
Compilation and Communication Protocols for Voting
Rules with a Dynamic Set of Candidates

Yann Chevaleyre
LIPN

Université Paris-Nord
Villetaneuse, France

chevaleyre@lipn.univ-
paris13.fr

Jérôme Lang
LAMSADE

Université Paris-Dauphine
75775 Paris Cedex 16, France
lang@lamsade.dauphine.fr

Nicolas Maudet
LAMSADE

Université Paris-Dauphine
75775 Paris Cedex 16, France
maudet@lamsade.dauphine.fr

Jérôme Monnot
LAMSADE

Université Paris-Dauphine
75775 Paris Cedex 16, France
monnot@lamsade.dauphine.fr

ABSTRACT
We address the problem of designing communication protocols for
voting rules when the set of candidates can evolve via the addition
of new candidates.We show that the necessary amount of commu-
nication that must be transmitted between the voters and the central
authority depends on the amount of space devoted to the storage of
the votes over the initial set of candidates. This calls for a bicriteria
evaluation of protocols. We consider a few usual voting rules, and
three types of storage functions: full storage, where the full votes
on the initial set of voters are stored; null storage, where nothing is
stored; and anonymous storage, which lies in-between. For some
of these pairs (voting rule, type of storage) we design protocols
and show that they are asymptotically optimal by determining the
communication complexity of the rule under the storage function
considered.

Categories and Subject Descriptors
F.2.3 [Theory of Computation]: Tradeoffs among Complexity
Measures; I.2.11 [Artificial Intelligence]: Distributed Artificial
Intelligence: Multiagent systems

General Terms
Theory

Keywords
voting; protocols; communication complexity

1. INTRODUCTION
The computational and knowledge-theoretic aspects of voting

have received more and more attention in these last years. One

ACM COPYRIGHT NOTICE. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to re-
publish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Publications
Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.
TARK 2011, July 12-14, 2011, Groningen, The Netherlands.
Copyright c©2011 ACM. ISBN 978-1-4503-0707-9, $10.00.

prominent research stream focuses on the computational complex-
ity of determining the winner of an election or of finding a strategic
behaviour (such as manipulation, control, bribery etc.). An issue
that has been significantly less often addressed is the communica-
tion complexity of voting (important exceptions being [4, 7] and
[6], which we review below). When a group of agents have to find
a common decision via a voting process, they must communicate
their votes; this can be extremely costly in terms of communica-
tion, especially when the set of candidates has a very large size (for
instance when it has a combinatorial structure). A high communi-
cation burden is a drawback that may severely hamper the practical
applicability of a voting rule, perhaps even more than computa-
tional complexity, since the burden bears on individuals rather than
on the computer.

Another important question has to do with the amount of space
required for storing votes. In many contexts, the set of voters
and/or the set of candidates may evolve in the course of the pro-
cess. The question of preprocessing the information already gath-
ered has been addressed recently in the context of a dynamic set
of voters [2, 8]: the compilation complexity of a voting rule is the
minimal amount of space needed to store the votes of the initial
set of voters, so that the outcome can be determined once the last
votes are known; this amount of space may vary in function of the
number of remaining voters [8].

Now, not only the set of voters, but also the set of candidates can
be dynamic. This class of situations has been recently studied in
two papers [3, 9], which focus on the computational complexity of
determining which of the initial candidates can still possibly win
the election, but do not address compilation nor communication. A
natural question that arises is how to compile a set of votes about an
initial set of candidates, given that some new candidates may come
later. It appears that defining a notion analogous to compilation
complexity when the set of candidates evolves (instead of the set of
voters) is not simple: when the set of voters is dynamic, it is natu-
ral to expect that the compilation of the first votes will be such that
these voters will never have to communicate anything else. With
an evolving set of candidates, it would not make sense to say that
in the final stage, the voters will report their preferences only about
the new candidates: except for very specific voting rules, we need
the voters to compare these new candidates between them but also
with the initial candidates. Therefore, it makes no sense to define
the minimum amount of space needed to compute the final out-

153

come once these new preferences are known, without saying any-
thing about the amount of communication allowed in the second
stage. A trivial response is to say that this minimum amount of
space is zero: it suffices to elicit the votes entirely in the second
stage. Now, in general we can save a significant amount of com-
munication by storing part of the initial votes provided in the first
stage. Therefore, what we have is a trade-off between storage space
and communication —typically, the more storage space we use, the
less communication we need in the second stage. Thus, instead of
simply designing storage functions like in compilation complex-
ity, or communication protocols like in communication complex-
ity, here we design compilation-communication protocols, which
specify how to compile the information provided in the first stage
and how to elicit the information to be communicated in the sec-
ond stage. Such protocols are evaluated with respect to both their
storage space and their amount of communication.

The remainder of this paper is as follows. We start by briefly
recalling background notions on voting in dynamic situations (Sec-
tion 2). In Section 3 we make the model explicit, and relate it to
standard communication and communication complexity of voting
rules. In Section 4 we focus on the case where minimizing com-
munication has the priority over minimizing the storage space, and
we design asymptotically optimal protocols for a few usual voting
rules. The optimality of these protocols is shown using the tech-
nique of fooling sets, borrowed from communication complexity
[5]. In Section 5 we focus on another class of storage function, in
particular where anonymity is required: the initial votes have to be
compiled in a way that does not store the information “who votes
what”. Section 6 concludes.

