The Uncapacitated Asymmetric Traveling Salesman Problem with Multiple Stacks

Mathieu Lacroix

LIPN - AOC
Université Paris 13

JFRO - March 2012
Joint work with Sylvie Borne and Roland Grappe

Agenda

(1) General results

- Introduction
- Polyhedral results
(2) Focus on two stacks
- Formulation
- Valid inequalities

Agenda

(1) General results

- Introduction
- Polyhedral results
(2) Focus on two stacks
- Formulation
- Valid inequalities

Example

Definition

Input

- Complete digraph $D=(V, A)$ with $V=\{0, \ldots, n-1\}$
- Arc costs vectors c^{1} and c^{2}
- k : number of uncapacitated stacks

Problem

Find two hamiltonian circuits C^{1} and C^{2} s.t.

- There exists a loading plan into k stacks
- $c^{1}\left(C^{1}\right)+c^{2}\left(C^{2}\right)$ is minimum

Remark

- $k=1$: reduces to compute one ATSP
- $k \geq n-1$: reduces to compute two ATSPs

Consistency

C^{1} and $C^{2} k$-consistent \Leftrightarrow there exists a loading plan into k stacks

Proposition (Bonomo et al., Toulouse et al., Casazza et al.) C^{1} and C^{2} are k-consistent iff no $k+1$ vertices of $V \backslash\{0\}$ form an increasing sequence for both circuits.

Proof: (\Rightarrow)

easy.

Consistency

C^{1} and $C^{2} k$-consistent \Leftrightarrow there exists a loading plan into k stacks

Proposition (Bonomo et al., Toulouse et al., Casazza et al.)

C^{1} and C^{2} are k-consistent iff no $k+1$ vertices of $V \backslash\{0\}$ form an increasing sequence for both circuits.

Proof: (\Leftarrow)

- $i \prec j$ if i precedes j in C^{1} and C^{2} for $i \neq j \in V \backslash\{0\}$.
- $G=(V \backslash\{0\}, E), E=\{i j: i \prec j$ or $j \prec i\}$.
- Increasing sequence \Leftrightarrow clique in G.
- Size of a clique in G is at most k.
- G is perfect $\Rightarrow \chi(G) \leq k$.
- Each color (stable set) corresponds to a stack.

Consistency

C^{1} and $C^{2} k$-consistent \Leftrightarrow there exists a loading plan into k stacks

> Proposition (Bonomo et al., Toulouse et al., Casazza et al.)
> C^{1} and C^{2} are k-consistent iff no $k+1$ vertices of $V \backslash\{0\}$ form an increasing sequence for both circuits.

Remark

Checking consistency can be done in polynomial time.

State of the art

Consistency with stack capacity (Bonomo et al.)

- NP-complete in general
- Polynomial for fixed k

From stacks to ATSPs (Toulouse et al., Casazza et al.)

- NP-complete in general
- Polynomial for fixed k (dynamic programming)

Approximation (Toulouse)

- Uncapacitated: $1 / 2$ approx for max STSP2S
- Capacitated: $1 / 2$ - ϵ differential approx

State of the art

Local searches (Petersen et al., Felipe et al., Côté et al.)

- VNS
- LNS

Results up to $n=67$ (3 stacks)

Exact Algorithms

- Different ILP (Petersen et al., Alba et al.): B\&B, B\&C
- k best TSPs (Lusby et al.)
- B\&B for 2 stacks (Carrabs et al.)

Results up to $n=14$ (2 stacks)

Agenda

(1) General results

- Introduction
- Polyhedral results
(2) Focus on two stacks
- Formulation
- Valid inequalities

Polyhedral results

Lemma

C hamiltonian circuit. \mathcal{S} set of circuits k-consistent with C. If $k \geq 2$, then $\operatorname{dim}(\operatorname{conv}(\mathcal{S}))=\operatorname{dim}\left(A T S P_{n}\right)$.

$$
\overline{I d}_{n}=0, n-1, n-2, \ldots, 1
$$

Proof:

- W.l.o.g., $C=\overline{I d}_{n}$. Set $d_{n}=\operatorname{dim}\left(A T S P_{n}\right)$.
- $\operatorname{dim}(\operatorname{conv}(\mathcal{S})) \leq d_{n}$.
- Since $\mathcal{P}_{2, n} \subseteq \mathcal{P}_{k, n}$, find $d_{n}+1$ affinely independant circuits 2-consistent with $\overline{I d}_{n}$.

