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Abstract

In some voting situations, some new candidates may show up
in the course of the process. In this case, we may want to de-
termine which of the initial candidates are possible winners,
given that a fixed number k of new candidates will be added.
Focusing on scoring rules, we give complexity results for the
above possible winner problem.

Introduction
In many real-life collective decision making situations, the
set of candidates (or alternatives) may vary while the voting
process goes on, and may change at any time before the de-
cision is final: some new candidates may join, whereas some
others may withdraw. This, of course, does not apply to sit-
uations where the vote takes place in a very narrow period
of time (such as, typically, political elections in most coun-
tries), and the addition of new candidates during the process
does not apply either to situations where the law forbids new
candidates to be introduced after the vote has started (which,
again, is the case for most political elections). However,
there are quite many practical situations where this situa-
tion does happen, especially contexts where votes are sent
by email during an extended period of time. This is typi-
cally the case when making a decision about the date and
time of a meeting. In the course of the process, we may
learn that the room is taken at a given time slot, making this
time slot no longer a candidate. The opposite case also oc-
curs frequently; we thought the room was taken on a given
date and then we learn that it has become available, making
this time slot a new candidate.

The paper focuses on candidate addition only. More pre-
cisely, the class of situations we consider is the following. A
set of voters have expressed their votes about a set of (initial)
candidates. Then some new candidates declare. The winner
will ultimately be determined using some given voting rule.
In this class of situations, an important questions arises: who
among the initial candidates can still be a winner once the
voters’ preferences about all candidates are known?

This question is strongly related to several streams of
work from the recent literature on computational social
choice, especially the problem of determining whether the
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vote elicitation process is terminated (Conitzer and Sand-
holm 2002b; Walsh 2008); the possible winner problem,
and more generally the problem of applying a voting rule
to incomplete (Konczak and Lang 2005; Pini et al. 2007;
Xia and Conitzer 2008; Betzler and Dorn 2009; Betzler,
Hemmann, and Niedermeier 2009) or uncertain (Hazon et
al. 2009) preferences; and finally, to the control of a voting
rules by the chair via adding candidates —we shall come
back on the latter problem later on.

Clearly, the situations where new voters are added is a
case of voting under incomplete preferences, where incom-
pleteness is of a very specific type: the set of candidates
is partitioned in two groups (the initial and the new candi-
dates), and the incomplete preferences consist of complete
rankings on the initial candidates. This class of situations
is somehow dual of a class of situations that has been con-
sidered more often, namely, when the set of voters is parti-
tioned in two groups: those voters who have already voted,
and those who haven’t expressed their votes yet. The latter
class of situations, while being a subclass of voting under in-
complete preferences, has been more specifically studied as
a coalitional manipulation problem (Conitzer and Sandholm
2002a; Xia et al. 2009), where the problem is to determine
whether it is possible for the voters who haven’t voted yet to
make a given candidate win. Varying sets of voters have also
been studied in the context of compiling the votes of a sub-
electorate (Chevaleyre et al. 2009): there, one is interested
in synthesizing a set of initial votes, while still being able
to compute the outcome once the remaining voters have ex-
pressed their votes. Finally, the possible winner problem via
candidate addition is highly related to manipulation by can-
didate cloning. The main difference is that cloning requires
a candidate and its clones to be contiguous. The complexity
of this problem is considered in Elkind et al. (Elkind, Fal-
iszewski, and Slinko 2010). Although the proposed model
allows for the possibility of having a bounded number of
new clones, most of their results focus on the case of un-
boundedly many clones, which also differs from our case.

The layout of the paper is as follows. We start by recall-
ing the necessary background on voting. Then we state the
problem formally, by defining voting situations where candi-
dates may be added in the course of the process; at this point
we will discuss the relationship to the control of an election
by the chair via adding candidates. Then we consider the



possible and necessary winner problem from a complexity
point of view. After stating the problem formally, we estab-
lish a collection of results showing that even for seemingly
rather similar voting rules belonging to the class of scoring
rules, various levels of complexity are encountered. Finally,
we mention further research directions.

