
Conditional and Sequential Approval Voting on Combinatorial Domains

Nathanaël Barrot and Jérôme Lang
CNRS LAMSADE, Université Paris-Dauphine, France
{nathanael.barrot, jerome.lang}@lamsade.dauphine.fr

Abstract
Several methods exist for making collective deci-
sions on a set of variables when voters possibly
have preferential dependencies. None is based on
approval voting. We define a family of rules for
approval-based voting on combinatorial domains,
where voters cast conditional approval ballots, al-
lowing them to approve values of a variable condi-
tionally on the values of other variables. We study
three such rules. The first two generalize simple
multiwinner approval voting and minimax approval
voting. The third one is an approval-based version
of sequential voting on combinatorial domains. We
study some properties of these rules, and compare
their outcomes.

1 Introduction
Collective decisions on combinatorial domains cover a large
variety of common situations, such as finding a set of dates
for a series of meetings, electing a committee of representa-
tives, adopting or rejecting each of a series of yes-no ques-
tions about common facilities to be built, or finding a com-
mon set of movies for a group to watch together.

Several methods have been proposed and studied for mak-
ing such collective decisions. An important source of prob-
lems is when voters have preferential dependencies between
variables: someone may be willing to attend the second meet-
ing on a Friday provided that the first meeting is not already
on a Friday; someone may want Ann to be elected at the
department council only if both Betty and Charles are not
elected too (they all belong to the same research group and
would have too much joint power); I may want to watch one
comedy and one drama, but not two films of the same genre.

It has been argued many times that making decisions in-
dependently on each variable cannot take such preferential
dependencies into account. If we want to deal with them,
we have to allow voters to express these dependencies. Sev-
eral classes of methods have been proposed and studied (see
[Lang and Xia, 2016] for a recent survey). Direct methods
work by asking voters a one-shot report of their preferences,
expressed in some language that allows preferential depen-
dencies to be (at least partly) specified; sequential methods
proceed by eliciting the voters’ preferences on a first (fixed)

variable, decide its value, broadcast it, then eliciting the vot-
ers’ preferences on a second variable conditionally on the
value chosen for the first one, and so on.

Most of the existing methods for voting in combinatorial
domains assume that voters express, implicitly or explicitly,
rankings over the values of variables, or else cardinal utility
functions. Both may induce a cognitive burden to the vot-
ers, as well as an increased complexity in communication
and computation. On the other hand, in simple domains, ap-
proval voting is a well-studied method for elections, where
each voter may approve of any number of candidates, and
the candidate with the largest number of approvals wins. Ap-
proval voting has nice properties, and is easy to use and un-
derstand [Brams and Fishburn, 2005].

Approval voting can be extended to combinatorial do-
mains, and especially to committee elections. The simplest
way, if we want to select k candidates, consists in selecting
those with the largest k approvals. Other ways of extending
approval voting to multiple winner elections have been con-
sidered and are surveyed in [Kilgour, 2010]. Similar meth-
ods can be used for multiple referenda, as argued in [Amana-
tidis et al., 2015], due to the structural similarity of committee
elections and multiple referenda: in both cases, a decision has
to be made over a set of possible subsets (of candidates in one
case, of binary issues in the other case) subject to feasibility
constraints (such as the number of winners in committee elec-
tions, or budget constraints in multiple referenda). However,
the methods we know of for multiwinner approval voting do
not allow voters to express conditional preferences; they must
vote as if they had separable preferences.

We propose a family of methods for reconciliating the sim-
plicity of approval voting with the possibility for voters to ex-
press preferential dependencies. In Section 3 we define con-
ditional approval ballots where voters approve some values
of variables conditionally on the value of some other vari-
ables. In Section 4 we define two first rules based on condi-
tional approval ballots, where the winning alternative mini-
mizes respectively the maximum or the sum, over all voters,
of the number of ‘disagreements’, and we show that these
rules generalize simple (or ‘minisum’) approval voting and
minimax approval voting [Brams et al., 2007]. In Section
5 we define sequential conditional approval voting: given a
fixed order of variables, the voters approve some of their val-
ues, one variable after the other. We conclude in Section 6.

2 Background and related work
In a committee (or multi-winner) election, there is a set of
candidates C, a set of voters N , each casting a vote (or a bal-
lot), and a number k of winners (or sometimes a more flex-
ible constraint, or even no constraint at all such as in Hall-
of-Fame elections). In multiwinner approval ballotting, each
voter casts an approval ballot where she approves as many
candidates as she wants (in some variants, there are also con-
straints on the number of approvals on a ballot).

In simple multiwinner approval voting, the winners are
simply the k candidates approved most often. Simple ap-
proval voting can be criticized for failing to guarantee a suf-
ficient level of fairness or representativeness, and a number
of other rules that map a collection of approval ballots to a
set of winners have been studied; see [Kilgour, 2010] for a
survey. One prominent such rule is minimax approval vot-
ing, where the elected committee minimizes the maximum,
over all voters, of the number of ‘disagreements’ (i.e., for-
mally, the Hamming distance) between the voter’s ballot and
the chosen committee [Brams et al., 2007]. Unlike simple
approval voting, minimax approval voting is NP-hard [Moti
and Ami, 1997] and manipulable, but it can be efficiently ap-
proximated [LeGrand et al., 2007; Caragiannis et al., 2010;
Byrka and Sornat, 2014]; see [Misra et al., 2015] for its pa-
rameterized complexity. [Amanatidis et al., 2015] generalize
these two rules to other aggregation functions, and [Baumeis-
ter et al., 2015] extend them beyond approval ballots.