2. BACKGROUND

2.1 Voting rules
Let C be a finite set of candidates, with |C| = m. Let L(C) be

the set of all linear orders over C. A vote over C is an element of
L(C). We denote votes in the following way: a 1 b 1 c is denoted
by abc, etc. An n-voter profile P is a collection of n votes, that is,
an element of L(C)n. A voting rule is a function r from profiles
to candidates. As the usual definition of most voting rules does not
exclude the possibility of ties, we assume these ties are broken by
a fixed priority order on candidates. In the paper we will mostly
consider scoring rules. We start by defining scoring rule for a fixed
number m of candidates. Given a scoring vector �s = (s1, . . . , sm)
with si ∈ N and s1 ≥ · · · ≥ sm, for any vote V ∈ L(C) and any
c ∈ C, let s(V, c) = sj , where j is the rank of c in V . For any
profile P = (V1, . . . , Vn), let s(P, c) =

∑n
i=1 s(Vi, c). Then the

rule selects the candidate maximizing s(P, c). In particular, Borda
is based on the vector (m − 1, m − 2, . . . , 0), K-approval on the
vector defined by s1 = . . . = sK = 1 and sK+1 = . . . = sm = 0,
and plurality on the vector (1, 0, . . . , 0). Because the number of
candidates is not the same before and after the new candidates come
in, we consider families of voting rules (for a varying number of
candidates) rather than voting rules for a fixed number of candi-
dates. Thus we have a collection s∗ = (�s m)m≥2 of scoring vec-
tors, where for each m, �s m = (s m

1 , . . . , s m
m). For instance, Borda

corresponds to �s m = (m − 1, m − 2, . . . , 1, 0) for each m. For
many usual voting rules such as Borda and K-approval, and a for-
tiori plurality and veto, there is an obvious way of defining them
for a varying number of candidates, but this is not always the case.
Lastly, with a slight abuse of language, we will identify the scoring
rule (defined for an arbitrary number of candidates) induced by s∗

with s∗ itself: when we say “let s∗ be a scoring rule” we mean “let
rs∗ be scoring rule induced by a collection of scoring vectors s∗”.

2.2 Voting with a dynamic set of candidates
We recall this definition from [3]:

DEFINITION 1. A voting situation with varying candidates is a
quadruple Σ = 〈N, X, PX , k〉 where N is a set of voters (with
|N | = n), X a set of initial candidates (with |X| = p), PX =
(V1, . . . , Vn) an n-voter X-profile, and k a positive integer.

X denotes the set of initial candidates, PX the initial profile,
and k the number of new candidates (thus, m = p + k). If P
is a C-profile and C′ ⊆ C, then the projection of P on C′, de-

noted by P ↓C′
, is obtained by deleting all candidates in C \ C′

in each of the votes of P , and leaving unchanged the ranking on
the candidates of C′. For instance, if P = 〈abcd, dcab〉 then

P ↓{a,b} = 〈ab, ab〉 and P ↓{a,b,c} = 〈abc, cab〉. The set of ini-
tial candidates is denoted by X = {x1, . . . , xp}, and the set of
the k new candidates by Y = {y1, . . . , yk}. If PX is an X-
profile and P an X ∪ Y -profile, then we say that P extends PX

if the projection of P on the candidates in X is exactly PX . For
instance, let X = {x1, x2, x3} and Y = {y1, y2}; the profile
P = 〈x1y1x2y2x3, y1y2x1x2x3, x3x2y2y1x1〉 extends the X-
profile PX = 〈x1x2x3, x1x2x3, x3x2x1〉.

3. COMPILATION-COMMUNICATION
PROTOCOLS

Given that all voters have already expressed their votes on X and
that k new candidates Y = {y1, . . . , yk} come in, two questions
arise: (i) how can we preprocess PX so as to avoid restarting elicit-
ing the preferences on X∪Y entirely? (ii) given the resulting com-
pilation, how should we elicit the voters’ remaining preferences as
cheaply as possible? It turns out that both questions are interdepen-
dent: the more information we store from PX , the cheaper the elic-
itation about the new candidates. Therefore we have a compilation-
communication tradeoff. To deal with this situation, we introduce
the notion of communication protocol modulo a compilation func-
tion, or for short a compilation-communication protocol.

We briefly recall the definition of a (deterministic) voting pro-
tocol (see [5] for a general presentation of protocols and commu-
nication complexity, and [4] for voting protocols). Given a vot-
ing rule r, the voters have to compute together the winner, given
that initially, every voter i knows only her vote Vi. In a protocol
for computing r(V1, . . . , Vn), in each stage, one of the voters an-
nounces a bit of information based on her private vote and the bits
announced so far. Eventually, the communication terminates and
all players know r(V1, . . . , Vn). The goal is to minimize the worst-
case (over all input vectors) number of bits sent. The deterministic
communication complexity of a voting rule is the worst-case num-
ber of bits sent in the best deterministic protocol that computes it.
The communication complexity of voting rules has been addressed
by Conitzer and Sandholm [4], who give asymptotic bounds for a
number of prominent voting rules. Segal [7] also analyzed the com-
munication complexity of social choice rules in a broader sense,
thanks to an original proof technique (but which requires a prop-
erty not satisfied by most voting rules). Procaccia [6] gives an ex-
act bound for the problem of determining the Condorcet winner (if
any), using a different communication model.

The difference between these two frameworks and ours is that
we start with some initial knowledge, consisting of the compila-
tion of the initial votes. There are two (almost equivalent) ways of
modelling the problem.

