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Abstract We define a family of rules for dividing m indivisible goods among agents, pa-
rameterized by a scoring vector and a social welfare aggregation function. We assume that
agents’ preferences over sets of goods are additive, but that the input is ordinal: each agent
reports her preferences simply by ranking single goods. Similarly to positional scoring rules
in voting, a scoring vector s= (s1, . . . ,sm) consists of m nonincreasing, nonnegative weights,
where si is the score of a good assigned to an agent who ranks it in position i. The global
score of an allocation for an agent is the sum of the scores of the goods assigned to her. The
social welfare of an allocation is the aggregation of the scores of all agents, for some aggre-
gation function ? such as, typically, + or min. The rule associated with s and ? maps a profile
to (one of) the allocation(s) maximizing social welfare. After defining this family of rules,
and focusing on some key examples, we investigate some of the social-choice-theoretic
properties of this family of rules, such as various kinds of monotonicity, and separability.
Finally, we focus on the computation of winning allocations, and on their approximation:
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we show that for commonly used scoring vectors and aggregation functions this problem is
NP-hard and we exhibit some tractable particular cases.

Keywords Computational social choice · resource allocation · fair division · indivisible
goods · preferences
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1 Introduction

Fair division of divisible goods has put forth an important literature about specific pro-
cedures, either centralized (Moulin 2004) or decentralized (Brams and Taylor 1996). Fair
division of a set of indivisible goods has, perhaps surprisingly, been mainly addressed by
looking for allocations that satisfy a series of properties (such as equity or envy-freeness)
and less often by defining specific allocation rules (see, e.g., the book chapters by Bouveret
et al 2016 and Lang and Rothe 2015). A notable exception is a series of papers that assume
that each agent values each good by a positive number, and the utility of an agent is the sum
of the values of the goods assigned to her.

We take a different path and assume that agents’ preferences over items are expressed
ordinally, as rankings over items, and that agents’ utilities are computed using a fixed, agent-
independent vector that maps ranks into scores (in the very same way as positional scoring
voting rules, such as the Borda rule, proceed). This way of defining allocation rules was
initiated by (Brams et al 2004), who used the “Borda” scoring vector to induce scores from
ranks (associating rank 1 to m points, where m is the number of items, then rank 2 to m−1
points, and so on).

We start by generalizing Borda-optimal allocations (Brams et al 2004) to arbitrary scor-
ing vectors and aggregation functions. Beyond Borda, the scoring vectors we consider are
k-approval (the first k objects get score 1 and all others get 0), lexicographic (an item ranked
in position k counts more than the sum of all objects ranked in positions k+ 1 to m), and
quasi-indifference (for short, QI: all objects have roughly the same score, up to small differ-
ences). As for aggregation functions ?, we focus on utilitarianism (? = +) and egalitarian-
ism (?= min, as well as ?= leximin, which in a strict sense is not an aggregation function,
though). In Section 3, we define these allocation rules (we consider both resolute rules and
irresolute rules), and focus on a few particular cases. Section 4 is devoted to the study of par-
ticular properties or classes of properties, namely separability (Section 4.1), monotonicity
(Section 4.2), object monotonicity (Section 4.3). While the properties of voting rules have
been studied extensively, this is much less the case for fair allocation of indivisible goods.
A related research is the work by Elkind et al (2014) who study the axiomatic property of
multiwinner voting rules, with a focus on positional scoring rules, while the relationship
between multiwinner rules and resource allocation is addressed by Skowron et al (2013).

After having investigated the properties of these allocation rules, we focus on their com-
putational properties. More precisely, we study in Section 5 the complexity of the problem
of finding an optimal allocation, which shall be called Winner Determination Problem (re-
ferring to the similar problem in auctions) for a few key combinations of a scoring vector
and an aggregation function, considering both decision and functional problems. Darmann
and Schauer (2015) also study the social welfare maximization problem. They focus on
Nash social welfare, which is defined as the product of utility values and which we do not
consider. It can be seen as a compromise between utilitarianism and egalitarianism.
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In Section 6, we give several approximation results some of which make use of picking
sequences. Section 7 gives our conclusions and discusses some open questions for future
research.

2 Related work

Most work on the fair division of indivisible goods assumes that preferences are expressed
numerically by a collection of additive value functions (that is, each agent values each good
by a positive number, the utility of an agent is the sum of the values of the goods assigned
to her, and the resulting allocation maximizes social welfare); in particular, the Santa Claus
problem (Bansal and Sviridenko 2006) considers egalitarian social welfare, which maxi-
mizes the utility of the least happy agent. There is a lot of other work that relies on pref-
erences being expressed by additive value functions, which we do not review here (see
Bouveret et al 2016 and Lang and Rothe 2015 for two recent reviews).

The closest works to ours are those that assume that agents rank single objects, which
are possibly turned into weights via a scoring function. Works along this line are rather
scarce, and are described below.

Brams et al (2004) assume that agents rank single goods and have additively separable
preferences; they define a Borda-optimal allocation to be one that maximizes egalitarian
social welfare, where the utility of an agent is the sum of the Borda scores of the objects
assigned to her, and where the Borda score of object gi for agent j ranges from 1 (when gi
is j’s least preferred object) to m (when gi is j’s most preferred object).

Garg et al (2010) define a framework for paper reviewing where agents associate a rank
(from a fixed scale) with each paper, expressing their willingness to review it; then ranks are
mapped into weights, the weight of a set of papers is the sum of the weights associated with
the rank of each individual paper, and the optimal assignment is the one with the leximin-
optimal vector of weights.

Gardenfors (1973) and Wilson (1977) also assume that agents rank single objects and
consider assignment functions that use scores induced by positions in rankings (with pos-
sible indifferences), but in a simpler setting where each agent is entitled to receive exactly
one object.

Bouveret et al (2010), Pruhs and Woeginger (2012), and Aziz et al (2015a) also assume
that agents rank single objects and have additively separable preferences; but unlike the
aforementioned papers, they do not use scores to induce a complete ranking over sets of
objects but consider all possible additive utility functions compatible with the ranking over
single objects from which they derive a partial order over sets of objects. Thus the approach
is cautious, but also not very decisive, as incomparabilities remain between many sets of
objects. They then focus on specific properties of allocations (such as envy-freeness, Pareto
optimality, or proportionality) and identify the complexity of deciding whether, for a given
problem instance, there exists an allocation satisfying a given property or a given set of
properties; they do not study allocation rules stricto sensu.

While in all previously mentioned work it is assumed that agents rank single objects,
Herreiner and Puppe (2002) assume that agents should express rankings over subsets of
goods, which, in the worst case, requires agents to express an exponentially large input.

One setting where it is common to use ordinal inputs is matching with preferences. More
precisely, our model is connected to two subareas of matching (see, e.g., Manlove (2013)
and Roth and Sotomayor (1990)):
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– it can be seen as a one-to-many two-sided matching problem, where the two sides are
agents and items, and where preferences are only on one side (obviously, items don’t
have preferences over agents).

– it can also be seen as a profile-based optimal matching problem; instead of focusing on
stability, profile-based matching, outputs matchings maximizing a criterion computed
from the ranks of the “partners” of the agents of each side.

However, these two two subareas of matching seem not to have been studied together: most
of the work in many-to-many matching is stability-focused, and most of the work on profile-
based optimal matching is about one-to-one matching. Therefore, our work can also be seen
as a contribution to one-to-many two-sided matching with one-sided preferences.

3 Scoring Allocation Rules

Let N = {1, . . . ,n} be a set of agents and G = {g1, . . . ,gm} a set of indivisible, nonshareable
goods (we will use the terms good, item, and object as synonyms). An allocation is a parti-
tion π = (π1, . . . ,πn) of G, where πi ⊆ G is the bundle of goods assigned to agent i. We say
that allocation π gives good gi to agent j if gi ∈ π j.

In general, to compute an optimal allocation (for some notion of optimality), we would
need, for every agent, her ranking over all subsets of G. As listing all (or a significant part
of) the subsets of G would be unfeasible in practice, we now make a crucial assumption:
agents rank only single objects. This assumption is not without loss of generality, and it has
important consequences; in particular, it will not be possible for agents to express pref-
erential dependencies between objects. Under this assumption, a singleton-based profile
P = (>1, . . . ,>n) is a collection of n rankings (i.e., linear orders) over G, and a (singleton-
based) allocation rule (respectively, an allocation correspondence) maps any profile to an
allocation (respectively, a nonempty subset of allocations). For any ranking > (respectively,
profile P) over G, and any subset G′ ⊂ G of goods, we will write >∣∣G′ (respectively, P∣∣G′ )
to denote the restriction of > (respectively, P) to G′. Similarly, we denote the restriction of
P to any subset N′ ⊂ N of agents by P∣∣N′ and the restriction of P to any subset N′ ⊂ N of

agents and any subset G′ ⊂ G of goods by P∣∣N′,G′ .
3.1 Definition of Scoring Allocation Correspondences

We now define a family of scoring allocation correspondences that can be turned into scoring
allocation rules by applying a tie-breaking mechanism (see Section 3.2), which more or less
corresponds to the family of scoring rules in voting (see, e.g., the book chapters by Brams
and Fishburn 2002, Baumeister and Rothe 2015, and Zwicker 2016).

Definition 1 1. A scoring vector is a vector s = (s1,s2, . . . ,sm) of rational numbers such
that s1 ≥ s2 ≥ ·· · ≥ sm ≥ 0 and s1 > 0.