Other multiwinner approval voting rules, such as propor-
tional or satisfaction approval voting [Brams and Kilgour,
2014], have been recently studied from the point of view of
computation [Aziz et al., 2015b] or of their properties [Aziz
et al., 2015a]. A number of works address the computa-
tion of full proportional representation with approval ballots,
two good representatives being [Procaccia et al., 2008] and
[Skowron and Faliszewski, 2015]. The computational aspects
of strategic behaviour for single- and multi-winner approval
voting are adressed in [Meir et al., 2008] and in [Baumeister
et al., 2010]. The properties of multiwinner voting rules are
studied more generally in [Elkind et al., 2014].

Combinatorial domains are sets of alternatives consisting
of the Cartesian product (or sometimes, a subset of it) of
finite domain values corresponding to issues, variables, at-
tributes, seats, or even individuals (in the case of committee
elections). The main difficulty in voting in combinatorial do-
mains is the presence of preferential dependencies. To deal
with them, some approaches make use of compact represen-
tations, such as [Rossi et al., 2004; Conitzer et al., 2011;
Li et al., 2011]. Some others make use of sequential vot-
ing, variable after variable, such as [Lang and Xia, 2009;
dalla Pozza et al., 2011; Airiau et al., 2011]. None of them
makes use of approval ballots. See [Lang and Xia, 2016] for
a recent overview of voting in combinatorial domains.

3 Conditional approval ballots
Let X = {X1, . . . , Xp} be a set of variables, each of them
associated with a finite value domain Di. Let D = D1 ×
. . . × Dp, and D∗ ⊆ D be a set of feasible alternatives (by
default, D∗ = D). A group of voters have to decide of a

common outcome in D∗. When Xi is binary, we will usually
take Di = {xi, xi}. For J ⊆ {1, . . . , p} we note DJ =
×j∈JDj , and for d = (d1, . . . , dp) ∈ D, dJ denotes the
tuple d projected to the indices in J .

For instance, in a designated-post committee election
[Benoı̂t and Kornhauser, 2010], X is a set of different seats
to be filled and their domains are the respective sets of can-
didates for each position (an alternative is feasible only if it
does not assign the same candidate to more than one seat). In
a standard committee election where the size of the commit-
tee is fixed to k,X can be identified with the set of candidates,
with binary domains {elected, not elected}, and an alternative
is feasible iff k variables have value ‘elected’. In a multiple
referendum [Brams et al., 1998], X is a set of binary issues.

As a running example, a group of friends have to decide
on a common menu. The variables are X1 (main dish), with
D1 = {m, f, v} (meat, fish, vegetarian dish), and X2 (drink),
with D2 = {r, w, b} (red wine, white wine, beer).

The most common way of using approval ballotting in such
domains consists in asking voters to approve values for each
variable separately. This does not require much communi-
cation, but it is not possible for voters to report conditional
preferences. For instance, a voter may approve {m, f} ⊆ D1

and {r, w} ⊆ D2 but cannot express that he approves the red
wine only if the main dish collectively chosen is meat.

One could also think of asking voters to specify all com-
binations of values they approve (possibly in a compact
way by means of a propositional formula). Here, pref-
erential dependencies can be expressed, but the communi-
cation is costly, and moreover, a problem is that once a
voter obtains a value he does not like for a variable, his
opinion about the other variables does not count. Assume
for instance that a voter hates fish and beer, and wants
red wine with meat. It is reasonable to expect that he
approves the set of menus {mr, vw, vr}, and disapproves
mw,mb, fr, fw, fb, vb. However, if the collective decision
turns out to give the value fish to X1, our voter won’t have a
chance to express that he still does not want to drink beer.

A trade-off between these two (extreme) methods consists
in allowing voters to approve sets of values for each variable,
conditioned on the value of some other variables.
Definition 1. A conditional approval (CA) ballot over vari-
ables X1, . . . , Xp with domains D1, . . . , Dp is a pair

B = 〈G, {Ai | i = 1, . . . , p}〉
where G is a directed graph over {X1, . . . , Xp}, and
for each i, Ai is a set of conditional approval state-
ments {u : ai(u)|u ∈ DParG(Xi)}, where ai(u) ⊆ Di, and
ParG(Xi) is the set of parents of Xi in G. B↓Xi|u = ai(u)
denotes the projection of B over Xi conditioned by u.

We say that B is acyclic if G is acyclic. B is a separable
CA ballot if G has no edges.

Most often, we will alleviate the notation and only write
the CA statements (and not the graph) when we specify a CA
ballot. Also, we omit some curly brackets when it cannot lead
to any confusion (in particular, for singletons).
Definition 2. Given an CA ballot B and an assignment d =
(d1, . . . , dp) ∈ D1 × . . .×Dp, we say that d disagrees with

B on variable Xi if di /∈ B↓Xi|dU , where U = ParG(Xi).
The disagreement of d with respect toB, denoted by δ(d, B),
is the number of variables Xi on which d disagrees with B.

