

Equilibrium, Efficiency, and Dynamics

P. Mertikopoulos

French National Center for Scientific Research (CNRS) Laboratoire d'Informatique de Grenoble

ROADEF-MODE colloquium, June 8, 2018

CI

Backgrc ●○○	ound	Model and preliminaries	The PoA in practice 0000000000	Algorithms and dynamics	Conclusions and perspectives O
CITS	Outline				
	Backgrou	nd			

	Juna			
CITS	Traffic			
		how bad can it get?		

OOOOOO	0000000000000	Algorithms and dynamics	Conclusions and perspectives O
Pigou's example (1920's)			
inflow = 1 ($c_1(x_1) = 1$ D $c_2(x_2) = x_2$	
	Pigou's example (1920's)	Pigou's example (1920's) inflow = 1 O x_2	Pigou's example (1920's) $x_1 = 1$ inflow = 1 0 $x_2 = c_2(x_2) = x_2$

Equilibrium/Fair assignment

$$c_1(x_1) = c_2(x_2)$$
 (Eq)

Optimum assignment

minimize
$$C(x) = x_1c_1(x_1) + x_2c_2(x_2)$$

subject to $x_1 + x_2 = 1$ (Opt)

Equilibrium/Fair assignment

$$c_1(x_1) = c_2(x_2) \tag{Eq}$$

Optimum assignment

minimize
$$C(x) = x_1c_1(x_1) + x_2c_2(x_2)$$

subject to $x_1 + x_2 = 1$ (Opt)

How bad is selfish routing?

Price of Anarchy
$$\equiv \frac{C(\text{Eq})}{C(\text{Opt})} = \frac{4}{3}$$

		Model and preliminaries	Algorithms and dynamics	
CITS	Outline			
	Model ar	nd preliminaries		

The PoA in practice

Algorithms and dynamics

• Network: multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

 $c_4(x_4)$

• Network: multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

 $c_2(x_2)$

• O/D pairs $i \in \mathcal{I}$: origin O^i sends m^i units of traffic to destination D^i

- Network: multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- O/D pairs $i \in \mathcal{I}$: origin O^i sends m^i units of traffic to destination D^i
- Paths \mathcal{P}^i : (sub)set of paths joining $O^i \rightsquigarrow D^i$

- Network: multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- O/D pairs $i \in \mathcal{I}$: origin O^i sends m^i units of traffic to destination D^i
- Paths \mathcal{P}^i : (sub)set of paths joining $O^i \rightsquigarrow D^i$
- ▶ Routing flow f_p : traffic along $p \in \mathcal{P} \equiv \bigcup^i \mathcal{P}^i$ generated by O/D pair owning p

- Network: multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- O/D pairs $i \in \mathcal{I}$: origin O^i sends m^i units of traffic to destination D^i
- Paths \mathcal{P}^i : (sub)set of paths joining $O^i \rightsquigarrow D^i$
- ▶ Routing flow f_p : traffic along $p \in \mathcal{P} \equiv \bigcup^i \mathcal{P}^i$ generated by O/D pair owning p
- ► Load $x_e = \sum_{p \ge e} f_p$: total traffic along edge e

- Network: multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- O/D pairs $i \in \mathcal{I}$: origin O^i sends m^i units of traffic to destination D^i
- Paths \mathcal{P}^i : (sub)set of paths joining $O^i \rightsquigarrow D^i$
- ▶ Routing flow f_p : traffic along $p \in \mathcal{P} \equiv \bigcup^i \mathcal{P}^i$ generated by O/D pair owning p
- Load $x_e = \sum_{p \ge e} f_p$: total traffic along edge e
- Edge cost function $c_e(x_e)$: latency along edge e when edge load is x_e

- Network: multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- O/D pairs $i \in \mathcal{I}$: origin O^i sends m^i units of traffic to destination D^i
- Paths \mathcal{P}^i : (sub)set of paths joining $O^i \rightsquigarrow D^i$
- ▶ Routing flow f_p : traffic along $p \in \mathcal{P} \equiv \bigcup^i \mathcal{P}^i$ generated by O/D pair owning p
- Load $x_e = \sum_{p \ge e} f_p$: total traffic along edge e
- Edge cost function $c_e(x_e)$: latency along edge e when edge load is x_e
- Path cost: $c_p(f) = \sum_{e \in p} c_e(x_e)$

