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Traffic…

…how bad can it get?
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Pigou’s example (1920’s)

O Dinflow = 

x c(x) = 

x c(x) = x

▸ Equilibrium/Fair assignment
c(x) = c(x) (Eq)

▸ Optimum assignment

minimize C(x) = xc(x) + xc(x)
subject to x + x = 

(Opt)

▸ How bad is selfish routing?

Price of Anarchy ≡ C(Eq)
C(Opt)

= 
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The model

O

D

O

D

c(x)

c(x)

c(x)

c(x)

c(x)

▸ Network: multigraph G = (V , E)

▸ origin/destination (O/D) pairs i ∈ I : origin O i sends m i units of traffic to destination
D i

▸ Paths P i : (sub)set of paths joining O i ↝ D i

▸ Routing flow fp : traffic along p ∈ P ≡ ⋃i P i generated by O/D pair owning p
▸ Load xe = ∑p∋e fp : total traffic along edge e
▸ Edge cost function ce(xe): latency along edge e when edge load is xe
▸ Path cost: cp( f ) = ∑e∈p ce(xe)
▸ Nonatomic routing game: Γ = (G , I , {m i}i∈I , {P i}i∈I , {ce}e∈E)
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Fair/Envy-free traffic assignment

Wardrop’s routing principle (Wardrop, 1952):
“At equilibrium, the delays along all utilized paths are equal and no higher than those
that would be experienced by a traffic element going through an unused route”

Fairness: all traffic elements experience the same latency

The flow profile f ∗ ∈ F is a Wardrop equilibrium if

cp i ( f
∗) ≤ cq i ( f

∗) for all i ∈ I and all pi , q i ∈ P i such that f ∗p i > 

Characterization of Wardrop equilibria (Beckmann et al, 1956):

minimize ∑
e∈E

Ce(xe)

subject to xe =∑
p∋e

fp , f ∈ F
(WE)

where Ce(xe) = ∫ xe
 ce(w) dw is the primitive of ce .

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble
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Optimum traffic assignment

Efficient flows minimize aggregate latency in the network

minimize C( f ) = ∑
p∈P

fpcp( f )

subject to f ∈ F
(LM)

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble
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The price of anarchy

▸ Efficient routing: Opt(Γ) = min f ∈F C( f )

▸ Equilibrium routing: Eq(Γ) = C( f ∗), with f ∗ a Wardrop equilibrium

Gap in efficiency measured by the price of anarchy (Koutsoupias & Papadimitriou, 1999)

PoA(Γ) = Eq(Γ)
Opt(Γ)

PoA(Γ) ≥  with equality iff fair routing is also efficient

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble
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How bad is selfish routing?

Theorem (Roughgarden & Tardos, 2002)
Affine cost functions (ce(xe) = ae + bexe ): PoA(Γ) ≤ /

Theorem (Roughgarden, 2003)
Quartic (BPR) cost functions: PoA(Γ) ≤  √/( √ − ) ≈ .

Theorem (Roughgarden, 2003)
Polynomials of degree at most d : PoA(Γ) = O(d/ log d)

Remarks
▸ Independent of network topology
▸ Valid for any number of O/D pairs
▸ Envy-free routing can become arbitrarily bad: d/ log d →∞ as d →∞
▸ Sharpness: for any traffic inflow M = ∑i m i , these bounds can be realized

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble
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How bad is selfish routing in practice?

▸ PoA bounds Ô⇒ delicately tuned worst-case instances
▸ In typical networks, PoA ≈  when the traffic is light or heavy (Youn et al., 2008; O’Hare

et al., 2016; Monnot et al., 2017)

Is this always the case?
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No!
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▸ Single O/D pair

▸ Three parallel links (no Braess-type shenanigans)
▸ C∞-smooth, convex cost functions with polynomial growth

Proposition (Colini-Baldeschi, Cominetti, M & Scarsini, 2017)
In the above network, PoA(ΓM) ≥ a >  for all values of the traffic inflow M

What's wrong with this simple example?