Example 1. Consider a voter expressing the CA ballot

B = 〈[X1 → X2], {{f, v}; m : r; f : w; v : {r, w}}〉

This voter has a preference for not having meat: B↓X1 =
{f, v}; but in case the collective decision is to have meat, she
still has her word to say about the drink, and approves (only)
the red wine: B↓X2 | m = {r}. If the collective decision is
the vegetarian dish, then she approves both the red and the
white wine: B↓X2 | v = {r, w}. Now, d = mr disagrees with
B on X1 but not X2, therefore δ(d, B) = 1 (she is not satis-
fied with the choice of the dish, but is satisfied by the choice
of the drink given that the dish is meat). Likewise, we have
δ(fw,B) = δ(vr,B) = δ(vw,B) = 0 (she is satisfied by the
choice of the dish and the choice of the drink conditional on
the value of the dish), δ(fr,B) = δ(fb,B) = δ(vb,B) = 1,
and δ(mw,B) = δ(mb,B) = 2.

Equivalently, p − δ(·, B) can be seen as a utility function
which counts the number of conditional preferences satisfied.
Thus, even though voters are using approval-like ballots, the
preferences they express are not dichotomous.

Observation 1. If B is acyclic and ai(u) 6= ∅ for all i ≤ p
and u ∈ DParG(Xi), then δ(d, B) = 0 for some d ∈ D.

This, however, is no longer true if B is not acyclic: let for
instance B = {x1 : x2, x1 : x2, x2 : x1, x2 : x1}, then for
every d ∈ D we have δ(d, B) = 1.

Conditional approval ballots have a clear resemblance with
CP-nets [Boutilier et al., 2004]. For the sake of simplicity,
assume that variables are binary and let N(B) the CP-net ob-
tained by replacing all conditional approval sets u : ai(u) by
u : ai(u) � ai(u), with xi = xi. The semantics of B and
N(B) are different: if �N(B) is the partial order over D in-
duced from N(B), and �B the order defined by d �B d′ if
δ(d, B) < δ(d′, B), then �B and �N(B) are incomparable:

Observation 2. There exists B and d,d′ such that d �B d′

and d′ �N(B) d.

This can be seen on this example: X = {X1, X2, X3};
B = {x1, x1 : x2, x1 : x2, x1x2 : x3, x1x2 : x3, x1x2 : x3,
x1x2 : x3}. We have x1x2x3 �N(B) x1x2x3, becauseN(B)
contains x1 � x1, however x1x2x3 ≺B x1x2x3, because
δ(x1x2x3, B) = 1 < δ(x1x2x3, B) = 2.

Note that δ(·, B) is a function from D to [0, p], but not all
functions from D to [0, p] can be expressed by a CA ballot;
this can be seen by a simple counting argument. Therefore,
assuming that a voter’s preferences are representable by a CA
ballot is a domain restriction.

4 Conditional minisum and minimax
Definition 3. An n-voter conditional approval profile is a col-
lection P = 〈B1, . . . , Bn〉 of CA ballots. It is separable if
every Bi is a separable CA ballot. A CA irresolute rule is a
function mapping any CA profile to a nonempty subset of D∗.

Resolute rules can be obtained by combining an irresolute
rule with a tie-breaking mechanism: if F is an irresolute rule
and T is a tie-breaking mechanism induced by a fixed prior-
ity ranking over D∗, then FT is the composition of F by T .
(Note that T is a relation over an exponentially large set, and
thus should be represented in some compact way; this has no
impact in our results.) We now define two specific rules.

4.1 Conditional minisum
Definition 4. Given a CA profile P = 〈B1, . . . , Bn〉, the
conditional minisum rule outputs the outcomes that minimize
the total number of disagreements over all voters:

CondMiniSum(P) = argmind∈D∗

n∑
i=1

δ(d, Bi)

Example 2. Let D∗ = D = {m, f, v} × {r, w, b} and let
P be the following 19-voter CA profile; the number on the
top row denotes the number of voters; for instance, 5 voters
express the CA ballot {{m, f},m : r, f : w, v : {r, w}}.
Note that the CA ballots of the second column are separable.

5 4 4 3 3
{m, f} m {m, f, v} {f, v} v
m : r m : b m : {r, w} m : r m : b
f : w f : b f : w f : w f : b

v : {r, w} v : b v : {r, b} v : {r, w} v : {r, w, b}

The table below gives the disagreement values for each
group of voters, and the total disagreement value.

mr mw mb fr fw fb vr vw vb
5 0 1 1 1 0 1 1 1 2
4 1 1 0 2 2 1 2 2 1
4 0 0 1 1 0 1 0 1 0
3 1 2 2 1 0 1 0 0 1
3 2 2 1 2 2 1 0 0 0

total 13 21 18 26 14 19 13 17 17

and we have CondMiniSum(P) = {mr, vr}.
If P is separable, then the outcome ofCondMiniSum(P)

can be obtained simply by decomposing the vote into a series
of standard approval votes, variable by variable. Let C be a
set of candidates; a (standard) approval profile is a collection
of approval ballots (A1, . . . , An) where Ai ⊆ C for each
i; the (standard) approval rule App maps any approval pro-
file to a winner (or a set of tied winners), and is defined by
App(A1, . . . , An) = argmaxc∈C |{i : c ∈ Ai}|.
Observation 3. If P = 〈B1, . . . , Bn〉 be a separable CA
profile. Then CondMiniSum(P) = App(P ↓X1) × . . . ×
App(P ↓Xp), where P ↓Xi = (B↓Xi

1 , . . . , B↓Xi
n).

