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X a(x) =1
inflow =1 (0) (D)
X2 c2(x2) = x;
*> Equilibrium/Fair assignment
a(x) = c2(x2) (Eg)

> Optimum assignment

minimize  C(x) = xic1(x1) + x2¢2(x2)

Opt
subjectto  x1+x2 =1 ©pH

» How bad is selfish routing?

C(Eq) 4

Price of Anarchy =

C(Opt) 3
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@ The model

» Network: multigraph G = (V, )

» O/D pairs i € Z: origin O sends m' units of traffic to destination D’

» Paths P": (sub)set of paths joining O' ~ D'

» Routing flow f,: traffic along p € P = ' P’ generated by O/D pair owning p
> Load xe = X5, fp: total traffic along edge e

> Edge cost function c. (x. ): latency along edge e when edge load is x.

> Path cost: ¢p(f) = Xeep ce(xe)

» Nonatomic routing game: T = (G, Z, {m' }iez, {P' }icz, {ce Yeee )
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@ Fair/Envy-free traffic assignment

Wardrop's routing principle (Wardrop, 1952):

"At equilibrium, the delays along all utilized paths are equal and no higher than those
that would be experienced by a traffic element going through an unused route”

Fairness: dll traffic elements experience the same latency
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Fair/Envy-free traffic assignment

Wardrop's routing principle (Wardrop, 1952):

"At equilibrium, the delays along all utilized paths are equal and no higher than those
that would be experienced by a traffic element going through an unused route”

Fairness: dll traffic elements experience the same latency

The flow profile f* € F is a Wardrop equilibrium if

i (f*) <cu(f) foralieZandallp',q' € P’ suchthat f; >0

Characterization of Wardrop equilibria (Beckmann et al, [956):

minimize Z Ce(x.)
eeE

subject to  x, = pr, feF

pae

(WE)

where C.(x.) = foxe ce(w) dw is the primitive of c..
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@ Optimum traffic assignment

Efficient flows minimize aggregate latency in the network
minimize  C(f) = > fpcp(f)
peP

subjectto  feF

(LM)
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> Efficient routing: Opt(T) = minser C(f)
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@ The price of anarchy

> Efficient routing: Opt(T) = minser C(f)

> Equilibrium routing: Eq(T) = C(f™), with f* a Wardrop equilibrium

Gap in efficiency measured by the price of anarchy (Koutsoupias & Papadimitriou, 1999)

Eq(T)

PoA(T) = Opt(T)

PoA(T) > 1 with equality iff fair routing is also efficient
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How bad is selfish routing?

Theorem (Roughgarden & Tardos, 2002)
Affine cost functions (ce(xe) = de + bexe): PoA(T) < 4/3

Theorem (Roughgarden, 2003)
Quartic (BPR) cost functions: PoA(T) < 5v/5/(5v/5 — 4) =~ 2.1505

Theorem (Roughgarden, 2003)
Polynomials of degree at most d: PoA(T) = O(d/logd)

Remarks
> Independent of network topology
> Valid for any number of O/D pairs

» Envy-free routing can become arbitrarily bad: d/logd — oo as d — oo

> Sharpness: for any traffic inflow M = > m' these bounds can be realized
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@ How bad is selfish routing in practice?

> PoA bounds == delicately tuned worst-case instances

*> In typical networks, PoA ~ 1 when the traffic is light or heavy (Youn et al,, 2008; O'Hare
et al, 2016; Monnot et al,, 2017)
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Is this always the case?
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Price of anarchy as a function of traffic inflow
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> Single O/D pair
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> C*-smooth, convex cost functions with polynomial growth
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Price of anarchy as a function of traffic inflow

a(x) = [1+1/2sin(log x)] x*

1015
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c3(x) = [1+1/2cos(logx)] x* 1000}

Inflow (m)

> Single O/D pair
> Three parallel links (no Braess-type shenanigans)