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble
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Pathological oscillations

Main problem: Cost functions scale very irregularly (albeit polynomially!):

lim
t→{,∞}

ce(tx)
ce(t)

does not exist

Ô⇒ Oscillations that are very dense (in light traffic) or very wide (in heavy traffic)

Sanity check: such oscillations are not observed in practice

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble
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Regular variation

Definition (Karamata, 1930’s)
A function ∶ [,∞)→ (,∞) is called regularly varying at ω ∈ {,∞} if

lim
t→ω

(tx)
(t)

is finite and nonzero for all x ≥ . (RV)

▸ ω = : light traffic limit

▸ ω =∞: heavy traffic limit

Examples

1. Affine functions: (x) = ax + b
2. Polynomials: (x) = ∑d

k= akxk

3. Asymptotic polynomials: (x) ∼ xq for some q ≥ 
4. Real-analytic at ω; logarithms; etc.

NB: Stronger than asking (x) = Θ(xq) (counterexample satisfies this)

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble
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Benchmark functions

Main idea: use a regularly varying function c(x) as a benchmark:

▸ Edge index: αe = limx→ω ce(x)/c(x)

▸ Fast / slow / tight edge: αe = ,∞ or in-between

▸ Path index: αp = maxe∈p αe (bottleneck caused by slowest edge)

▸ Fast / slow / tight path: αp = ,∞ or in-between

▸ Pair index: α i = minp∈P i αp (traffic routed via fastest path)

▸ Fast / slow / tight pair : α i = ,∞ or in-between

▸ Network index: α = minp∈P αp (bottleneck caused by slowest pair)

▸ Tight network: α ∈ (,∞)

NB: Edges/paths/pairs that are slow in heavy traffic can be fast in light traffic and vice versa

P. Mertikopoulos CNRS – Laboratoire d’Informatique de Grenoble
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Benchmarks, light and heavy

Example: different benchmarks in a Wheatstone network

O

D

O

D

c(x) = x

c(x) = x

c(x) = log( + x)

c(x) =  +
√
x

c(x) = ex

▸ Heavy traffic, benchmark c(x) = x : network is tight 3
▸ Light traffic, benchmark c(x) = x : pair  is slow, network not tight 7
▸ Light traffic, benchmark c(x) = : network is tight 3
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Asymptotic analysis

Theorem (Colini-Baldeschi, Cominetti, M & Scarsini, 2018)
Let ΓM be a network with total traffic inflow M . If the network is tight in light (ω = ) and/or
heavy (ω =∞) traffic, then

lim
M→ω

PoA(ΓM) = 

Corollary
If the network's cost functions are polynomials, PoA(ΓM)→  as M → ω ∈ {,∞}.

In networks with polynomial costs, the gap between fairness and efficiency
disappears under both light and heavy traffic
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Convergence rate

Two-link Pigou network with cost functions c(x) = xd
 , c(x) = xd
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The PoA converges to  following a power law
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Sioux Falls: a case study

The price of anarchy in Sioux Falls:

�

�

�

�

�

�

�

�

� ��

��

�� ��

��

��

�� ��

��

�� ��

����

�� ��

(e) The Sioux Falls road network

○ ○○○

○

○

○

○

○

○

○

○
○

○

○

○

○
○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○
○

○

○

○○
○
○
○
○
○
○

○

○

○

○

○

○

○

○

○

○

○
○
○
○
○
○
○
○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

� � � � � � �

�����

�����

�����

�����

�����

�����

����� ������ [��� �����/����]

�
��

����� �� ������� �� � �������� �� ������� ������

(f) The price of anarchy in Sioux Falls.