Polyhedral results

Lemma

C hamiltonian circuit. \mathcal{S} set of circuits k-consistent with C. If $k \geq 2$, then $\operatorname{dim}(\operatorname{conv}(\mathcal{S}))=\operatorname{dim}\left(A T S P_{n}\right)$.

$$
\overline{I d}_{n}=0, n-1, n-2, \ldots, 1
$$

Proof: (Induction)

- True for $n \leq 4$.
- Hypothesis: $C_{1}, \ldots, C_{d_{n}+1}$ a.i. 2-consistent with $\overline{I d}_{n}$.
- $\left(C_{i}, n\right) 2$-consistent with $\overline{I d}_{n+1}$ for $i=1, \ldots, d_{n}+1$.
$\Rightarrow d_{n}+1$ a.i. circuits 2 -consistent with $\overline{I d}_{n+1}$.
Remark: Each of them contains the arc $(n, 0)$.

Polyhedral results

Lemma

C hamiltonian circuit. \mathcal{S} set of circuits k-consistent with C. If $k \geq 2$, then $\operatorname{dim}(\operatorname{conv}(\mathcal{S}))=\operatorname{dim}\left(A T S P_{n}\right)$.

$$
\overline{I d}_{n}=0, n-1, n-2, \ldots, 1
$$

Proof: (Induction)
Adding new a.i. circuits:

Polyhedral results

Lemma

C hamiltonian circuit. \mathcal{S} set of circuits k-consistent with C. If $k \geq 2$, then $\operatorname{dim}(\operatorname{conv}(\mathcal{S}))=\operatorname{dim}\left(A T S P_{n}\right)$.

$$
\overline{I d}_{n}=0, n-1, n-2, \ldots, 1
$$

Proof: (Induction)
Adding new a.i. circuits:

- $0,2,3, \ldots, n-2, n, 1, n-1$

Polyhedral results

Lemma

C hamiltonian circuit. \mathcal{S} set of circuits k-consistent with C. If $k \geq 2$, then $\operatorname{dim}(\operatorname{conv}(\mathcal{S}))=\operatorname{dim}\left(A T S P_{n}\right)$.

$$
\overline{I d}_{n}=0, n-1, n-2, \ldots, 1
$$

Proof: (Induction)
Adding new a.i. circuits:

- $0,2,3, \ldots, n-2, n, 1, n-1$
- $0, i+1, i+2, \ldots, n, 1,2, \ldots, i$, for $i=1,2, \ldots, n-2$

Polyhedral results

Lemma

C hamiltonian circuit. \mathcal{S} set of circuits k-consistent with C. If $k \geq 2$, then $\operatorname{dim}(\operatorname{conv}(\mathcal{S}))=\operatorname{dim}\left(A T S P_{n}\right)$.

$$
\overline{I d}_{n}=0, n-1, n-2, \ldots, 1
$$

Proof: (Induction)
Adding new a.i. circuits:

- $0,2,3, \ldots, n-2, n, 1, n-1$
- $0, i+1, i+2, \ldots, n, 1,2, \ldots, i$,
for $i=1,2, \ldots, n-2$
- $0, n, 1,2, \ldots, n-1$

Polyhedral results

Lemma

C hamiltonian circuit. \mathcal{S} set of circuits k-consistent with C. If $k \geq 2$, then $\operatorname{dim}(\operatorname{conv}(\mathcal{S}))=\operatorname{dim}\left(A T S P_{n}\right)$.

$$
\overline{I d}_{n}=0, n-1, n-2, \ldots, 1
$$

Proof: (Induction)
Adding new a.i. circuits:

- $0,2,3, \ldots, n-2, n, 1, n-1$
- $0, i+1, i+2, \ldots, n, 1,2, \ldots, i$,
for $i=1,2, \ldots, n-2$
- $0, n, 1,2, \ldots, n-1$
- $0,1, \ldots, i-1, n, i+1, i+2, \ldots, n-1$, for $i=2,3, \ldots, n-1$

Polyhedral results

Theorem (Borne, Grappe, L.)