- Network: multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- O/D pairs $i \in \mathcal{I}$: origin O^i sends m^i units of traffic to destination D^i
- Paths \mathcal{P}^i : (sub)set of paths joining $O^i \rightsquigarrow D^i$
- ▶ Routing flow f_p : traffic along $p \in \mathcal{P} \equiv \bigcup^i \mathcal{P}^i$ generated by O/D pair owning p
- Load $x_e = \sum_{p \ge e} f_p$: total traffic along edge e
- Edge cost function $c_e(x_e)$: latency along edge e when edge load is x_e
- Path cost: $c_p(f) = \sum_{e \in p} c_e(x_e)$
- Nonatomic routing game: $\Gamma = (\mathcal{G}, \mathcal{I}, \{m^i\}_{i \in \mathcal{I}}, \{\mathcal{P}^i\}_{i \in \mathcal{I}}, \{c_e\}_{e \in \mathcal{E}})$

Model and preliminaries		
00000		

Fair/Envy-free traffic assignment

Wardrop's routing principle (Wardrop, 1952):

"At equilibrium, the delays along all utilized paths are equal and no higher than those that would be experienced by a traffic element going through an unused route"

Fairness: all traffic elements experience the same latency

Model and preliminaries		
00000		

Fair/Envy-free traffic assignment

Wardrop's routing principle (Wardrop, 1952):

"At equilibrium, the delays along all utilized paths are equal and no higher than those that would be experienced by a traffic element going through an unused route"

Fairness: all traffic elements experience the same latency

The flow profile $f^* \in \mathcal{F}$ is a Wardrop equilibrium if

 $c_{p^i}(f^*) \leq c_{q^i}(f^*)$ for all $i \in \mathcal{I}$ and all $p^i, q^i \in \mathcal{P}^i$ such that $f_{p^i}^* > 0$

Background 000	Model and preliminaries	The PoA in practice	Algorithms and dynamics	

Fair/Envy-free traffic assignment

Wardrop's routing principle (Wardrop, 1952):

"At equilibrium, the delays along all utilized paths are equal and no higher than those that would be experienced by a traffic element going through an unused route"

Fairness: all traffic elements experience the same latency

The flow profile $f^* \in \mathcal{F}$ is a Wardrop equilibrium if

$$c_{p^i}(f^*) \leq c_{q^i}(f^*)$$
 for all $i \in \mathcal{I}$ and all $p^i, q^i \in \mathcal{P}^i$ such that $f_{p^i}^* > 0$

Characterization of Wardrop equilibria (Beckmann et al, 1956):

minimize
$$\sum_{e \in \mathcal{E}} C_e(x_e)$$

subject to $x_e = \sum_{p \ni e} f_p, f \in \mathcal{F}$ (WE)

where $C_e(x_e) = \int_0^{x_e} c_e(w) dw$ is the primitive of c_e .

Efficient flows minimize aggregate latency in the network

minimize
$$C(f) = \sum_{p \in \mathcal{P}} f_p c_p(f)$$

subject to $f \in \mathcal{F}$ (LM)

	Model and preliminaries ○000●0	Algorithms and dynamics	
CITS The	price of anarchy		

- Efficient routing: $Opt(\Gamma) = \min_{f \in \mathcal{F}} C(f)$
- Equilibrium routing: $Eq(\Gamma) = C(f^*)$, with f^* a Wardrop equilibrium

	Model and preliminaries ○000●0	Algorithms and dynamics	
CITS The	price of anarchy		

- Efficient routing: $Opt(\Gamma) = \min_{f \in \mathcal{F}} C(f)$
- Equilibrium routing: $Eq(\Gamma) = C(f^*)$, with f^* a Wardrop equilibrium

Gap in efficiency measured by the price of anarchy (Koutsoupias & Papadimitriou, 1999)

$$PoA(\Gamma) = \frac{Eq(\Gamma)}{Opt(\Gamma)}$$

 $PoA(\Gamma) \ge 1$ with equality iff fair routing is also efficient

Background 000	Model and preliminaries ○0000●	The PoA in practice	Algorithms and dynamics	Conclusions and perspectives O
CITS How	bad is selfish routin	g?		

Theorem (Roughgarden & Tardos, 2002) Affine cost functions $(c_e(x_e) = a_e + b_e x_e)$: PoA $(\Gamma) \le 4/3$

	d Model and preliminaries ○0000●	Algorithms and dynamics	
CNTS	How had is selfish routing?		