> C*-smooth, convex cost functions with polynomial growth

Proposition (Colini-Baldeschi, Cominetti, M & Scarsini, 2017)
In the above network, PoA(Ta) > a > 1 for all values of the traffic inflow M

What's wrong with this simple example?
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@ Pathological oscillations

Main problem: Cost functions scale very irregularly (albeit polynomially!):

ce(tx)

i does not exist
t—{0,00} Ce ( t)

== Oscillations that are very dense (in light traffic) or very wide (in heavy traffic)
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@ Pathological oscillations

Main problem: Cost functions scale very irregularly (albeit polynomially!):

ce(tx)
i
t={0,00} (1)

does not exist

== Oscillations that are very dense (in light traffic) or very wide (in heavy traffic)

Sanity check: such oscillations are not observed in practice




@ Regular variation

Definition (Karamata, 1930's)

A function g: [0, 00) — (0, 00) is called regularly varying at w € {0, co } if

t
lim M is finite and nonzero for all x > 0. (RV)
= g(t
> w = 0: light traffic limit

> w = oo: heavy trdffic limit

Examples

| Affine functions: g(x) = ax +b
2. Polynomials: g(x) = Yo apxt
3. Asymptotic polynomials: g(x) ~ x for some g > 0

4. Real-analytic at w; logarithms; etc.

NB: Stronger than asking g(x) = ®(x1) (counterexample satisfies this)
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@ Benchmark functions

Main idea: use a regularly varying function ¢(x) as a benchmark:
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@ Benchmark functions

Main idea: use a regularly varying function ¢(x) as a benchmark:

> Edge index: ate = limy_q ce(x)/c(x)

> fast / slow / tight edge: a. = 0, 0o or in-between

> Path index: ap = maxeep e (bottleneck caused by slowest edge)

> Fast / slow / tight path: &, = 0, oo or in-between

> Pair index: &' = min,.pi & (traffic routed via fastest path)

> Fast / slow / tight pair: &' = 0, co or in-between

> Network index: & = minpep &, (bottleneck caused by slowest pair)

> Tight network: a € (0, 00)

NB: Edges/paths/pairs that are slow in heavy traffic can be fast in light traffic and vice versa
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@ Benchmarks, light and heavy

Example: different benchmarks in a Wheatstone network




The PoA in practice

[e]e]e]e]e] le]ele]

@ Benchmarks, light and heavy

Example: different benchmarks in a Wheatstone network




he in @
[e]e]e]e]e] le]ele]

@ Benchmarks, light and heavy

Example: different benchmarks in a Wheatstone network

> Heavy traffic, benchmark ¢(x) = x: network is tight

> N\

> Light traffic, benchmark ¢(x) = x: pair 2 is slow, network not tight
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@ Benchmarks, light and heavy

Example: different benchmarks in a Wheatstone network

> Heavy traffic, benchmark ¢(x) = x: network is tight v
> Light traffic, benchmark ¢(x) = x: pair 2 is slow, network not tight X
> Light traffic, benchmark c(x) = 1: network is tight v
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@ Asymptotic analysis

Theorem (Colini-Baldeschi, Cominetti, M & Scarsini, 2018)

Let 'y be a network with total traffic inflow M. If the network is tight in light (w = 0) and/or
heavy (w = oo) trdffic, then

lim PoA(Tw) =1
M-w
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@ Asymptotic analysis

Theorem (Colini-Baldeschi, Cominetti, M & Scarsini, 2018)

Let 'y be a network with total traffic inflow M. If the network is tight in light (w = 0) and/or
heavy (w = oo) trdffic, then

lim PoA(Tw) =1
M-w

Corollary

If the network's cost functions are polynomials, PoA(Ty) - 1as M - w € {0, 00 }.

