Given k ≥ 2, dim(Pk,n) = 2dn .

Proof:
C1, . . . ,Cdn+1 a.i. hamiltonian circuits.
H1, . . . ,Hdn+1 a.i. circuits 2-consistent with Cdn+1.


λ1

(
C1

C1

)
· · ·

+ λdn

(
Cdn

Cdn

)

+ µ1

(
Cdn+1

H1

)
· · ·

+ µdn+1

(
Cdn+1

Hdn+1

)

= 0

�
�
��S
S
SS

dn∑
i=1

λi +
dn+1∑
i=1

µi = 0

dn∑
i=1

λiCi +
dn+1∑
i=1

µiCdn+1 = 0⇒ λi = 0, ∀i = 1, . . . dn .
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Theorem (Borne, Grappe, L.)
Given k ≥ 2, every facet of ATSPn defines a facet of Pk,n .

Proof:
C1, . . . ,Cdn a.i. hamiltonian circuits of a facet F of ATSPn .
H1, . . . ,Hdn+1 a.i. circuits 2-consistent with Cdn .

(
C1

C1

)
· · ·

(
Cdn−1

Cdn−1

)(
Cdn

H1

)
· · ·

(
Cdn

Hdn+1

)
a.i. and belong to F ′.
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Formulation

Variables

xh
ij =

{
1 if (i, j) belongs to C h ,
0 otherwise, ∀ h = 1, 2, ∀ (i, j) ∈ A.

Linear ATSP Constraints∑
j∈V\{i}

xh
ij = 1 ∀ i ∈ V ,∀ h = 1, 2, (1)

∑
i∈V\{j}

xh
ij = 1 ∀ j ∈ V ,∀ h = 1, 2, (2)

∑
a∈δ+(W )

xh
a ≥ 1 ∀ ∅ ⊂W ⊂ V ,∀ h = 1, 2, (3)

0 ≤ xh
a ≤ 1 ∀ a ∈ A, ∀ h = 1, 2. (4)
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General results
Focus on two stacks

Formulation
Valid inequalities

Formulation
C 1 and C 2 2-consistent ⇔ @ i, j, k with i ≺ j ≺ k

Forbidden structure

0

k i
j

Consistency constraints
∑

h=1,2

∑
a∈Ph

xh
a ≤ |P1|+ |P2| − 1 ∀ i 6= j 6= k 6= i ∈ V \ {0},

∀ P1,P2 ∈ P0
ij(D \ {k}).

(5)

Theorem (Borne, Grappe, L.)
P2,n = conv({(x1, x2) ∈ {0, 1}A × {0, 1}A : (x1, x2) satisfies (1)-(5)})
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Linear relaxation

Theorem (Borne, Grappe, L.)
The linear relaxation is polynomial-time solvable.

Proof:

Constraints (1),(2),(4): polynomial number
Constraints (3): polynomial number of minimum cuts

M. Lacroix The Uncapacitated Asymmetric TSP with MS 16 / 23



General results
Focus on two stacks

Formulation
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Linear relaxation

Theorem (Borne, Grappe, L.)
The linear relaxation is polynomial-time solvable.

Proof:

Consistency constraints (x̃ = 1− x̄)

∑
h=1,2

∑
a∈Ph

x̃h
a ≥ 1 ∀ i 6= j 6= k 6= i ∈ V \ {0},

∀ P1,P2 ∈ P0
ij(D \ {k}).

For fixed i, j, k:
Find a minimum i0j-path Ph of D \ {k} for h = 1, 2.
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Linear relaxation

Theorem (Borne, Grappe, L.)
The linear relaxation is polynomial-time solvable.

Proof:

For fixed i, j, k and fixed h:
Compute in D \ {k}:

Q1: minimum i0-path
Q2: minimum 0j-path

If x̃h((Q1,Q2)) < 1, then (Q1,Q2) is a i0j-path.
⇒ Computation of 2 minimum paths.

⇒ Polynomial separation for consistency inequalities (5).
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Strenghtening the consistency constraints (Alba et al.)

Adding arcs in each path Ph

0 j
i
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New inequalities

i j k

P3-subgraph inequalities

x1(B) + x2(B) ≤ 3

B: Set of arcs in the figure.
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Formulation
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New inequalities

l

i j k

P3-subgraph inequalities

x1(B) + x2(B) ≤ 5

B: Set of arcs in the figure.
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Formulation
Valid inequalities

New inequalities

U1 U2 U3

P3-subgraph inequalities

x1(B) + x2(B) ≤ 2(|U1|+ |U2|+ |U3| − 1)− 1

B: Set of arcs in the figure.
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P4-subgraph inequalities

x1(B) + x2(B) ≤ 4

B: Set of arcs in the figure.
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x1(B) + x2(B) ≤ 2(|U0|+ |U1|+ 1)− 2

B: Set of arcs in the figure.
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x1(B) + x2(B) ≤ 2(|U0|+ |U2|+ 1)− 2
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New inequalities
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B: Set of arcs in the figure
U = {0, 1, 2, 3, 4}

If C h ∩ B is a path covering U :
1 ≺Ch 3 ≺Ch 4

there exists v1 ∈ U1 s.t. v1 ≺Ch 3 ≺Ch 4 ≺Ch V \U

W5-subgraph inequalities

x1(B) + x2(B) ≤ 7
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New inequalities
3 4

0

U2

1

B: Set of arcs in the figure
U = {0, 1, 3, 4} ∪U2

If C h ∩ B is a path covering U :
1 ≺Ch 3 ≺Ch 4

there exists v1 ∈ U1 s.t. v1 ≺Ch 3 ≺Ch 4 ≺Ch V \U

W5-subgraph inequalities

x1(B) + x2(B) ≤ 2(|U2|+ 3)− 1
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Formulation
Valid inequalities

New inequalities

U1

3 4

0

U2

B: Set of arcs in the figure
U = {0, 3, 4} ∪U1 ∪U2

If C h ∩ B is a path covering U :
either U1 ≺Ch 3 ≺Ch 4
or there exists v1 ∈ U1 s.t. v1 ≺Ch 3 ≺Ch 4 ≺Ch V \U

W5-subgraph inequalities

x1(B) + x2(B) ≤ 2(|U1|+ |U2|+ 2)− 1
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Conclusion
Polyhedral results
Formulation for 2 stacks
Valid inequalities

Perspectives
Separation algorithms
Taking into account stack capacities
Adding extra variables (?)
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