
Optimizing crew pairing in an airline

Frédéric Meunier

June 8th, 2018

Joint work with Axel Parmentier



Crew in an airline

The crew pairing problem consists in generating minimum-cost,
multiple-day work schedules.

It has to be carefully addressed since (Barnhart et al., 2003)

Crews represent the airlines’ second highest operating
cost after fuel, so even slight improvements in their
utilization can translate into significant savings.



Rough description of the problem

♣ 6 months before the realization of the flights, the crew pairing problem has
to be solved.

♣ Set F of all flight legs are fixed beforehand.

♣ Sequence of flight legs realized by a crew: pairing.

♣ A pairing must satisfy many constraints about rest, time spent in a flying
airplane, etc. (more than 70 working rules have to be satisfied).

♣ Each pairing has a cost (wage, indemnity, etc.).

Crew pairing problem

Find a partition of F into feasible pairings so as to
minimize the total cost.



This talk

Method for solving the crew pairing problem
• developed within a collaboration with AIR FRANCE.
• able to solve almost all industrial instances to

near-optimality.
• relies on improved shortest path algorithms.

Plan.
1. The problem
2. A column generation model
3. Shortest paths
4. Experimental results



The crew pairing problem



Feasible pairings
Pairing: sequence p = (`1, . . . , `k ) of flight legs to be operated by a
crew.

To be feasible, p must satisfy connection constraints

• `i must end in the airport from which `i+1 departs.

• departure time(`i+1)− arrival time(`i) > τ , where τ is a
predetermined duration.

• `1 must start in Paris and `k must end in Paris.

It has also to satisfy all working rules

• total number of days spanned by p,

• total flying duration in p,

• rest,

• etc.



The crew pairing problem

Input.

• Set L of all flight legs realized by the airplanes, over a one-week
horizon

• For each pair (`, `′) of flight legs satisfying connection
constraints: cost c`,`′ of chaining ` with `′ in a pairing

• Working rules

Output.

• A partition of L into feasible pairings with minimal total cost
(total cost = sum of the costs of the pairings in the partition)



The crew pairing problem – a graphic formulation
Input.

• Digraph (L,A), where
(`, `′) ∈ A means that they
satisfy connection
constraints

• For each arc
a = (`, `′) ∈ A, cost ca
giving the cost of chaining
` with `′ in a pairing

• Working rules

Output.

• A partition of L into
“feasible” paths with
minimal total cost

: flight leg (e.g., Paris CDG 6:30pm → Frankfurt FRA 7:40pm)

: `2 can follow `1 in a pairing (they satisfy the connecting constraint)
`1 `2



The crew pairing problem – a graphic formulation
Input.

• Digraph (L,A), where
(`, `′) ∈ A means that they
satisfy connection
constraints

• For each arc
a = (`, `′) ∈ A, cost ca
giving the cost of chaining
` with `′ in a pairing

• Working rules

Output.

• A partition of L into
“feasible” paths with
minimal total cost

: flight leg (e.g., Paris CDG 6:30pm → Frankfurt FRA 7:40pm)

: `2 can follow `1 in a pairing (they satisfy the connecting constraint)
`1 `2



Column generation model



Integer programming model
Standard Operations Research approach:

write the problem as

Min
∑
p∈P

cpxp

s.t.
∑

p∈P : p3`
xp = 1 ∀` ∈ L

xp ∈ {0,1} ∀p ∈ P

where
• P is the set of all feasible pairings
• cp =

∑
a∈p ca

p ∈ P ⇐⇒ p satisfies the connection constraints and the working rules



Method

Step 1. SOLVE (LR(P)) via column
generation

Step 2. USE the optimal solution of
(LR(P)) to discard pairings that are in no
optimal solution of the original integer
program: P∗ ⊆ P

Step 3. SOLVE original integer program on
P∗ directly with any standard IP solver

When P∗ is small, last step is doable.