Theorem (Roughgarden & Tardos, 2002) Affine cost functions $(c_e(x_e) = a_e + b_e x_e)$: PoA $(\Gamma) \le 4/3$

Theorem (Roughgarden, 2003)

Quartic (BPR) cost functions: $PoA(\Gamma) \le 5\sqrt[4]{5}/(5\sqrt[4]{5}-4) \approx 2.1505$

	ind Model and preliminaries	Algorithms and dynamics	
CNTS	How bad is selfish routing?		

Theorem (Roughgarden & Tardos, 2002) Affine cost functions $(c_e(x_e) = a_e + b_e x_e)$: PoA $(\Gamma) \le 4/3$

Theorem (Roughgarden, 2003)

Quartic (BPR) cost functions: $PoA(\Gamma) \le 5\sqrt[4]{5}/(5\sqrt[4]{5}-4) \approx 2.1505$

Theorem (Roughgarden, 2003) Polynomials of degree at most d: $PoA(\Gamma) = O(d/\log d)$

	Ind Model and preliminaries	Algorithms and dynamics	
CNTS	How had is selfish routing?		

Theorem (Roughgarden & Tardos, 2002) Affine cost functions ($c_e(x_e) = a_e + b_e x_e$): PoA(Γ) $\leq 4/3$

Theorem (Roughgarden, 2003)

Quartic (BPR) cost functions: $PoA(\Gamma) \le 5\sqrt[4]{5}/(5\sqrt[4]{5}-4) \approx 2.1505$

Theorem (Roughgarden, 2003)

Polynomials of degree at most d: PoA(Γ) = $\mathcal{O}(d/\log d)$

Remarks

- Independent of network topology
- Valid for any number of O/D pairs
- Envy-free routing can become **arbitrarily bad**: $d/\log d \to \infty$ as $d \to \infty$
- Sharpness: for any traffic inflow $M = \sum^{i} m^{i}$, these bounds can be realized

		The PoA in practice ●○○○○○○○○○	Algorithms and dynamics	
CITS	Outline			

Background

Model and preliminaries

The PoA in practice

Algorithms and dynamics

- In typical networks, PoA ≈ 1 when the traffic is light or heavy (Youn et al., 2008; O'Hare et al., 2016; Monnot et al., 2017)

- In typical networks, PoA ≈ 1 when the traffic is light or heavy (Youn et al., 2008; O'Hare et al., 2016; Monnot et al., 2017)

- ▶ Single O/D pair
- Three parallel links (no Braess-type shenanigans)
- \blacktriangleright C^{∞} -smooth, convex cost functions with polynomial growth

The PoA in practice 000000000 CI No!

0

- Single O/D pair
- ►. Three parallel links (no Braess-type shenanigans)
- C^{∞} -smooth, convex cost functions with polynomial growth

Proposition (Colini-Baldeschi, Cominetti, M & Scarsini, 2017)

In the above network, $PoA(\Gamma_M) \ge a > 1$ for all values of the traffic inflow M

What's wrong with this simple example?

	The PoA in practice ○000●00000	Algorithms and dynamics	
Cors			

Regular variation

Definition (Karamata, 1930's)

A function $g: [0, \infty) \rightarrow (0, \infty)$ is called *regularly varying at* $\omega \in \{0, \infty\}$ if

$$\lim_{t \to \omega} \frac{g(tx)}{g(t)} \quad \text{is finite and nonzero for all } x \ge 0. \tag{RV}$$

- $\omega = 0$: light traffic limit
- $\omega = \infty$: heavy traffic limit

Examples

- I. Affine functions: g(x) = ax + b
- 2. Polynomials: $g(x) = \sum_{k=1}^{d} a_k x^k$
- 3. Asymptotic polynomials: $g(x) \sim x^q$ for some $q \ge 0$
- 4. Real-analytic at ω ; logarithms; etc.