2. Given a preference ranking > over G and g ∈ G, let rank(g,>) ∈ {1, . . . ,m} denote the
rank of g under >.

3. The utility function over 2G induced by ranking > on G and scoring vector s is for each
bundle X ⊆ G defined by

u>,s(X) = ∑
g∈X

srank(g,>).
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A strictly decreasing scoring vector s satisfies si > si+1 for each i < m. A scoring vector
is defined for a fixed number of objects only. To deal with a variable number of objects, we
introduce the notion of extended scoring vector, as a function mapping each integer m to
a scoring vector s(m) of m elements. We consider the following specific extended scoring
vectors:

– Borda scoring: borda = m 7→ (m,m−1, . . . ,1),1

– lexicographic scoring: lex = m 7→ (2m−1,2m−2, . . . ,1),
– quasi-indifference for some extended scoring vector s:

s-qi = m 7→
(

1+
s1(m)

M
, . . . ,1+

sm(m)

M

)
,

with M�m ·max{s1(m), . . . ,sm(m)}= m · s1(m), where M is an arbitrary large integer.
– k-approval: k-app = m 7→ (1, . . . ,1,0, . . . ,0), where the first k entries are ones and all

remaining entries are zero.

In the following, we will often abuse notation and use scoring vectors and extended scoring
vectors interchangeably, and omit the parameter m when the context is clear.

Note that quasi-indifference makes sense for settings where all agents should get the
same number of objects (plus/minus one). One concrete example of quasi-indifference scor-
ing vector is the one proposed by Bouveret and Lang (2011),

ε-qi = (1+(m−1)ε,1+(m−2)ε, . . . ,1) , where ε � 1.

In this paper, we will also consider borda-qi, which is formally defined as follows:

borda-qi =
(

1+
m
M
,1+

m−1
M

, . . . ,1+
1
M

)
, where M > m2.

Example 1 Let G = {a,b,c} be a set of three goods and consider the following preference
profile for two agents: (a >1 b >1 c, b >2 c >2 a). Let π be the allocation ({a},{b,c}). For
the Borda scoring vector, agent 1’s bundle {a} has value 3 and agent 2’s bundle {b,c} has
value 3+2 = 5.

Note that in the following, we will often omit stating “>i” explicitly in preference pro-
files, and we will also omit curly brackets and commas in allocations: (a >1 b >1 c, b >2
c >2 a) will thus be written (abc,bca), and ({a},{b,c}) will be written (a,bc).

It is important to note that we do not claim that the numbers obtained in Example 1 for
Borda scoring actually coincide, or even are close to, the agents’ actual utilities (although,
in some specific domains, scoring vectors could perhaps be learned from experimental data).
But this is the price to pay for defining rules from an ordinal input. This trade-off is very
common in voting theory: the well-studied family of scoring rules in voting theory (includ-
ing the Borda rule) proceeds exactly the same way; voters rank alternatives, and the ranks are
then mapped to scores; the winning alternatives are those that maximize the sum of scores.
If we aim at maximizing actual social welfare, then we have to elicit the voters’ (numerical)
utilities rather than just asking them to rank objects.

1 Note that the Borda scoring vector in voting is usually defined as (m−1,m−2, . . . ,1,0). Here, together
with Brams et al (2004), we define the Borda scoring vector by fixing the score of the bottom-rank object
to 1, meaning that getting it is better than getting nothing. For scoring voting rules, a translation of the scoring
vector has obviously no impact on winner determination (see Observation 2.2 in the work of Hemaspaandra
and Hemaspaandra 2007); for scoring allocation rules, however, it does.
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Instead of imposing an artificial scoring function, other approaches have been proposed
to tackle this problem of dealing with ordinal preferences over objects in fair division of
indivisible goods.

Budish (2011) proposes to resort to competition: building on the well-known notion
of Competitive Equilibrium from Equal Incomes (see, e.g., the book by Moulin 1995), he
introduces, among others, the concept of Approximate-CEEI. Here, the central authority
just fixes a vector of prices and lets the agents clear the market by themselves according to
their own (ordinal) perception of the value of the items. Along the same line of ideas, he
also introduces the notions of maximin share and envy-freeness up to one good to reconcile
proportionality and envy-freeness with indivisible goods. All these notions have in com-
mon the fact that they are purely ordinal and do not rely on an interpersonal comparison of
preferences. Note that several authors try to link this approach with the social welfare max-
imization problem. Brams and King (2005), for instance, show the relative incompatibility
between envy-freeness and egalitarian optimization (when they discuss whether one should
rather “help the worst off or avoid envy”). Bouveret and Lemaı̂tre (2016) also discuss the
link between egalitarian optimization and several ordinal properties like maximin share and
proportionality. Finally, in a very recent paper, Caragiannis et al (2016) show unexpected
links between the optimization of Nash social welfare and the ordinal notions of maximin
share and envy-freeness up to one good.

As noted by Budish and Cantillon (2012), beyond relying on purely ordinal criteria, an-
other approach – used, e.g., by Harvard Business School – is to replace the one-shot compet-
itive market by sequential competition, as in (deterministic or random) picking sequences.
Once again, full elicitation of individual utilities is not needed here, and the presumed ra-
tionality of the individual choices at each round ensures efficiency of the overall allocation
protocol. We discuss the virtues of this kind of protocols in Section 6, where we use them
as a way to approximate the optimal social welfare.

Clearly, there are pros and cons to all approaches. In the purely ordinal approaches
aforementioned, good solutions are often supposed to emerge from the agents’ competi-
tion. The fairness of the solution comes from the constraints imposed by the benevolent
arbitrator to the protocol (balanced picking sequence, vector of prices, etc.). However, this
approach comes at a price, namely, at the loss of social welfare incurred (see Section 6). In
our framework, we optimize social welfare but impose somewhat artificial individual utili-
ties that may or may not be far away from the agents’ actual utilities. However, Caragiannis
and Procaccia (2011) analyze this ordinal-cardinal trade-off in voting and show that the in-
duced distortion is generally quite low. Let us point out, as has been noted by a reviewer
of the conference version of this paper, that this approach can also be seen as optimizing
the external perception of fairness or welfare. Finally, we also point out that our approach
has the same advantages as all scoring rules in voting (e.g., the Borda rule), namely, their
conceptual simplicity. This feature is crucial in practical contexts where an allocation rule
has to be understood by the users to be accepted.

The individual utilities are then aggregated using a monotonic, symmetric aggregation
function that is to be maximized. The three we will use here are among the most obvious
ones: utilitarianism (sum) and two versions of egalitarianism (min and leximin). Leximin
refers to the (strict) lexicographic preorder over utility vectors whose components have been
preordered nondecreasingly. Intuitively, a leximin-optimal utility vector maximizes the util-
ity of the worst-off agent, then of the second worst-off agent, and so on. Formally, for a
utility vector x = (x1, . . . ,xn), let x′ = (x′1, . . . ,x

′
n) denote some vector that results from x

by rearranging the components of x nondecreasingly. Given another utility vector y and y’s
nondecreasingly sorted variant y′, define x <leximin y if and only if there is some i, 0≤ i < n,
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such that x′j = y′j for all j, 1≤ j ≤ i, and x′i+1 < y′i+1, and x ≤leximin y means x <leximin y or
x′ = y′. Let leximin denote the maximum on a set of utility vectors according to≤leximin. For
each scoring vector s, define three allocation correspondences:

Fs,+(P) = argmax
π

∑
1≤i≤n

u>i,s(πi),

Fs,min(P) = argmax
π

min
1≤i≤n

{u>i,s(πi)}, and

Fs,leximin(P) = argmax
π

<leximin(u>1,s(π1), . . . ,u>n,s(πn)),

where P = (>1, . . . ,>n) is a profile and π = (π1, . . . ,πn) an allocation, and argmax
π

<leximin

denotes the set of allocations with leximin-optimal utility vectors. Whenever we write Fs,?,
we mean any one of Fs,+, Fs,min, and Fs,leximin.

Example 2 For n = 3 agents and m = 4 goods, G = {a,b,c,d}, let

P = (c >1 b >1 a >1 d, c >2 a >2 b >2 d, b >3 d >3 c >3 a) = (cbad, cabd, bdca).

Then F(4,3,2,1),leximin(P) = {(c,ad,b)}.

3.2 Tie-Breaking

Similarly as in voting theory, an allocation rule is defined as the composition of an alloca-
tion correspondence and a tie-breaking mechanism, which breaks ties between allocations.
One particular type of deterministic tie-breaking mechanism consists in defining it from a
linear order over all allocations,2 or, when N and G are not both fixed, a collection of lin-
ear orders >T

N,G (which we still denote by >T ) for all possible sets of agents and goods,
N and G. We write π ≥T π ′ for (π >T π ′ or π = π ′). As in voting, if the output of a cor-
respondence F(P) is not a singleton, then the top-priority allocation in F(P) is selected:
FT (P) = (max>T ◦F)(P) = max>T (F(P)).

We do not make any assumption as to how this tie-breaking relation is defined; our
results hold independently of that.

One may also wonder whether it is possible to define an anonymous tie-breaking mech-
anism, as is common in voting. Formally, a tie-breaking mechanism >T is anonymous if and
only if for any permutation σ over N and any pair of allocations (π,π ′) over agents N and
objects G, we have π >T π ′⇔ σ(π)>T σ(π ′), where σ(π) denotes the version of π where
all shares have been permuted according to σ . In fact, the answer is negative (we omit the
easy proof): There is no deterministic anonymous tie-breaking mechanism.

