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The cost
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Why it works

*Machine—learning algorithms have progressed in recent years, especially through the
development of deep learning and reinforcement—learning techniques based on neural
networks.

eComputing capacity has become available to train larger and more complex models much
faster. Graphics processing units (GPUs), originally designed to render the computer
graphics in video games, have been repurposed to execute the data and algorithm crunching
required for machine learning at speeds many times faster than traditional processor chips.
Key Trend Emerging: Specially design chips and Hardware for Machine Learning workloads
(Tensor Units).

*Massive amounts of data that can be used to train Machine Learning models are being
generated, for example through daily creation of billions of images, online click streams,
voice and video, mobile locations, and sensors embedded in the Internet of Things devices.
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From Learning
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Why would we learn to optimize in Communications?

« A Mathematical Theory of Communication », Bell System Technical Journal,
1948, C. E. Shannon

INFORMATION
SOURCE ~ TRANSMITTER RECEIVER ~ DESTINATION
> }J—‘ > >
SIGNAL RECEIVED
SIGNAL
MESSAGE MESSAGE
NOISE
SOURCE

Fig. 1—Schematic diagram of a general communication system,
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Deep Communications now?

FEEDBACK

Models are expensive to obtain
The E2E objective function is not defined mathematically
High Dimensional space with many parameters

Optimization is complex and difficult to perform
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Networks are becoming very complex
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Wireless Al: Key Technology
— Al/ML Wireless
What is Wireless Al i

NLPS
MBB

RNP/
- o Product

Goal oriented and self control in network Nagwork

management and optimization solution, can
overcome the problem when the network cannot
be accurately expressed with formula based on
big data and machine learning technology.

Big Data

Al in Wireless Comparison
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Al in wireless network

Reconstruct Wireless network using Al technique

Network Planning
and Optimization

Technique trend in Al/ML

®m New deep learning network architecture has

been proposed Al'in SON

® Rapid development of unsupervised learning
m Development of Al chipset /TPU

Trend when Al/ML used in wireless network

m Al/ML technique is designed into the network pipe, to
enable wireless network autonomic
® Improve the network operations

m Reduce the complexity of network fault diagnosis
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Al in Wireless
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Example

Motivation and Definition of EE

%
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Why do we need energy efficiency in
communications?

“Energy efficiency is defined as the number of bits which can be transmitted per
Joule of energy. 5G should support a 1000 times traffic increase in the next 10
years timeframe, with an energy consumption by the whole network of only half
that is typically consumed by today’s networks. This leads to the requirement
of an energy efficiency increase of x2000 in the next 10 years timeframe.” !

“5G will bring drastic energy efficiency improvement and develop energy
harvesting everywhere. This energy chase will cover terminal devices, network
elements, and the network as a whole including data centers.” ?
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Why do we need energy efficiency in
communications?

MOBILE DATA VOLUME
10Th/s/km?

A
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ENERGY EFFICIENCY
10% of current consumption
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The energy efficiency is defined as the system benefit-cost ratio in terms of
amount of data reliably transmitted over the energy that is required to do so.

m Transmit power p in the time slot T, over a bandwidth W, and channel h.
We can reliably transmit TW log,(1 + p|h|?) bit of information.

m But we consume T (up + P:) Joule of energy.

m 1 > 1 (amplifier non-idealities); P. > 0 (static power consumption, e.g.
DAC/ADC, filters, signal processing operation, ...).

m If we set 4 =0 and P. = 1, we fall back to channel capacity.

Summing up, the energy efficiency is

W log, (1 + plhl?)

EE =
pp + Pe

[bit/Joule]

m It is called the EARTH power model®. More sophisticated models exist
(non-linearities in the amplifier, power-dependent static power).

HUAWEI TECHNOLOGIES CO., LTD. u\_’ HUAWEeEI
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Figure: EE vs p, for fixed transmit directions.

The EE is not concave and does not always increase with the transmit power
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What if we have K communication links?
How to combine the EEs to define a network EE?