Background
Let C be a finite set of candidates, and N a finite set of
voters. Let p = |C| and n = |N |. A C-vote (called more
simply a vote when this is not ambiguous) is a linear order
over C. We sometimes denote votes in the following way:
a � b � c is denoted by abc, etc. A C-profile is a collection
P = 〈V1, . . . , Vn〉 of C-votes. Let PC be the set of all C-
votes and therefore Pn

C be the set of all n-voter C-profiles.
A voting rule on C is a function r from Pn

C to C. As
the usual definition of most voting rules does not exclude
the possibility of ties, we assume these ties are broken by a
fixed priority order on candidates.

For P ∈ Pn
C and x, x′ ∈ C, let n(P, i, x) be the num-

ber of votes in P ranking x in position i, ntop(P, x) =
n(P, 1, x) the number of votes in P ranking x first, and
NP (x, x′) the number of votes in P ranking x above x′.
Let ~s = 〈s1, . . . , sp〉 be a vector of integers such that
s1 ≥ . . . ≥ sp and s1 > sp. The scoring rule r~s(P ) in-
duced by ~s elects the candidate maximizing score~s(x, P ) =∑p

i=1 si.n(P, i, x). The plurality rule rP is the scoring
rule corresponding to the vector 〈1, 0, . . . , 0〉. The Borda
rule rB is the scoring rule corresponding to the vector
〈p−1, p−2, . . . , 0〉. The veto rule rV is the scoring rule cor-
responding to the vector 〈1, . . . , 1, 0〉. If K is a fixed integer
then K-approval, rK , is the scoring rule corresponding to
the vector 〈1, . . . , 1, 0, . . . , 0〉 – with K 1’s and p−K 0’s.

We now define formally situations where new candidates
are added.

Definition 1 A voting situation with varying candidates is a
4-uple Σ = 〈N,X,PX , k〉 where N is a set of voters (with
|N | = n), X a set of candidates, PX = (V1, . . . , Vn) a
n-voter X-profile, and k is a positive integer.

X denotes the set of initial candidates, PX the initial pro-
file, and k the number of new candidates. Nothing is known
a priori about the voters’ preferences relatively to the new
candidates, henceforth their identity is irrelevant and only
their number counts.

Because the number of candidates is not the same before
and after the new candidates come in, we have to consider
families of voting rules (for a varying number of candidates)
rather than voting rules for a fixed number of candidates.
While it is true that for many usual voting rules there is an
obvious way of having them defined for a varying number
of candidates, this is not the case for all of them, especially
scoring rules other than plurality, Borda and veto. We shall
therefore consider collections of voting rules, parameterized
by the number of candidates. We slightly abuse notation and
denote these collections of voting rules by r. Again with
a slight abuse of notation, we often write r(P ) instead of
rp(P ). The complexity results we give in this paper bear on

such collections of voting rules, where the number of candi-
dates is variable.

If P is a C-profile and C ′ ⊆ C, then the projection of P

on C ′, denoted by P ↓C′
, is obtained by deleting all candi-

dates in C \ C ′ in each of the votes of P , and leaving un-
changed the ranking on the candidates of C ′. For instance,
let us take P = 〈abcd, dcab〉 then P ↓{a,b} = 〈ab, ab〉 and
P ↓{a,b,c} = 〈abc, cab〉. In all situations, the set of initial
candidates is denoted by X = {x1, . . . , xp}, the set of the k
new candidates is denoted by Y = {y1, . . . , yk}. If PX is a
X-profile and P a X∪Y -profile, then we say that P extends
PX if the projection of P on the candidates in X is exactly
PX . For instance, let X = {x1, x2, x3}, Y = {y1, y2};
the profile P = 〈x1y1x2y2x3, y1y2x1x2x3, x3x2y2y1x1〉
extends the X-profile P = 〈x1x2x3, x1x2x3, x3x2x1〉.

Possible winners when new candidates are
added

We recall from (Konczak and Lang 2005) that given a collec-
tion 〈P1, . . . , Pn〉 of partial strict orders on C representing
some incomplete information about the votes, a candidate x
is a possible winner if there is a profile 〈T1, . . . , Tn〉 where
each Ti is a ranking on C extending Pi in which x wins.
Reformulated in the case where Pi is a ranking of the initial
candidates (those in X), we get the following definition:

Definition 2 Given a voting situation Σ = 〈N,X,PX , k〉,
a set of new candidates Y (with |Y | = k), and a collection r
of voting rules, we say that x ∈ X is a possible winner with
respect to Σ, Y , and r if there is a X∪Y -profile P extending
PX such that r(P ) = x.