Min
∑
p∈P

cpxp

s.t.
∑

p∈P : p3`
xp = 1 ∀` ∈ L

0 6 xp 6 1 ∀p ∈ P

(LR(P))

↓

↓

Min
∑

p∈P∗
cpxp

s.t.
∑

p∈P∗ : p3`
xp = 1 ∀` ∈ L

xp ∈ {0, 1} ∀p ∈ P∗

(Standard method relies on column generation and branch-and-bound)



Step 1. Solve linear relaxation via column generation

Min
∑

p∈P′
cpxp

s.t.
∑

p∈P′ : p3`

xp = 1 ∀` ∈ L

0 6 xp 6 1 ∀p ∈ P ′

(LR(P ′))

Column generation:

INITIALIZE with a small P ′ so that (LR(P ′)) is feasible;
REPEAT

SOLVE (LR(P ′)) with any standard solver;
FIND a pairing p ∈ P of minimum reduced cost c̃p;
IF (c̃p < 0)
THEN add p to P ′;

UNTIL (c̃p > 0 for all p ∈ P)



Step 1. Solve linear relaxation via column generation

Min
∑

p∈P′
cpxp

s.t.
∑

p∈P′ : p3`

xp = 1 ∀` ∈ L

0 6 xp 6 1 ∀p ∈ P ′

(LR(P ′))

Column generation:

INITIALIZE with a small P ′ so that (LR(P ′)) is feasible;
REPEAT

SOLVE (LR(P ′)) with any standard solver;
FIND a pairing p ∈ P of minimum reduced cost c̃p; (pricing subproblem)
IF (c̃p < 0)
THEN add p to P ′;

UNTIL (c̃p > 0 for all p ∈ P)



Method

Step 1. SOLVE (LR(P)) via column generation

Step 2. USE the optimal solution of (LR(P)) to discard pairings
that are in no optimal solution of the original integer program:
P∗ ⊆ P

Step 3. SOLVE original integer program on P∗ directly with any
standard IP solver



Step 2. Use optimal solution to discard pairings
Step 1. has produced
• a subset P ′ on which linear relaxation is optimal.
• a lower bound lb of the original integer program.

SOLVE original integer program on P ′ produces
• a feasible solution of the original integer program.
• an upper bound ub of the original integer program.

DETERMINE all pairings p for which c̃p 6 ub− lb and ADD them
to P ′:
• produces a subset P∗ ⊆ P.

This last step is again a “pricing subproblem”.



Step 2. Rationale

Min c · z
s.t. Az = b

z ∈ {0,1}n
(P)

lb = optimal value of lin. rel.

c̃i = reduced cost of i th variable in
the optimal solution of lin. rel.

ub = value of some feasible
solution

Lemma
If c̃i > ub− lb, then zi = 0 in every optimal solution of (P).



Method

Step 1. SOLVE (LR(P)) via column generation

Step 2. USE the optimal solution of (LR(P)) to discard pairings
that are in no optimal solution of the original integer program:
P∗ ⊆ P

Step 3. SOLVE original integer program on P∗ directly with any
standard IP solver



Step 3. Solve original integer program on P∗

SOLVE
Min

∑
p∈P∗

cpxp

s.t.
∑

p∈P∗ : p3`
xp = 1 ∀` ∈ L

xp ∈ {0,1} ∀p ∈ P∗

with any standard solver.

P∗ has to be very small (P∗ � P) for the method to work.

In particular, ub− lb has to be small.
(Luckily, this is the case for this problem.)



Method

Step 1. SOLVE (LR(P)) via column
generation

Step 2. USE the optimal solution of
(LR(P)) to discard pairings that are in no
optimal solution of the original integer
program: P∗ ⊆ P

Step 3. SOLVE original integer program on
P∗ directly with any standard IP solver

Min
∑
p∈P

cpxp

s.t.
∑

p∈P : p3`
xp = 1 ∀` ∈ L

0 6 xp 6 1 ∀p ∈ P

↓

↓

Min
∑

p∈P∗
cpxp

s.t.
∑

p∈P∗ : p3`
xp = 1 ∀` ∈ L

xp ∈ {0, 1} ∀p ∈ P∗



Shortest paths



Pricing subproblem
Only step for which we have flexibility: pricing subproblem.

REPEAT
SOLVE (LR(P ′)) with any standard solver;
FIND a pairing p ∈ P of minimum reduced cost c̃p ;
IF (c̃p < 0)
THEN add p to P ′;

UNTIL (c̃p > 0 for all p ∈ P)

Min
∑

p∈P′
cpxp

s.t.
∑

p∈P′ : p3`
xp = 1 ∀` ∈ L

0 6 xp 6 1 ∀p ∈ P ′
(LR(P ′))

Desrosiers and Lübbecke (2006)

“[in a column generation context] accelerating the
pricing algorithm itself usually leads most significant
speeds-up.”