NB: Stronger than asking $g(x) = \Theta(x^q)$ (counterexample satisfies this)

Background 000	Model and preliminaries	The PoA in practice ○0000000000	Algorithms and dynamics	Conclusions and perspectives O
CITS Ron	chmark functions			

Benchmark functions

Main idea: use a regularly varying function c(x) as a benchmark:
Background 000	Model and preliminaries	The PoA in practice ○○○○○●○○○○	Algorithms and dynamics	Conclusions and perspectives O
CITS Bend	chmark functions			

- Edge index: $\alpha_e = \lim_{x \to \omega} c_e(x)/c(x)$
- Fast / slow / tight edge: $\alpha_e = 0, \infty$ or in-between

Background 000	Model and preliminaries	The PoA in practice ○○○○○○○○○○○	Algorithms and dynamics	Conclusions and perspectives O
CITS Bend	hmark functions			

- Edge index: $\alpha_e = \lim_{x \to \omega} c_e(x)/c(x)$
- Fast / slow / tight edge: $\alpha_e = 0, \infty$ or in-between
- Path index: $\alpha_p = \max_{e \in p} \alpha_e$ (bottleneck caused by slowest edge)
- Fast / slow / tight path: $\alpha_p = 0, \infty$ or in-between

		The PoA in practice ○0000€0000	Algorithms and dynamics	
Benc	hmark functions			

- Edge index: $\alpha_e = \lim_{x \to \omega} c_e(x)/c(x)$
- Fast / slow / tight edge: $\alpha_e = 0, \infty$ or in-between
- Path index: $\alpha_p = \max_{e \in p} \alpha_e$ (bottleneck caused by slowest edge)
- Fast / slow / tight path: $\alpha_p = 0, \infty$ or in-between
- Pair index: $\alpha^{i} = \min_{p \in \mathcal{P}^{i}} \alpha_{p}$ (traffic routed via fastest path)
- Fast / slow / tight pair: $\alpha^i = 0, \infty$ or in-between

		The PoA in practice ○0000€0000	Algorithms and dynamics	
Benc	hmark functions			

- Edge index: $\alpha_e = \lim_{x \to \omega} c_e(x)/c(x)$
- Fast / slow / tight edge: $\alpha_e = 0, \infty$ or in-between
- Path index: $\alpha_p = \max_{e \in p} \alpha_e$ (bottleneck caused by slowest edge)
- Fast / slow / tight path: $\alpha_p = 0, \infty$ or in-between
- Pair index: $\alpha^{i} = \min_{p \in \mathcal{P}^{i}} \alpha_{p}$ (traffic routed via fastest path)
- Fast / slow / tight pair: $\alpha^i = 0, \infty$ or in-between
- Network index: $\alpha = \min_{p \in \mathcal{P}} \alpha_p$ (bottleneck caused by slowest pair)
- Tight network: $\alpha \in (0, \infty)$

NB: Edges/paths/pairs that are slow in heavy traffic can be fast in light traffic and vice versa

	The PoA in practice ○00000●000	Algorithms and dynamics	
CITS			

Example: different benchmarks in a Wheatstone network

	The PoA in practice ○0000000000	Algorithms and dynamics	

Example: different benchmarks in a Wheatstone network

• Heavy traffic, benchmark c(x) = x: network is tight

С

	The PoA in practice ○0000000000	Algorithms and dynamics	

Example: different benchmarks in a Wheatstone network

- Heavy traffic, benchmark c(x) = x: network is tight
- Light traffic, benchmark c(x) = x: pair 2 is slow, network not tight

Х

	The PoA in practice ○0000000000	Algorithms and dynamics	

Example: different benchmarks in a Wheatstone network

- Heavy traffic, benchmark c(x) = x: network is tight
- Light traffic, benchmark c(x) = x: pair 2 is slow, network not tight
- Light traffic, benchmark c(x) = 1: network is tight

		The PoA in practice ○000000●00	Algorithms and dynamics	
CITS Asyn	nptotic analysis			

Theorem (Colini-Baldeschi, Cominetti, M & Scarsini, 2018)

Let Γ_M be a network with total traffic inflow M. If the network is tight in light ($\omega = 0$) and/or heavy ($\omega = \infty$) traffic, then

 $\lim_{M\to\omega}\operatorname{PoA}(\Gamma_M)=1$

Theorem (Colini-Baldeschi, Cominetti, M & Scarsini, 2018)

Let Γ_M be a network with total traffic inflow M. If the network is tight in light ($\omega = 0$) and/or heavy ($\omega = \infty$) traffic, then

 $\lim_{M\to\omega}\operatorname{PoA}(\Gamma_M)=1$

Corollary

If the network's cost functions are polynomials, $PoA(\Gamma_M) \rightarrow 1$ as $M \rightarrow \omega \in \{0, \infty\}$.