(a) a fully distributed model where the parties are the voters, and
the private input of a voter consists of her complete vote plus
the compiled initial profile;

154

(b) a mediated model where the parties are the voters plus a cen-
ter ca, the private input of a voter consists of her complete
vote, and the private knowledge of ca is the compilation of
the initial votes.

The distributed model is typically relevant in multiagent system
applications, while the mediated model fits more naturally online
voting applications. While Conitzer and Sandholm [4] chose not
to consider ca as an explicit party, we also consider the opposite
choice.The main technical difference between both models is that
the communication bits sent by ca are counted in (b) but not in (a).
Both assumptions make sense. Counting the bits sent by ca (and
received by the voters) corresponds to viewing ca as an agent like
the others. Not counting them amounts to counting only the bits
that the voters send, and not those they receive; this makes sense,
because the communication burden on the voters is mainly caused
by the need to send messages; receiving messages can therefore
be considered to have no cost. We refer to these two models as
sending-receiving communication complexity for (b), and sending-
only communication complexity for (a). In all our protocols (with
one exception that we discuss further), the amount of communica-
tion sent by ca is at most of the same order of magnitude as the
amount of communication sent by the voters, hence the communi-
cation complexities of the protocol under the two models (a) and
(b) are asymptotically equivalent. The same remark applies to the
results in [4]: while their results are established under assumption
(a), it is easy to show that they hold under assumption (b) as well.

DEFINITION 2. Let N be a set of voters, X a set of initial can-
didates X , Y a set of new candidates, and r a voting rule. A
compilation-communication protocol (CCP) for 〈N, X, Y, r〉 is a
pair μ = 〈σ, π〉 where

• σ is a compilation function, mapping any X-profile PX into
a string σ(PX).

• π is a communication protocol for computing r(V1, . . . , Vn),
given that the knowledge is distributed between n+1 parties:
each voter i knows her own vote Vi over X ∪ Y , and the
center knows only σ(PX), where PX = 〈V ↓X

1 , . . . , V ↓X
n 〉.

The compilation cost of protocol μ for profile PX , denoted
by Comp(μ, PX), is the size of σ(PX). The compilation
cost of μ, denoted by Comp(μ), is the worst-case compila-
tion cost when considering all profiles, that is, Comp(μ) =
maxPX∈L(X)n Comp(μ, PX). Likewise, the communication cost
of μ for PX , denoted by Comm(μ, PX), is the cost of π when
applied to PX , and the communication cost of μ, denoted by
Comm(μ), is its worst-case communication cost when consider-
ing all profiles, or, equivalently, the communication complexity of
π. Importantly, we do not care about how the information σ(PX)
was communicated to the center, and the communication during
this phase is not counted. The rationale behind this is that the elic-
itation of PX is assumed to performed off-line, in a context where
communication is not an issue. The cost of π is the vector

C(μ) = 〈Comp(μ), Comm(μ)〉
At the two extremities of the spectrum we have two compilation

functions:

μN : no storage. We do not store anything, i.e., σN (PX) is the
empty string.

μF : full storage. We store each ballot fully, voter by voter, i.e.,
σF (PX) = PX .

Another natural compilation function consists in forgetting the
identity of the voters. This makes sense especially if full storage
has to be avoided for privacy reasons.

μA: anonymous storage. For each possible ranking 1 on the ini-
tial candidates, we store the number of voters whose vote
was 1. Formally, the compilation σA(PX) of a profile PX

maps every ranking 1 into a number σA(P)(1), such that∑
�∈L(X) σA(P)(1) = n.

EXAMPLE 1. Let r be plurality, n = 4, X = {x1, x2, x3},
PX = 〈x1x2x3, x2x3x1, x3x2x1, x1x2x3〉, and Y = {y1, y2}.
Consider the protocols:

• μ = 〈σ, π〉 where σ(P) stores the top candidate in X of
every voter, therefore σ(PX) = 〈x1, x2, x3, x1〉. π asks ev-
ery voter to specify who is her preferred candidate among
y1, y2 and her preferred candidate in X . The cost of μ is
〈n log p, n log(k + 1)〉 (here with p = 3 and k = 2).

• μN = 〈σN , πN 〉 where πN asks every voter to specify her
preferred candidate in X∪Y . The cost of μN is 〈0, n log(p+
k)〉.

• μF = 〈σF , πF 〉, and πF = π as above. The cost of μF is
〈n log p!, n log(k + 1)〉: storing PX entirely instead of the
top candidates does not help saving any bit of communica-
tion.

Since C(π) is not a single number but a vector of two numbers,
defining the compilation-communication complexity of a rule with
respect the addition of k new candidates as the cost of the best
CC-protocol (as do [4] for the case of communication complex-
ity and [2] for the case of compilation complexity) does not work.
Let μ and μ′ be two CC-protocols for r; we way that μ (Pareto-
)dominates μ′, denoted by μ 2 μ′, if Comp(μ) ≤ Comp(μ′) and
Comm(μ) ≤ Comm(μ′), with one of these two inequalities be-
ing strict. A CC-protocol μ is Pareto-optimal if there is no μ′ such
that C(μ′) 2 C(μ). The set of best protocols for r is simply the
set of all Pareto-optimal protocols, denoted by BestProtocols(r),
and the CC-complexity of r is defined as

CC(r) = {C(μ) | μ ∈ BestProtocols(r)}
In Example 1, μF is Pareto-dominated by μ, hence it is not

among the best protocols.
Now, we are mainly interested in deriving bounds for the CC-

complexity of a rule. Given a vector 〈α, β〉 of integers, we say
that CC(r) ≤ 〈α, β〉 if there exists 〈γ, δ〉 in CC(r) such that
γ ≤ α and δ ≤ β. Also, it makes sense to fix the compilation
function σ and to look for an optimal protocol π such that 〈σ, π〉
is a compilation-communication protocol for r. This leads us to
define the communication complexity of r given to the compilation
function σ as the communication complexity of an optimal protocol
π for r such that 〈σ, π〉 is a CC-protocol for r.