Pricing subproblem
Minp∈P c̃p, consists in finding a “shortest” path p in the digraph
(L,A):

: flight leg (e.g., Paris CDG 6:30pm → Frankfurt FRA 7:40pm)

: `2 can follow `1 in a pairing (they satisfy the connecting constraint)
`1 `2

c̃p being “additive” (it is of the form
∑

a∈p ca), this a standard
problem,
... except that p ∈ P means p has to satisfy about 70 working
rules!



Pricing subproblem and ordered monoid

It is possible to
• define a monoid (M,⊕), with a partial order 4,
• assign to each arc a of D = (L,A) an element ma of M (its

resource)
• define an non-decreasing oracle ρ : M → {0,1}

such that

p ∈ P ⇐⇒ ρ

(⊕
a∈p

ma

)
= 0.



Example
Example of working rules:

1. Flying duration per day 6 F

2. max. 4 flight legs per day if the preceding night rest is long, and
3 otherwise.

Resource of an arc a = (`, `′), with f flying duration of `′

• If both ` and `′ are on a same day: ma = (1, f )

• If there is a night between ` and `′:

ma =

{
(0,0,2, f ) if long night rest
(0,0,1, f ) if short night rest

(n, f )⊕ (ñ, f̃ ) = (n + ñ, f + f̃ )
(n, f )⊕ (ñb, f̃ b, ñe, f̃ e) = (n + ñb, f + f̃ b, ñe, f̃ e)
(nb, f b, ne, f e)⊕ (ñ, f̃ ) = (nb, f b, ne + ñ, f e + f̃ )
(nb, f b, ne, f e)⊕ (ñb, f̃ b, ñe, f̃ e) = (nb, f b, ñe, f̃ e)

ρ(n, f ) := 1
if n > 4 or f > F

ρ(nb, ne, f b, f e) := 1
if nb > 4 or ne > 4 or f b > F or
f e > F



Pricing subproblem as a shortest path problem
The pricing subproblem is thus

Input.
• Digraph D = (L,A) with

extra origin o and
destination d

• Elements ca ∈ R and
ma ∈ M for each a ∈ A

• A non-decreasing oracle
ρ : M → {0,1}

Output.
• An o-d path p satisfying
ρ
(⊕

a∈p ma

)
= 0

while minimizing
∑

a∈p ca

Axel has developed in his PhD thesis an efficient methodology
to deal with this kind of problems.



Methodology for the shortest path problems
Oriented graph (L ∪ {o,d},A).

Precompute quickly a bound b` ∈ M for each ` ∈ L

b` 4
⊕
a∈q

ma. ∀`-d path q.

Algorithm enumerates (implicitly) all paths by starting at o and
extending them arc by arc.

Implicitly: an o-` path p is discarded if
• “Bound”: ρ(p ⊕ b`) = 1 (and similarly for the cost)
• “Dominance”: an o-` path p′ is currently considered with⊕

a∈p′ ma 4
⊕

a∈p ma.



Numerical experiments



Numerical results
128 Gb of RAM and 12 cores at 2.4 GHz.

Linear and integer programs are solved with CPLEX 12.1.0.

Instance Legs Crew
connect

Pricing
time

LP
time

MIP
time

Total time
(hh:mm:ss)

A318 669 3,742 86.60% 13.34% 0.05% 01:21:22
A319 957 3,738 60.66% 39.14% 0.15% 00:10:47
A320 918 3,813 74.54% 25.20% 0.20% 00:08:35
A321 778 3,918 65.82% 32.60% 1.25% 00:33:51
A318-9 1,766 8,070 69.71% 30.21% 0.07% 05:43:00
A320fam 3,398 21,563 43.28% 56.62% 0.10% 104:05:59

Crew pairing results – Instances are solved to optimality

♣ Previously, the largest instances in the literature had ' 750 flight
legs (and were not necessarily solved to optimality).

♣We are able to increase substantially the size of the instances
solved to optimality.



Concluding remarks



Aircraft routing

♣ Aircraft routing: Determine the routes (sequence of flight
legs) followed by the airplanes.

♣ At AIR FRANCE, the methodology presented in this talk is
currently developed for the (more simple) aircraft routing
problem.



Integrated problem

Traditional methodology:
• First SOLVE Aircraft routing.
• Then SOLVE Crew pairing.

(The routes impose constraints on P: some connections are
impossible if the crew has to change airplanes.)

♣We are also able to address the Integrated problem, which
aims at computing the routes and the pairings simultaneously.

♣ This leads to an additional reduction of costs.



Thank you