For all results in the paper, x will be assumed to have the
most favorable priority (in case of a tie between x and other
candidates, x is the winner). We briefly discuss this issue in
the conclusion.

We do not define the notion of necessary winner with re-
spect to Σ and r, because except for extremely specific vot-
ing rules, there will never be a necessary winner when we
add k new candidates. Indeed, provided that we have a very
weak condition on r which says that if y is ranked first by
every voter then it is the winner1, the new candidates will
always be possible winners.

Possible winners with respect to the addition of candi-
dates are reminiscent of constructive control by the chair
via adding candidates — this problem first appeared in
(Bartholdi, Tovey, and Trick 1992) and was later studied
in more depth for many voting rules, see e.g., (Hemaspaan-
dra, Hemaspaandra, and Rothe 2007; Faliszewski, Hemas-
paandra, and Hemaspaandra 2009). However, constructive
control via adding candidates significantly differs from the
problem studied in this paper. In control problems, the chair
knows how the voters would vote on the new candidates, and
we want to decide whether a given candidate can be made a
winner by adding at most k new candidates. Here, we don’t

1Note however that this property is violated e.g. by the veto
rule if some x ∈ X has priority over all the yi’s for tie-breaking,
so that the veto rule may have a necessary winner when adding k
new candidates.



have the faintest knowledge of how the voters will rank the
new candidates.

Now we are in position to consider specific voting rules.

Plurality and veto
Let us start with an example: suppose X = {a, b, c}, n =
12, and the plurality scores in PX are a 7→ 5, b 7→ 4, c 7→ 3,
while the tie-breaking priority is a > b > c > y. There is
only one new candidate (y). We have that: (1) a is a possible
winner (a will win in particular if the top candidate of every
voter remains the same); (2) b is a possible winner: to see
this, suppose that 2 voters who had ranked a first now rank
y first; the new scores are a 7→ 3, b 7→ 4, c 7→ 3, y 7→ 2; and
(3) c is not a possible winner: to make her having a higher
score than the scores of a and b, we need at least 3 (resp. 2)
voters who had ranked a (resp. b) first now rank y first; but
this then means that y gets at least 5 votes, while c has only
3. More generally, we have the following result:

Proposition 1 Let PX be an n-voter profile on X , and x ∈
X . x is a possible winner for PX and plurality with respect
to the addition of k new candidates if and only if

ntop(PX , x) ≥ 1

k
.

X
xi∈X

max(0, ntop(PX , xi)− ntop(PX , x))

Proof: Suppose first that the inequality holds. We build the
following (X ∪ Y )-profile P extending PX :

1. for every candidate xi such that ntop(PX , xi) >
ntop(PX , x) we take ntop(PX , xi) − ntop(PX , x) arbi-
trary votes ranking xi on top and place one of the yj’s on
top of the vote (and the other yj’s anywhere), subject to
condition 2 below.

2. place the yj’s on top of the votes in such a way that no yj

is placed on top of a vote more than ntop(PX , x) times.
This is possible because the inequality is satisfied.

3. in all other votes (those not considered at step 1), place all
yj’s anywhere except on top.

We obtain a profile P extending PX . First, we have
ntop(P, x) = ntop(PX , x), because on all the votes
in PX where x is on top, the new top candidate in the
corresponding vote in P is still x, cf. step 3), and all the
votes in PX where x was not on top obviously cannot have
x on top in the corresponding vote in P . Second, let xi 6= x.
If ntop(PX , xi) ≤ ntop(PX , x) then ntop(P, xi) =
ntop(PX , xi); and if ntop(PX , xi) > ntop(PX , x) then
we have ntop(P, xi) = ntop(PX , xi) − (ntop(PX , xi) −
ntop(PX , x)) = ntop(PX , x). Therefore, the winner for
plurality in P is x.
Conversely, if the inequality is not satisfied then, in order x
to become the winner in P , the other xi’s must lose globally
an amount of

∑
xi∈X max(0, ntop(PX , xi)−ntop(PX , x))

votes; and since
∑

xi∈X max(0, ntop(PX , xi) −
ntop(PX , x)) > k.ntop(PX , x), for at least one of
the yj’s we will have ntop(P, yj) > ntop(P, x); therefore
x cannot be the winner for plurality in P . �

For veto, this is almost trivial. By placing any of the new
candidates below x in every vote of PX where x is ranked at
the bottom position, we obtain a vote P where no one vetoes
x. Even if some other candidates xi 6= x are not vetoed in
PX , the tie will break in favour of x: any candidate is then a
possible winner under this assumption.