DEFINITION 3. Let σ1 and σ2 be two compilation functions.
We say that σ2 is at least as strong as σ1 (denoted by σ1 � σ2),
if there exists a compilation function σ′ such that σ′(σ1(PX)) =
σ2(PX).

Equivalently, σ2 is at least as strong as σ1 if σ1 is at least as
informative as σ2, i.e., if σ1 retains at least as much informa-
tion from PX as σ2. Note that two compilation functions may
be incomparable in that respect. Clearly, the weaker the compi-
lation function (i.e., the more the central authority knows about

155

PX), the cheaper the communication protocol. More precisely,
for two CCP μ1 = 〈σ1, π1〉 and μ2 = 〈σ2, π2〉, if σ1 � σ2 then
Comm(μ1) ≤ Comm(μ2). Hence a lower bound on the commu-
nication complexity remains a lower bound for any stronger com-
pilation function. We clearly have σF � σA � σN . Note that being
less informative does not imply being less succinct, i.e., σ1 � σ2

does not imply |σ1| ≥ |σ2|.
In the null storage case, the communication will be maximum.

Note that since nothing from PX has been stored, the distinction
between the candidates in X and those in Y disappears, and we are
therefore in the same setting as Conitzer and Sandholm [4]. There-
fore, being an optimal protocol given the compilation function σN

is equivalent to being an optimal protocol for a voting rule, and
the cost of this protocol will have the form 〈0, α〉, where α is the
communication cost of an optimal protocol for r given σN , and
therefore, the communication complexity of r given σN is the (de-
terministic) communication complexity of r as in [4]. In this case
the results for specific rules can be directly retrieved from [4], and
from now on we will not focus any longer on the null storage case.

To derive a lower bound on the communication complexity, one
of the most popular techniques (although not always the best one)
consists in exhibiting a fooling set of cardinality 2f(n,p,k), that is,
a set of n-voter X ∪ Y -profiles subject to the constraint that any
profile and the “fooling” mixture must be possible completions of
the initial profile (given the compilation). We first give the defi-
nition of fooling sets. To make things simpler we formulate the
definition directly in the context of voting rules, rather than in the
general framework – see Section 3, and especially the first para-
graph of page 4, of [4]. The definition is different due to the fact
that the fooling sets must in our context be compatible with the
initial profile.

DEFINITION 4. Let r be a voting rule, PX an n-voter initial
profile on X , and σ(PX) a compilation of PX . A fooling set for
r extending PX w.r.t. σ is a set of n-voter X ∪ Y -profiles P 1 =
〈V 1

1 , . . . , V 1
n 〉, P 2 = 〈V 2

1 , . . . , V 2
n 〉, P q = 〈V q

1 , . . . , V q
n 〉 such

that the following three conditions hold:

• there exists a candidate c ∈ X ∪ Y such that for any i ≤ q,
r(P i) = c;

• for any i ≤ q, σ((P i)↓X) = σ(PX), where (P i)↓X is the
projection of P i to X;

• for any 1 ≤ i �= j ≤ q, there exists some vector
(s1, . . . , sn) ∈ {i, j}n such that r(V s1

1 , . . . , V sn
n) �= c and

σ((V s1
1 , . . . , V sn

n)↓X) = σ(PX).

Then we use the classical result that the communication com-
plexity of r is at least the logarithm of the size of any fooling set.

4. FULL STORAGE
In this Section we assume that the compilation function is σF .

In this case, the communication will be minimum. Full storage is
an obvious choice if the cost of storage space is negligible with
respect to the cost of on-line communication, which is the case in
most contexts. Let CommF (r) be the communication complexity
of r given full storage, and recall that CompF (r) = n log(p!).
To derive an upper bound f(n, p, k) (where n is the number of
voters and p the number of initial candidates) of a voting rule r
(depending on the numbers of voters n, initial candidates p and new
candidates k), we must exhibit a protocol π which, whatever the
initial profile PX , determines the outcome using at most f(n, p, k)
communication bits. The straightforward protocol π consisting in

asking each voter the rank of each new candidate yi in her vote
leads to a protocol 〈σF , π〉 in CC(r).

PROPOSITION 1. For any voting rule, the communication com-
plexity of r with respect to the addition of k new candidates and
full storage is O(n(log(p + k)!− log(p!)).

PROOF. The central authority knows how a voter ranks candi-
dates in X . The number of rankings of X ∪ Y that extend this

fixed ranking on X is
(p+k)!

p!
. Therefore, a voter can communicate

his vote V to the central authority, who knows already VX using

log (p+k)!
p!

= log(p + k)!− log p! bits. �

Now we study more specifically the communication complexity
of several voting rules. We start by K-approval (whose communi-
cation complexity has never been addressed yet), then we consider
Borda and Copeland.