Given $k \geq 2, \operatorname{dim}\left(\mathcal{P}_{k, n}\right)=2 d_{n}$.
Proof:

- $C_{1}, \ldots, C_{d_{n}+1}$ a.i. hamiltonian circuits.
- $H_{1}, \ldots, H_{d_{n}+1}$ a.i. circuits 2 -consistent with $C_{d_{n}+1}$.

$$
\binom{C_{1}}{\bar{C}_{1}} \ldots \quad\binom{C_{d_{n}}}{\bar{C}_{d_{n}}} \quad\binom{C_{d_{n}+1}}{H_{1}} \cdots \quad\binom{C_{d_{n}+1}}{H_{d_{n}+1}}
$$

Polyhedral results

Theorem (Borne, Grappe, L.)

Given $k \geq 2, \operatorname{dim}\left(\mathcal{P}_{k, n}\right)=2 d_{n}$.
Proof:

- $C_{1}, \ldots, C_{d_{n}+1}$ a.i. hamiltonian circuits.
- $H_{1}, \ldots, H_{d_{n}+1}$ a.i. circuits 2 -consistent with $C_{d_{n}+1}$.

$$
\left\{\begin{array}{l}
\lambda_{1}\binom{C_{1}}{\bar{C}_{1}} \cdots+\lambda_{d_{n}}\binom{C_{d_{n}}}{\bar{C}_{d_{n}}}+\mu_{1}\binom{C_{d_{n}+1}}{H_{1}} \cdots+\mu_{d_{n}+1}\binom{C_{d_{n}+1}}{H_{d_{n}+1}}=0 \\
\sum_{i=1}^{d_{n}} \lambda_{i}+\sum_{i=1}^{d_{n}+1} \mu_{i}=0
\end{array}\right.
$$

Polyhedral results

Theorem (Borne, Grappe, L.)

Given $k \geq 2, \operatorname{dim}\left(\mathcal{P}_{k, n}\right)=2 d_{n}$.
Proof:

- $C_{1}, \ldots, C_{d_{n}+1}$ a.i. hamiltonian circuits.
- $H_{1}, \ldots, H_{d_{n}+1}$ a.i. circuits 2 -consistent with $C_{d_{n}+1}$.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\lambda_{1}\binom{C_{1}}{\bar{C}_{1}} \cdots+\lambda_{d_{n}}\binom{C_{d_{n}}}{\bar{C}_{d_{n}}}+\mu_{1}\binom{C_{d_{n}+1}}{H_{1}} \cdots+\mu_{d_{n}+1}\binom{C_{d_{n}+1}}{H_{d_{n}+1}}=0 \\
\sum_{i=1}^{d_{n}} \lambda_{i}+\sum_{i=1}^{d_{n}+1} \mu_{i}=0
\end{array}\right. \\
& \sum_{i=1}^{d_{n}} \lambda_{i} C_{i}+\sum_{i=1}^{d_{n}+1} \mu_{i} C_{d_{n}+1}=0 \Rightarrow \lambda_{i}=0, \forall i=1, \ldots d_{n} .
\end{aligned}
$$

Polyhedral results

Theorem (Borne, Grappe, L.)

Given $k \geq 2, \operatorname{dim}\left(\mathcal{P}_{k, n}\right)=2 d_{n}$.
Proof:

- $C_{1}, \ldots, C_{d_{n}+1}$ a.i. hamiltonian circuits.
- $H_{1}, \ldots, H_{d_{n}+1}$ a.i. circuits 2 -consistent with $C_{d_{n}+1}$.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\lambda_{1}\binom{C_{1}}{\bar{e}_{1}} \cdots+\lambda_{d_{n}}\binom{\bar{d}_{d_{n}}}{\bar{\sigma}_{d_{n}}}+\mu_{1}\binom{C_{d_{n}+1}}{H_{1}} \cdots+\mu_{d_{n}+1}\binom{C_{d_{n}+1}}{H_{d_{n}+1}}=0 \\
\lambda_{i}+\sum_{i=1}^{d_{n}+1} \mu_{i}=0
\end{array}\right. \\
& \sum_{i=1}^{d_{n}} \lambda_{i} C_{i}+\sum_{i=1}^{d_{n}+1} \mu_{i} C_{d_{n}+1}=0 \Rightarrow \lambda_{i}=0, \forall i=1, \ldots d_{n} .
\end{aligned}
$$

Polyhedral results

Theorem (Borne, Grappe, L.)