In networks with polynomial costs, the gap between fairness and efficiency disappears under both light and heavy traffic

The PoA converges to 1 following a power law

	The PoA in practice ○000000000	Algorithms and dynamics	
Corc			

Sioux Falls: a case study

The price of anarchy in Sioux Falls:

Average traffic inflow $M_{\rm avg} \approx 3.6 \times 10^5$ trips/hour (LeBlanc et al., 1975)

			Algorithms and dynamics	
CITS	Outline			
	Algorithr	ms and dynamics		

	Algorithms and dynamics	
	000000000000000000	

Towards optimality / equilibrium

Two (related) optimization problems:

I. Total latency minimization:

minimize
$$C(f) = \sum_{e \in \mathcal{E}} x_e c_e(x_e)$$

subject to $x_e = \sum_{p \ni e} f_p, f \in \mathcal{F}$ (LM)

2. Fairness (Wardrop equilibrium):

minimize
$$L(f) = \sum_{e \in \mathcal{E}} C_e(x_e)$$

subject to $x_e = \sum_{p \ni e} f_p, f \in \mathcal{F}$ (WE)

where $C_e(x_e) = \int_0^{x_e} c_e(w) dw$ is the primitive of c_e

How can either problem be solved in a scalable and efficient manner?

			Algorithms and dynamics	
CITS	Challenges			
	Generic problem formulation	on (single O/D pair for	r simplicity):	
		minimize $g(f)$ =	$=\sum_{e\in S}g_e(x_e)$	
		subject to $f \in \mathcal{F}$	e€Z	(Opt)
	where:			
	• $x_e = \sum_{p \ni e} f_p$		[ec	lge-route duality]
	• $\mathcal{F} = M \cdot \Delta(\mathcal{P}) = \{f$	$\in \mathbb{R}^{\mathcal{P}}_{+} : \sum_{p \in \mathcal{P}} f_p = M$	} [sir	nplicial structure]

			Algorithms and dynamics	
CITS	Challenges			
	Generic problem formulat	ion (single O/D pair for	simplicity):	
		minimize $g(f) =$	$\sum_{e \in S} g_e(x_e)$	
		subject to $f \in \mathcal{F}$	eec.	(Opt)
	where:			
	• $x_e = \sum_{p \ni e} f_p$		[edg	ge-route duality]
	$\blacktriangleright \mathcal{F} = M \cdot \Delta(\mathcal{P}) = \{j\}$	$f \in \mathbb{R}^{\mathcal{P}}_+ : \sum_{p \in \mathcal{P}} f_p = M$	} [sim	plicial structure]
	Challenges:			
	Information: cost fun	ctions a priori unknown		

- Dimensionality: exponential number of paths
- Control plane: dynamic/distributed flow control

		Algorithms and dynamics	
CITS FIC	w/load gradients		

Generic problem formulation:

minimize
$$g(f) = \sum_{e \in \mathcal{E}} g_e(x_e)$$

subject to $f \in \mathcal{F}$ (Opt)

		Algorithms and dynamics	
CITS Flow	load gradients		

Generic problem formulation:

minimize
$$g(f) = \sum_{e \in \mathcal{E}} g_e(x_e)$$

subject to $f \in \mathcal{F}$ (Opt)

Follow the negative gradient of g:

$$v = -\nabla g$$

By edge-route duality:

$$v_p(f) = -\frac{\partial g}{\partial f_p} = -\sum_{e \in \mathcal{E}} g'_e(x_e) \frac{\partial x_e}{\partial f_p} = -\sum_{e \in p} g'_e(x_e) =: \sum_{e \in p} v_e(x_e)$$

To get route flow gradient ← sum edge load gradients along route

		Algorithms and dynamics	
CITS Cra	light information		

Gradient information

Assume algorithmic scheme generates at n = 1, 2, ...

- Flow profile $f_n = (f_{p,n})_{p \in \mathcal{P}}$
- Load profile $x_n = (x_{e,n})_{e \in \mathcal{E}}, x_{e,n} = \sum_{e \in p} f_{p,n}$

Leverage gradient information to update, but cost function g_e a priori unknown

Background 000	Model and preliminaries	The PoA in practice 0000000000	Algorithms and dynamics	Conclusions and perspectives O
CITS	diana in Cana atan			

Gradient information

Assume algorithmic scheme generates at n = 1, 2, ...

