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Abstract

Sequential allocation is a simple allocation mechanism in
which agents are given pre-specified turns in which they take
one item among those that are still available. It has long been
known that sequential allocation is not strategyproof. This
raises the question of the complexity of computing a pref-
erence report that yields a higher utility than the truthful pref-
erence. We show that the problem is NP-complete for one
manipulating agent with additive utilities and several non-
manipulating agents. In doing so, we correct a wrong claim
made in a previous paper. We then give two additional re-
sults. First, we present a polynomial-time algorithm for opti-
mal manipulation when the manipulator has additive binary
utilities. Second, we consider a stronger notion of manipula-
tion whereby the untruthful outcome yields more utility than
the truthful outcome for all utilities consistent with the ordi-
nal preferences; for this notion, we show that a manipulation,
if any, can be computed in polynomial time.

Introduction

A simple but popular mechanism to allocate indivisible
items is sequential allocation (Aziz, Walsh, and Xia 2015;
Bouveret and Lang 2011; Brams and Straffin 1979; Brams
and Taylor 1996; Kalinowski, Narodytska, and Walsh 2013;
Kalinowski et al. 2013; Kohler and Chandrasekaran 1971;
Levine and Stange 2012; Tominaga, Todo, and Yokoo 2016).
In sequential allocation, a sequence specifies the turns of the
agents. For example, for sequence 1212, agents 1 and 2 al-
ternate with agent 1 taking the first turn. Agents report their
preferences by expressing a linear order over items, and are
allocated items based on their reported preferences as fol-
lows. They get turns according to the sequence, and when
their turn comes, they are given the most preferred item (ac-
cording to their reported order) that has not yet been allo-
cated. Sequential allocation is an ordinal mechanism since
the outcome only depends on the ordinal preferences of
agents over items. Nevertheless, it is a standard assumption
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in the literature that agents have underlying additive utili-
ties for the items.1 It has long been known that sequential
allocation is not strategyproof in particular when agents do
not have consecutive turns. This motivates the natural prob-
lem of computing best responses (also referred to as ma-
nipulations). Kohler and Chandrasekaran (1971) presented a
polynomial-time algorithm to compute the optimal manip-
ulation of an agent when there are two agents and the se-
quence is alternating (121212..). Bouveret and Lang (2011)
initiated further work on manipulation of sequential alloca-
tion and showed that (1) it can be checked in polynomial
time whether an agent can be allocated a given subset of
items; then, they show in a later work (Bouveret and Lang
2014) that (2) an optimal manipulation for two agents (one
manipulator and one non-manipulator) can be found in poly-
nomial time for any sequence. Now, they also claim (page
142, left column, lines 5-7) that by putting together (1) and
(2), a best response can be computed in polynomial time for
one manipulator against several non-manipulators, and that
each best response results in the same allocation for the ma-
nipulator. As we will show, this conclusion is wrong.

Results We focus on computing best responses (or manip-
ulations) under sequential allocation. We first show that the
algorithm given by Bouveret and Lang (2014) for computing
a best response against one non-manipulator does not extend
to several non-manipulators. We then show that the problem
of computing a best response is in fact NP-complete. The
result has some interesting consequences since many allo-
cation rules are based on sequential allocation. We also give
two additional results. We first present a polynomial-time al-
gorithm for optimal manipulation when the manipulator has
binary utilities. We then consider a stronger notion of manip-

1We view here sequential allocation as a centralized mecha-
nism; it can also be seen as a decentralized mechanism, where in-
stead of reporting their preference, agents pick a remaining item
each time their turn come. Our results hold for both views but are
easier to state for the centralized view.
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ulation whereby the untruthful outcome yields more utility
than the truthful outcome for all utilities consistent with the
ordinal preferences. For this notion, we give a polynomial-
time algorithm for computing a manipulation.