4.1 K–approval
Clearly, it suffices for each voter to send the identities of the

new candidates she approves. Depending on K and the number k
of new candidates, this information can be communicated by two
possible protocols:

π1: send one bit (yes or no) for each of the k new candidates, to
say whether it is approved or not;

π2: give the names of the approved new candidates.

The communication cost of π1 is in O(nk), whereas that of π2

is in O(nK log k). Therefore, π1 is better if K > k
log k

, and π2 is

better if K < k
log k

. From this we get immediately:

PROPOSITION 2. The communication complexity of K-
approval with respect to the addition on k new candidates and full
storage is in O(min(nK log k, nk)).

Note that if K is a constant, then π2 gets better at some point,
and we have a communication complexity in O(n log k). However
it is possible to design rules where K depends on the (total) number
m = p + k of candidates, such as

√
m-approval.

Importantly, the bound in Proposition 2 does not depend on the
number p of initial candidates. Therefore we will try to obtain
bounds for p = 0, which will also give the communication com-
plexity of K-approval in the general case (or, equivalently, with
null storage); this will complete the results established in [4], since
they left K-approval out of their study.

PROPOSITION 3. If k 4 K , the communication complexity of
K-approval with respect to the addition on k new candidates and
full storage is in Θ(nK. log k).

PROOF. The upper bound is a consequence of Proposition
2, after noticing that the bound is independent from p and thus
holds for p = 0. For the lower bound, we exhibit a fooling set

of size knK = 2nK log k. We have n =

(
k
K

)
= k!

K!(k−K)!

voters: in a profile, we have one vote for every subset of K
elements among the k (new) candidates. These n votes can be
disposed in any order in the profile, therefore the number of

profiles in the set F is
(

k!
K!(k−K)!

)
!. We have log

(
k!

K!(k−K)!

)
! ∼

k!
K!(k−K)!

log
(

k!
K!(k−K)!

)
= n log

(
k!

K!(k−K)!

)
∼ nK log k.

Now, we have to show that F is a fooling set. First, in each of

156

the profiles of F , each of the candidates gets exactly Kn
k

votes,
therefore all candidates y1 . . . yk are tied. Assume that after
tie-breaking, the winner is y1. Let P and Q be two profiles in
F . Since P �= Q, there must be a vote i such that Pi �= Qi,
where Pi (resp. Qi) is the set of K candidates approved by i in P
(resp. in Q). Since |Pi| = |Qi|, we have Qi \ Pi �= ∅. Consider
the profile P ⊗i Q = 〈P1, . . . , Pi−1, Qi, Pi+1, . . . , Pn〉. In
P ⊗i Q, every candidate in Qi \ Pi gets Kn

k
+ 1 votes, every

candidate in Pi \ Qi gets Kn
k
− 1 votes, and all other candidates

still get Kn
k

votes. Therefore, the cowinners are the candidates in
Qi \ Pi. Symmetrically, the cowinners of the profile Q ⊗i P are
the candidates in Pi \ Qi which are disjoint with Qi \ Pi. Thus,
after tie-breaking, either y1 will not be the winner in Qi \ Pi or y1

will not be the winner in Pi \ Qi. This being true for any pair of
profiles in F , we get that F is a fooling set1. �

These results apply to plurality, by letting K = 1. Let
μ1 = 〈σF , π1〉 and μ2 = 〈σF , π2〉. Since Comp(μ1) =
Comp(μ2) = n log p!, we have CC(K-approval) ≤
〈n log p!, min(nk, nK log k)〉.

4.2 Borda and Copeland
Let C(x, P) denote the Copeland score of candidate x in profile

P , defined by C(x, P) = #{y|x 1P
maj y}, where x 1P

maj y
stands for the fact that x is preferred over y by a majority of voters
in P . The winner is the candidate maximizing C(x, P) (or the
candidate among these with highest priority). Next, we show that
for the Borda and Copeland rules, the naive protocol described in
Proposition 1 is asymptotically optimal.

PROPOSITION 4. The communication complexity of Borda with
respect to the addition of k new candidates and full storage is in
Θ(n(log(p + k)!− log(p!)).

PROOF. The upper bound comes from Proposition 1. For the
lower bound, we give a general fooling set which will work for
several voting rules satisfying the cancellation property. We have
n = 2n′ voters, p initial candidates {x1, . . . , xp},k new candidates
{y1, . . . , yk}, and an initial profile PX = 〈V1, . . . , Vn〉 satisfying
the following property: for every 1 ≤ i ≤ n′, if V2i−1 = xπ(1) 1
xπ(2) 1 . . . xπ(p) then V2i is the reversal of V2i−1, i.e., V2i =
xπ(p) 1 . . . 1 xπ(2) 1 xπ(1). Now, the fooling set F contains the
votes defined as follows. First, given a vote Vi over X and a vector
�u = (u1, . . . , uk) of k distinct elements of {1, . . . , p + k}, the
vote Vi[�u] is obtained by inserting in Vi candidate y1 at rank u1,
y2 at rank u2, and so on, until yk at rank uk, and Rev(Vi[�u]) is the
reversal of Vi[�u]. Now, for each collection T = 〈�t1, . . . ,�tn′〉 of
vectors �ti = (t1i , . . . , t

k
i) of k distinct elements of {1, . . . , p + k},

PX [T] is the profile containing, for every i = 1, . . . , n′, the votes
V2i−1[�t1] and Rev(V2i−1[�t1]). Note that Rev(V2i−1[�t1])