4 Properties of Scoring Allocation Rules

The properties we study in the paper are primarily defined for deterministic rules. Some
of them will be immediately applicable to correspondences in general, and in that case we
will also discuss whether or not they hold for correspondences. However, others do not

2 This choice comes with a loss of generality, as there are tie-breaking mechanisms that are not defined
this way (we thank a reviewer for this remark). Also, we rule out the possibility of randomly breaking ties.
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generalize in a straightforward way to correspondences.3 For these properties, we will leave
the study of whether they hold for scoring resource allocation correspondences for further
research.

4.1 Separability

Slightly reformulating Thomson (2011), an allocation rule is consistent (we prefer to choose
the terminology “separable”) if for any allocation problem and any allocation π selected by
the rule, the allocation rule chooses the same allocation regardless of whether π is restricted
to a subgroup of agents and subset of goods or when reapplying the rule to a “reduced
problem” obtained by imagining the departure of any subgroup of the agents with their
share. As the definition generalizes easily to allocation correspondences, we define it for
both.

Definition 2 For any profile P = (>1, . . . ,>n) over a set G, any allocation π = (π1, . . . ,πn),
and any partition of the set of agents into two sets, N1 and N2 (i.e., N1∪N2 = {1, . . . ,n} and
N1 ∩N2 = /0), let G j =

⋃
i∈N j πi be the set of objects received in π by the agents in N j, for

j ∈ {1,2}.
1. An allocation rule F satisfies separability if for each P and π , F(P∣∣N1,G1) = π1 and

F(P∣∣N2,G2) = π2, where π j denotes the restriction of π to N j and G j.

2. An allocation correspondence F satisfies separability if for each P and π , π ∈ F(P) if
and only if π1 ∈ F(P∣∣N1,G1) and π2 ∈ F(P∣∣N2,G2).

Unfortunately, it looks like almost all our rules violate separability. We give a counterex-
ample that works for many choices of (s,?).

Example 3 For m= 9 goods and n= 3 agents, let ?∈{+,min, leximin} and let s be a strictly
decreasing scoring vector. Consider the preference profile

P = (adc f hgbei, beahgcd f i, c f abidegh).

Fs,?(P) consists of the unique allocation

π = (adh, beg, c f i)

for ? ∈ {min, leximin}, and Fs,+(P) consists of the unique allocation

π
′ = (ad, begh, c f i).

The restriction of P to the set {1,2} of agents and the set {a,b,d,e,g,h} of goods is

P′ = (adhgbe, beahgd).

For ? ∈ {min, leximin}, Fs,?(P′) consists of the unique allocation

(adg, beh) 6= (adh, beg),

and Fs,+(P′) consists of the unique allocation

(adgh, be) 6= (ad, begh).
3 This is the case for all properties expressing that an agent prefers a set of allocations to another set

of allocations (and applies, e.g., to object monotonicity); for these properties there is not a unique way of
generalizing the property, unlike in voting where this is well-known, e.g., for strategy-proofness. For a study
of strategy-proofness for scoring allocation correspondences, we refer to the work of Nguyen et al (2015).
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We conjecture that (perhaps under mild conditions on s and ?), no positional scoring
allocation rule is separable.

As the following example illustrates, not even the allocation correspondences Fplurality,?,
?∈ {+,min, leximin}, are separable, where plurality denotes the scoring vector (1,0, . . . ,0).

Example 4 Consider the preference profile

P = (abc, abc, cba)

of three goods and three agents. Then the allocation π = (a, /0,bc) is in Fplurality,?, for each
? ∈ {+,min, leximin}. For min and leximin, this is the case because s2 = 0 under plurality.
Now consider the restriction of P to agents 2 and 3 and goods b and c. Then ( /0,bc) /∈
Fplurality,? = {(b,c)}, ? ∈ {+,min, leximin}.

4.2 Monotonicity

The monotonicity properties below state that if an agent ranks a received good higher, all
else being equal, then this agent does not lose this good (monotonicity) or still receives the
same bundle (global monotonicity).

Definition 3 1. An allocation rule F is monotonic if for every profile P, agent i, and
good g, if F(P) gives g to i, then for every profile P′ resulting from P by agent i ranking
g higher, leaving everything else (i.e., the relative ranks of all other objects in i’s ranking
and the rankings of all other agents) unchanged, it holds that F(P′) gives g to i.

2. F is globally monotonic if for every profile P, agent i, and good g, if F(P) gives g to i,
then for every profile P′ resulting from P by agent i ranking g higher, all else being
equal, we have F(P′)i = F(P)i, where F(P)i = πi denotes agent i’s share.

Clearly, global monotonicity implies monotonicity. These definitions extend to corre-
spondences, but not in a unique way; therefore, we do not consider these extensions in this
paper. In the following, T will refer to a tie-breaking relation as described in Section 3.2.

Theorem 1 For each scoring vector s, for each aggregation function ?∈ {+,min, leximin},
and for each tie-breaking relation T , FT

s,? is monotonic.

PROOF. For notational convenience, we give the proof only for ?=+, but it extends in a
straightforward way to min and leximin. Let P = (>1, . . . ,>n) be a profile over a set G of
goods with g ∈ G and let P′ = (>′1,>2, . . . ,>n) be a modified profile, where without loss
of generality the first agent modifies her preferences such that g is ranked higher in >′1 than
in >1, leaving everything else unchanged.

Let FT
s,+(P) = π = (π1, . . . ,πn) and let g ∈ π1. Let FT

s,+(P
′) = π ′ = (π ′1, . . . ,π

′
n). For a

contradiction, suppose that g 6∈ π ′1. For every good g′ 6= g, the rank of g′ in >′1 is either the
same as or below the rank of g′ in >1, and since g 6∈ π ′1, we have u>′1,s(π

′
1)≤ u>1,s(π

′
1). By

monotonicity of utilitarian aggregation, this implies

u′(π ′) = u>′1,s(π
′
1)+

n

∑
i=2

u>i,s(π
′
i )≤

n

∑
i=1

u>i,s(π
′
i ) = u(π ′), (1)
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where u′ is the social welfare with respect to the modified profile P′. Now, because >′1
has been obtained by moving g upwards in >1, we have u>1,s(π1) ≤ u>′1,s(π1). Again by
monotonicity of utilitarian aggregation, this implies

u′(π) = u>′1,s(π1)+
n

∑
i=2

u>i,s(πi)≥
n

∑
i=1

u>i,s(πi) = u(π). (2)

Since π ∈ FT
s,+(P) and π ′ ∈ FT

s,+(P
′), we have u(π) ≥ u(π ′) and u′(π ′) ≥ u′(π), which to-

gether with (1) and (2) implies u′(π) = u(π) = u(π ′) = u′(π ′). Now, since u(π) = u(π ′) and
FT

s,+(P) = π , we have π >T π ′. This, together with u′(π) = u′(π ′), is in contradiction with
FT

s,+(P
′) = π ′. q

This proof does not establish global monotonicity of FT
s,?; indeed, π = FT

s,?(P) does not
imply π = FT

s,?(P
′) in general. We have the following result.

Proposition 1 For each tie-breaking relation T , for each m ≥ 4, and for each strictly de-
creasing scoring vector s = (s1, . . . ,sm), allocation rule FT

s,+ is not globally monotonic.

PROOF. We consider the following three profiles: P = (g1g2g3 · · ·gm,gmg1 · · ·gm−1), P′ =
(g2g1g3 · · ·gm,gmg1 · · ·gm−1), and P′′ = (g2g3g1 · · ·gm,gmg1 · · ·gm−1). The unique optimal
allocation in FT

s,+(P) assigns object gm to agent 2 and all remaining objects to agent 1.
Moving object g2 in agent 1’s linear order higher gives profile P′. If FT

s,+(P
′) gives g1 to

agent 2, we are done. Otherwise, moving object g3 in agent 1’s already changed linear order
higher gives profile P′′. Then, agent 2 gets object g1. q

In order to show that FT
s,min and FT

s,leximin do not satisfy global monotonicity, the ap-
proach of computing a winning allocation and showing that this allocation is not optimal
for the modified profile seems to fail. Instead, we apply a utility-bounding approach. Let
OPT(P) denote the maximum egalitarian social welfare of a given preference profile P, that
is, OPT(P) = maxπ min1≤i≤n{u>i,s(πi)}.

Theorem 2 Let T be a tie-breaking relation. For each even m ≥ 4 and for each strictly
decreasing scoring vector s = (s1, . . . ,sm), allocation rules FT

s,min and FT
s,leximin do not satisfy

global monotonicity. This also holds for each odd m≥ 7 provided that s additionally satisfies
s1− s2 + s3− s4 > sm.

PROOF. Consider the following two profiles of two agents:

P = (g1g2 · · ·gm, g1g2 · · ·gm);

P′ = (gmg1 · · ·gm−1, g1g2 · · ·gm).

Let π = FT
s,min(P) and, without loss of generality, let agent 1 be the agent that receives

object gm, that is, gm ∈ π1. Thus, profile P′ is a valid change of P with respect to global
monotonicity. We show that FT

s,min(P
′) 6= π . For the sake of contradiction, suppose that π =

FT
s,min(P

′). Now we will derive an upper bound of ∑i even si for u>1,s(π1), agent 1’s utility
under the optimal allocation π with respect to the original preferences >1. We then reach
a contradiction by giving another allocation where every agent realizes more utility than
∑i even si with respect to their original preferences.

Since π is also optimal for P′, we have for i ∈ {1,2},

u>′i,s(πi)≥max
π

min
1≤i≤2

{u>′i,s(πi)}= OPT(P′),
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where we maximize over all possible allocations π . Note that agent 2’s preference is the
same in P and P′, i.e., >2=>′2. Hence, u>′2,s(π2) = u>2,s(π2). We distinguish between an
even and an odd number of objects.