Preliminaries

We consider a set of agents N = {1, . . . , n} and a set of
items O = {o1, . . . , om}. Agent 1 is the manipulator and
agents 2 to n the non-manipulators. The preference profile
�= (�1, . . . ,�n) specifies for each agent i his complete,
strict, and transitive preference �i over O. A preference re-
lation �i is usually denoted by a list, such as i : a, b, c, d
for a �i b �i c �i d. Moreover, for agent 1 we are
also given a set of positive values {u1(o)|o ∈ O}, where
for each o, u1(o) > 0 is 1’s cardinal evaluation of the
value of item o. These values are consistent with �1, that is,
u1(o) > u1(o

′) iff o �1 o′. We assume that agent 1’s prefer-
ence over sets of items are represented by the additive utility
function ui(O

′) =
∑

o∈O′ ui(o) for all O′ ⊆ O. We say that
u1 is lexicographic if for all o ∈ O, u1(o) >

∑
o′≺io

u1(o
′).

We abbreviate u1(S) ≥ u1(T ) into S �1 T . Finally, an
assignment p is a function from O to N .

Complexity of Manipulation

We first show that the best response algorithm of Bouveret
and Lang (2014) does not work for n ≥ 3, and that several
optimal manipulations may result in different allocations.
Example 1. Let the sequence be 1231, and consider the fol-
lowing profile �.

�1: a, b, c, d �2: c, d, a, b �3: a, b, c, d

According to (Bouveret and Lang 2014), the best response
is one in which agent 1 gets {a, d} which can even be
achieved by the truthful report. Now, if agent 1 misreports

�′
1: c, b, a, d

then he gets {b, c}. Which one of {a, d} and {b, c} is better
depends on u1 and not just on �1. For example, if u1(a) =
5, u1(b) = 4, u1(c) = 3 and u1(d) = 1, then {b, c} �1

{a, d} and the best achievable allocation for 1 is {b, c}. On
the other hand, if u1(a) = 4, u1(b) = 3, u2(c) = 2 and
u1(d) = 1, then 1 is indifferent between {a, d} and {b, c}.

Thus, for more than one non-manipulator the algorithm
of Bouveret and Lang (2014) does not necessarily compute
a best response,2 and the complexity of computing a best
response is an open problem. We are now going to show
that the problem is NP-hard. The reduction involves a simi-
lar high-level idea as that of the result of Aziz et al. (2015a)
that manipulating the probabilistic serial (PS) mechanism is
NP-hard. However, the reduction requires new gadgets. Also
note that the NP-hardness result for the PS mechanism does

2The reason is that when they translate the n-agent problem
P of deciding whether agent 1 can obtain a set of objects S
into a 2-agent problem P ′ (Bouveret and Lang 2011), the pref-
erence relation of agent 2 in P ′ problem depends on S, and in
the best response algorithm for a 2-agent problem of Bouveret and
Lang (2014), S is not fixed.

not directly imply a similar result for sequential allocation.
Similarly, the NP-hardness of the manipulation of sequential
allocation does not imply the NP-hardness of the manipula-
tion of the PS mechanism.

Theorem 2. Computing a best response for the sequential
allocation mechanism is NP-complete.

Proof. We prove that the following problem (BEST RE-
SPONSE) is NP-complete: given an assignment setting, a
utility function u1 : O → N for the manipulator, and a target
utility T , can the manipulator specify preferences such that
the utility for his allocation under the sequential allocation
rule is at least T ? The problem BEST RESPONSE is clearly
in NP, since the outcome with respect to the reported prefer-
ence can be computed by simulating sequential allocation.

We show hardness by reduction from a restricted NP-
complete version of 3SAT where each literal appears ex-
actly twice in the set of clauses. The problem remains NP-
complete (Berman, Karpinski, and Scott 2003). Given such
a 3SAT instance F = (X,C) where X = {x1, . . . , x|X|}
is the set of variables and C the set of clauses, we build an
instance of BEST RESPONSE where the manipulator can ob-
tain utility ≥ T if and only if C is satisfiable. We denote by
L = {x1,¬x1, . . . , x|X|,¬x|X|} the set of literals.

We define the set of agents as

N = {1} ∪ {a1li , a2li : li ∈ L}
with agent 1 as the manipulator, and the set of items as

O = {o1c , o2c , o3c : c ∈ C}
∪ {o1li , o2li , h1

li , h
2
li , h

3
li , d

11
li , d

12
li , d

21
li , d

22
li : li ∈ L}

with

• O(c) = {o1c , o2c , o3c}: clause items associated with clause c
• O(li) = {o1li , o2li}: choice items associated with literal li
• H(li) = {h1

li
, h2

li
, h3

li
}: consistency items associated with

li
• D(li) = {d11li , d12li , d21li , d22li }: dummy items associated

with li

We view the sequential allocation process as follows. The
agents’ preferences are built in a way such that the agents
will first go through |X| choice rounds corresponding to
variables x1, . . . , x|X|, then |C| clause rounds correspond-
ing to c1, . . . , c|C|, and then one final collection round.