↓X =
Rev(V2i−1) = V2i, therefore PX [T]↓X = PX . For instance, let
PX = 〈abc, cba, bca, acb〉, k = 2, �t1 = (3, 4) and �t2 = (4, 1);
we have PX [T] = 〈aby1y2c, cy2y1ba, y2bcy1a, ay1cby2〉. Now,
the fooling set F (PX) is defined the set of all PX [T] obtained by
letting T vary. We first count the number of profiles in F (PX).
For a given i ≤ n′, we have p + k possibilities for the rank of y1,
then p + k − 1 possibilities for the rank of y2, and so on until yk,
for which we have p + 1 possibilities. Therefore, for a given n′

1In this proof, and more generally in all our proofs based on
the fooling set technique, we could have exhibited a fooling set
for which the winner in every element of the fooling set, and in
any “successful” mixture of profiles, does not depend on the tie-
breaking priority.

we have (p + k)(p + k − 1) · · · (p + 1) = (p+k)!
p!

possibilities,

and finally, in F (PX) we have
(

(p+k)!
p!

)n′
elements. Note that

log
(

(p+k)!
p!

)n′
= n

2
(log(p + k)!− log(p!)).

We now check that F (PX) is indeed a fooling set. In every
profile PX [T] of F (PX), all candidates have the same Borda score,
namely n′(p + k − 1), therefore the winner is the candidate with
highest tie-breaking priority. Let w ∈ X ∪ Y be this candidate.

Let PX [T], PX [T ′] be two profiles in F (PX). Since T �= T ′,
there must be a i such that �ti �= �t′i. Without loss of generality,
assume i = 1. The Borda score of w in the 4-voter profile
〈V1[�t1], Rev(V1[�t1]), [V1�t

′
1], Rev(V1[�t

′
1])〉 is 2(p + k − 1).

Therefore, either SB(w, 〈V1[�t1], Rev(V1[�t1])〉 ≤ p + k − 1 or
SB(w, 〈V1[�t

′
1], Rev(V1[�t

′
1])〉 ≤ p + k − 1. Again without loss

of generality, suppose SB(w, 〈V1[�t1], Rev(V1[�t1])〉 ≤ p + k − 1.
Consider the mixture PX [T] ⊗2 PX [T ′] identical to PX [T]
except that it contains rev(V1[�t

′
1]) instead of rev(V1[�t1]).

We have SB(x1, PX [T] ⊗2 PX [T ′]) ≤ n′(p + k − 1).
Now, there must be a candidate z ∈ X ∪ Y , z �= w,
such that SB(z, PX [T] ⊗2 PX [T ′]) > n′(p + k − 1):
if this were not the case, then because the sum of the
Borda scores of all candidates is n′(p + k − 1), and
SB(z, PX [T] ⊗2 PX [T ′]) ≤ n′(p + k − 1), we would
have SB(z, PX [T]⊗2 PX [T ′]) = n′(p+k−1) for every z, which
in turn would imply SB(z, 〈V1[�t

′
1], Rev(V1[�t

′
1])〉 = p + k − 1 for

every z, therefore we would have Rev(V1[�t
′
1]) = Rev(V1[�t1]),

contradicting �t1 �= �t′1. Hence, there exists at least one candidate
such SB(z, PX [T] ⊗2 PX [T ′]) > SB(w, PX [T] ⊗2 PX [T ′]),
which implies that the winner is not w. �

PROPOSITION 5. The communication complexity of Copeland
with respect to the addition of k new candidates and full storage is
in Θ(n(log(p + k)!− log(p!)).

PROOF. The upper bound comes from Proposition 1. For the
lower bound, we reuse the same set of profiles F (PX) as in the
proof of Proposition 4. We only have check that F (PX) is a fooling
set. In every profile PX [T] of F (PX), all candidates are tied in the
majority graph, therefore the winner is the candidate with highest
tie-breaking priority. Let w ∈ X ∪ Y be this candidate.

Let PX [T], PX [T ′] be two profiles in F (PX). Since T �= T ′,
there must be a i such that �ti �= �t′i. Without loss of generality,
assume i = 1. We consider two cases.

First case: the ranks of w in PX [T] and PX [T ′] are differ-
ent. Without loss of generality, assume w is ranked in a bet-
ter position in PX [T] than in PX [T ′]. Consider the mixture
Q = PX [T] ⊗1 PX [T ′] identical to PX [T] except that it con-
tains V1[�t

′
1] instead of V1[�t1]. For any z ∈ X ∪ Y , we have

w 1Q
maj x if and only if w 1PX [T]

maj z and z 1PX [T ′]
maj w. Be-

cause w is ranked in a better position in PX [T] than in PX [T ′],

we have #{z, z 1PX [T ′]
maj w} > #{z, z 1PX [T]

maj w}, therefore we

have #{z, z 1Q
maj w} > #{z, w 1Q

maj x}, which implies that
C(w, Q) < 0; therefore, w is not the Copeland winner in Q.

Second case: the ranks of w in PX [T] and PX [T ′] are identical.