For even m: Since every allocation implies a lower bound for OPT(P′), consider πu

where we assign in P′ even-numbered objects to agent 1 and odd-numbered objects to
agent 2. It is clear that u>′1,s(π

u
1 ) = u>′2,s(π

u
2 ) = ∑i odd si. Thus

u>′2,s(π2) = u>2,s(π2)≥ OPT(P′)≥ ∑
i odd

si.

Because P is a profile of identical preferences, we have the invariant

u>1,s(π
′
1)+u>2,s(π

′
2) = ∑

i
si

for every allocation π ′. Hence, we can use the lower bound for u>2,s(π2) to get the desired
upper bound

u>1,s(π1)≤

(
∑

i
si

)
−u>2,s(π2)≤ ∑

i even
si.

Now we give a lower-bounding allocation π` for OPT(P) where every agent gets utility
more than ∑i even si. Assign in P the 1st (top-ranked), 5th, 9th, etc. and the 4th, 8th, 12th etc.
object to agent 1. All remaining objects go to agent 2. Because s1 > s2 > · · ·> sm, we have

u>1,s(π
`
1) = s1 + s5 + s9 + · · ·+ sm−1−2I[4|m]+ s4 + s8 + s12 + · · ·+ sm−2(1−I[4|m])

> ∑
i even

si,

where I[4 | m] is 1 if m is divisible by 4, and otherwise 0. Note that we can split ∑i even si
into si’s, where i is a multiple of four, and into s j’s, where j is of the form 4k+2, k≥ 0. The
former are covered by the same si’s and the latter are covered by s j’s, where j is of the form
4k+1, k ≥ 0. For u>2,s(π

`
2), the argument is analogous if m ≥ 4. Since both agents realize

more utility in π` than agent 1 in π , π is not optimal for P (contradiction).
For odd m: Our lower-bounding allocation π̃u for OPT(P′) is similar to the above except

for assigning object gm to agent 1. We need to consider only agent 2 because this agent real-
izes less utility: u>′2,s(π̃

u
2 ) = (∑i odd si)−sm. Assuming (for a contradiction) that π is optimal

for P′ as well, we have u>2,s(π2)≥ (∑i odd si)−sm, which gives u>1,s(π1)≤ (∑i even si)+sm.
For a lower bound of OPT(P), we specify π̃` as follows: Agent 1 always gets the 1st and
3rd object and starting with the 6th object every even-numbered object that follows. Agent
2 receives all remaining objects. Thus

u>1,s(π̃
`
1) = s1 + s3 + s6 + s8 + s10 + · · ·+ sm−1 >

(
∑

i even
si

)
+ sm,

which holds if and only if s1 + s3 > s2 + s4 + sm. For agent 2, we have

u>2,s(π̃
`
2) = s2 + s4 + s5 + · · ·+ sm >

(
∑

i even
si

)
+ sm

because of s1 > s2 > · · ·> sm, if m≥ 7. It follows that π cannot be optimal for P (contradic-
tion).
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These results hold for FT
s,leximin as well because we can take, without loss of generality,

π = FT
s,leximin(P) with gm ∈ π1 and show in a contradiction that it is not even optimal under

egalitarian social welfare in P, and hence cannot be optimal under leximin. q

Corollary 1 For each scoring vector s ∈ {borda, lex} for m ≥ 7 goods, allocation rules
FT

s,min and FT
s,leximin do not satisfy global monotonicity. In addition, for each extended scoring

vector s satisfying s1(m) > s2(m) > · · · > sm(m) for even m ≥ 4, allocation rules FT
s-qi,min

and FT
s-qi,leximin do not satisfy global monotonicity either.

4.3 Object and Duplication Monotonicity

Object monotonicity is a dynamic property where additional goods are to be distributed.
This means that when new objects are added, no agent is worse off afterwards. In order
to define this notion, since some properties need comparability of bundles of goods, we
lift agent i’s linear order >i to a strict partial order �i over 2G by requiring monotonicity
(A ⊃ B =⇒ A �i B) and pairwise dominance (for all A ⊆ Gr {x,y}, A∪{x} �i A∪{y}
if x >i y). For strict partial orders we then follow the approach taken by Brams and King
(2005), Brams et al (2004), and Bouveret et al (2010): We distinguish between properties
holding possibly (i.e., for some completion of the partial preferences) and necessarily (i.e.,
for all completions).

Definition 4 Let� be a strict partial order over 2G. We say A is possibly preferred to B (de-
noted by A�pos B) if there exists a linear order�∗ refining� such that A�∗ B. Analogously,
A is necessarily preferred to B (denoted by A �nec B) if for all linear orders �∗ refining �,
we have A�∗ B. Allowing indifference, we extend �pos to �pos and �nec to �nec.

Now, we are ready to define possible and necessary object monotonicity. These proper-
ties are defined for deterministic rules only.

Definition 5 Let G be a set of goods. An allocation rule F satisfies possible object mono-
tonicity if for each profile P = (>1, . . . ,>n) over G, for each profile P′ = (>′1, . . . ,>

′
n) that

is obtained from P by adding one more good to G such that P is the restriction of P′ to G,
and for each agent i, we have F(P′)i �pos

i F(P)i.

Note that we can add any number of goods for allocation rules that satisfy possible
object monotonicity by repeated application of Definition 5. Interestingly, FT

s,+ fails to sat-
isfy object monotonicity in general. Actually, it only satisfies it for two agents and with
a tie-breaking relation satisfying what we will call “object separability.” Formally, a tie-
breaking relation >T is object-separable if for any pair of allocations (π,π ′), we have
π >T π ′⇔ (π1, . . . ,πi−1,πi ∪{g},πi+1, . . . ,πn) >

T (π ′1, . . . ,π
′
i−1,π

′
i ∪{g},π ′i+1, . . . ,π

′
n) for

any i and g 6∈
⋃

i πi.

Proposition 2 Let s be a strictly decreasing scoring vector. For each object-separable tie-
breaking relation T FT

s,+ satisfies possible object monotonicity for n = 2 agents, yet does not
do so for all n≥ 3.

PROOF. We first give a counterexample for n = 3 agents; it extends easily to more agents.
Let m = 5 goods be given initially, G = {a,b,c,d,e}, and let P = (abcde, bcdea, abcde)
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be a preference profile. As Fs,+(P) = {(a, bcde, /0),( /0, bcde, a)}, without loss of gen-
erality, let FT

s,+(P) = (a, bcde, /0). Now, add two more goods, f and g, to G and let P′ =
(abcde f g, bcd f gea, f gabcde) be the resulting new profile. We have FT

s,+(P
′)= (ae, bcd, f g),

and we see that FT
s,+(P

′)2 6�pos
2 FT

s,+(P)2.
For n = 2, let P be a two-agent profile, and P′ a new one obtained by adding one more

good g. As a notation, let rankQ
>i(g j) denote the rank of g j under >i with respect to profile

Q ∈ {P,P′}. Let FT
s,+(P) = (π̂1, π̂2) and FT

s,+(P
′) = (π̂ ′1, π̂

′
2).

Suppose that rankP′
>1
(g) = rankP′

>2
(g). Then it is easy to see that for each object g j 6=

g, sign(rankP
>1
(g j)− rankP

>2
(g j)) = sign(rankP′

>1
(g j)− rankP′

>2
(g j)), which means that π ∈

Fs,+(P) if and only if (π1 ∪ {g},π2) ∈ Fs,+(P′) and (π1,π2 ∪ {g})} ∈ Fs,+(P′). Now let
π ∈ Fs,+(P)r{FT

s,+(P)}. Then we have π̂ >T π . Since T is object-separable, we have (π̂1∪
{g}, π̂2) >

T (π1 ∪{g},π2) and (π̂1, π̂2 ∪{g}) >T (π1,π2 ∪{g}). Hence, π̂ ′ can neither be
(π1 ∪{g},π2) nor (π1,π2 ∪{g}). Therefore, π̂ ′ is either (π̂1 ∪{g}, π̂2) or (π̂1, π̂2 ∪{g}). In
both cases, both agents are necessarily better off with their new share.

Now suppose that rankP′
>1
(g) 6= rankP′

>2
(g) – we can assume, without loss of generality,

that rankP′
>1
(g)> rankP′

>2
(g) = k. It is easy to see that g and every object in π̂2 that has rank

less than k will be added to π̂ ′2. This implies that, no matter whether agent 2 gets more goods
with rank greater than k, we have π̂ ′2 �

pos
2 π̂2.

We now prove that π̂ ′1 ⊇ π̂1. First, it is obvious that π̂ ′1 contains all objects belonging to
π̂1 that are ranked above g.

To prove that π̂ ′1 also contains all objects belonging to π̂1 that are ranked strictly below
g, we will first observe that for all such objects g∗, rankP′

>1
(g∗)≤ rankP′

>2
(g∗). Indeed, from

rankP′
>2
(g∗)< rankP′

>2
(g) we can deduce that

rankP
>2
(g∗) = rankP′

>2
(g∗)< rankP′

>2
(g)< rankP′

>1
(g)< rankP′

>1
(g∗).

As rankP
>1
(g∗)+1= rankP′

>1
(g∗), it follows that rankP

>1
(g∗)> rankP

>2
(g∗), which contradicts

the fact that g∗ ∈ π̂1. Therefore, rankP′
>2
(g∗)> rankP′

>2
(g), and this implies that

rankP′
>2
(g∗) = rankP

>2
(g∗)+1≥ rankP

>1
(g∗)+1 = rankP′

>1
(g∗).