Given $k \geq 2, \operatorname{dim}\left(\mathcal{P}_{k, n}\right)=2 d_{n}$.

Proof:

- $C_{1}, \ldots, C_{d_{n}+1}$ a.i. hamiltonian circuits.
- $H_{1}, \ldots, H_{d_{n}+1}$ a.i. circuits 2 -consistent with $C_{d_{n}+1}$.

$$
\left\{\begin{array}{l}
\lambda_{1}\binom{C_{1}}{\bar{C}_{1}} \ldots+\lambda_{d_{n}}\binom{\bar{\sigma}_{d_{n}}}{\bar{\epsilon}_{d_{n}}}+\mu_{1}\binom{C_{d_{n}+1}}{H_{1}} \cdots+\mu_{d_{n}+1}\binom{C_{d_{n}+1}}{H_{d_{n}+1}}=0 \\
\sum_{i=1}^{d_{n}} \lambda_{i}+\sum_{i=1}^{d_{n}+1} \mu_{i}=0
\end{array}\right.
$$

$\sum_{i=1}^{d_{n}+1} \mu_{i} H_{i}=0 \Rightarrow \mu_{i}=0, \forall i=1, \ldots d_{n}+1$.

Polyhedral results

Theorem (Borne, Grappe, L.)

Given $k \geq 2, \operatorname{dim}\left(\mathcal{P}_{k, n}\right)=2 d_{n}$.

Proof:

- $C_{1}, \ldots, C_{d_{n}+1}$ a.i. hamiltonian circuits.
- $H_{1}, \ldots, H_{d_{n}+1}$ a.i. circuits 2 -consistent with $C_{d_{n}+1}$.

$$
\left\{\begin{array}{l}
\lambda_{1}\binom{C_{1}}{\bar{C}_{1}} \ldots \lambda_{d_{n}}\binom{\bar{\sigma}_{d_{n}}}{\bar{\epsilon}_{d_{n}}}+\mu_{1}\binom{C_{d_{n}+1}}{H_{1}} \cdots+\mu_{d_{n}+1}\binom{C_{d_{n}+1}}{H_{d_{n}+1}}=0 \\
\sum_{i=1}^{d_{n}} \lambda_{i}+\sum_{i=1}^{d_{n}+1} \mu_{i}=0
\end{array}\right.
$$

$\sum_{i=1}^{d_{n}+1} \mu_{i} H_{i}=0 \Rightarrow \mu_{i}=0, \forall i=1, \ldots d_{n}+1$.

Polyhedral results

Theorem (Borne, Grappe, L.)

Given $k \geq 2$, every facet of $A T S P_{n}$ defines a facet of $\mathcal{P}_{k, n}$.
Proof:

- $C_{1}, \ldots, C_{d_{n}}$ a.i. hamiltonian circuits of a facet F of $A T S P_{n}$.
- $H_{1}, \ldots, H_{d_{n}+1}$ a.i. circuits 2-consistent with $C_{d_{n}}$.

$$
\binom{C_{1}}{\bar{C}_{1}} \cdots\binom{C_{d_{n}-1}}{\bar{C}_{d_{n}-1}}\binom{C_{d_{n}}}{H_{1}} \cdots\binom{C_{d_{n}}}{H_{d_{n}+1}} \text { a.i. and belong to } F^{\prime} \text {. }
$$

Agenda

(1) General results

- Introduction
- Polyhedral results
(2) Focus on two stacks
- Formulation
- Valid inequalities

Formulation

Variables

$$
x_{i j}^{h}= \begin{cases}1 & \text { if }(i, j) \text { belongs to } C^{h}, \\ 0 & \text { otherwise },\end{cases}
$$