Therefore, computing possible winners for plurality and
veto with respect to candidate addition is polynomial (which
we already knew, since possible winners for plurality and
veto can be computed in polynomial time (Betzler and Dorn
2009)).

K-approval
For any xj ∈ X we denote by SK(PX , xj) the score of xj

for PX and K-approval (i.e. the number of voters who rank
xj among their top K candidates); and by ZK(PX , xj) the
number of voters who rank xj exactly in position K. We
start by the case where a single candidate is added.

Proposition 2 Let 1 ≤ K ≤ p − 1, PX an n-voter profile
on X , and x ∈ X . x is a possible winner for PX and K-
approval with respect to the addition of one new candidate
if and only if the following two conditions hold:

1. for any xi 6= x, if SK(PX , xi) > SK(PX , x)
then ZK(PX , xi) ≥ SK(PX , xi)− SK(PX , x).

2. SK(PX , x) ≥
P

xi∈X max(0, SK(PX , xi)− SK(PX , x))

Proof: Assume conditions (1) and (2) are satisfied. then we
build the following (X ∪ Y )-profile extending PX :

• for every xi such that SK(PX , xi) > SK(PX , x), we take
SK(PX , xi)− SK(PX , x) arbitrary votes who rank xi in
position K in PX and place y on top. This is possible
because condition (1) is satisfied.

• in all other votes (those not considered at step 1), place all
y at the bottom.

We obtain a profile P extending PX . First, we have
SK(P, x) = SK(PX , x), because (a) all votes in PX

ranking x in position K are extended in such a way that
all y is placed on the bottom position, therefore x gets
a point in each of these votes if and only if it got a
point in PX , and (b) all votes ranking x in position other
than K in PX get a point in P if and only if they get
a point in P , both in the case y was added on top of
the vote and in the case it was added on bottom of the
vote. Second, for every xi such that SK(PX , xi) >
SK(PX , x), xi loses exactly Sk(PX , xi)−Sk(PX , x) points
when PX is extended into P , therefore SK(P, xi) =
SK(PX , xi) − SK(PX , xi) + SK(PX , x) = SK(PX , x).
Third, SK(P, y) =

∑
xi∈X\{xi} max(0, SK(PX , xi) −

SK(PX , x)) ≤ SK(PX , x) – because of (2) – hence
SK(P, y) ≤ SK(P, x). Therefore, the winner for K-
approval in P is x.

Now, assume condition (1) is not satisfied, that is, there
is a xi such that SK(PX , xi) > SK(PX , x) and such
that ZK(PX , xi) < SK(PX , xi) − SK(PX , x). There
is no way of having xi losing more than ZK(PX , xi)
points, therefore x will never catch up xi’s advance
and is therefore not a possible winner. Finally, assume



condition (2) is not satisfied, which means that we
have

∑
xi∈X\{xi} max(0, SK(PX , xi) − SK(PX , x)) >

SK(PX , x). Then, to catch up the advance of the xi’s
on x we must add y in one of the top K position in
a number of votes exceeding SK(PX , x), therefore
SK(P, y) > SK(PX , x) ≥ SK(P, x), and therefore x is not
a possible winner. �

Therefore, computing possible winners for K−approval
with respect to the addition of one candidate can be done
in polynomial time. However, this result cannot be gener-
alized to K-approval. The following result shows that for
4-approval, 3 new candidates suffice to turn it into an NP-
complete problem.

Proposition 3 Deciding if x∗ is a possible winner for 4-
approval with respect to the addition of three new candi-
dates, is an NP-complete problem.

Proof: This problem is clearly in NP. The proof is based
on a reduction from the 3-dimensional matching problem,
denoted by 3-DM. An instance of 3-DM consists of a subset
C = {e1, . . . , em} ⊆ X × Y × Z of triples, where X, Y, Z
are 3 pairwise disjoint sets of size n with X = {x1, . . . , xn},
Y = {y1, . . . , yn} and Z = {z1, . . . , zn}. A matching is a
subset M ⊆ C such that no two elements in M agree in
any coordinate, and the purpose of 3-DM is to answer the
question: does there exist a perfect matching M on C, that
is, a matching of size n? This problem with the restriction
that no element of X ∪ Y ∪ Z occurs in more than 3 triples
is known to be NP-complete (problem [SP1] page 221 in
(Garey and Johnson 1979)).