Suppose that rankP′
>1
(g∗) < rankP′

>2
(g∗). Then obviously g∗ ∈ π̂ ′1. Suppose now that

rankP′
>1
(g∗) = rankP′

>2
(g∗), and suppose that g∗ ∈ π̂ ′2. Since g∗ has the same rank for both

agents, this means that (π̂ ′1 ∪{g∗}, π̂ ′2 r {g∗}) also belongs to Fs,+(P′), and is eliminated
by T . Now observe that since rankP′

>1
(g∗) = rankP′

>2
(g∗), we have rankP

>1
(g∗) = rankP

>2
(g∗).

This basically means that (π̂1 r {g∗}, π̂2 ∪ {g∗}) also belongs to Fs,+(P), and thus that
π̂ >T (π̂1 r{g∗}, π̂2 ∪{g∗}). Using object separability of T to successively remove all ob-
jects but g∗ yields ({g∗}, /0)>T ( /0,{g∗}). Now using once again object separability of T to
successively add all objects according to π̂ ′ yields (π̂ ′1 ∪{g∗}, π̂ ′2 r{g∗}) >T π̂ ′. A contra-
diction, proving that g∗ ∈ π̂ ′1, which in turn completes the proof. q

Proposition 3 For each tie-breaking relation T and for each strictly decreasing scoring
vector s, FT

s,min and FT
s,leximin do not satisfy possible object monotonicity.
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PROOF. For m = 5 goods and n = 2 agents, consider the preference profile

P = (abcde,deacb).

The unique winning allocation for Fs,leximin(P) is

π = (abc,de),

with utility vector (s1 + s2 + s3,s1 + s2), and for Fs,min(P) allocation

π
′ = (ab,cde)

with utility vector (s1 + s2,s1 + s2 + s4) is optimal as well. If the tie-breaking relation picks
π , consider the following updated preference profile when adding an additional good f ,

P′ = (abc f de,deacb f )

whose unique winning allocation is
(ab f ,cde)

with utility vector (s1 + s2 + s4,s1 + s2 + s4). If the tie-breaking relation picks π ′, consider

P′′ = (abcde f ,deac f b)

with the unique winning allocation
(abc,de f )

with utility vector (s1 + s2 + s3,s1 + s2 + s5). This completes the proof. q

After having studied monotonicity with respect to the set of objects, we will now focus
on monotonicity with respect to the set of agents. This kind of monotonicity has a natural
translation in terms of voting power: to give more voting power to a voter, one can just allow
her to vote twice (or more). In other words: duplicating a voter will give more weight to her
ballot, and thus may give her a higher chance to be heard. This property has a natural trans-
lation to the resource allocation context: informally, two agents having identical preferences
will get a better share together than if they were only one participating in the allocation
process. More formally:

Definition 6 Let P = (>1, . . . ,>n) be a profile over G and P′ = (>1, . . . ,>n,>n+1) be its
extension to n+ 1 agents, where >n+1 equals >n. An allocation rule F satisfies possible
duplication monotonicity if F(P′)n∪F(P′)n+1 �pos

n F(P)n; and it satisfies necessary dupli-
cation monotonicity if F(P′)n∪F(P′)n+1 �nec

n F(P)n.

It turns out that several scoring allocation rules satisfy at least possible duplication,
provided that we use duplication-compatible tie-breaking relations, namely, relations T that
satisfy the following property. Let π and π ′ be two allocations on (>1, . . . ,>n,>n+1), where
n+1 is a duplicate of agent n as above, i.e., >n+1 equals >n. Then π >T

n+1 π ′ implies that
(π1, . . . ,πn∪πn+1) = (π ′1, . . . ,π

′
n∪π ′n+1) or

(π1, . . . ,πn∪πn+1)>
T
n (π ′1, . . . ,π

′
n∪π

′
n+1).

An example of such a tie-breaking relation is to consider T = Tlex as the lexicographic re-
lation over the set Π of all possible allocations. For every pair of allocations, π =(π1, . . . ,πn)
and π ′ = (π ′1, . . . ,π

′
n), we say π >Tlex π ′ if πi is lexicographically preferred to π ′i by agent i,

for the smallest i ∈ {1, . . . ,n} such that πi and π ′i are different for agent i. It is not hard
to check that Tlex is indeed a duplication-compatible tie-breaking relation. Given that a
duplication-compatible tie-breaking relation always exists, we have the following result.



Positional Scoring-Based Allocation of Indivisible Goods 15

Theorem 3 Let T be a duplication-compatible tie-breaking relation. For each scoring vec-
tor s, FT

s,+ satisfies possible and necessary duplication monotonicity, and FT
s-qi,leximin and

FT
lex,leximin both satisfy possible duplication monotonicity.

PROOF. For FT
s,+, each object goes to an agent ranking it best. Every object that goes to

agent n in the first profile will go to either n or n+1 in the second one (this is also guaranteed
by the duplication-compatible tie-breaking relation in case of ties with other agents). n and
her duplicated version will thus get exactly the same objects, hence the result.

For FT
s-qi,leximin, each agent will get either bm/nc or bm/nc+1 objects. Since 2 ·bm/(n+1)c>

bm/nc+1, agent n and the duplicated agent n+1 will receive strictly more objects than the
original agent n, hence proving possible duplication monotonicity.

For FT
lex,leximin, every optimal allocation satisfies that the minimum over all agents i of

the rank of the first object received by i, denoted by f (i), is maximized. Moreover, if i is
not among the agents whose f (i) is minimal, then agent i only receives one object (and is
satisfied with it). If that happens for the original agent n, the duplicated agents n and n+1
will together be possibly better off with their new share, since they will either receive at least
one object each (if there are enough objects), or only one of them will receive the same object
as original agent n (if this is not the case). If the original agent n is among the agents whose
f (i) is minimal, then either it is possible to give a better object than the object associated
with f (i) to one of n and n+ 1 (in this case we are done), or this is not possible, in which
case one of n and n+1 will receive the object associated with f (i), and the other one, whose
first object cannot be valued as high as f (i), will receive all the remaining objects (including
the former ones of agent n), so both of them will be at least as satisfied as before. q

A summary of the considered scoring allocation rules and the properties they satisfy is
given in Table 1. We use the symbol 3 to indicate that some property is satisfied by some
scoring allocation rule (possibly under the conditions listed next to 3), the symbol 7 to
indicate that it is not (again, possibly under the conditions listed next to 7), and we write a
question mark whenever this is an open issue.

Fs,+ Fs,min Fs,leximin

Separability 7 ¶ 7 ¶ 7 ¶

Monotonicity 3 3 3

Global monotonicity 7 ? 7 ?? 7 ??

Possible object monotonicity 3 ???, 7 † 7 ¶ 7 ¶

Possible duplication monotonicity 3 ‡ ? 3 (s = s-qi and s = lex) ‡

Necessary duplication monotonicity 3 ‡ ? ?

? For m≥ 4 and strictly decreasing scoring vector.
?? For m≥ 4 and strictly decreasing scoring vector, or for each odd m≥ 7 with s1− s2 + s3− s4 > sm.
??? For n = 2, object-separable tie-breaking relation, and strictly decreasing scoring vector.
† For n≥ 3 or non-object-separable tie-breaking relation.
‡ For duplication-compatible tie-breaking relation.
¶ For strictly decreasing scoring vector.

Table 1: Properties of scoring allocation rules
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5 Winner Determination

In this section, we study the following question. What is the complexity of determining an
optimal allocation for a given scoring vector and a given aggregation function? For a given
scoring vector s and a given aggregation function Fs,?, where ? ∈ {+,min, leximin}, define
the following problem concerning winner determination.

Fs,?-OPTIMAL-ALLOCATION (Fs,?-OA)

Given: A profile P of n agents’ rankings on a set G of indivisible goods and an allocation π of G.
Question: Is π in Fs,?(P)?

It is easy to see that Fs,+-OA is in P and both Fs,min-OA and Fs,leximin-OA are in coNP
for every scoring vector s.

The search problem Fs,?-FIND-OPTIMAL-ALLOCATION (Fs,?-FOA) seeks to actually
find an optimal allocation for a given profile of rankings on a given set of indivisible goods.
Clearly, Fs,+-FOA is solvable in polynomial time for any scoring vector s: every good is
simply given to an agent who ranks it best. Fs,min-FOA and Fs,leximin-FOA are much less
easy in general.4 We have the following easy polynomial-time upper bounds for certain
restricted variants.

Proposition 4 (i) For each k, Fk-app,min-FOA is solvable in polynomial time.
(ii) Fs,min-FOA and Fs,leximin-FOA are solvable in polynomial time for every scoring vector

s if there are a constant number of goods.

Fk-app,min-FOA in (i) of Proposition 4 is a special case of the problem of maximizing
egalitarian social welfare with a {0,1}-additive function, known to be solvable in polyno-
mial time by applying a network flow algorithm (Golovin 2005). For a constant number of
goods, Fs,min-FOA and Fs,leximin-FOA are solvable in polynomial time because there are nm

allocations.

In addition, we will study the following decision problem associated with the value of
an optimal allocation.

Fs,+-OPTIMAL-ALLOCATION-VALUE (Fs,+-OAV)

Given: A profile P = (>1, . . . ,>n) of n agents’ rankings on a set G of indivisible goods and
k ∈Q+.

Question: Is there an allocation π = (π1, . . . ,πn) such that ∑1≤i≤n u>i ,s(πi)≥ k?

Analogously, we define Fs,min-OAV by asking for the same input whether or not

min
1≤i≤n

u>i,s(πi)≥ k,

and we similarly define Fs,leximin-OAV where instead of a bound k in the input we have an
ordered list (k1, . . . ,kn) of nonnegative rational numbers and we ask whether or not

(u>1,s(π1), . . . ,u>n,s(πn))≥leximin (k1, . . . ,kn).