In particular, if all variables are binary, we are in the con-
text of a multiple referendum without preferential dependen-
cies between issues, and where the decision is made issue by
issue according to majority.

On the other hand, classical committee elections corre-
spond to a collection of such separable conditional approval
ballots, where binary variables correspond to candidates, to-
gether with a constraint on the cardinality of the committee.

Observation 4. Let D = {yes, no}p (plus possibly a car-
dinality constraint), and P = 〈B1, . . . , Bn〉 a separable CA
profile. Then CondMiniSum(P) coincides with the output
of simple multiwinner approval voting (also called minisum
in [Brams et al., 2007]).

4.2 Conditional minimax
Conditional minisum has a utilitarianistic flavor: minimizing
the sum of disagreements corresponds to maximizing social
welfare. We may instead take an egalitarian point of view and
minimize the maximum disagreement:
Definition 5. Given a CA profile P = 〈B1, . . . , Bn〉, the
conditional minimax rule outputs the outcomes that minimize
the maximum number of disagreements over all voters :

CondMiniMax(P) = argmind∈D∗
n

max
i=1

δ(d, Bi)

Example 2, continued. The only outcome that has a dis-
agreement at most 1 (in fact, exactly 1) with every conditional
ballot is fb, therefore CondMiniMax(P) = {fb}: every
agent is either happy with the fish, or unhappy with the fish,
but in that case, happy with the beer given that the dish is fish.

A similar result as Observation 4 holds for conditional min-
imax:
Observation 5. Under the same assumptions as in Obser-
vation 4, CondMiniMax(P) is the output of minimax ap-
proval voting [Brams et al., 2007]).

4.3 Computation
Computing a winning committee for minimax approval vot-
ing is NP-hard [Moti and Ami, 1997], which of course carries
over to conditional minimax approval voting. On the other
hand, the polynomial time computation of winning commit-
tees for simple approval voting does not carry over to condi-
tional minisum (even without feasibility constraints):
Proposition 1. Given a CA profile P and an integer k, decid-
ing whether there exists d ∈ D such that

∑
i δ(d, Bi) ≤ k is

NP-complete, even for binary variables and, for each voter,
an acyclic dependency graph with maximal indegree 1.

Proof. The problem is clearly in NP. The hardness proof is
based on a reduction from MAX2SAT. Consider an instance I
of MAX2SAT, defined by a set of variables V = {x1, . . . , xp},
a set of 2-clauses C = {C1, . . . , Cn}, and an integer t. We
create a set of binary variables X = {X1, . . . , Xp} and, for
each clause Ci = lj ∨ lk, where lj ∈ {xj , xj} and lk ∈
{xk, xk}, and j < k, a voter i whose CA ballot Bi is defined
as follows (with the convention lj = xj when lj = xj):
• the dependency graph has a single edge Xj −→ Xk.

• the CA statements are {xj , xj}, lj : {xk, xk}, lj : {lk},
and {xq, xq} for each q 6= k.

First, assume that there exists an assignment of the vari-
ables V satisfying at least t clauses. From that assignment,
we define an alternative d as follows: for all q ≤ p, dq = xq
if xq is assigned to true, and dq = xq if xq is assigned to
false. Then, we study the number of disagreements between
Bi and d. There are two cases to consider:

• If Ci is satisfied, then either lj is true or lk is true, and
from the definition of Bi, we get δ(d, Bi) = 0.

• If Ci is not satisfied, then both lj and lk are false, and
from the definition of Bi, we get δ(d, Bi) = 1.

Thus, since the assignment satisfies at least k clauses, we have∑n
i=1 δ(d, Bi) ≤ p− t.
Conversely, if there exists a d such that

∑n
i=1 δ(d, Bi) ≤

p − t, then by a similar line of reasoning as above, we can
construct an assignment that satisfies at least t clauses.

On the positive side, there is a model-preserving translation
from winner determination for conditional minisum approval
voting into maximum satisfiability. We omit the formal de-
tails of the general construction but only give an example:
the CA ballot B = {x, x : y, x : {y, y}} is translated into
the set of clauses CB = {x, x ∨ y, x ∨ y ∨ y} (equivalent
to {x, x ∨ y}); then a CA profile P = 〈B1, . . . , Bn〉 is trans-
lated into a multi-set of clauses CP = CB1 ∪ . . .∪CBn . For all
d ∈ D, we have

∑
i δ(d, Bi) = α if and only if the number

of clauses that are not satisfied in CP is equal to α.1
This means that conditional minisum approval voting can

be solved by off-the-shelf MAXSAT solvers. Moreover, in the
case of binary variables with acyclic dependency graphs, it
is easy to check that this transformation preserves the differ-
ential approximation ratio of 4.34/(m + 4.34) obtained for
MAXSAT in [Escoffier and Paschos, 2007], where m repre-
sents the number of clauses.2

4.4 Properties
We now study some of the properties satisfied by conditional
minisum and conditional minimax. Because our rules have
CA ballots as input, some of the standard properties have to
be adapted. Clearly, our rules satisfy anonymity (the out-
come is independent from the identity of voters), and their
irresolute versions satisfy value neutrality (the outcome is un-
changed after any renaming of the values of some variable)
and variable neutrality (the outcome is unchanged after any
renaming of the variables). Now we define four other impor-
tant properties. For two profiles P = (P1, . . . , Pn) and Q =
(Q1, . . . , Qm), we note P+Q = (P1, . . . , Pn, Q1, . . . , Qm).