High-level Idea The picking sequence is composed of
successive rounds. Each round is associated with a subset
of items that are valued by agent 1 much higher than items
associated with later rounds. If he wants to reach the target
utility T , then in each round, agent 1 must focus only on
the items relevant to that round; those he will not get during
the corresponding round will be taken by other agents and
it will not be possible for him to take them in later rounds.
In each round, agent 1 makes a choice between the items
corresponding to a variable and to its negation. There is a
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negligible difference between the utility of the items corre-
sponding to the variable and those corresponding its nega-
tion (for example o1x and o1¬x). If he chooses the items in a
‘correct’ way, then he will get a most preferred item corre-
sponding to each of the clauses: more precisely, agent 1, in
any case, will get one item hj

xi
and one item hk

¬xi
for each

variable xi; if he chooses in a ‘correct’ way, then this pair
of items {hj

xi
, hk

¬xi
} will give him a sufficiently high util-

ity, otherwise there will be a utility loss which he will never
be able to compensate. We show below that agent 1 reaches
utility T if and only if these two conditions are satisfied:

1. he chooses the choice items in a consistent way, that is, at
each choice round i he chooses either o1xi

and o2xi
(which

we view as assigning xi to false), or o1¬xi
and o2¬xi

(which
we view as assigning xi to true).

2. he manages to get his most preferred clause item for each
clause c; this is possible only if none of the agents corre-
sponding to the negation of the literals in c gets this clause
item before him.

Utility function of agent 1 Agent 1 highly prefers choice
items relevant to variable xi to items relevant to variable xj ,
j > i; for a given variable he highly prefers its relevant
choice items to its relevant consistency items. These items
are highly preferred to clause items, which in turn are highly
preferred to dummy items:

O(x1), O(¬x1) 	1 H(x1), H(¬x1)
	1 . . . 	1 O(x|X|), O(¬x|X|) 	1 H(x|X|), H(¬x|X|)
	1 o1c1 	1 o1c2 	1 . . . 	1 o1c|C| 	1 other items

His utilities for items in O(xi) and H(xi) are as follows:

• u1(o
1
xi
) = u1(o

1
¬xi

) + ε 	 u1(o
2
xi
) = u1(o

2
¬xi

) + ε,
where ε is a negligible quantity.

• h1
¬xi

�1 h2
¬xi

�1 h3
¬xi

�1 h1
xi

�1 h2
xi

�1 h3
xi

.

• u1(h
2
xi
) + u1(h

2
¬xi

) < u1(h
1
¬xi

) + u1(h
3
xi
) =

u1(h
1
xi
) + u1(h

3
¬xi

).
• agent 1 reaches utility T if and only if he gets two items

corresponding to a variable, at least one top choice consis-
tency item (h1

x or h1
¬x) in each round and his target clause

item in each clause round.

Choice Round The choice round is composed of a series
of rounds, one for each variable xi; each of them is itself
composed of two subrounds; in each of them, agent 1 has
to choose a choice item. The sub-sequence in choice round
corresponding to variable xi is as follows:

1, a1¬xi
, a2¬xi

, a1xi
, a2xi

, 1, a1¬xi
, a2¬xi

, a1xi
,

a2xi
, a1¬xi

, a2¬xi
, 1, a1xi

, a2xi
, 1

The ordinal preferences relevant for the choice round cor-
responding to variable xi are as follows. Recall that agent
1’s preferences are