In networks with polynomial costs, the gap between fairness and efficiency
disappears under both light and heavy trdffic
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@ Convergence rate

Two-link Pigou network with cost functions ¢ (x1) = x21, ¢2(x;) = x52

Price of anarchy as a function of inflow (light traffic)

:
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The PoA converges to 1 following a power law
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@ Convergence rate

Two-link Pigou network with cost functions ¢ (x1) = x21, ¢2(x;) = x52

Price of anarchy as a function of inflow (heavy traffic)

dr=3
"""" dr=4
dr=5
--A-- d=2, dr=6
100 165 108

Total inflow (M)

The PoA converges to 1 following a power law
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Sioux Falls: a case study

The price of anarchy in Sioux Falls:

Price of anarchy as a function of traffic inflow
1.025
1.020
1015 iy ’ 4
3 6 % %
4 :
1.010 ! §
oosf ¢ k
1,000} o-es”
0 1 2 3 4 5 6

Total Inflow [10° trips/hour]

(e) The Sioux Falls road network (f) The price of anarchy in Sioux Falls.

Average traffic inflow Mg ~ 3.6 x 10° trips/hour (LeBlanc et al,, 1975)
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@ Towards optimality | equilibrium

Two (related) optimization problems:

I. Total latency minimization:

minimize  C(f) = erce(xe)

eef

LM
subject to xe=pr, feF (M)

pae

2. Fairness (Wardrop equilibrium):
minimize  L(f) = >_ Ce(x.)
eef

WE
subject to xe:ZfP, feF WB

pae

where C.(x.) = fox“ ce(w) dw is the primitive of c.

How can either problem be solved in a scalable and efficient manner?
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@ Challenges

Generic problem formulation (single O/D pair for simplicity):

minimize  g(f) = Z ge(xe)
ecl (Opt)

subjectto  feF
where:

> Xe =Y pse fp [edge-route duality]

» F=M-A(P)={feR}: Ypep fr = M} [simplicial structure]
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@ Challenges

Generic problem formulation (single O/D pair for simplicity):

minimize  g(f) = Z ge(xe)

eeE (Op‘t)
subjectto  feF
where:
> Xe =Y pse fp [edge-route duality]
» F=M-A(P)={feR}: Ypep fr = M} [simplicial structure]
Challenges:

» Information: cost functions a priori unknown

> Dimensionality: exponential number of paths

> Control plane: dynamic/distributed flow control
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@ Flow/load gradients

Generic problem formulation:

minimize  g(f) = Z ge(xe)

eeE

subjectto  feF

(©pt)
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@ Flow/load gradients

Generic problem formulation:

minimize  g(f) = Z ge(xe)
ee& (Opt)
subjectto  feF

Follow the negative gradient of g:

v=-Vg
By edge-route duality:

() = 3% = T ) T = - T gl () = Do)

afP ee& fP e€p e€p

To get route flow gradient < sum edge load gradients along route




@ Gradient information

Assume algorithmic scheme generates at n =1,2,...

> Flow profile fu = (fp.n)per
> Load profile x4 = (Xeun)eces Xewr = Leep fpun

Leverage gradient information to update, but cost function g. a priori unknown
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Assume algorithmic scheme generates at n =1,2,...

> Flow profile fu = (fp.n)per
> Load profile x4 = (Xeun)eces Xewr = Leep fpun

Leverage gradient information to update, but cost function g. a priori unknown

When called at x,, n = 1,2, ..., assume gradients estimated up to some (random) error:
1}>e,n = Ve(xe,n) + Ue,n+l

with the following hypotheses for the error process U:

(HI) Zero-mean: E[Uy | F,] =0

(H2) Finite variance: E[| Uyt |* | Fu] < 0°
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@ Gradient descent

Projected gradient descent:

fn+1 = H}'(fn + yn{’n)
where

M17(f) = argmin| f* - f]
fleF

is the Euclidean projection on F (simplicial projection)

(GD)
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@ Gradient descent

Projected gradient descent:
fn+1 = H}'(fn + yn{’n)
where

M17(f) = argmin| f* - f]
fleF

is the Euclidean projection on F (simplicial projection)

Theorem (folk)
Suppose that |gz| < G. If (GD) is run with y, o< 1//Gn and returns