- Flow profile $f_n = (f_{p,n})_{p \in \mathcal{P}}$
- Load profile $x_n = (x_{e,n})_{e \in \mathcal{E}}, x_{e,n} = \sum_{e \in p} f_{p,n}$

Leverage gradient information to update, but cost function g_e a priori unknown

When called at x_n , n = 1, 2, ..., assume gradients estimated up to some (random) error:

$$\hat{v}_{e,n} = v_e(x_{e,n}) + U_{e,n+1}$$

with the following hypotheses for the error process U:

(H1) Zero-mean: $\mathbb{E}[U_{n+1}|\mathcal{F}_n] = 0$

(H2) Finite variance: $\mathbb{E}[\|U_{n+1}\|^2 | \mathcal{F}_n] \leq \sigma^2$

000000	0000000000	000000000000000000000000000000000000000	
ent descent			
	ent descent	ent descent	ent descent

Projected gradient descent:

$$f_{n+1} = \prod_{\mathcal{F}} \left(f_n + \gamma_n \hat{\nu}_n \right) \tag{GD}$$

where

$$\Pi_{\mathcal{F}}(f) = \underset{f' \in \mathcal{F}}{\operatorname{arg\,min}} \| f' - f \|$$

is the Euclidean projection on ${\mathcal F}$ (simplicial projection)

		Algorithms and dynamics	
CITS	Gradient descent		
	Projected gradient descent:		

$$f_{n+1} = \prod_{\mathcal{F}} \left(f_n + \gamma_n \hat{\nu}_n \right) \tag{GD}$$

where

$$\Pi_{\mathcal{F}}(f) = \underset{f' \in \mathcal{F}}{\operatorname{arg\,min}} \|f' - f\|$$

is the Euclidean projection on ${\mathcal F}$ (simplicial projection)

Theorem (folk) Suppose that $|g'_e| \leq G$. If (GD) is run with $\gamma_n \propto 1/\sqrt{Gn}$ and returns

$$\bar{f}_n = \frac{\sum_{k=1}^n \gamma_k f_k}{\sum_{k=1}^n \gamma_k},$$

then

$$\mathbb{E}[g(\bar{f}_n)] \leq \min g + \mathcal{O}(G\sqrt{|\mathcal{P}|/n})$$

		Algorithms and dynamics ○○○○○○○○○○○○○○○○○○	
CITS The	good		

Theorem (folk)

Suppose that $|g'_e| \leq G$. If (GD) is run with $\gamma_n \propto 1/\sqrt{Gn}$ and returns

$$\bar{f}_n = \frac{\sum_{k=1}^n \gamma_k f_k}{\sum_{k=1}^n \gamma_k},$$

then

$$\mathbb{E}[g(\bar{f}_n)] \leq \min g + \mathcal{O}(G\sqrt{|\mathcal{P}|/n})$$

- Value convergence despite imperfect feedback
- Can be improved to convergence in high probability

	Algorithms and dynamics	

The good, the (not so) bad

Theorem (folk)

Suppose that $|g_e'| \leq G$. If (GD) is run with $\gamma_n \propto 1/\sqrt{Gn}$ and returns

$$\bar{f}_n = \frac{\sum_{k=1}^n \gamma_k f_k}{\sum_{k=1}^n \gamma_k},$$

then

$$\mathbb{E}[g(\bar{f}_n)] \leq \min g + \mathcal{O}(G\sqrt{|\mathcal{P}|/n})$$

- Value convergence despite imperfect feedback
- Can be improved to convergence in high probability
- Rate in n cannot be improved (but not too slow in practice)

The good, the (not so) bad, and the ugly

Theorem (folk) Suppose that $|g'_e| \leq G$. If (GD) is run with $\gamma_n \propto 1/\sqrt{Gn}$ and returns

$$\bar{f}_n = \frac{\sum_{k=1}^n \gamma_k f_k}{\sum_{k=1}^n \gamma_k},$$

then

P. Mertikopoulos

CDI

$$\mathbb{E}[g(\bar{f}_n)] \leq \min g + \mathcal{O}(G\sqrt{|\mathcal{P}|/n})$$

- Value convergence despite imperfect feedback
- Can be improved to convergence in high probability
- Rate in n cannot be improved (but not too slow in practice)
- Exponential dependence on the size of the graph because of $|\mathcal{P}|$
- Projection step has complexity $\Theta(|\mathcal{P}|\log|\mathcal{P}|)$
- Need to store $\Theta(|\mathcal{P}|)$ variables

Х

X X

	Algorithms and dynamics	
	0000000000000000	

Exponentiated gradient descent

An idea from reinforcement learning (Vovk, Littlestone & Warmuth, ...):

- Keep a score for each path, based on its performance so far
- Allocate traffic proportionally to the exponential of this score