Definition 6. Let F be a CA irresolute rule.

• F satisfies reinforcement (resp. weak reinforcement) if
for any two profiles P,Q, if F (P) ∩ F (Q) 6= ∅ then
F (P +Q) = F (P) ∩ F (Q) (resp. ⊇ F (P) ∩ F (Q)).

• F satisfies monotonicity if for any profile P =
(B1, . . . , Bn), if d = (x1, . . . , xp) ∈ F (P) and B′i

1The translation works also for nonbinary variables, but is more
complex, as there is one propositional variable per value di ∈ Di,
and a feasibility constraint ensures that each variable takes exactly
one value. More generally, when D∗ is a strict subset of D, the
feasibility constraints are expressed as propositional formulas, and
are in sufficiently many copies so as to be ‘protected’.

2Given an instance I of a combinatorial optimization problem,
the differential approximation ratio measures “the relative position
of the value of an approximated solution in the interval between the
value of a worst feasible solution of I , and the value of a best solu-
tion of I” [Escoffier and Paschos, 2007].

is obtained from Bi by adding xj to the set of val-
ues of Xj approved conditioned on dParGi

(Xj), then
d ∈ F (B1, . . . , Bi−1, B

′
i, Bi+1, . . . , Bn).

The following properties, participation and strategyproof-
ness, are defined only for resolute rules.3 Moreover, they re-
quire a voters’ preference �i to be induced from her CA bal-
lot. We say that a voter with CA ballotBi has δ-induced pref-
erences if for all x, y ∈ D∗, x �i y if and only if δ(x,B) ≤
δ(y,B). δ-induced preferences generalize Hamming-induced
preferences [Çuhadaroğlu and Lainé, 2012].

Definition 7. Let FT the resolute version of some irresolute
rule F , for some tie-breaking mechanism T . FT satisfies

• FT satisfies δ-participation if for any CA profile
P = (B1, . . . , Bn) and CA ballot Bn+1, we have
δ(FT (P + {Bn+1}), Bn+1) ≤ δ(FT (P), Bn+1).

• FT satisfies δ-strategyproofness if for any CA profile
P = (B1, . . . , Bn) and CA ballot B′i,

δ(FT (B1,. . .,Bi−1,B
′
i,Bi+1,. . .,Bn), Bi) ≥ δ(FT (P), Bi).

We have the following results for conditional minisum and
minimax. All proofs are simple (we omit them).

Proposition 2.
• CondMinSum satisfies reinforcement.

• CondMinMax does not satisfy reinforcement, but sat-
isfies weak reinforcement.

• CondMinSum and CondMinMax satisfy mono-
tonicity.

• for any T , CondMinSumT and CondMinMaxT sat-
isfy δ-participation.

Since minimax approval voting [Caragiannis et al.,
2010] is manipulable, this is a fortiori the case for
CondMinMaxT . On the other hand, simple approval voting
(or ‘minisum’) is strategyproof; however, as soon as prefer-
ences are conditional, strategyproofness is lost:

Proposition 3. CondMinSumT is δ-manipulable, even for
two binary variables.

Proof. Without loss of generality, assume T favors x1x2 over
x1x2. Consider the two-voter CA profile consisting of one
ballot {x1, x1 : x2, x1 : x2} and one ballot {x1, x1 : x2,
x1 : x2}. The outcome is x1x2. Now, if the second voter casts
the ballot {x1, x1 : x2, x1 : x2} instead, then the outcome is
x1x2, which is her preferred alternative under the assumption
that her preferences are δ-induced.

5 Sequential conditional approval voting
For the sake of simplicity, in this section we assume that
D∗ = D (handling feasibility constraints is possible but
makes the definitions more complicated).

Sequential conditional approval voting (SCAV) is an
approval-based version of sequential voting in combinatorial

3For irresolute rules, we would require to first define a prefer-
ence extension principle (see, e.g., [Brandt and Brill, 2011] for strat-
egyproofness and [Brandl et al., 2015] for participation).

domains [Lang and Xia, 2009]. Its intuitive principle is that
decisions are taken variable by variable, following a fixed
order; for each variable, the winning value is the one that
has the maximal approval score given the values of the vari-
ables that come before it. The SCAV rule is defined only
for CA profiles whose dependency graph is compatible with
a given order O of the variables. In the rest of this section,
O = X1 > . . . > Xp is a fixed order over X .

Definition 8 (O-legal conditional approval profile). A CA
ballot is O-legal if its dependency graph contains no edge
from Xj to Xi with i < j. A CA profile is O-legal if it is
composed of O-legal CA ballots.