We start by remarking that 1Q
maj coincides with the majority

graph constructed from the first two votes {V1[�t
′
1], V1[rev(�t1)]},

and that a majority graph constructed from two votes is transitive,
therefore 1Q

maj is transitive. Since PX [T] �= PX [T ′], there must

be u ∈ X ∪ Y and v ∈ Y such that u 1T
1 v and v 1T ′

1 u.
Therefore, in Q = PX [T] ⊗1 PX [T ′], v is two points ahead of

157

u, which implies that v 1Q
maj u, and therefore that 1maj is not

the empty graph. Now, since 1maj is transitive and nonempty, it
must contain a maximal element, whose Copeland score is strictly
positive. Lastly, since the ranks of w in PX [T] and PX [T ′] are

identical, we have #{z, z 1Q
maj w} = #{z, w 1Q

maj x}, and
C(w, Q) = 0. Therefore, w is not the Copeland winner in Q. �

5. STRONGER COMPILATIONS FOR
SCORING RULES

In the specific case of scoring rules, we now introduce compi-
lation functions that are stronger than full storage. Note first that
it is sometimes possible to find a better compilation function than
σF that does not need more communication. Therefore, an opti-
mal protocol given full storage is not necessarily an optimal pro-
tocol, and there may be no protocol in BestProtocols(r) of the
form 〈σF , πF 〉. Now, there will be a protocol μ = 〈σ, π〉 in
BestProtocols(r) such that the communication complexity of π
is equal to the communication complexity of r given full storage
(we may think, intuitively, that this is the case for πF in Example
1, but further we show that this is not the case). The compilation
complexity of such a protocol is, intuitively, the size we need to
store PX without requiring more communication than if PX was
stored entirely, and can be viewed as the counterpart of compila-
tion complexity for a varying set of voters, as studied in [2, 8].

The first question that we ask (Section 5.1) is whether it is pos-
sible to reduce the compilation cost while still using the optimal
communication protocol for full storage. We illustrate in particu-
lar that for K-approval, a partly anonymous compilation of scores
is appropriate. Next, in Section 5.2 we consider the problem the
other way round: starting from the stronger compilation consisting
in storing only the score of each candidate, can we design proto-
cols minimizing communication complexity? For the sending-only
model, we will see that for a certain class of scoring rules, it is
possible to design a protocol requiring the same amount of com-
munication as with full storage.

5.1 Partly anonymous compilation of scores
Consider the case of K-approval. Technically, the question is

whether π1 and π2 can be applied to a smaller compilation function,
that is, if there exist protocols (σ1, π1) and (σ2, π2) for K-approval
with σF � σ1, σ2. In other words, what is the minimal information
to be stored so that π1 and π2 are applicable? We note first that
storing, for each voter, the set of her first K candidates in X is not
sufficient: we must know which ones will be kicked out if some
of the new candidates come into her first K candidates. Keeping
the ordered list of the first K candidates of each voter, on the other
hand, is enough, but is not optimal when k ≤ K, as in this case, it
is enough to store the following two pieces of information:

(a) for each voter, the ordered list of the candidates of X who
may be kicked out of the first K candidates, that is, the can-
didates ranked in positions K − k + 1 to K;

(b) for each candidate in X , the number of voters who rank it in
the first K − k positions.

Let PX = 〈V1, . . . , Vn〉. We define the compilation function
σK,k(PX) as follows:

• if k ≤ K: let Ai be the set of the first K−k candidates in Vi,
Bi be the ordered list consisting of the candidates ranked in
positions K−k +1 to K in Vi, and for any x ∈ X , C(x) =
#{i|x ∈ Ai}. Then σK,k(PX) = 〈C(x), B1, . . . , Bn〉.

• if k > K: σK,k(PX) contains, for every voter, the ordered
list consisting of the candidates ranked in positions 1 to K in
Vi.

Consider an example: n = 3, p = 5, k = 2, K = 4,
PX = 〈abcde, dabec, bedac〉. σ4,2(P) = 〈C(x), B1, . . . , Bn〉
with C(a) = 2, C(b) = 2, C(c) = 0, C(d) = C(e) = 1,
B1 = 〈c, d〉, B2 = 〈b, e〉, B3 = 〈d, a〉.

The size of σK,k is in O(p log n + n log k!) if k ≤ K, and
O(n log K!) if k > K. Note that these bounds can be much
smaller than the size of σF (PX), which is in Θ(n log p!). There-
fore, neither μ1 nor μ2 is Pareto-optimal, and

CC(K-approval)
≤ 〈min(p log n + n log k!, n log K!), min(nk, nK log k)〉

If K is a constant, CC(K-approval) is in O(〈min(n log k!), nk〉).

5.2 Fully anonymous compilation of scores
Let PX be an initial profile. We assume without loss of general-

ity that the candidates of X are numbered by decreasing scores in
profile PX and that this order is lexicographically compatible with
tie-breaking on X , i.e., s(PX , x1) ≥ · · · ≥ s(PX , xm), and if
s(PX , xi) = · · · = s(PX , xj), then xi > xi+1 > . . . > xj . Im-
portantly, this ordering on candidates in X induced by the partial
scores and the tie-breaking priority is common knowledge among
the voters. In the sending-only communication model, this assump-
tion is harmless: the central authority will have sent this informa-
tion to the voters, and voters receive this information for free. In
the sending-receiving model, however, this amounts to sending all
voters the ranking over X induced from PX , which takes exactly
np log p bits.