	Algorithms and dynamics	
	000000000000000	

Exponentiated gradient descent

An idea from reinforcement learning (Vovk, Littlestone & Warmuth, ...):

- Keep a score for each path, based on its performance so far
- Allocate traffic proportionally to the exponential of this score

Key insight: score by aggregating (negative) gradient steps

Exponentiated gradient descent (EGD)	
Require: step-size sequence $\gamma_k > 0$	
I: set $y_p \leftarrow 0$ for each route $p \in \mathcal{P}$	# initialization
2: for $k = 1, 2,, n$ do	
3: assign traffic $f_p \propto \exp(y_p)$	# exponential weights
4: set $y \leftarrow y + \gamma_k \hat{v}_k$	# score update
5: end for	
6: return $\bar{f}_n = \sum_{k=1}^n \gamma_k f_k / \sum_{k=1}^n \gamma_k$	

		Algorithms and dynamics	
CITS The	good		

Theorem (M, Paschos, Vigneri, 2018)

Suppose that $|g_e'| \leq G$. If EGD is run with $\gamma_n \propto 1/\sqrt{Gn}$, then

 $\mathbb{E}[g(f_n)] \le \min g + \mathcal{O}(G\sqrt{\log|\mathcal{P}|/n})$

Linear dependence on the size of the graph through |P|

- Value convergence despite imperfect feedback
- Can be improved to convergence in high probability

		Algorithms and dynamics	
Corc			

The good, the (not so) bad

Theorem (M, Paschos, Vigneri, 2018)

Suppose that $|g'_e| \leq G$. If EGD is run with $\gamma_n \propto 1/\sqrt{Gn}$, then

 $\mathbb{E}[g(f_n)] \leq \min g + \mathcal{O}(G\sqrt{\log|\mathcal{P}|/n})$

- Linear dependence on the size of the graph through |P|
- Value convergence despite imperfect feedback
- Can be improved to convergence in high probability
- Rate in n cannot be improved (but not too slow in practice)

The good, the (not so) bad, and the ugly

Theorem (M, Paschos, Vigneri, 2018) Suppose that $|g'_e| \leq G$. If EGD is run with $\gamma_n \propto 1/\sqrt{Gn}$, then

 $\mathbb{E}[g(f_n)] \leq \min g + \mathcal{O}(G\sqrt{\log|\mathcal{P}|/n})$

- Linear dependence on the size of the graph through |P|
- Value convergence despite imperfect feedback
- Can be improved to convergence in high probability
- Rate in n cannot be improved (but not too slow in practice)
- Normalization step has complexity $\Theta(|\mathcal{P}|)$
- Still need to store $\Theta(|\mathcal{P}|)$ variables

		Algorithms and dynamics	
COLS			

Distribution in the control plane

Can we distribute the algorithm at the node level?

- Given: an O/D pair (O, D)
- ▶ Each node $v \in V$ has a subset of edges e_v that can be used to reach D
- No backtracking: acyclic routing (multi-)graph $\mathcal{G} = (\mathcal{V}, \bigcup_{v \in \mathcal{V}} e_v)$
- Each node controls traffic allocation over \mathcal{E}_v , i.e., a vector

$$z = (z_e)_{e \in \mathcal{E}_v} \in \Delta(\mathcal{E}_v)$$

Small dimensionality per control node – but how to implement EGD?

	Algorithms and dynamics	
	0000000000000000	

The role of weight propagation

Key steps in EGD:

C

- Update scores: $y_e \leftarrow y_e + \gamma \hat{v}_e$
- Traffic allocation: ???

Straightforward choice of weights:

$$z_e = \frac{\exp(y_e)}{\sum_{e' \in \mathcal{E}_v} \exp(y_{e'})}$$

OK in terms of dimension; complete failure in terms of optimization

		Algorithms and dynamics	
Back	pedaling		

Key insight: must not be blind to what is happening down the road!

0. **Require:** edge score vector $y = (y_e)_{e \in \mathcal{E}}$

Initialize: latent weight variables w_v for each $v \in \mathcal{V}$, w_e for each $e \in \mathcal{E}$. Set $w_D = 0$ at destination; backpropagate w_D through all edges linking to D.

		Algorithms and dynamics	
Back	pedaling		

Key insight: must not be blind to what is happening down the road!

0. **Require:** edge score vector $y = (y_e)_{e \in \mathcal{E}}$

Initialize: latent weight variables w_v for each $v \in \mathcal{V}$, w_e for each $e \in \mathcal{E}$. Set $w_D = 0$ at destination; backpropagate w_D through all edges linking to D.