1 : o1xi
, o1¬xi

, o2xi
, o2¬xi

, h1
¬xi

, h2
¬xi

, h3
¬xi

, h1
xi
, h2

xi
, h3

xi

Then, each literal agent prefers the items corresponding
to the negation of the literal:

a1¬xi
: o1xi

, d11xi
, d12xi

, o2xi
, h1

xi
, h2

xi
, h3

xi

a2¬xi
: d21xi

, o1xi
, o2xi

, d22xi
, h1

xi
, h2

xi
, h3

xi

a1xi
: o1¬xi

, d11¬xi
, h1

¬xi
, o2¬xi

, h2
¬xi

, h3
¬xi

, d12¬xi

a2xi
: d21¬xi

, o1¬xi
, o2¬xi

, h1
¬xi

, h2
¬xi

, h3
¬xi

, d22¬xi

Items that do not appear in these lists are below in the
preference list of an agent. Note the asymmetry between
agents corresponding to positive and negative literals: the
positive (respectively, negative) literal agents have a dummy
item as the least preferred item (respectively, the consistency
items as the least preferred items) relevant to the picking in
the choice round.

We say that agent 1 makes a consistent choice in the
choice round corresponding to xi if he picks both o1¬xi

and o2¬xi
(in which case we say he assigns xi to true)

or both o1xi
and o2xi

(in which case we say he assigns xi

to false). Given the preferences of other agents, the pairs
that agent 1 can possibly get are only these three ones:
{h1

xi
, h3

¬xi
}, {h1

¬xi
, h3

xi
} and {h2

xi
, h2

¬xi
}. If he makes a

consistent choice then he will get one of the first two pairs,
for which he has the same utility (see Tables 1 and 2), and
if he makes an inconsistent choice then he will get the pair
{h2

xi
, h2

¬xi
}, which gives him a smaller utility than the other

two pairs (see Tables 3 and 4).

Clause round The sequence in clause round correspond-
ing to clause c = (li ∨ lj ∨ lk) is as follows.

ali , alj , alk ,−−−, 1

For each literal l in clause c, there is an agent a1¬l or a2¬l
that features in the round. Recall that each literal occurs in
exactly two clauses in the set of clauses. Agent a1¬l (respec-
tively, a2¬l) features if c is the first (respectively, second)
clause in which l is present.

After all the clause rounds are finished, agent 1 will get
|C| turns in which he will get the clause items that are still
available.

For agent 1, according to u1, his relevant preference in the
clause round is to go for o1c .

For a literal l, let c and c′ be the two clauses containing l.
If l = x (x being a propositional variable), the preferences
of agents a1¬x and a2¬x in the round corresponding to l are

a1¬x : h2
x, h

3
x, o

3
c , o

2
c , o

1
c

a2¬x : h2
x, h

3
x, o

3
c′ , o

2
c′ , o

1
c′

and if l = ¬x then the preferences of agents a1x and a2x in
the round corresponding to l are

a1x : d12¬x, o
3
c , o

2
c , o

1
c

a2x : d22¬x, o
3
c′ , o

2
c′ , o

1
c′

Note that the consistency items h2
x and h3

x, as well as
the dummy items d12¬x and d22¬x, were possibly picked in the
choice round corresponding to variable x.

330



Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Agent 1 a1¬xi

a2¬xi
a1xi

a2xi
1 a1¬xi

a2¬xi
a1xi

a2xi
a1¬xi

a2¬xi
1 a1xi

a2xi
1

Item picked o1¬xi
o1xi

d21xi
d11¬xi

d21¬xi
o2¬xi

d11xi
o2xi

h1
¬xi

h2
¬xi

d12xi
d22xi

h3
¬xi

d12¬xi
d22¬xi

h1
xi

Table 1: Choice round for variable xi in which agent 1 makes consistent choice {o1¬xi
, o2¬xi

} (“assign xi to true”). Agents a1¬xi

and a2¬xi
next focus on items h2

xi
and h3

xi
before turning their attention to the clause items. On the other hand, a1xi

and a2xi
are

now ready to get clause items. In this way, the agents corresponding to literals set to false are quicker to get their clause items.

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Agent 1 a1¬xi

a2¬xi
a1xi

a2xi
1 a1¬xi

a2¬xi
a1xi

a2xi
a1¬xi

a2¬xi
1 a1xi

a2xi
1

Item picked o1xi
d11xi

d21xi
o1¬xi

d21¬xi
o2xi

d12xi
d22xi

d11¬xi
o2¬xi

h1
xi

h2
xi

h1
¬xi

h2
¬xi

h3
¬xi

h3
xi

Table 2: Choice round for variable xi in which agent 1 makes consistent choice {o1xi
, o2xi

} (“assign xi to false”). Agents a1xi

and a2xi
next focus on items d12¬xi

and d22¬xi
before turning their attention to the clause items. On the other hand, a1¬xi

and a2¬xi

are now ready to get clause items.