Clearly, Fs,+-OAV is in P. Since the value of a given allocation for min and leximin can
be computed in polynomial time, Fs,min-OAV and Fs,leximin-OAV are in NP for each scoring
rule s. For lexicographic scoring and quasi-indifference, these bounds are tight.

4 If the scoring vector s is part of the input then the problem Fs,?-FOA, ? ∈ {min, leximin}, is NP-hard
(though not strongly NP-hard in the sense of Garey and Johnson 1978, 1979), even for two agents having
identical preferences, by a direct reduction from PARTITION.
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Theorem 4 Flex,min-OAV and Flex,leximin-OAV both are NP-complete.

PROOF. We only give the proof for Flex,min-OAV (since it can be easily adapted to work
for Flex,leximin-OAV as well), by a reduction from the following well-known NP-complete
problem (see, e.g., the book by Garey and Johnson 1979):

EXACT-COVER-BY-3-SETS (X3C)

Given: A collection C = {C1, . . . ,Cp} of 3-element subsets of a set X of size 3q (where q < p).
Question: Is there an exact cover of X , i.e., is there a subcollection C ′ ⊂ C of size q such that each

element of X appears in exactly one member of C ′?

From a given instance (X ,C ) of X3C, with C = {C1, . . . ,Cp} a collection of 3-element
subsets of X as above, we create an instance of the allocation problem as follows. We create
one good gi out of each element xi from X , and a set F = { f1, . . . , fp−q} of p− q goods,
which makes a total of 2q+ p goods. We create a set {1, . . . , p} of p agents. Agent i has the
following preferences:

f1 >i · · ·>i fp−q >i Ci >i X rCi,

where a set S in this order stands for all the goods of S in any fixed order.5

We claim that (X ,C ) is a positive instance of X3C if and only if its constructed Flex,min-
OAV instance has an allocation with an egalitarian collective utility greater than or equal to
23q−1 +23q−2 +23q−3 under lexicographic scoring.

(⇒) Suppose that C is a positive instance of X3C and let C ′ be the corresponding exact
cover of X . Let π be an allocation that gives to each agent i the goods corresponding to Ci if
Ci ∈ C ′, and one good from F otherwise. Such an allocation π exists, since (i) the elements
in C ′ do not overlap, and (ii) there are exactly p− q agents i such that Ci 6∈ C ′ (and hence
each such agent can receive a different fk ∈ F). It is easy to see that each agent receiving
one good from F has a utility greater than 23q, and each agent receiving one Ci has a utility
equal to 23q−1 +23q−2 +23q−3.

(⇐) Let π be an allocation of egalitarian utility at least 23q−1 + 23q−2 + 23q−3. Since
‖F‖ = p− q, at least q agents (call them “unhappy”) do not receive any good from F .
Suppose an unhappy agent i receives only a proper subset of the goods from Ci. Then the
greatest utility she can get is 23q−1 +23q−2 +23q−3−1, if she gets her two preferred goods
from Ci and all the goods from X rCi. Hence, for the egalitarian utility to be at least 23q−1+
23q−2 +23q−3, each unhappy agent must get at least all the goods from Ci. Since the agents’
shares cannot overlap, there can only be q unhappy agents, and their shares correspond to
an exact cover of X .

Since this reduction can be computed in polynomial time, the proof is complete. q

Theorem 5 For each fixed ε , 0 < ε � 1, Fε-qi,min-OAV and Fε-qi,leximin-OAV both are
NP-complete.

PROOF. Once again, we only give the proof for Fε-qi,min-OAV, as its adaption to Fε-qi,leximin-
OAV is easy. The proof is again by a reduction from the NP-complete problem X3C. Given
an instance (X ,C ) with C = {C1, . . . ,Cp} and ‖X‖= 3q, create the following Fε-qi,min-OAV
instance. The set of objects is G = {g1, . . . ,g3q}∪D, where D = {d1, . . . ,d4(p−q)} is a set of

5 Here and later, we slightly abuse notation, as X and Ci will refer both to the initial sets and their corre-
sponding sets of goods.
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dummy objects, hence ‖G‖= 4p−q. There are p agents, where each agent i, 1≤ i≤ p, has
the preference Ci > X rCi > D, and the bound is k = 3+(12p−3q−6)ε .

(⇒) Suppose that (X ,C ) is a positive instance of X3C and let C ′ be an exact cover of X .
Let π be an allocation that gives to each agent i the goods corresponding to Ci if Ci ∈ C ′,
and otherwise four arbitrary goods from D that are still available. So π is such that p− q
agents receive four goods (and thus have a utility greater than 4), and q agents receive their
three best goods, and hence they each have a utility of 3+(12p−3q−6)ε .

(⇐) Let π be an allocation of egalitarian utility at least 3+(12p−3q−6)ε . By definition
of QI, all agents must get at least three goods. Moreover, given the number of agents and
goods, at least q “unhappy” agents must get exactly three goods (where “unhappy” is defined
as in the proof of Theorem 4). Finally, given the bound, these unhappy agents must all get
their three preferred goods, that is, Ci for agent i. Hence, all the Ci for the q unhappy agents
must not overlap: this is an exact cover for (X ,C ). q

An anonymous reviewer of a previous draft of this paper obtained the following result,
and we are very grateful for his or her consent to include the proof.

Theorem 6 Fborda,min-OAV and Fborda,leximin-OAV are NP-complete.

PROOF. The construction to show NP-hardness is highly similar to the ones presented
above. Again, we only show the proof for Fborda,min-OAV. Let (X ,C ) be a given X3C in-
stance with C = {C1, . . . ,Cp} and ‖X‖= 3q. Pad the X3C instance so that 3q−4= 2(p−q)
by appropriately adding new elements to X and forming new subsets that consist of these
new elements only (this is similar to the padding employed by Faliszewski and Hema-
spaandra 2009). Create objects G = {g1, . . . ,g3q} ∪D, where D = {d1, . . . ,d2(p−q)} is a
set of dummy objects. There will be p agents, one for each subset Ci, with preference
D>Ci >X \Ci. All the agents agree on their ranking of objects in D. Now, either an agent re-
ceives set Ci with value 9q−3, or she receives two higher valued goods with values 6q−3− i
and 3q+ i, or 9q−3 in total. Thus set k = 9q−3 (consider (k, . . . ,k) for Fborda,leximin-OAV).

(⇒) Analogous to the proof above.
(⇐) Note that to obtain a utility of at least 9q− 3 for each of the p agents, everyone

needs to get at least two goods. Since there are 3q+ 2(p− q) = q+ 2p goods, there are at
least p−q agents that receive only two goods. To obtain a utility of at least 9q−3 with only
two goods, the lower ranked good must be placed in the first 2(p−q) positions. This implies
that the p−q agents receiving only two goods receive those 2(p−q) goods that are placed
at the beginning of every preference. Then the remaining q agents must all receive the goods
at positions 3q, 3q+ 1, and 3q+ 2 to obtain a utility of 9q− 3, and this corresponds to an
exact cover of X . q

Using a slight adaption of the proofs of Theorems 4 and 5, we can show that Flex,min-OA
and Fε-qi,min-OA are both coNP-complete. These proofs, however, do not directly extend to
the problems Flex,leximin-OA and Fε-qi,leximin-OA.

Proposition 5 For s ∈ {lex,ε-qi}, Fs,min-OA is coNP-complete.

PROOF. For s = lex, we can use a reduction from a restricted version of the complemen-
tary of X3C, which we will call R-X3C and define as follows:
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R-X3C

Given: A triple (X ,C ,C ′), where (X ,C ) is an instance of X3C, and C = {C1, . . . ,Cp} and C ′ =
{C′1, . . . ,C′q} are such that (i) for all i, C′i ⊂Ci, (ii) for all i, ‖C′i‖= 2, and (iii) for all i 6= j,
C′i ∩C′j = /0.

Question: Is (X ,C ) a negative instance of X3C?

This problem can be proven to be coNP-complete by using a reduction from X3C.
Now suppose, without loss of generality, that X r

⋃q
i=1 C′i = {x1, . . . ,xq}. We adapt the

reduction used in the proof of Theorem 4 by constraining the preferences of the first q agents
as follows: for each i ∈ {1, . . . ,q},

(i) among the three objects from Ci, we put those from C′i in the first two positions and
(ii) among the objects from X rCi, we put xi in the first position.

Now let π be as follows: each i ∈ {1, . . . ,q} gets the two objects from C′i and xi, and each
agent i ∈ {q+1, . . . , p} gets fi−q. We claim that (X ,C ,C ′) is a positive instance of R-X3C
if and only if π ∈ Fs,min(P).

(⇒) For allocation π , agent i, i ∈ {1, . . . ,q}, has a utility of 23q−1 +23q−2 +23q−4. The
p−q remaining agents obtain even more utility. In order to realize more utility than 23q−1+
23q−2 + 23q−4 agent i has to receive either Ci or f j for some j ∈ {1, . . . , p− q} because of
lexicographic scoring. Since (X ,C ) is a negative instance, it is not possible to give q agents
their corresponding Ci. Thus, at least one of these agents has to receive f j. However, at least
one of the remaining p−q agents will then receive neither the corresponding Ci nor an f j.
Overall, it follows that π ∈ Fs,min(P).

(⇐) Suppose (X ,C ,C ′) is negative instance. Then (X ,C ) is positive instance of X3C
and there is an allocation π ′ that gives more utility to the worst-off agent than π , contradict-
ing the optimality of π . Hence, (X ,C ,C ′) is a positive instance.

