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The cost of Understanding
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Why it works

•Machine-learning algorithms have progressed in recent years, especially through the 
development of deep learning and reinforcement-learning techniques based on neural 
networks.

•Computing capacity has become available to train larger and more complex models much 
faster. Graphics processing units (GPUs), originally designed to render the computer 
graphics in video games, have been repurposed to execute the data and algorithm crunching 
required for machine learning at speeds many times faster than traditional processor chips. 
Key Trend Emerging:  Specially design chips and Hardware for Machine Learning workloads 
(Tensor Units).

•Massive amounts of data that can be used to train Machine Learning models are being 
generated, for example through daily creation of billions of images, online click streams, 
voice and video, mobile locations, and sensors embedded in the Internet of Things devices.
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From Learning to recognize
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Why would we learn to optimize in Communications?

• « A Mathematical Theory of  Communication », Bell System Technical Journal, 
1948, C. E. Shannon
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Deep Communications now?

• Models are expensive to obtain

• The E2E objective function is not defined mathematically

• High Dimensional space with many parameters

• Optimization is complex and difficult to perform
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Networks are becoming very complex
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Wireless AI: Key Technology 
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 Physical Sub-health detection 
 VoLTE root cause analysis 
 Failure prediction 
 Network security risk analysis

 Traffic prediction 
 Experienced network 
 AI in SON 
 Use behavior analysis 

 CA policy selection 
 Slice resource management 
 Intelligent base station
 MEC deployment 

 AI/ML technique is designed into the network pipe, to 

enable wireless network autonomic

 Improve the network operations

 Reduce the complexity of network fault diagnosis 

 New deep learning network architecture has 

been proposed 

 Rapid development of unsupervised learning 

 Development of AI chipset /TPU

Technique trend in AI/ML

Trend when AI/ML used in wireless network

Reconstruct Wireless network using AI technique 
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AI in Wireless

AI NE AI
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Example
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Why do we need energy efficiency in 
communications?
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Deep Forward Neural Network
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GEE Maximization in Interference Limited Networks
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GEE Maximization Problem
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ANN Training & Validation
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Online Implementation
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Building the training set
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Neural Network Architecture
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GEE Comparison. LMMSE reception is used.
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Power Consumption. LMMSE is used
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Edge User THP Affect User Experience Than Average THP
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AI Assisted VoLTE and Edge User THP Optimization
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Innovation in Turkey – Edge THP Optimization

Test Area: Ankara Scope: 699 Site, 2281LCell
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Optimization

Optimization

<1 Mbps Use Ratio Decrease while User Num Increase.
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Innovation in Turkey – VoLTE Optimization

Test Area: Bursa    Scope: 188 Site, 877 LCell

Whole Network 
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Optimization

Optimization

DL/UL PLR Decrease Dramatically

PLR: Packet Loss Rate
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Model versus Data
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