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Agent 1 a1¬xi

a2¬xi
a1xi

a2xi
1 a1¬xi

a2¬xi
a1xi

a2xi
a1¬xi

a2¬xi
1 a1xi

a2xi
1

Item picked o1xi
d11xi

d21xi
o1¬xi

d21¬xi
o2¬xi

d12xi
o2x1

d11¬x1
h1
¬xi

h1
xi

d22xi
h2
¬xi

h2
¬xi

h3
¬xi

h2
xi

Table 3: Choice round for variable xi in which agent 1 makes inconsistent choice {o1xi
, o2¬xi

}. As a result of making an
inconsistent choice, agent 1 does not get h1

¬xi
nor h1

xi
.

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Agent 1 a1¬xi

a2¬xi
a1xi

a2xi
1 a1¬xi

a2¬xi
a1xi

a2xi
a1¬xi

a2¬xi
1 a1xi

a2xi
1

Item picked o1¬xi
o1xi

d21xi
d11¬xi

d21¬xi
o2xi

d11xi
d22xi

h1
¬xi

o2¬xi
d12xi

h1
xi

h2
¬xi

d12¬xi
d22¬xi

h2
xi

Table 4: Choice round for variable xi in which agent 1 makes inconsistent choice {o1¬xi
, o2xi

}.

If agent 1 has made a consistent choice in the choice round
corresponding to variable x and has set x to “true”, then a1xi

and a2xi
are now ready to get clause items in their respective

clause rounds. If agent 1 has made a consistent choice in the
choice round corresponding to variable x and has set x to
“false”, then a1¬xi

and a2¬xi
already want to get clause items

in their respective clause rounds.
In the clause round, for any literal l that is not satisfied

by the truth assignment resulting from the choice round, the
agent corresponding to l gets a clause item oic where c is a
clause containing ¬l. For example, if x has been assigned to
false, then a1¬x gets a clause item for the first clause in which
x is present and a2x gets a clause item for the second clause
in which x is present. Therefore, if all the literals of a clause
c are false, then agent 1 does not get o1c .

If literal l is satisfied, the agent a¬l corresponding to it
gets a dummy or consistency item in that round instead of a
clause item. This means that if all the literals of a clause are
not satisfied, then all three clause items of a clause are gone,
and agent 1 does not get a clause item. He is much more
interested in the clause item o1c than in the clause items o2c
and o3c . The other clause items are far down in his preference
list so he would rather get all the top clause items o1c for each
clause c rather than o2c and o3c .

For example, let us consider clause c = (xi∨¬xj∨¬xk),
ans assume variables xi, xj and xk are set to true, i.e., agent
1 has picked choice items corresponding to ¬xi, ¬xj and
¬xk. This means that in the clause round, a1xj

and a1xk
are

ready to take their clause items o3c and o2c but a1¬xi
wants

to get one of the unallocated consistency items before he
is interested in consistency items o3c , o

2
c , o

1
c . This is helpful

for agent 1 because he can get o1c . Since each literal occurs

exactly twice in the set of clauses, note that as long as 1
makes a consistent choice, there will be another clause c′ in
which literal x is present and if x is set to true, then a2¬x
will get h3

xi
and hence 1 will be able to get oc′ . Note that

after the clause rounds all the consistency items are already
allocated, so agent 1 can hope to get all the top clause items
if they were not already taken in the clause rounds.

Stage 1 2 3 after clause rounds
Agent a1¬xi

a1xj
a1xk

1
Item picked h2

xi
o3c o2c o1c

Table 5: Clause round corresponding to c = (xi∨¬xj∨¬xk)

Collection round The sequence in this round is 1, . . . , 1︸ ︷︷ ︸
|C|

.