Linear ATSP Constraints

$$
\begin{align*}
& \sum_{j \in V \backslash\{i\}} x_{i j}^{h}=1 \quad \forall i \in V, \forall h=1,2, \tag{1}\\
& \sum_{i \in V \backslash\{j\}} x_{i j}^{h}=1 \quad \forall j \in V, \forall h=1,2, \tag{2}\\
& \sum_{a \in \delta^{+}(W)} x_{a}^{h} \geq 1 \quad \forall \emptyset \subset W \subset V, \forall h=1,2, \tag{3}\\
& 0 \leq x_{a}^{h} \leq 1 \tag{4}
\end{align*} \quad \forall a \in A, \forall h=1,2 .
$$

Formulation

C^{1} and $C^{2} 2$-consistent $\Leftrightarrow \nexists i, j, k$ with $i \prec j \prec k$

Forbidden structure

Consistency constraints

$$
\sum_{h=1,2} \sum_{a \in P^{h}} x_{a}^{h} \leq\left|P^{1}\right|+\left|P^{2}\right|-1 \forall i \neq j \neq k \neq i \in V \backslash\{0\}, ~ \begin{align*}
& \forall i P^{1}, P^{2} \in \mathcal{P}_{i j}^{0}(D \backslash\{k\}) \tag{5}
\end{align*}
$$

Formulation

C^{1} and $C^{2} 2$-consistent $\Leftrightarrow \nexists i, j, k$ with $i \prec j \prec k$

Forbidden structure

Consistency constraints

$$
\sum_{h=1,2} \sum_{a \in P^{h}} x_{a}^{h} \leq\left|P^{1}\right|+\left|P^{2}\right|-1 \begin{align*}
& \forall i \neq j \neq k \neq i \in V \backslash\{0\} \tag{5}\\
& \forall P^{1}, P^{2} \in \mathcal{P}_{i j}^{0}(D \backslash\{k\})
\end{align*}
$$

Formulation

C^{1} and $C^{2} 2$-consistent $\Leftrightarrow \nexists i, j, k$ with $i \prec j \prec k$

Forbidden structure

Consistency constraints

$$
\sum_{h=1,2} \sum_{a \in P^{h}} x_{a}^{h} \leq\left|P^{1}\right|+\left|P^{2}\right|-1 \forall i \neq j \neq k \neq i \in V \backslash\{0\}, ~ \forall P^{1}, P^{2} \in \mathcal{P}_{i j}^{0}(D \backslash\{k\}) .
$$

Theorem (Borne, Grappe, L.)
$\mathcal{P}_{2, n}=\operatorname{conv}\left(\left\{\left(x^{1}, x^{2}\right) \in\{0,1\}^{A} \times\{0,1\}^{A}:\left(x^{1}, x^{2}\right)\right.\right.$ satisfies (1)-(5) $\left.\}\right)$

Linear relaxation

Theorem (Borne, Grappe, L.)

The linear relaxation is polynomial-time solvable.

Proof:

- Constraints (1),(2),(4): polynomial number
- Constraints (3): polynomial number of minimum cuts

Linear relaxation

Theorem (Borne, Grappe, L.)

The linear relaxation is polynomial-time solvable.
Proof:
Consistency constraints ($\tilde{x}=1-\bar{x})$

$$
\sum_{h=1,2} \sum_{a \in P^{h}} \tilde{x}_{a}^{h} \geq 1 \quad \begin{array}{ll}
& \forall i \neq j \neq k \neq i \in V \backslash\{0\}, \\
& \forall P^{1}, P^{2} \in \mathcal{P}_{i j}^{0}(D \backslash\{k\}) .
\end{array}
$$

- For fixed i, j, k :

Find a minimum $i 0 j$-path P^{h} of $D \backslash\{k\}$ for $h=1,2$.

Linear relaxation

Theorem (Borne, Grappe, L.)

The linear relaxation is polynomial-time solvable.

Proof:

- For fixed i, j, k and fixed h : Compute in $D \backslash\{k\}$:
- Q_{1} : minimum $i 0$-path
- Q_{2} : minimum $0 j$-path

If $\tilde{x}^{h}\left(\left(Q_{1}, Q_{2}\right)\right)<1$, then $\left(Q_{1}, Q_{2}\right)$ is a $i 0 j$-path.
\Rightarrow Computation of 2 minimum paths.
\Rightarrow Polynomial separation for consistency inequalities (5).