Definition 9. The sequential conditional approval voting rule
(SCAV) is the rule defined on O-legal CA profiles as fol-
lows. Let AppTi be the standard approval voting rule on
Di, together with a tie-breaking mechanism Ti, and T =
(T1, . . . , Tp). For each O-legal P = (B1, . . . , Bn), let

P ↓Xi|x∗
1 ,...,x

∗
i−1 = (B

↓Xi|x∗
1 ,...,x

∗
i−1

1 , . . . , B
↓Xi|x∗

1 ,...,x
∗
i−1

n);
then SCAV T (P) = (x∗1, . . . , x

∗
p), where

• x∗1 = AppT1(P ↓X1);

• for each i = 2, . . . , p, x∗i = AppTi(P ↓Xi|x∗
1 ,...,x

∗
i−1).

Similarly, we define the SCAV irresolute rule: SCAV (P)
is the set of all (x1, . . . , xp) such that x1 ∈ App(P ↓X1) and
for all i = 2, . . . , p, xi ∈ App(P ↓Xi|x∗

1 ,...,x
∗
i−1).45

A cheap protocol for SCAV T is composed of p rounds:
at round i, it elicits only the voters’ approval ballots
B
↓Xi|x∗

1 ,...,x
∗
i−1

j . Thus, the communication complexity of
SCAV T is O(pnmaxi |Di|).

Example 2 (continued). Let O = X1 > X2. The approval
scores for m, f and v are respectively 13, 12 and 10: the
(unique) selected value for X1 is m. Given X1 = m, the
approval scores for r, w and b are respectively 12, 4 and 7:
the selected value for X2 is r. The outcome is mr.

For irresolute SCAV, some winning alternative can be
computed in polynomial time, and determining whether a
given alternative is a winner is also polynomial-time com-
putable: at each round, it suffices to check that xi ∈
App(P ↓Xi|x∗

1 ,...,x
∗
i−1). Also, winner determination is polyno-

mial for resolute SCAV (with a polynomial-time computable
tie-breaking mechanism).

Recall that winner determination for conditional minisum
is NP-hard, even for an O-legal profile. Moreover, both con-
ditional minisum and SCAV coincide with simple approval
voting when restricted to separable profiles. Thus, we may
wonder how good an approximation SCAV is to conditional
minisum. The approximation ratio is different whether we
measure the quality of an alternative by its number of dis-
agreements

∑
i δ(·, Bi) (to be minimized) or its number of

agreements
∑
i(p− δ(·, Bi)) (to be maximized):

4Note that writing B
↓Xi|x∗

1 ,...,x
∗
i−1

j is a slight abuse of notation,
since O-legality implies only that ParGj (Xi) ⊆ {X1, . . . , Xi−1}.

5Note that the restriction of SCAV to separable profiles coincides
with simple approval voting.

Proposition 4. Consider a combinatorial domain with p
variables X1, . . . , Xp with |Di| = αi for all i.
• The largest possible ratio, over all O-legal CA profiles,

between the disagreement score of the SCAV winner and
the disagreement score of the conditional minisum win-
ner, is

∑p
i=1(1−

1
αi
)/(1− 1

α1
).

• The largest possible ratio, over all O-legal CA profiles,
between the agreement score of the conditional minisum
winner and the agreement score of the SCAV winner, is
(1
α1

+ p− 1)/
∑p
i=1

1
αi

.

Proof sketch. Consider n CA ballots, with the dependency
graph whose edges are {Xi → Xj | 1 ≤ i < j ≤ p}.
First, we look for an upper bound of the disagreement score of
an alternative that wins for SCAV. Assume that (x11x

2
1 . . . x

p
1)

is the winning alternative for SCAV. Then, for (x11x
2
1 . . . x

p
1)

to be winning for SCAV, x11, respectively x11 : x21, . . . ,
x11x

2
1 . . . : x

p
1, has to be approved by at least n/α1 voters,

respectively n/α2, . . . , n/αp voters. It leads to a maximal
disagreement score of n ·

∑p
i=1 1− 1/αi.

Now, we look for a lower bound for the disagreement
score of a winning alternative for conditional minisum, un-
der the condition that it is winning for SCAV. Assume that
(x12x

2
2 . . . x

p
2) is a winning alternative for conditional min-

isum. One way to avoid this alternative to be a SCAV winner
is by eliminating it at the first round of the sequential vote.
It implies that x12 has to be approved by less than n

α1
voters,

and, in this case, x12 : x22, . . . , x
1
2x

2
2 . . . : x

p
2 can be approved

by any number of voters, and then, the disagreement score
for (x12x

2
2 . . . x

p
2) without being a winner for SCAV is at least

n− n
α1

. There exist other ways to avoid (x12x
2
2 . . . x

p
2) to be a

winning alternative for SCAV, but they lead to disagreement
scores that are at least as large as that one. The proof for the
bound relative to the agreement score is similar.

Thus, we get a worst-case ratio of (
∑p
i=1 1 − 1/αi)/(1 −

1/α1). This ratio is reached on a CA profile for which there
is a perfect split between all values ofX1 (with each voter ap-
proving only one value), and then, conditionally on the value
chosen for X1 (by tie-breaking), there is also a perfect split
for each other variable, while for some of the other values
of X1, there is a perfect agreement between all voters on all
other variables. The same profile shows that the bound rela-
tive to the number of agreements is reached too.

In particular, when all domains have the same cardinality
α, then these ratios become p and (1 + (p − 1)α)/p, and in
the case of binary domains, p and 2− 1/p.
Corollary 1. If the quality of a solution is measured by
the number of disagreements, then SCAV is a

∑p
i=1(1 −

1
αi
)/(1 − 1

α1
)-approximation of CondMiniSum. If it is

measured by the number of disagreements, then it is a
(1
α1

+ p− 1)/
∑p
i=1

1
αi

-approximation of CondMiniSum.