1. Weigh and wait: When node v receives weight information from connecting node v' via edge $e \in \mathcal{E}_v$, set

$$w_e = y_e + w_{v'}$$

		Algorithms and dynamics	
CITS Back	pedaling		

Key insight: must not be blind to what is happening down the road!

0. **Require:** edge score vector $y = (y_e)_{e \in \mathcal{E}}$

Initialize: latent weight variables w_v for each $v \in V$, w_e for each $e \in \mathcal{E}$. Set $w_D = 0$ at destination; backpropagate w_D through all edges linking to D.

1. Weigh and wait: When node v receives weight information from connecting node v' via edge $e \in \mathcal{E}_v$, set

$$w_e = y_e + w_{v'}$$

2. Sum and send: If node v has received an update via all outgoing edges \mathcal{E}_v , set

$$w_v = \log \sum_{e \in \mathcal{E}_v} \exp(w_e)$$

and push w_v back through all edges linking to v
		Algorithms and dynamics	
		000000000000000000	
-			

Exponential weights and backpedaling

Proposition

Let $y \in \mathbb{R}^{\mathcal{E}}$ be an edge score vector and suppose each node $v \in \mathcal{V}$ allocates traffic following the exponential rule

$$z_e = \frac{\exp(w_e)}{\exp(w_v)} \quad \text{for all } e \in \mathcal{E}_v,$$

with w_e and w_v defined via backpedaling. Then, the total traffic flowing through route $p \in \mathcal{P}$ is

$$f_p = \frac{\exp(y_p)}{\sum_{q \in \mathcal{P}} \exp(y_q)}$$

where $y_p = \sum_{e \in p} y_e$ denotes the corresponding path score.

Exponential node weights with backpedaling induce exponential path weights!

		Algorithms and dynamics	
CITS .			

Distributed EGD

Theorem (Gaujal, Héliou, M, 2018)

Suppose that $|g'_e| \le G$. If EGD is run at the node level with backpedaling and a step-size $\gamma_n \propto 1/\sqrt{Gn}$, then

$$\mathbb{E}[g(\bar{f}_n)] \leq \min g + \mathcal{O}(G\sqrt{\log|\mathcal{P}|/n})$$

- Value convergence despite imperfect feedback
- Can be improved to convergence in high probability

		Algorithms and dynamics	
Chrs .			

Distributed EGD

Theorem (Gaujal, Héliou, M, 2018)

Suppose that $|g'_e| \le G$. If EGD is run at the node level with backpedaling and a step-size $\gamma_n \propto 1/\sqrt{Gn}$, then

$$\mathbb{E}[g(\bar{f}_n)] \le \min g + \mathcal{O}(G\sqrt{\log|\mathcal{P}|/n})$$

- Value convergence despite imperfect feedback
- Can be improved to convergence in high probability
- Linear dependence on the size of the graph through $|\mathcal{P}|$
- Update step has $\mathcal{O}(|\mathcal{E}_v|)$ complexity per node
- Only need to store $\mathcal{O}(|\mathcal{E}_v|)$ variables per node

		Algorithms and dynamics ○00000000000000	
CITS Conv	vergence rate		

Distributed EGD in randomly generated networks

			Algorithms and dynamics	
CITS	Convergence rate			
	Distributed EGD in random	ly generated networks	3	
	100 Networ	k Efficiency as a function of time (N=100 O/D pairs, B-A topology)	

		Algorithms and dynamics	Conclusions and perspectives
CITS	Conclusions and perspectives		

"Traffic congestion is caused by vehicles, not by people in themselves"

- Jane Jacobs, The Death and Life of Great American Cities

- The price of anarchy disappears in light and heavy traffic, independently of the network topology and even with multiple O/D pairs
- Exponential weights + backpedaling allow fast, distributed optimization
- Size of the network: not a curse, but a blessing in disguise

"Traffic congestion is caused by vehicles, not by people in themselves"

— Jane Jacobs, The Death and Life of Great American Cities

- The price of anarchy disappears in light and heavy traffic, independently of the network topology and even with multiple O/D pairs
- Exponential weights + backpedaling allow fast, distributed optimization
- Size of the network: not a curse, but a blessing in disguise

Open questions

- Capacitated networks (M/M/I, M/G/I, etc.)?
- What if there is no gradient feedback whatsoever?
- What about atomic routing games?