Average traffic inflow Mavg ≈ . ×  trips/hour (LeBlanc et al., 1975)
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Towards optimality / equilibrium

Two (related) optimization problems:

1. Total latency minimization:

minimize C( f ) =∑
e∈E

xe ce(xe)

subject to xe =∑
p∋e

fp , f ∈ F
(LM)

2. Fairness (Wardrop equilibrium):

minimize L( f ) =∑
e∈E

Ce(xe)

subject to xe =∑
p∋e

fp , f ∈ F
(WE)

where Ce(xe) = ∫ xe
 ce(w) dw is the primitive of ce

How can either problem be solved in a scalable and efficient manner?
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Challenges

Generic problem formulation (single O/D pair for simplicity):

minimize ( f ) =∑
e∈E

e(xe)

subject to f ∈ F
(Opt)

where:
▸ xe = ∑p∋e fp [edge-route duality]

▸ F = M ⋅ ∆(P) = { f ∈ RP
+ ∶ ∑p∈P fp = M} [simplicial structure]

Challenges:
▸ Information: cost functions a priori unknown
▸ Dimensionality: exponential number of paths
▸ Control plane: dynamic/distributed flow control
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Flow/load gradients

Generic problem formulation:

minimize ( f ) =∑
e∈E

e(xe)

subject to f ∈ F
(Opt)

Follow the negative gradient of :
v = −∇

By edge-route duality:

vp( f ) = −
∂
∂ fp
= −∑

e∈E
′e(xe)

∂xe
∂ fp
= −∑

e∈p
′e(xe) =∶∑

e∈p
ve(xe)

To get route flow gradient ← sum edge load gradients along route
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Gradient information

Assume algorithmic scheme generates at n = , , . . .
▸ Flow profile fn = ( fp ,n)p∈P
▸ Load profile xn = (xe ,n)e∈E , xe ,n = ∑e∈p fp ,n

Leverage gradient information to update, but cost function e a priori unknown

When called at xn , n = , , . . . , assume gradients estimated up to some (random) error :

v̂e ,n = ve(xe ,n) +Ue ,n+

with the following hypotheses for the error process U :

(H1) Zero-mean: E[Un+ ∣Fn] = 

(H2) Finite variance: E[∥Un+∥ ∣Fn] ≤ σ 
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Gradient descent

Projected gradient descent:
fn+ = ΠF( fn + γn v̂n) (GD)

where
ΠF( f ) = argmin

f ′∈F
∥ f ′ − f ∥

is the Euclidean projection on F (simplicial projection)

Theorem (folk)
Suppose that ∣′e ∣ ≤ G . If (GD) is run with γn ∝ /

√
Gn and returns

f̄n =
∑n

k= γk fk
∑n

k= γk
,

then
E[( f̄n)] ≤ min  +O(G

√
∣P ∣/n)
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The good

, the (not so) bad, and the ugly

Theorem (folk)
Suppose that ∣′e ∣ ≤ G . If (GD) is run with γn ∝ /

√
Gn and returns

f̄n =
∑n

k= γk fk
∑n

k= γk
,

then
E[( f̄n)] ≤ min  +O(G

√
∣P ∣/n)

▸ Value convergence despite imperfect feedback 3
▸ Can be improved to convergence in high probability 3

▸ Rate in n cannot be improved (but not too slow in practice) 3

▸ Exponential dependence on the size of the graph because of ∣P ∣ 7
▸ Projection step has complexity Θ(∣P ∣ log∣P ∣) 7
▸ Need to store Θ(∣P ∣) variables 7
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Exponentiated gradient descent

An idea from reinforcement learning (Vovk, Littlestone & Warmuth, …):
▸ Keep a score for each path, based on its performance so far
▸ Allocate traffic proportionally to the exponential of this score

Key insight: score by aggregating (negative) gradient steps

Exponentiated gradient descent (EGD)
Require: step-size sequence γk > 
1: set yp ←  for each route p ∈ P # initialization
2: for k = , , . . . , n do
3: assign traffic fp ∝ exp(yp) # exponential weights
4: set y ← y + γk v̂k # score update
5: end for
6: return f̄n = ∑n

k= γk fk/∑n
k= γk
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The good

, the (not so) bad, and the ugly

Theorem (M, Paschos, Vigneri, 2018)
Suppose that ∣′e ∣ ≤ G . If EGD is run with γn ∝ /