]; _ Do Vi Sx
Ykt Vi

then

E[g(f+)] < ming + O(G\/|P|/n)

(GD)
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@ The good

Theorem (folk)
Suppose that |gz| < G. If (GD) is run with y, o< 1//Gn and returns

o= k-1 kak,
ko1 Yk
then
E[g(fx)] < ming + O(GV/[P|/n)
> Value convergence despite imperfect feedback v

> Can be improved to convergence in high probability v
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The good, the (not so) bad

Theorem (folk)
Suppose that |gz| < G. If (GD) is run with y, o< 1//Gn and returns

f _ Tk Vifr
ka1 Vi

then

E[g(f.)] < min g+ O(G\/|P|/n)

> Value convergence despite imperfect feedback

> Can be improved to convergence in high probability

> Rate in n cannot be improved (but not too slow in practice)
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The good, the (not so) bad, and the ugly

Theorem (folk)
Suppose that |gz| < G. If (GD) is run with y, o< 1//Gn and returns

f _ Tk Vifr
ka1 Vi
then

E[g(f.)] < min g+ O(G\/|P|/n)

> Value convergence despite imperfect feedback
> Can be improved to convergence in high probability
> Rate in n cannot be improved (but not too slow in practice)

» Exponential dependence on the size of the graph because of | P|

» Projection step has complexity ®(|P|log|P]|)
*» Need to store ©(|P|) variables

*x X % N NN
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@ Exponentiated gradient descent

An idea from reinforcement learning (Vovk, Littlestone & Warmuth, ...):

> Keep a score for each path, based on its performance so far

> Allocate traffic proportionally to the exponential of this score
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@ Exponentiated gradient descent

An idea from reinforcement learning (Vovk, Littlestone & Warmuth, ...):
> Keep a score for each path, based on its performance so far

> Allocate traffic proportionally to the exponential of this score

Key insight: score by aggregating (negative) gradient steps

Exponentiated gradient descent (EGD)

Require: step-size sequence yi > 0

I: set y, < 0 for each route p € P # initialization
2. fork=1,2,...,ndo

3 assign traffic fp oc exp(y,) # exponential weights
4 sety <« y+ ik # score update
5. end for

6 return fu = S yife/ Tic v
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@ The good

Theorem (M, Paschos, Vigneri, 2018)
Suppose that |gs| < G. IfEGD is run with y, o< 1/7/Gn, then

E[g(fa)] < min g+ O(G/log|P|/n)

> Linear dependence on the size of the graph through |P)|

> Value convergence despite imperfect feedback

AN

> Can be improved to convergence in high probability
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@ The good, the (not so) bad

Theorem (M, Paschos, Vigneri, 2018)
Suppose that |gs| < G. IfEGD is run with y, o< 1/7/Gn, then

E[g(fa)] < min g+ O(G/log|P|/n)

> Linear dependence on the size of the graph through |P)|
> Value convergence despite imperfect feedback

> Can be improved to convergence in high probability

AN NN

> Rate in n cannot be improved (but not too slow in practice)
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@ The good, the (not so) bad, and the ugly

Theorem (M, Paschos, Vigneri, 2018)
Suppose that |gs| < G. IfEGD is run with y, o< 1/7/Gn, then

E[g(fa)] < min g+ O(G/log|P|/n)

> Linear dependence on the size of the graph through |P)|
> Value convergence despite imperfect feedback

> Can be improved to convergence in high probability

> Rate in n cannot be improved (but not too slow in practice)

*» Normalization step has complexity ®(|P|)

> > N NSNS

» Still need to store @(|P|) variables
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@ Distribution in the control plane

Can we distribute the algorithm at the node level?
» Given: an O/D pair (O, D)
> Each node v € V has a subset of edges e, that can be used to reach D
» No backtracking: acyclic routing (multi-)graph G = (V, Uyey €v)
> Each node controls traffic allocation over &,, i.e., a vector

z= (Ze)ee&. € A(&))

> Small dimensionality per control node — but how to implement EGD?
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@ The role of weight propagation

Key steps in EGD:

> Update scores: ye < ye + yV.