Let I = (C, X × Y × Z) be an instance of 3-DM with
n ≥ 3. For a ∈ X ∪ Y ∪ Z, d(a) denotes the number
of occurrences of a in C, that is the number of triples of C
which contain a; we can assume that ∀a ∈ X ∪ Y ∪ Z,
d(a) ∈ {2, 3}. From I , we build an instance of the voting
problem as follows. The set C of candidates contains x∗,
C1 = {x′i, y′i, z′i : 1 ≤ i ≤ n} ∪ {ce : e ∈ C} where
x′i, y

′
i, z

′
i correspond to elements of X∪Y ∪Z, ce correspond

to triplets of C and a set C2 of dummy candidates. The set
V of voters contains V1 = {ve : e ∈ C} and a set V2 of
dummy voters. For each voter, we only indicate her four
first candidates (in the order of preference). Thus, the vote
of ve is (ce, x

′
i, y

′
j , z

′
k) where e = (xi, yj , zk) ∈ C. The

preference of dummy voters are such that (i) the score of the
candidates in C verifies ∀c ∈ X ′∪Y ′∪Z ′, score~s(c, PC) =
n+1, score~s(x∗, PC) = n and ∀c ∈ C2, score~s(c, PC) = 1
(it is possible since d(a) ∈ {2, 3}) and (ii) any voter of V2

contains at most one candidate of {x′i, y′i, z′i : 1 ≤ i ≤ n} in
positions up to 4, and if he contains one, then it is certainly
ranked in top position.

We claim that I admits a perfect matching M ⊆ C if and
only if x∗ becomes a possible winner by adding three new
candidates y∗i , i = 1, 2, 3.
Let y∗i for i = 1, 2, 3 be the new candidates added (y∗i /∈ C).
Since we cannot increase the score of x∗, we must decrease
by one point the score of candidates of X ′ ∪ Y ′ ∪ Z ′.
Let us focus on candidates in X ′. In order to reduce the

score of x′i, we must modify the preferences of voters ve

(since, by (ii) we cannot decrease the score of x′i using
voters of V2). By construction, each such voter must put
y∗1 , y∗2 , y∗3 in positions up to 4 and then, the score of y∗i
increases by 1 each time. Since there are n candidates in X ′,
we deduce that score~s′(y∗i , P ) ≥ n for every i = 1, 2, 3.
Since, score~s′(x∗, P ) ≤ score~s(x∗, PC) = n, we deduce
that for each i ∈ {1, . . . , n}, exactly one voter among those
of ve must put candidates y∗1 , y∗2 , y∗3 in positions up to 4.
Finally, since the score of candidates in Y ′ ∪ Z ′ must also
decrease by 1, we deduce that x∗ is a possible winner iff
M = {e ∈ C : y∗1 , y∗2 , y∗3 are in positions up to 4 for voter
ve} is a perfect matching of C (for the remaining voters, y∗i
is put in position at least 5 for every i = 1, 2, 3). �

By Proposition 1, we know that the possible winner prob-
lem w.r.t. candidate addition for 1-approval (which coin-
cides with plurality) is polynomial for any number of new
candidates. By Proposition 2 we know that the K-approval
case is also polynomial when a single new candidate shows
up. By Proposition 3, we know the problem to be NP-
complete for 4-approval and 3 new candidates. These three
results leave some open questions: we do now know whether
the problem is NP-hard for 2- and 3-approval, and we do not
know whether it is NP-hard for k-approval with k ≥ 4 and
exactly two new candidates.

Borda
Let us now consider the Borda rule (rB). Characterizing
possible Borda winners when adding candidates is easy due
to the following lemma:
Lemma 1 Let PX be a X-profile and let y1, . . . , yk be k
new candidates. x ∈ X is a possible winner for PX wrt.
the addition of k new candidates if and only if rB(P ) = x,
where P is the profile on X∪{y1, . . . , yk} obtained from PX

by putting y1, . . . , yk right below x (in an arbitrary order)
in every vote of PX .