Several choices are possible:

1. Global Energy Efficiency

W DT R | loga(1 + pihil?)
Zle Lk Pk + Pe .k

GEE =

It is the ratio between the global benefit and global cost of the network,
but does not enable to tune the EE of the individual links.

2. Weighted arithmetic mean of the EEs

K 2
Sum—EE:ZWklogz(l—’_pk‘hk ) )
— kP + Pe k

It allows tuning the EE of the individual links by a suitable choice of the
weights (very useful in heterogeneous networks).

HUAWEI TECHNOLOGIES CO., LTD.
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EE maximization is usually written as
arg m;jax EE(p, H)

wherein
m EE could be GEE, or WSEE, or WPEE, or WMEE...
m p is the transmit power vector, H collects all network channels.

But we can also write the problem as
F(H) = arg max EE(p, H)

Proposed approach

Feedforward neural networks are universal function approximators [2].
A neural network can learn F.

References
[2] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,”
Neural Networks, vol. 2, pp. 359-366, 1989
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Deep Forward Neural Network

—————————————————

Input layer Hidden layer Outrpl_lt_lzlyer
1 1
I I

I
1
1
1
1
1
1
1
1
1
I
I
I
—_—h
I
I
a

m [ fully-connected layers, each having N, processing units called neurons.
m Data propagates only forward (from input to output)

m Each neuron performs an affine combination of its inputs, applies a
non-linear function, and propagates the result.

Ny
Xer1(n) = f (Z Xe (N Wei1,0(1) + bE+1,n)

i=1
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GEE Maximization in Interference Limited Networks

Interference network with K transmitters and M receivers.

- ()

'

m [ he receive filter used by receiver m to decode the data from user k is
Cm. k-

m All receivers have N receive antennas and thermal noise power o2.

Each transmitter k has a single antenna and transmits with power pg.

m [ he channel between transmitter kK and receiver m is hi m.
The SINR obtained by transmitter k at receiver m is:

|Can,khk,m|2Pk
o2 + Zj;ék Pj‘cg,khi.-mp

Yk,.m —
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GEE Maximization Problem

The goal is to maximize the system global energy efficiency (GEE), i.e.

S tog, (14 )
Pec +Zf<<:1 kPk

GEE(p) —

subject to the power constraints px € [0, Prax, k] for all k, and wherein
m VWV is the transmission bandwidth.
m i = 1 is the inverse of the amplifier efficiency of transmitter k.

m P, is the total hardware power dissipated in all network nodes.

We use a deep neural network to learn the map:

F(H) = arg geag GEE(p, H)

HUAWEI TECHNOLOGIES CO., LTD. - &”‘ HUAWEeEI
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ANN Training & Validation

Training and Validation Procedure

m Optimize the weights and bias terms of each layer.

m The training set consists of / pairs {(H;,p;)}!_;, with p; the optimal
power allocation when the system channels are H;.

m [he training set is generated offline solving the EE maximization problem.

m 10% of the training set is used as validation set, to set the network
hyper-parameters (number of layers, number of neurons, etc...).

m Mini-batch stochastic gradient descent is used as training algorithm.

m No regularization and no batch normalization (very simple setup).

Training and validation
need to be performed only sporadically

HUAWEI TECHNOLOGIES CO., LTD. 03 &”‘ HUAWEeEI
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Online Implementation

Very low complexity, namely closed-form ”optimal”
power allocation for yet unobserved channels.

Input layer Hidden layer Out'_pl_lt_lz_ayer
1 1

,,,,,

Ny
xew1(n) = F E xe (N We1,n(F) + bf—l—l,n)
i—1

Network Testing

m [rained network is tested over a test set of J new channel realizations
{Hj}}'le-

m For each channel H; the output of the network is compared to the solution
of the GEE maximization problem.