To prove the case of s = ε-qi, we also use a reduction from R-X3C as above, but now
adapting the reduction used in the proof of Theorem 5. As above, we put into the target
instance the objects of C′i in the first two positions among the objects of Ci, and xi in the first
position of the objects of X rXi. Here, the allocation π gives the two objects from C′i and xi
to each agent i ∈ {1, . . . ,q} and four arbitrary objects di to each agent i ∈ {q+1, . . . , p}.

(⇒) Under π the p agents either obtain a utility of 3 + (3m− 7)ε or 4 + 6ε . Every
allocation that tries to improve on the utility of the worst-off agent has to give each agent at
least 3 goods. Since there are 4p−q goods, p−q goods are remaining. As every agent can
receive at most one additional good, q agents get exactly 3 goods. In order to obtain more
utility than 3+(3m− 7)ε , these q agents have to receive their corresponding Ci, which is
impossible because (X ,C ) is a negative instance.

(⇐) This direction is proven analogously to the corresponding case above (for s =
lex). q

For a constant number of agents, we provide efficient algorithms for many of our prob-
lems by using induction on the number of agents for the lexicographic scoring vector and by
using a dynamic programming approach for the other two cases, Borda scoring and quasi-
indifference.

Theorem 7 For each s ∈ {borda,ε-qi} and for each ? ∈ {min, leximin}, Fs,?-OA and Fs,?-
FOA are solvable in polynomial time if the number of agents is constant.
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PROOF. It is enough to prove the theorem for Fs,leximin-OA and Fs,leximin-FOA, since every
optimal allocation under leximin aggregation is also a winner under egalitarian aggregation.

To show that the Fs,leximin-FOA is solvable in polynomial time for Borda and quasi-
indifference, consider the following algorithm. Let G = {g1, . . . ,gm} be a set of m goods and
N = {1, . . . ,n} be a set of n agents. Our algorithm runs in m steps: in the jth step it computes
all possible allocations that assign the first j goods to the n agents; such allocations are
encoded as n-dimensional vectors and are collected in the set Vj. Let V0 be the set containing
only the vector 0. In each step j, for each vector v ∈ Vj−1 compute one vector vi = v+
srank(g j ,>i) · ei for each agent i, 1≤ i≤ n, where ei denotes the ith unit vector. This vector vi
is then added to Vj after checking for duplicates so as to avoid them. It is easy to see that
‖Vj‖ ≤ ‖Vm‖ for all j ≤ m.

For Borda scoring, every entry of each vector in Vm is bounded above by m(m+1)/2 and
thus ‖Vm‖ is bounded by O(m2n). Before adding a new vector vi to Vj, it can be checked in
polynomial time whether there already is such a vector in Vj, so duplicates can be avoided
by the algorithm. Therefore, each step will take time O(m4n) and since we have m steps in
total, the running time of the algorithm will be in O(m4n+1), which is polynomial in m if n
is constant.

For the quasi-indifference scoring vector, ε-qi for some ε , 0 < ε � 1, every entry of
each vector in Vm has the form p+ q · ε where p,q ∈ Z, 0 ≤ p ≤ m and 0 ≤ q ≤ m(m−1)/2,
and thus ‖Vm‖ is bounded by O(m3n). Hence, checking for duplicates in each step will take
time O(m6n) and the overall complexity of the algorithm is bounded by O(m6n+1), which
again is polynomial in m.

Note that in the above algorithm it is always possible to store an allocation correspond-
ing to each vector in polynomial time, and thus the algorithm can also output an optimal
allocation. This solves Fs,leximin-FOA (and, therefore, Fs,leximin-OA as well) in polynomial
time for Borda scoring and quasi-indifference. q

The proof of Theorem 7 actually shows:

Corollary 2 For each scoring vector s = (s1, . . . ,sm) where ∑
m
i=1 si is bounded above by a

polynomial in m and for each ? ∈ {min, leximin}, Fs,?-OA and Fs,?-FOA are solvable in
polynomial time if the number of agents is constant.

Table 2 gives an overview of the complexity results stated in this section. Note that the
right column gives NP-hardness instead of NP-completeness results because Fs,?-FOA is a
functional, not a decision problem; “NP-hardness” for a functional problem is understood
as this problem “not being polynomial-time solvable unless P = NP.”

Garg et al (2010) obtain complexity results that are related to ours. In particular, for
two possible choices of ranks (that is, two indifference classes), finding a leximin-optimal
assignment is easy. For three indifference classes the maximization problem is NP-hard. For
more indifference classes, however, their hardness proof relies on the fact that indifference
classes can be empty and thus their result does not extend to our setting. Darmann and
Schauer (2015) show that the optimal allocation value problem with respect to Nash social
welfare is NP-complete for Borda and lexicographic scoring and is in P for k-approval,
which is similar to our results on the min aggregation function.

6 Approximation

In this section, we are concerned with different types of approximation results for scoring-
based allocation of indivisible goods. We first consider the problem of finding an optimal



Positional Scoring-Based Allocation of Indivisible Goods 21

OA OAV FOA

Fs,+ in P in P polynomial time

Fs,min coNP-complete∗ NP-complete∗ NP-hard∗

k-app in P in P polynomial time
m ∈ O(1) in P in P polynomial time
lex or ε-qi coNP-complete NP-complete NP-hard

borda
:
in
::::
coNP NP-complete NP-hard

borda or ε-qi, if n ∈ O(1) in P in P polynomial time

Fs,leximin coNP-complete∗ NP-complete∗ NP-hard∗

m ∈ O(1) in P in P polynomial time
lex or ε-qi

:
in
::::
coNP NP-complete NP-hard

borda
:
in
::::
coNP NP-complete NP-hard

borda or ε-qi, if n ∈ O(1) in P in P polynomial time

∗ if s is part of the input (even for two agents with identical preferences)

Table 2: Overview of complexity results (
::::
wavy

::::::::
underline: partial results)

allocation for egalitarian social welfare under lexicographic scoring in Section 6.1, and will
then (in Section 6.2) turn to the “price of picking-sequence elicitation-freeness,” where a
so-called picking sequence is a simple protocol for allocating indivisible goods without
any need to elicit the agents’ preferences first. This model is initially due to Kohler and
Chandrasekaran (1971). Later, Brams and Taylor (1996) have studied a particular version of
this protocol for specific kinds of alternating sequences, and Bouveret and Lang (2011) have
introduced a more general formal model of this kind of protocols. More recently, Aziz et al
(2015b) have investigated, in particular, the conditions under which an allocation is possibly
or necessarily reachable by applying a picking sequence with a specific class of policies.

6.1 Approximation Algorithm for Finding an Optimal Allocation for Egalitarian Social
Welfare under Lexicographic Scoring

As we can see in Table 2, Fs,?-OAV is NP-complete for many combinations of a scoring
vector with an aggregation function. This raises the issue of whether we at least can find
good approximations of optimal allocations in polynomial time. It turns out that this indeed
is the case for Flex,min-OAV.

Proposition 6 There exists a (1/2)-approximation algorithm for Flex,min-FOA.

PROOF. Let (N,G,>1, . . . ,>n) be an instance of the problem. Our simple algorithm works
as follows. Slightly abusing notation by overloading the symbols N and G, we first construct
a weighted complete bipartite graph Kn,m = (N ∪G,E), where we have a vertex i ∈ N for
every agent i, a vertex g j for every good g j, and a weight function w that is defined by
w(i,g j) = srank(g j ,>i), where s = lex is the lexicographic scoring vector. We create a graph
G′ by deleting all the edges in G of weight less than 2m−1. If there exists a maximum match-
ing M of G′ then return M . Otherwise, we replace m−1 by m−2 and repeat until we find a
maximum matching. A matching M returned by the algorithm will correspond to an incom-
plete allocation of m goods to n agents. By assigning all remaining goods to agents greedily,
we obtain a complete allocation π . We now prove that the egalitarian social welfare of π is
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within a factor of 1/2 of the optimal one. Indeed, assume that π∗ is an optimal allocation. The
collective utility of π∗ has the form of (2k1 +α1, . . . ,2kn +αn), where m−n≤ ki ≤m−1 and
αi < 2ki . Obviously, an allocation that has a collective utility of (2k1 , . . . ,2kn) will exactly
correspond to a maximum matching of Kn,m. Without loss of generality, we can assume that
kn = min{k1, . . . ,kn}. Then it is easy to see that the minimum weight edge in M must have
weight 2kn . Finally, since the egalitarian social welfare of π is at least

2kn >
1
2

(
2kn +αn

)
=

1
2

min
{

2k1 +α1, . . . ,2kn +αn

}
,

the proof is complete. q

6.2 The Price of Picking-Sequence Elicitation-Freeness

We now use a different approach: rather than designing a dedicated algorithm for each rule,
we will study a general allocation rule – picking sequences – and investigate the price to pay
for that, namely, the ratio between the value of the optimal allocation and the value of the
allocation obtained by applying a picking sequence. Picking sequences are simple protocols
for allocating indivisible resources without eliciting the agents’ preferences first (Kohler and
Chandrasekaran 1971; Brams and Taylor 1996; Bouveret and Lang 2011; Aziz et al 2015b).
They consist of asking agents to pick objects one after the other, following a predefined
sequence.

Formally, a (picking) policy is a sequence σ = σ1 · · ·σm ∈ {1, . . . ,n}m, where at each
step, agent σi picks her most preferred object among those remaining (where we assume
agents to use only their sincere picking strategies). For instance, for m = 4 goods and n = 2
agents, 1221 is the sequence where agent 1 picks an object first, then agent 2 picks two
objects, and 1 takes the last object. The formal definition of an allocation induced by a
picking sequence and a profile, assuming that agents act according to their true preferences,
can be found in the paper by Bouveret and Lang (2011).