At this stage, agent 1 prefers o1c1 , . . . , o
1
c|C| to all other re-

maining items.
The idea is that if agent 1 make choices that sets all the

clauses to true, then he gets all the clause items. Note that
if 1 makes a consistent choice for the variables but does not
pick up all the clause items in the collection round (because
the set of clauses is unsatisfiable), then 1 does not get all the
clause items. Since there are items less preferred by 1 than
the o1cs such as o2c and o3cs, agent 1 is forced to pick a much
less preferred item in the collection round.

Based on construction of the choice and clause rounds,
we are in a position to prove a series of claims.

Claim 1. If agent 1 does not make a consistent choice of the
variable items, then he does not get utility T .
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Proof. If 1 does not make a choice at all in a choice round
(that is, if he does not pick one of o1x or o1¬x and one of
o2x or o2¬x), then his most preferred items corresponding to
the literals are then taken by the agents corresponding to the
literal. If 1 makes a choice in each choice round but not a
consistent one, then he gets {h2

¬x, h
2
x} which has sufficiently

less utility than {h1
¬x, h

3
x} or {h1

x, h
3
¬x} which implies he

cannot get total utility T .

Claim 2. If agent 1 makes consistent choices but the assign-
ment is not satisfying, then agent 1 does not get utility T .

Proof. If some clause c is set to false, then agent 1 is not
able to o1c because the literal agents in the clause round cor-
responding to c take all the items o3c , o

2
c , o

1
c . This implies that

agent 1 does not get utility T .

Claim 3. If there exists a satisfying assignment for C, then
agent 1 can get utility T .

Proof. If there exists a satisfying assignment, then consider
the preference report of agent 1 in which in each choice
round, he picks o1xi

and o2xi
if xi is set to be false. By do-

ing this he gets to pick a top consistency item in that round
as well. Since all the clauses are satisfied, in each clause
round, agent 1 is able to get his clause item o1c . The utilities
are set in a way so that as long as agent 1 gets two items
corresponding to the same literal and hence at least one top
choice consistency items in each round and his target clause
item in each clause round, agent 1 gets utility at least T .

The claims show that agent 1 gets utility at least T if and
only if there is a satisfying truth assignment.

The result above also gives us the following statement:
computing a best response is NP-hard. This raises the fol-
lowing question: what is the complexity of testing whether
there exists a report that gives more utility than the truthful
report ?

Theorem 3. Checking whether there exists a report that
yields more utility than the truthful report is NP-complete.

Proof. We first prove that the restriction of SAT to set of
clauses such that (a) exactly one clause has only negative
literals, and (b) each literal appears exactly twice in the set
of clauses, is NP-complete. We show this by reduction from
SAT with restriction (b), which we know to be NP-complete.
Let F = {c1, ..., cn} be the initial set of clauses, with (b)
holding. Let G the following set of clauses, where d1, ..., dn
are new variables:

G = {ci ∨ di, 1 ≤ i ≤ n} ∪ {¬di ∨ di+1, 1 ≤ i < n}
∪ {¬dn} ∪ {d1 ∨ ¬d1 ∨ ... ∨ ¬dn}

Each literal (including di and ¬di for all i) appears exactly
twice in G, all clauses except one (¬dn) contain at least one
positive literal. Now, G is equivalent to {¬d1, . . . ,¬dn}∪F ,
therefore G is satisfiable if and only if F is satisfiable.

We now present a reduction from SAT with restrictions (a)
and (b) to the existence of a better response than the truth-
ful report. The reduction is essentially the same as that in

the proof of Theorem 2, except that the clauses may not be
of size 3. For clauses of different size, we simply create as
many clause items as the number of literals in the clause
and agent 1 still needs to get the top clause item of each
clause to achieve his target utility. The reduction again in-
volves choice rounds for all the variables and the goal is for
the agent 1 to maximize utility by making consistent choices
and then get as many clause items as possible.

In the same way as in the proof of Theorem 2, we can
show that if the set of clauses is not satisfiable, agent 1’s op-
timal strategy is to tell the truth (i.e., set all variables to true)
because this leads him to get consistent variable items and
all clause items except for the last clause, and that if the set
of clauses is satisfiable, then the satisfying truth assignment
also gives the corresponding optimal preference report for
agent 1. Therefore, checking whether there exists a better re-
port for agent 1 than the truthful report is NP-complete.