HUAWEI TECHNOLOGIES CO., LTD. ) &l”‘ HUAWEeEI
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Building the training set

If multi-user interference is not present (e.g. ZF receivers are used), building
the training set is simple:
m T he EE has a concave numerator and an affine denominator.
m Fractional programming (e.g. Dinkelbach’s algorithm) can be used to find
the EE-maximizing p, given any H, [1].

If multi-user interference is present, building the training set is harder (but is
done offline):
m [ he numerator of the EE is not concave and EE maximization becomes in
general NP-hard.
m For any given H, a (near-)optimal p is found by the sequential fractional
programming framework [3].
m Alternatively, for any given H, the globally optimal solution is found by
monotonic fractional programming [4].

[1] A. Zappone and E. Jorswieck, “"Energy efficiency in wireless networks via fractional programming theory,”
Foundations and Trends in Communications and Information Theory, vol. 11, no. 3-4, pp. 185—396, 2015
[3] A. Zappone, L. Sanguinetti, G. Bacci, E. A. Jorswieck, and M. Debbah, “Energy-efficient power control: A

look at 5G wireless technologies,” IEEE Transactions on Signal Processing, vol. 64, no. 7, pp. 1668—1683,
April 2016

[4] A. Zappone, E. Bjdrnson, L. Sanguinetti, and E. A. Jorswieck, “Globally optimal energy-efficient power
control and receiver design in wireless networks,” [EEE Transactions on Signal Processing, vol. 65, no. 11,
pPp. 2844—2859, June 2017
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Neural Network Architecture

m /Ny = 5 fully connected layers (no convolutional layers), with
18,16,14.12, 10 nodes in Layer 1,2,3,4,5, respectively.

m Training plus validation of /I = 10* points (split with ratio 0.9). This is
small for typical deep networks applications, but low complexity.

m The neural network is tested over a test set of dimension J = 10%.

Hidden laver Olltlpl_lt_hlyef
1

Iupllt_la_yer
1

m K = 10 users, M = 3 BSs with NV = 10 antennas each, Rayleigh fading
m o = 10, P. generated according to the model from [5]

References
[5] E. Bjornson, J. Hoydis, and L. Sanguinetti, “Massive MIMO networks spectral, energy, and hardware

efficiency,” Fowundations and Trends in Signal Processing, 2017
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GEE Comparison. LMMSE reception is used.

[kbit/Joule]

200 | —e—SFF'

—— ANN
=——té— Full Power

150 I 1 1 1
o] 5 10 15 20 25 30

Priar [dBm]

Figure: GEE versus SNR= P,,5x /02 for: GEE maximization by fractional programming
(black line); GEE Maximization by ANN (blue line); Full Power transmission (red line)

The maximum of the ratio between the values of the two curves is 1.0224,

obtained for SNR=0 dB.
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Power Consumption. LMMSE is used

30 T T T T

25 - B

—¥— Full Power

I I ! I
o] 5 10 15 20 25 20

Prae [dBm]

Figure: GEE versus SNR= P,.x/c? for: GEE maximization by fractional programming
(black line); GEE Maximization by ANN (blue line); Full Power transmission (red line)
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Example
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Edge User Throughput and VoLTE Background
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Al Assisted VOLTE and Edge User THP Optimization
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Innovation in Turkey — Edge THP Optimization

Test Area: Ankara Scoge: 699 Site, 2281LCell <1 Mbps Use Ratio Decrease while User Num Increase.
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Innovation in Turkey — VOLTE Optimization
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Model versus Data

Wireless Al: From Model-Based to Data-Driven
Communication Networks Design

Alessio Zappone', Marco Di Renzo?, Merouane Debbah'*
I LANEAS Group, Laboratory of Signals and Systems (CentraleSupelec - CNRS - Univ. Paris-Sud), Paris, France
? Laboratory of Signals and Systems (CNRS - CentraleSupelec - Univ. Paris-Sud), Paris, France
3 Mathematical and Algorithmic Sciences Laboratory, France Research Center, Huawei Technologies, Paris, France

...In writing...
(Invited paper @ IEEE Transactions on Communications)
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