An interesting question is whether using such protocols (without elicitation), or simu-
lating them from the known preferences (after full elicitation of the agents’ rankings) gives
a good approximation of our scoring rules: what is the loss incurred by the application (sim-
ulated or not) of the picking sequence with respect to an optimal allocation? We give here
two results for Borda scoring: one for egalitarianism, one for utilitarianism. One may won-
der why we should look for such a result in the case of utilitarianism, given that there is
a straightforward greedy algorithm that outputs an optimal allocation. The reason is that
picking sequences (when actually used, as opposed to simulated ones) do better on one cri-
terion: they are very cheap in communication, as agents only reveal part of their preferences
by picking objects, as opposed to revealing their full preferences in the case of a centralized
protocol.

As noticed above, sequential allocation rules are appealing because they require even
less input from the agents than singleton-based allocation rules; however, this gain in com-
munication comes with a loss of social welfare. To quantify this loss, we define the following
measure.

Definition 7 Given a policy σ (for n agents and m objects), a scoring vector s, and an ag-
gregation function ? ∈ {+,min}, the (multiplicative) price of picking-sequence elicitation-
freeness of σ , denoted by MPEFs,?(σ), is the worst-case ratio in social welfare between an
optimal allocation for Fs,? and the sequential allocation, among all profiles with m goods.
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Note that we could have defined the notion of additive price of picking-sequence elicitation-
freeness in the same way, but the multiplicative version seems to give results which are easier
to interpret. Since we focus on s = borda only, we from now on simply write MPEF?(σ) to
mean MPEFborda,?(σ).

We now give results about the quality of the outcome of balanced picking sequences
(12 · · ·n)m

n , assuming that m is a multiple of n. For instance, if there are m = 6 goods and
n = 3 agents, σ = 123123 is balanced. Computing the price of picking-sequence elication-
freeness is challenging. We focus on the regular policy σn

R =(1 · · ·n)∗, but we can get similar
results for other fair policies like (1 · · ·nn · · ·1)∗.

6.2.1 Lower Bounds

A naive algorithm for computing the additive or multiplicative PEF for a given value m is
simply to generate all possible profiles and for each of them to compute an optimal allocation
from which it is possible to deduce the loss incurred by the sequential allocation. However,
the number of profiles grows exponentially in m, and computing an optimal allocation might
be intractable. Still, it is possible to lower-bound the PEF for a given m by computing the
incurred loss for a subset of all possible profiles. In Figure 1, we plot the best such lower
bounds we could achieve experimentally for the multiplicative PEF. In the case ? = +,
each data point corresponds to two millions profiles randomly generated (with a uniform
distribution). In the case ?= min, for each data point, random profiles were generated until
a threshold of 1,800 seconds of computation time was reached. The conclusions that can be
drawn from Figure 1 is that for ?=+, in the worst and average cases the loss seems to tend
to the neighborhood of 1. The conclusions for ? = min are somewhat similar, but they are
less firm, as we have not been able to go as far in the number of objects as for ?=+.

We now give a formal lower bound for MPEF for ?=+ and the regular policy.

Proposition 7 For m = kn objects,

MPEF+(σ
n
R)≥ 1+

mn−m−n2 +n
m2 +mn

,

and thus we have MPEF+(σ
n
R)≥ 1+ n−1

m +Θ(1/m2) when m tends to +∞ with n being held
constant.

PROOF. We construct a profile P = (>1,>2, . . . ,>n) where for each agent i, >i is defined
so that (a) for all j and j′ such that j < j′ ≤m− i, we have g j > g j′ ; (b) for all k and k′ such
that m− i+1≤ k < k′, we have gk > gk′ ; and (c) for all j ≤ m− i and for all k ≥ m− i+1,
we have g j < gk:

1 : gm? g1? g2? · · · gn? · · · gm−1

2 : gm−1? gm g1 g2 · · · gm−2

...
n−1 : gm−n+2? gm−n+3 · · · gm g1 g2 · · · gn−1 gn gn+1 · · · gm−n+1

n : gm−n+1? gm−n+2 · · · gm g1 g2 · · · gn−1 gn gn+1 · · · gm−n

In the above profile, the allocation obtained by applying the picking sequence protocol
is shown as boxes; one Fborda,+-optimal allocation is indicated by stars.
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R, σ3

R, σ4
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MPEF for ?= min, Borda scoring, and regular policies σ2
R and σ3

R.

For each j ∈ {1, . . . ,n}, object gm− j+1 is assigned to agent j in the sequential and an
optimal allocation. For each j ∈ {1, . . . ,m−n}, object g j is assigned to agent 1 in an optimal
allocation with utility m− j. However, if j ≡ i (mod n), then g j is assigned to agent i in the
sequential allocation with utility m− j− (i− 1). Summing over all objects leads to the
result. q

6.2.2 Upper Bounds

We now also provide formal upper bounds for MPEF for ?=+ and ?= min, and the regular
policy.

Proposition 8 For m = kn objects,

MPEF+(σ
n
R)≤ 2− m−n

mn+n
,
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and thus MPEF+(σ
n
R)≤ 2− 1

n +Θ(1/m) when m tends to +∞ with n being held constant.

PROOF. Let gni+ j be the object picked at the (ni+ j)th time step. Because σ is balanced,
it is picked by agent j. Let up(g) be the score associated to object g by player p: up(g) =
u>p,s({g}) = srank(g,>p). The loss of social welfare associated with σ is the sum of the losses
over each object gni+ j, which can be expressed as max0≤ j′≤n−1 u j′(gni+ j)−u j(gni+ j).

At step ni + j, when it is agent j’s turn to pick an object, the following facts hold:
(a) no more than ni+ j− 1 objects have already been picked, so agent j will pick an ob-
ject among her ni+ j best objects; (b) object gni+ j hasn’t been picked by any other agent
so far; therefore, gni+ j is not among the best i objects of any agent. (a) and (b) imply
(a’) u j(gni+ j) ≥ sni+ j = m− (ni+ j) + 1 and (b’) u j′(gni+ j) ≤ si = m− i+ 1. From (a’)
and (b’) we get that the ratio of social welfare associated with object gni+ j is upper-bounded
by m−i+1

m−(ni+ j)+1 . Summing over all objects leads to the result. q

Corollary 3 For n = 2 agents and m = 2k objects,

1+
m−2

m(m+2)
≤MPEF+(σ

2
R)≤

3
2
+

3
2m+2

.

Proposition 9 For m = kn objects,

MPEFmin(σ
n
R)≤

2mn−m+n
mn+2n−n2 ,

and thus MPEFmin(σ
n
R)≤ 2− 1

n +Θ(1/m) when m tends to +∞ with n being held constant.

PROOF. The best allocation one could hope for would give every agent her preferred k
objects, and it has social welfare ∑

k
i=1(m− i+ 1) = ∑

k
i=1(m+ 1)−∑

k
i=1 i. The worst case

occurs when all agents have the same preference; in this case, the least well-off agent is n,
who gets the objects he ranked n, 2n, . . . , and kn, and his utility (and therefore the social
welfare) is ∑

k
i=1 sni = ∑

k
i=1(m−ni+1) = ∑

k
i=1(m+1)−n∑

k
i=1 i.

Therefore, skipping the intermediate computation steps, we have

MPEFmin(σ)≤ ∑
k
i=1(m+1)−∑

k
i=1 i

∑
k
i=1(m+1)−n∑

k
i=1 i

=
2k(m+1)− k(k+1)
2k(m+1)−nk(k+1)

= 2− 1
n
+

2n2−4n+2
mn+2n−n2 ,

which concludes the proof. q

Corollary 4 For n = 2 agents and m = 2k objects,

MPEFmin(σ
2
R)≤

3
2
+

1
m
.
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7 Conclusions and Outlook

Generalizing earlier work by Brams and King (2005) and Brams et al (2004), we have de-
fined in this paper a family of rules for the allocation of indivisible goods to agents that
are parameterized by a scoring vector and an aggregation function. We have discussed a
few key properties, and for each of them we have given some positive as well as some neg-
ative results about their satisfaction by scoring allocation rules. We have also determined
the complexity of computing an optimal allocation for four important scoring vectors and
three central aggregation functions (see Table 2). Finally, we have given some approxima-
tion results, some of which make use of picking sequences whose main purpose it is to avoid
preference elicitation.

The relatively high number of negative results should be balanced against the satisfac-
tion of several important properties (including monotonicity) together with the simplicity of
these rules. And anyway, defining allocation rules of indivisible goods from ordinal inputs
on other principles does not look easy at all. On the computational side, even if winner de-
termination is difficult for many choices of s and ? (except for the trivial case of ? = +),
these rather negative results should be tempered by the fact that in most practical settings
the number of agents and items is sufficiently small for the optimal allocation to be com-
puted, even when its determination is NP-hard. Moreover, the results of Section 6 show
that good approximations of optimal allocations can often be determined with a very low
communication cost.

Our results are not complete: for several properties we do not have an exact characteri-
zation of the scoring allocation rules that satisfy them. Moreover, as shown in Table 2, some
of our complexity results are partial. Completing these complexity results, and obtaining
exact characterizations of the allocation rules that satisfy our properties is left for further
research.

An issue that we did not consider here is manipulability. Clearly, almost all of our rules
are manipulable; characterizing exactly the family of scoring allocation rules that are manip-
ulable (for a characterization of strategy-proofness of scoring allocation correspondences,
see the work of Nguyen et al 2015) and measuring the extent to which our rules are compu-
tationally resistant to manipulation is clearly an interesting topic for further research.
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