Proposition 5. SCAV satisfies anonymity, neutrality, rein-
forcement and monotonicity. For any tie-breaking mechanism
T , SCAVT does not satisfy δ-participation.

Proof. Anonymity and neutrality are obvious. Reinforce-
ment and monotonicity are easily proven by induction on

the variables, and using the fact that standard approval vot-
ing satisfies them. For participation, consider the two-voter
CA profile P = 〈B1, B2〉 with B1 = {x1, x2, x3} and
B2 = {x1, x2, x3}. Assume without loss of generality that
T favors x1x2x3 over x1x2x3, thus FT (P) = x1x2x3.
Now, consider a third voter with preferences δ-induced by
B3 = {x1, x1 : x2, x1 : x2, x1 : x3, x1 : x3}. If she votes,
the outcome is x1x2x3, which has only one agreement with
her ballot, while x1x2x3 had two.

Proposition 6. For any tie-breaking mechanism T , SCAVT is
not δ-strategyproof for p ≥ 3 (even for binary variables), and
is strategyproof for two variables.

Proof. For p = 3, consider the profile in the proof of Propo-
sition 5. If the third voter expresses his sincere ballot {x1,
x1 : x2, x1 : x2, x1 : x3, x1 : x3}, the outcome is x1x2x3. If
he expresses instead the ballot {x1, x1 : x2, x1 : x2, x1 : x3,
x1 :x3} the the outcome is x1x2x3, which he prefers.

For p = 2, let X = {X1, X2}; suppose that voter i with
sincere ballot B has a manipulation B′; let x∗ be the out-
come for her sincere vote and x+ the outcome after manipu-
lation. Since B′ is a manipulation and i has δ-induced pref-
erences, we have δ(x+, B′) < δ(x∗, B). This implies (1)
δ(x+, B′) < 2 and (2) δ(x∗, B) > 0. Once the value of X1

has been fixed, we are left with a standard approval vote on
X2 and i cannot obtain a better outcome than the sincere out-
come; therefore, the manipulation has to bear on X1 and has
to change the value of X1, from, without loss of generality,
x1 to x′1, with i initially approving x1 but not x′1. But this im-
plies that δ(x+, B′) ≥ 1 and δ(x∗, B) ≤ 1, which together
with (1-2) implies δ(x+, B′) = δ(x∗, B) = 1, therefore i,
who has δ-induced preferences, cannot prefer x+ to x∗.

6 Conclusion
We have generalized approval voting to combinatorial do-
mains and to nonseparable preferences. Our rules are nat-
ural generalizations of simple (or ‘minisum’) and minimax
approval voting. They can be applied for all types of voting
on combinatorial domains. Conditional minisum and mini-
max are computationally hard, but conditional minisum can
be solved by MaxSAT solvers. Sequential conditional AV is
easy to compute. Our rules (especially conditional minisum)
satisfy a number of important properties.

There are other rules for multiwinner elections using ap-
proval ballots, where the satisfaction of a voter is not simply
the Hamming distance to his preferred outcome (see [Kilgour,
2010] for a survey, and [Aziz et al., 2015b] for their compu-
tation). These rules could be adapted to CA ballots in the
same way as we did for simple and minimax approval vot-
ing. The rules defined in [Amanatidis et al., 2015], where the
dissatisfaction degrees of the voters is aggregated by ordered
weighted averages intermediate between max and sum, could
also be generalized to CA ballots.

Acknowledgement
We thank Bernard Ries for helpful discussions. This research
has been supported by the project ANR-14-CE24-0007-01
CoCoRICo-CoDec.

References
[Airiau et al., 2011] S. Airiau, U. Endriss, U. Grandi,

D. Porello, and J. Uckelman. Aggregating dependency
graphs into voting agendas in multi-issue elections. In IJ-
CAI, pages 18–23, 2011.

[Amanatidis et al., 2015] G. Amanatidis, N. Barrot, J. Lang,
E. Markakis, and B. Ries. Multiple referenda and mul-
tiwinner elections using Hamming distances: Complexity
and manipulability. In AAMAS, pages 715–723, 2015.

[Aziz et al., 2015a] H. Aziz, M. Brill, V. Conitzer, E. Elkind,
R. Freeman, and T. Walsh. Justified representation in
approval-based committee voting. In AAAI, 2015.

[Aziz et al., 2015b] H. Aziz, S. Gaspers, J. Gudmundsson,
S. Mackenzie, N. Mattei, and T. Walsh. Computational
aspects of multi-winner approval voting. In AAMAS, pages
107–115, 2015.

[Baumeister et al., 2010] D. Baumeister, G. Erdélyi,
E. Hemaspaandra, L. Hemaspaandra, and J. Rothe.
Computational aspects of approval voting. In [Laslier and
Sanver, 2010], chapter 10, pages 199–251. 2010.

[Baumeister et al., 2015] D. Baumeister, S. Dennisen, and
L. Rey. Winner determination and manipulation in min-
isum and minimax committee elections. In ADT, pages
469–485, 2015.