Agenda

(1) General results

- Introduction
- Polyhedral results
(2) Focus on two stacks
- Formulation
- Valid inequalities

Strenghtening the consistency constraints (Alba et al.)

Adding arcs in each path P^{h}

Strenghtening the consistency constraints (Alba et al.)

Adding arcs in each path P^{h}

Strenghtening the consistency constraints (Alba et al.)

Adding arcs in each path P^{h}

New inequalities

P_{3}-subgraph inequalities

$$
x^{1}(B)+x^{2}(B) \leq 3
$$

B : Set of arcs in the figure.

New inequalities

P_{3}-subgraph inequalities

$$
x^{1}(B)+x^{2}(B) \leq 3
$$

B : Set of arcs in the figure.

New inequalities

P_{3}-subgraph inequalities

$$
x^{1}(B)+x^{2}(B) \leq 5
$$

B : Set of arcs in the figure.

New inequalities

P_{3}-subgraph inequalities

$$
x^{1}(B)+x^{2}(B) \leq 2\left(\left|U_{1}\right|+\left|U_{2}\right|+\left|U_{3}\right|-1\right)-1
$$

B : Set of arcs in the figure.

New inequalities

P_{4}-subgraph inequalities

$$
x^{1}(B)+x^{2}(B) \leq 4
$$

B : Set of arcs in the figure.

New inequalities

P_{4}-subgraph inequalities

$$
x^{1}(B)+x^{2}(B) \leq 6
$$

B : Set of arcs in the figure.

New inequalities

P_{4}-subgraph inequalities

$$
x^{1}(B)+x^{2}(B) \leq 6
$$

B : Set of arcs in the figure.

New inequalities

P_{4}-subgraph inequalities

$$
x^{1}(B)+x^{2}(B) \leq 2\left(\left|U_{0}\right|+\left|U_{1}\right|+1\right)-2
$$

B : Set of arcs in the figure.

New inequalities

P_{4}-subgraph inequalities

$$
x^{1}(B)+x^{2}(B) \leq 6
$$

B : Set of arcs in the figure.

New inequalities

P_{4}-subgraph inequalities

$$
x^{1}(B)+x^{2}(B) \leq 2\left(\left|U_{0}\right|+\left|U_{2}\right|+1\right)-2
$$

B : Set of arcs in the figure.

New inequalities

B : Set of arcs in the figure $U=\{0,1,2,3,4\}$

If $C^{h} \cap B$ is a path covering U : $1 \prec_{C^{h}} 3 \prec_{C^{h}} 4$

W_{5}-subgraph inequalities

$$
x^{1}(B)+x^{2}(B) \leq 7
$$

New inequalities

B : Set of arcs in the figure $U=\{0,1,3,4\} \cup U_{2}$

If $C^{h} \cap B$ is a path covering U : $1 \prec_{C^{h}} 3 \prec_{C^{h}} 4$

W_{5}-subgraph inequalities

$$
x^{1}(B)+x^{2}(B) \leq 2\left(\left|U_{2}\right|+3\right)-1
$$

New inequalities

B : Set of arcs in the figure $U=\{0,3,4\} \cup U_{1} \cup U_{2}$

If $C^{h} \cap B$ is a path covering U :
either $U_{1} \prec_{C^{h}} 3 \prec_{C^{h}} 4$ or there exists $v_{1} \in U_{1}$ s.t. $v_{1} \prec_{C^{h}} 3 \prec_{C^{h}} 4 \prec_{C^{h}} V \backslash U$

W_{5}-subgraph inequalities

$$
x^{1}(B)+x^{2}(B) \leq 2\left(\left|U_{1}\right|+\left|U_{2}\right|+2\right)-1
$$

Conclusion \& Perspectives

Conclusion

- Polyhedral results
- Formulation for 2 stacks
- Valid inequalities

Perspectives

- Separation algorithms
- Taking into account stack capacities
- Adding extra variables (?)

Thank you for your attention