Proof: Let Above(xi) denote the set of candidates ranked
above some candidate xi in a vote. We show that it is never
beneficial to put any of the new candidates (say yi) any-
where but right below x in the new profile P , i.e. that this
minimizes score(z, P ) − score(x, P ) for all z ∈ X \ {x}.
There are two cases to consider: (i) putting yi candidate
above x, and (ii) putting yi at least two positions below x.
Clearly (i) is not optimal, as score(z, P ) − score(x, P )
increases for all z ∈ Above(yi) and remains constant for the
other ones. As for (ii), score(z, P ) − score(x, P ) reduces
for z ∈ X \ (Above(yi) ∪ {x}) but remains constant for all
z ∈ Above(yi). Thus, |Above(yi) \ Above(x)| should be
minimized by putting yi right below x. Finally, observe that
we need not care about the scores of all the yi, because x
dominates any of them in P . �

The following result then easily follows:
Proposition 4 Let PX be an n-voter profile on X , and
x ∈ X . x is a possible winner for Borda with respect to



the addition of k new candidates if and only if

k ≥ max
z∈X\{x}

max(0, score(z, PX)− score(x, PX))
NPX

(x, z)

Proof: Consider the case of one new candidate y.
By Lemma 1 we know that y has to be placed
right below x in the X ∪ {y}−profile, hence
score(x, PX∪{y}) = score(x, PX)+1, and similarly for the
candidates above x. For all candidates ranked below x on
the other hand, we have score(x, PX∪{y}) = score(x, PX).
Checking whether x is a possible winner then amounts
to check, for each other candidate z, whether there
are enough votes where x is prefered to z to com-
pensate the score difference with this candidate, i.e.
NPX

(x, z) ≥ max(0, score(z, PX) − score(x, PX). This
immediately generalizes to k new candidates. �

This means that possible winners with respect to adding any
number of new candidates can be computed in polynomial
time in the case of the Borda rule. Note that the general
problem of computing possible winners for Borda is NP-
complete (Xia and Conitzer 2008), therefore, the restriction
of the problem to candidate addition induces a complexity
fall.

We give an example to illustrate this result. Suppose we
have X = {a, b, c, d}, n = 4, and an initial profile P =
〈bacd, bacd, bacd, dacb〉.
Let us denote by δ(x, z) the expression

max(0, score(z, PX)− score(x, PX))
NPX

(x, z)

Hence the values of δ(x, z) for any pair x, z ∈ X:
δ(b, x) = 0 for any x 6= b;
δ(a, b) = 9−8

1 = 1; δ(a, c) = δ(a, d) = 0;
δ(c, a) = 8−4

0 = +∞; δ(c, b) = 9−4
1 = 5; δ(c, d) = 0;

δ(d, a) = 8−3
1 = 5; δ(d, b) = 9−3

1 = 6; δ(d, c) = 4−3
1 = 1.

Therefore:

• with at least 1 new candidate, a is a possible winner;

• with at least 6 new candidates, d also becomes a possible
winner;

• whatever the number of new candidates, c is never a pos-
sible winner.

Notice that c is never a possible winner although it has a
higher Borda score than d in PX .

Lemma 4 and Proposition 4 still hold under the follow-
ing more general conditions: for all i ∈ {0..p − 2} :
(si − si+1) ≤ (si+1 − si+2). In words, this corresponds
to rules where the difference of scores between successive
ranks can only become smaller or remain constant as we
come closer to the highest ranks. This condition is sat-
isfied by Borda (but not by plurality), by veto, and by
rules such as “lexicographic veto”, where the scoring vector
is 〈Mp,Mp − M,Mp − M2, . . . ,Mp − Mp−1, 0〉 where
M > n. For such rules, the possible winner problem re-
mains polynomial, whatever the number of new candidates.

Hardness with a single new candidate

Even though we have seen that the possible winner prob-
lem can be NP-hard for some scoring rules, NP-hardness
required the addition of several new candidates. We now
show that there exists a scoring rule for which the possible
winner problem is NP-hard with respect to the addition of
one new candidate.

The scoring rule we use is very simple: it allows each
voter to approve exactly 3 candidates, and offers 3 differ-
ent levels of approval (assigning respectively 3,2,1 points to
the three preferred candidates). Let r∆ be the scoring rule
defined by the vector 〈3, 2, 1, 0, . . . , 0〉 with p − 3 0’s com-
pleting the vector.

Proposition 5 Deciding if x∗ is a possible winner for r∆

with respect the addition of one candidate is NP-complete.