√
Gn, then

E[( fn)] ≤ min  +O(G
√
log∣P ∣/n)

▸ Linear dependence on the size of the graph through ∣P ∣ 3
▸ Value convergence despite imperfect feedback 3
▸ Can be improved to convergence in high probability 3

▸ Rate in n cannot be improved (but not too slow in practice) 3

▸ Normalization step has complexity Θ(∣P ∣) 7
▸ Still need to store Θ(∣P ∣) variables 7
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▸ Can be improved to convergence in high probability 3
▸ Rate in n cannot be improved (but not too slow in practice) 3

▸ Normalization step has complexity Θ(∣P ∣) 7
▸ Still need to store Θ(∣P ∣) variables 7
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Distribution in the control plane

Can we distribute the algorithm at the node level?

▸ Given: an O/D pair (O ,D)

▸ Each node υ ∈ V has a subset of edges eυ that can be used to reach D

▸ No backtracking: acyclic routing (multi-)graph G = (V ,⋃υ∈V eυ)

▸ Each node controls traffic allocation over Eυ , i.e., a vector

z = (ze)e∈Eυ ∈ ∆(Eυ)

▸ Small dimensionality per control node – but how to implement EGD?
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The role of weight propagation

Key steps in EGD:

▸ Update scores: ye ← ye + γv̂e 3
▸ Traffic allocation: ??? 7

Straightforward choice of weights:

ze =
exp(ye)

∑e′∈Eυ exp(ye′)

OK in terms of dimension; complete failure in terms of optimization
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Backpedaling

Key insight: must not be blind to what is happening down the road!

0. Require: edge score vector y = (ye)e∈E
Initialize: latent weight variables wυ for each υ ∈ V , we for each e ∈ E .
Set wD =  at destination; backpropagate wD through all edges linking to D.

1. Weigh and wait: When node υ receives weight information from connecting node
υ′ via edge e ∈ Eυ , set

we = ye +wυ′

2. Sum and send: If node υ has received an update via all outgoing edges Eυ , set

wυ = log ∑
e∈Eυ

exp(we)

and push wυ back through all edges linking to υ
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Exponential weights and backpedaling

Proposition
Let y ∈ RE be an edge score vector and suppose each node υ ∈ V allocates traffic following the
exponential rule

ze =
exp(we)
exp(wυ)

for all e ∈ Eυ ,

with we and wυ defined via backpedaling. Then, the total traffic flowing through route p ∈ P is

fp =
exp(yp)

∑q∈P exp(yq)

where yp = ∑e∈p ye denotes the corresponding path score.

Exponential node weights with backpedaling induce exponential path weights!
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Distributed EGD

Theorem (Gaujal, Héliou, M, 2018)
Suppose that ∣′e ∣ ≤ G . If EGD is run at the node level with backpedaling and a step-size
γn ∝ /

√
Gn, then

E[( f̄n)] ≤ min  +O(G
√
log∣P ∣/n)

▸ Value convergence despite imperfect feedback 3
▸ Can be improved to convergence in high probability 3

▸ Linear dependence on the size of the graph through ∣P ∣ 3
▸ Update step has O(∣Eυ ∣) complexity per node 3
▸ Only need to store O(∣Eυ ∣) variables per node 3
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Convergence rate

Distributed EGD in randomly generated networks
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Convergence rate

Distributed EGD in randomly generated networks
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Conclusions and perspectives

“Traffic congestion is caused by vehicles, not by people in themselves”

— Jane Jacobs, The Death and Life of Great American Cities

▸ The price of anarchy disappears in light and heavy traffic, independently of the
network topology and even with multiple O/D pairs

▸ Exponential weights + backpedaling allow fast, distributed optimization
▸ Size of the network: not a curse, but a blessing in disguise

Open questions
▸ Capacitated networks (M/M/1, M/G/1, etc.)?
▸ What if there is no gradient feedback whatsoever?
▸ What about atomic routing games?
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