Manipulation under Binary Utilities

We now consider the restriction that the manipulator is asked
to report a linear order but has binary preferences over items:
the set of items is partitioned into two subsets O+ and O−,
such that for each o ∈ O+, ui(o) = α and for each o ∈ O−,
ui(o) = β < α; that is, the items in O+ are the most pre-
ferred items of agent 1. Binary utilities are important for e.g.,
when each agent is only interested in a subset of acceptable
items (Bogomolnaia and Moulin 2004). Since the number
of items he gets with a fixed sequence is fixed, the utility
obtained with a given report is maximal if and only if the
number of objects in O+ he gets is maximal. Therefore the
manipulation problem under this restriction consists in find-
ing a report leading agent 1 to get a maximum number of
‘top items’.

Let us assume that agent 1 (the manipulator) has n1

turns. Let π−1 the policy obtained by removing all occur-
rences of 1 in π, and let First(π−1,�2, . . . ,�n, O

+) be
the first item in O+ picked by some agent when simulat-
ing π−1 on (�2, . . . ,�n). For example, take π = 231312,
�2= (o1, o2, o3, o4, o5, o6), �3= (o1, o3, o5, o2, o4, o6)
and O+ = {o2, o4}. Then we have π−1 = 2332 and
First(π−1,�2,�3, O

+) = o2, since simulating π−1 leads
to 2 taking o1, 3 taking o3 and o5, and then 2 taking o2.

Moreover, let us write π = (head(π), 1, tail(π)),
where head(π) is the longest starting subsequence of
π in which 1 does not occur, and tail(π) is the sub-
sequence of π starting right after the first occurrence
of 1. Let Allocate(head(π),�2, . . . ,�n) be the set of
items allocated to 2, . . . , n when simulating head(π)
with (�2, . . . ,�n). For instance, with π, �2 and �3 as
above, we have head(π) = 23, tail(π) = 312, and
Allocate(head(π),�2,�3) = {o1, o3}.

Consider the following algorithm BR:
Input: O+, π, (�2, . . . ,�n)

Output: �′
1

k ← 1;
n1 ← number of occurrences of 1 in π;
While k ≤ n1 and O+ �= ∅ and π �= 11 . . . 1
O∗ ← Allocate(head(π),�2, . . . ,�n);
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remove O∗ from O, O+, and (�2, . . . ,�n);
π ← tail(π);
ak ← First(π−1,�2, . . . ,�n, O

+);
remove ak from O, O+, and (�2, . . . ,�n);
k ← k + 1;

End While

�′
1← (a1, . . . , ak);

complete �′
1 with the remaining items of O+ (if any) in an

arbitrary way, and then by other items in an arbitrary way;
Return �′

1

Theorem 4. A best response can be computed in polynomial
time when the manipulator has binary utilities: Algorithm
BR outputs a best response.

Proof. Assume that agent 1 has n1 turns. 1 is interested in
getting a maximum number n′

1 top items from O+. Let �′
1

be the sequence of objects obtained using Algorithm BR.
The main idea of the algorithm is that �′

1 is gradually built
in a way so that 1 can get all the top items in the list. A new
top item ak is only appended to the list if 1 can additionally
get it along with the previous items in the list. Just before
adding ak, when we simulate sequential allocation, 1 does
not get ak because someone else gets it right after 1’s turn
in which 1 abstained from picking an item because �′

1 only
had k−1 items. Hence if 1 does not abstain and in fact makes
use of his k-th turn, then 1 can get ak.

To prove the optimality of the algorithm, we reason iter-
atively on the number of picking turns of agent 1. Namely,
we prove the following statement: (Hn1

) suppose that the
number of remaining picking turns of 1 is n1. Suppose
that there is a picking strategy for agent 1 to get c objects
among those from O+, and let �′′

1= 〈b1, . . . , bn1〉 be the se-
quence of objects he gets with this strategy. Then the strat-
egy �′′′

1 = 〈a1, b2, . . . , bn1
〉, where we have simply replaced

b1 by a1 in �′′
1 gives at least c objects from O+ to agent 1.

We omit the argument of (Hn1
) due to lack of space.