[Benoı̂t and Kornhauser, 2010] J.-P. Benoı̂t and L. Korn-
hauser. Only a dictatorship is efficient. Games and Eco-
nomic Behavior, 70(2):261–270, 2010.

[Boutilier et al., 2004] C. Boutilier, R. I. Brafman,
C. Domshlak, H. H. Hoos, and D. Poole. CP-nets:
A tool for representing and reasoning with conditional
ceteris paribus preference statements. J. Artif. Intell. Res.
(JAIR), 21:135–191, 2004.

[Brams and Fishburn, 2005] S. Brams and P.. Fishburn. Go-
ing from theory to practice: the mixed success of ap-
proval voting. Social Choice and Welfare, 25(2-3):457–
474, 2005.

[Brams and Kilgour, 2014] S. Brams and M. Kilgour. Satis-
faction approval voting. In Voting Power and Procedures,
pages 323–346. Springer, 2014.

[Brams et al., 1998] S. Brams, D. Kilgour, and W. Zwicker.
The paradox of multiple elections. Social Choice and Wel-
fare, 15(2):211–236, 1998.

[Brams et al., 2007] S. Brams, M. Kilgour, and R. Sanver.
A minimax procedure for electing committees. Public
Choice, 132(3-4):401–420, 2007.

[Brandl et al., 2015] F. Brandl, F. Brandt, C. Geist, and
J. Hofbauer. Strategic abstention based on preference ex-
tensions: Positive results and computer-generated impos-
sibilities. In IJCAI, pages 18–24, 2015.

[Brandt and Brill, 2011] F. Brandt and M. Brill. Necessary
and sufficient conditions for the strategyproofness of irres-
olute social choice functions. In TARK, pages 136–142,
2011.

[Byrka and Sornat, 2014] J. Byrka and K. Sornat. Ptas for
minimax approval voting. In Web and Internet Economics,
pages 203–217. Springer, 2014.

[Caragiannis et al., 2010] I. Caragiannis, D. Kalaitzis, and
E. Markakis. Approximation algorithms and mechanism
design for minimax approval voting. In AAAI, 2010.

[Conitzer et al., 2011] V. Conitzer, J. Lang, and L. Xia. Hy-
percubewise preference aggregation in multi-issue do-
mains. In IJCAI, pages 158–163, 2011.

[Çuhadaroğlu and Lainé, 2012] T. Çuhadaroğlu and J. Lainé.
Pareto efficiency in multiple referendum. Theory and de-
cision, 72(4):525–536, 2012.

[dalla Pozza et al., 2011] G. dalla Pozza, M.S. Pini, F. Rossi,
and K. Venable. Multi-agent soft constraint aggregation
via sequential voting. In IJCAI, pages 172–177, 2011.

[Elkind et al., 2014] E. Elkind, P. Faliszewski, P. Skowron,
and A. Slinko. Properties of multiwinner voting rules. In
AAMAS, pages 53–60, 2014.

[Escoffier and Paschos, 2007] B. Escoffier and V. Paschos.
Differential approximation of MinSat, MaxSat and related
problems. EJOR, 181(2):620–633, 2007.

[Kilgour, 2010] D. M. Kilgour. Approval balloting for multi-
winner elections. In [Laslier and Sanver, 2010], chapter 6,
pages 105–124. 2010.

[Lang and Xia, 2009] J. Lang and L. Xia. Sequential compo-
sition of voting rules in multi-issue domains. Mathematical
Social Sciences, 57(3):304–324, 2009.

[Lang and Xia, 2016] J. Lang and L. Xia. Voting on combi-
natorial domains. In Handbook of Computational Social
Choice. Cambridge University Press, 2016.

[Laslier and Sanver, 2010] J.-F. Laslier and R. Sanver, edi-
tors. Handbook on Approval Voting. Springer, 2010.

[LeGrand et al., 2007] R. LeGrand, E. Markakis, and
A. Mehta. Some results on approximating the minimax
solution in approval voting. In AAMAS, pages 1185–1187,
2007.

[Li et al., 2011] M. Li, Q. B. Vo, and R. Kowalczyk.
Majority-rule-based preference aggregation on multi-
attribute domains with CP-nets. In AAMAS, pages 659–
666, 2011.

[Meir et al., 2008] R. Meir, A. Procaccia, J. Rosenschein,
and A. Zohar. Complexity of strategic behavior in multi-
winner elections. J. Artif. Intell. Res., 33:149–178, 2008.

[Misra et al., 2015] N. Misra, A. Nabeel, and H. Singh. On
the parameterized complexity of minimax approval voting.
In AAMAS, pages 97–105, 2015.

[Moti and Ami, 1997] F. Moti and L. Ami. On cover-
ing problems of codes. Theory of Computing Systems,
30(2):113–119, 1997.

[Procaccia et al., 2008] A. Procaccia, J. Rosenschein, and
A. Zohar. On the complexity of achieving proportional
representation. Social Choice and Welfare, 30(3):353–362,
2008.

[Rossi et al., 2004] F. Rossi, K. Venable, and T. Walsh. mCP
nets: representing and reasoning with preferences of mul-
tiple agents. In AAAI, pages 729–734, 2004.

[Skowron and Faliszewski, 2015] P. Skowron and P. Fal-
iszewski. Fully proportional representation with ap-
proval ballots: approximating the maxcover problem with
bounded frequencies in FPT time. In AAAI, 2015.