Proof: This problem is clearly in NP. The proof is quite sim-
ilar to that of Proposition 3. Let I = (C, X × Y × Z) be
an instance of 3-DM with n ≥ 5 and ∀a ∈ X ∪ Y ∪ Z,
d(a) ∈ {2, 3}. From I , we build an instance of the voting
problem as follows. The set C of candidates contains x∗,
C1 = {x′i, y′i, z′i : 1 ≤ i ≤ n} where x′i, y

′
i, z

′
i correspond to

elements of X ∪ Y ∪ Z and a set C2 of dummy candidates.
The set V of voters contains V1 = {ve : e ∈ C} and a set
V2 of dummy voters. For each voter i ∈ V , we only indicate
the vote for the 3 first candidates. So, the vote (a1, a2, a3)
means that candidate ai receives 4− i points. Thus, the vote
of ve is (x′i, y

′
j , z

′
k) where e = (xi, yj , zk) ∈ C. The pref-

erences of dummy voters are such that (i) the score of the
candidates in C verifies ∀c ∈ C1, score~s(c, PC) = 3n + 1,
score~s(x∗, PC) = 3n and ∀c ∈ C2, score~s(c, PC) ≤ 3
and (ii) any voter of V2 contains at most one candidate of
{x′i, y′i, z′i : 1 ≤ i ≤ n} in positions up to 3, and if he con-
tains one in second position, then x∗ occurs in third position.

We claim that I admits a perfect matching M ⊆ C if and
only if x∗ becomes a possible winner by adding a new can-
didate y∗.

Following a line of reasoning similar to the one developed
in the proof of Proposition 3, we conclude that for each
i ∈ {1, . . . , n}, exactly one voter among those of ve must
put candidate y∗ in top position. Since the score of Y ′ ∪ Z ′

must also decrease by 1, we deduce that x∗ is a possible
winner iff M = {e ∈ C : y∗ is in top position for voter ve}
is a perfect matching of C (for the remaining voters, y∗ is
put in last position). �

This rule is an example for which it is difficult to iden-
tify possible winners with a single missing candidate. Giv-
ing a characterization of those rules sharing this property is
an open problem. Note also that this does not necessarily
imply that the problem is difficult for any number of new
candidates. Indeed, it is worthy to observe that the possi-
ble winners problem may become simple again when suffi-
ciently many new candidates are added (this is true in partic-
ular when that number is unbounded). We leave this aspect
of the problem for future work.



Conclusion
In this paper we have considered voting situations where
new candidates may show up during the process. This prob-
lem increasingly occurs in our societies, as many votes now
take place online (through dedicated platforms, or simply by
email exchange) during an extended period of time.

We have identified the computational complexity of com-
puting possible winners for some scoring rules. Some of
them allow polynomial algorithms for the problem (e.g. plu-
rality, Borda, veto). For some others, the number of new
candidates is an important parameter: K-approval is poly-
nomial when one single candidate is added, but 4-approval
is NP-complete as soon as 3 new candidates show up. Cases
in between are currently under investigation. Finally, we
have exhibited a simple rule where the problem is hard for
only one new candidate.

The results make the assumption of the most favourable
tie-breaking. In the other extreme case (if we want x to be
a strict winner, i.e. win regardless of the tie-breaking rule),
the results are easily adapted: the inequalities in Prop. 1
and 4 become strict. For K-approval, the first condition of
Prop. 2 becomes strict but the second one should now read
SK(PX , x) ≥

P
xi∈X max(0, SK(PX , xi) − SK(PX , x) + 1).

As for veto, all other initial candidates need to be vetoed at
least once. A more general treatment would require cumber-
some expressions, and is also somewhat problematic since
the identity of the new candidate is not known anyway (mak-
ing it difficult to specify easily a tie-breaking rule on these
candidates).

As for future work, a first direction to follow would con-
sist in trying to obtain more general results for scoring rules,
as do (Betzler and Dorn 2009) for the general version of
the possible winner problem. Extending the study to other
families of voting rules, such as rules based on the majority
graph, is also worth investigating.

Of course, identifying possible winners is not the end of
the story. In practice, one may for instance also be interested
in a refinement of this notion: knowing how likely it is that a
given candidate will win. Another interesting issue consists
in designing elicitation protocols when the preferences about
the ‘old’ candidates are already known. In this case, a trade-
off occurs between the storage cost and communication cost,
since keeping track of more information is likely to help to
reduce the burden of elicitation.
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