> Traffic allocation: 777

Straightforward choice of weights:

exp(y.)
Ze’e&, eXP()’e’)

e =

OK'in terms of dimension; complete failure in terms of optimization

> N\
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@ Backpedaling

Key insight: must not be blind to what is happening down the road!

0. Require: edge score vector y = (ye)eee

Initialize: latent weight variables w, for each v € V, w, foreach e € £.
Set wp = 0 at destination; backpropagate wp through all edges linking to D.
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Key insight: must not be blind to what is happening down the road!

0. Require: edge score vector y = (ye)eee

Initialize: latent weight variables w, for each v € V, w, foreach e € £.
Set wp = 0 at destination; backpropagate wp through all edges linking to D.

I. Weigh and wait: When node v receives weight information from connecting node
v’ via edge e € &,, set

We = Ye + Wy
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@ Backpedaling

Key insight: must not be blind to what is happening down the road!

0. Require: edge score vector y = (ye)eee

Initialize: latent weight variables w, for each v € V, w, foreach e € £.
Set wp = 0 at destination; backpropagate wp through all edges linking to D.

I. Weigh and wait: When node v receives weight information from connecting node
v’ via edge e € &,, set
We = Ve + Wyr

2. Sum and send: If node v has received an update via all outgoing edges &,, set

wy =log > exp(w.)

ee&y

and push w, back through all edges linking to v
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@ Exponential weights and backpedaling

Proposition
Lety € R? be an edge score vector and suppose each node v € V allocates traffic following the
exponential rule

Ze = M forall e € &,,
exp(wo)
with w, and w, defined via backpedaling. Then, the total traffic flowing through route p € P is
5 - exp(yp)
Yqer exp(¥q)

where yp = ¥, ye denotes the corresponding path score.

Exponential node weights with backpedaling induce exponential path weights!
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@ Distributed EGD

Theorem (Gauijal, Héliou, M, 2018)
Suppose that |gs| < G. If EGD is run at the node level with backpedaling and a step-size

yn o< 1/7/Gn, then

E[g(f)] < min g + O(G/log|P|/n)

> Value convergence despite imperfect feedback v

> Can be improved to convergence in high probability v
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@ Distributed EGD

Theorem (Gauijal, Héliou, M, 2018)
Suppose that |gs| < G. If EGD is run at the node level with backpedaling and a step-size

yn o< 1/7/Gn, then

E[g(f)] < min g + O(G/log|P|/n)

> Value convergence despite imperfect feedback
> Can be improved to convergence in high probability
> Linear dependence on the size of the graph through |P|

» Update step has O(|&,|) complexity per node

SN SNSNSS

» Only need to store O(|€,|) variables per node
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@ Convergence rate

Distributed EGD in randomly generated networks

Efficiency asafunction of time (N = 100 O/D pairs) Efficiency over time (Waxman model, 100 nodes)
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@ Convergence rate

Distributed EGD in randomly generated networks
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Conclusions and perspectives

“Traffic congestion is caused by vehicles, not by people in themselves”
— Jane Jacobs, The Death and Life of Great American Cities

The price of anarchy disappears in light and heavy traffic, independently of the
network topology and even with multiple O/D pairs

Exponential weights + backpedaling allow fast, distributed optimization

Size of the network: not a curse, but a blessing in disguise
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Conclusions and perspectives

“Traffic congestion is caused by vehicles, not by people in themselves”
— Jane Jacobs, The Death and Life of Great American Cities

The price of anarchy disappears in light and heavy traffic, independently of the
network topology and even with multiple O/D pairs

Exponential weights + backpedaling allow fast, distributed optimization

Size of the network: not a curse, but a blessing in disguise

Open questions
> Capacitated networks (M/M/1, M/G/1, etc.)?

> What if there is no gradient feedback whatsoever?

> What about atomic routing games?
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