By successively applying this hypothesis on 〈bn1
〉,

〈bn1−1, bn1
〉,... we prove that for each k, the strategy

〈ak, . . . , an1
〉 gives to agent 1 as many objects from O+ as

the strategy 〈bk, . . . , bn1
〉. This proves that for each arbitrary

picking strategy, the strategy given by the algorithm gives to
agent 1 at least as many objects from O+. Hence, the algo-
rithm returns an optimal strategy.

Manipulation under responsive preferences

An allocation S is more preferred with respect to responsive
(RS) preferences than allocation T if S is a result of replac-
ing an item in T with a strictly more preferred item (Aziz et
al. 2015b; Brams and King 2005, for instance). Note that the
responsive relation is transitive but not complete.

We examine the problem of determining whether there
exists an untruthful report which yields an allocation that
is strictly more preferred with respect to responsive prefer-
ences. The problem is equivalent to checking whether there
exists a report that yields more utility with respect to all
additive utilities consistent with the ordinal preferences. In
contrast to the problem for specific utilities, this particular
problem of checking whether there exists such a clear ma-
nipulation can be solved in polynomial time. Our algorithm

is based on an intimate connection that we identify between
manipulation under responsive preferences and under lexi-
cographic preferences.
Theorem 5. It can be checked in polynomial time whether
there exists a manipulation that gives an allocation that is
strictly more preferred with respect to responsive set exten-
sion than the truthful outcome.

Proof. We first present the algorithm.

Input: picking sequence π, profile (�1,�2, . . . ,�n)

Output: �′
1

Rename items such that �1= o1, . . . , om
O1 ← set of items obtained by agent 1 with his sincere strategy;
k ← 1; O∗ ← ∅;
Repeat

If agent 1 can obtain O∗ ∪ {ok} then

O∗ ← O∗ ∪ {ok}
endif

k ← k + 1

Until O∗ lexicographically dominates O1 or k > m

If O∗ lexicographically dominates O1 then

�′
1 ← ranking of O∗ allowing agent 1 to obtain O∗

Complete �′
1 with the items in O \O∗, ranked as in �1

Return �′
1

else Return ‘failure’
endif

It can be determined in polynomial time whether agent 1
can obtain O∗∪{ok} (Bouveret and Lang 2011, Proposition
7), therefore the algorithm works in polynomial time. Now
we claim that when the algorithm returns �′

1, then �′
1 yields

a strictly better allocation than the truthful outcome. If the
truthful report yields the lexicographical optimal outcome,
then clearly, there can be no responsively better outcome be-
cause a responsively better outcome is also a lexicographi-
cally better outcome. Now assume that the truthful outcome
is lexicographically not the best. Then, there exists another
allocation that is achievable that is lexicographically better.
Consider the first (most preferred) item that is in the lexico-
graphically more preferred outcome but not in the truthful
outcome. We compute an allocation and partial preference
of the manipulator that does not include any less preferred
items. For the remaining items, we simply append them in
the manipulator’s preference list in decreasing order of pref-
erence. We claim that the outcome responsively dominates
the truthful outcome from the manipulating agent’s truthful
preferences. The argument is technical and long and is omit-
ted due to lack of space.

Example 6. Let n = 3, m = 7, π = 1231231, and

�1: o1, o2, o3, o4, o5, o6, o7

�2: o2, o1, o5, o3, o4, o6, o7

�3: o2, o3, o4, o1, o5, o7, o6

We have O1 = {o1, o4, o6}. At the first step, o1 is added to
O∗; at the next step, o2 is not added since {o1, o2} is not fea-
sible; at the next step, o3 is added; as O∗ = {o1, o3} lexico-
graphically dominates O1, we exit the loop, initialize �′

1 to
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(o3, o1), and complete it into �′
1: o3, o1, o2, o4, o5, o6, o7

which leads agent 1 to obtain {o1, o3, o6}.

Conclusion

In this paper, we showed that computing a best response un-
der sequential allocation to maximize additive utility is NP-
hard. We also gave a contrasting results that manipulating
sequential allocation under binary utilities and also with re-
spect to responsive preferences is easy. Our NP-hardness re-
sult does not involve a constant number of agents. It remains
an interesting open problem whether manipulating sequen-
tial allocation with respect to cardinal utilities is NP-hard
when the number of agents is three or some other constant.
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