Moreover, in order to simplify the notations, if Y =
{y1, . . . , yk} are the new candidates and P is the extension of
PX , then s(y1, P) ≥ · · · ≥ s(yk, P) and y1 has the most fa-
vorable tie-breaking among candidates in Y . Lastly, for the sake
of simplicity we assume that the tie-breaking priority favours any
xi against any yj : it is therefore equal to the priority order x1 >
. . . > xp > y1 . . . > yk. (This is not entirely without loss of gen-
erality, but the proof can be modified easily if we make whatever
different assumption about the tie-breaking priority). Finally, we
define SY =

∑k
j=1 s(P, yj).

DEFINITION 5. Let s∗ be a scoring rule.

• s∗ is said to be non-increasing (resp. non-decreasing) if for
any initial candidate x ∈ X and for any extension P of PX ,
we have s(x, PX) ≥ s(x, P) (resp., s(x, PX) ≤ s(x, P)).

• s∗ is said to be coherent if for any initial subset X ′ ⊆
X of initial candidates and for any extension P of PX

on candidates X ∪ Y , we have
∑

x∈X′ s(x, PX) ≤∑
x∈X′∪Y s(x, P).

The requirement to be non-increasing is the most important: for
instance, the Borda rule is non-decreasing but not non-increasing,
and thus the protocol is not applicable to it. Intuitively, the condi-
tion of coherence is not demanding. It merely rules out very strange
rules, which would for instance be defined as 2-approval up to a
number of candidates, then as plurality. Note that any pure rules
used in the sense of [1] is coherent.

DEFINITION 6. Let s∗ be a non-increasing scoring rule.

158

• An initial candidate x ∈ X is a potential winner if
s(x, PX) ≥ s(y1, P)2. Let Xpot the set of potential win-
ners.

• An initial candidate x ∈ X is a quasi- winner if s(x, P) ≥
s(y1, P). Let Xqw the set of quasi-winners.

Obviously, we get Xqw ⊆ Xpot and if Xpot �= ∅, then |Xqw| ≤
r = max{i : s(xi, PX) ≥ s(y1, P)}.

Lemma 1 gives some properties on quasi-winners. In the fol-
lowing, let s be a collection of scoring vectors corresponding to a
coherent and non-increasing scoring rule.

LEMMA 1. The following properties hold:

(i) If s∗ is non-increasing scoring rule, then y1 is the winner if
Xpot = ∅ or equivalently if

s(y1, P) > s(x1, PX) (1)

(ii) If s∗ is coherent, Xpot �= ∅, and r′ ≤ r = max{i :
s(xi, PX) ≥ s(y1, P)}, then xr′ is a quasi-winner if

r′∑
i=1

s(xi, PX) ≥ SY + r′s(y1, P) (2)

PROOF. For (i). trivial by hypothesis of a non-increasing scor-
ing rule.

For (ii). If a candidate in X is a quasi- winner, then inequality
(1) does not hold. So, r = max{i : s(xi, PX) ≥ s(y1, P)} is
well-defined. Let r′ ≤ r and assume that inequality (2) holds.

We have
∑r′

i=1 s(xi, P) ≥ ∑r′
i=1 s(xi, PX) − SY because s is

a coherent scoring rule (take X ′ = {x1, . . . , xr′} in definition

5). Since r′ max{s(xi, P) : i ≤ r′} ≥ ∑r′
i=1 s(xi, P) and using

inequality (2), we obtain the expected result. �

LEMMA 2. For decreasing and coherent scoring rules, a can-
didate xi is the winner for P only if i ≤ SY + 1 and i ≤
k

∑
x∈X∪Y s(x,P)

SY
.

PROOF. Assume that xi is the winner. So, in particular we
get s(xi, P) ≥ s(y1, P)3 and s(xi, P) ≥ s(xj , P) + 1 by
construction of the priority rule. Now, since s is decreasing and
j < i, we get s(xj , PX) ≥ s(xi, PX) ≥ s(xi, P). Hence,
s(xj , PX) ≥ s(xj , P)+1. On the other hand, since s∗ is coherent

SY ≥
∑i−1

j=1 (s(xj , PX)− s(xj , P)) ≥ i− 1.

Since s∗ is coherent,
∑r

j=1 s(xj , PX) ≤ ∑r
j=1 s(xj , P) +

SY ≤ ∑
x∈X∪Y s(x, P). On the other hand, r × SY

k
≤

r × s(y1, P) ≤ ∑r
j=1 s(xj , PX). Thus, r ≤ k

∑
x∈X∪Y s(x,P)

SY
.

Now, since s∗ is non-increasing we get i ≤ r. �

We now give a protocol which works for non-increasing and co-
herent scoring rules.

Consider a non-increasing and coherent scoring rule s where∑
x∈X s(x, P) = f(n, m) for every profile P on candidates X

and such that α is the number of distinct values in the scoring vec-
tor. For instance, for K-approval we have f(n, m) = Kn and
α = 2. We now define the following protocol:

2We recall that we assume that the tie-breaking gives the priority
to x; if y1 had the priority over x then the inequality would have to
be strict.
3The inequality is strict if y1 has a higher priority rule.

(1) Ask for each voter the position (among the α distinct intervals)
of each candidate from Y .

(2) If s(y1, P) > s(x1, PX) return y1 and stop.

(3) Let i0 = min{SY + 1, k
∑

x∈X∪Y s(x,P)

SY
, p}. Ask each voter

the position (among the α distinct intervals) of each candi-
date of X which had an index at most i0 in PX .

PROPOSITION 6. The communication complexity of any non-
increasing and coherent scoring rule with respect to the addition
of k candidates is in O(n

√
kf(n, m) log α) in the sending-only

model where m = p + k.

PROOF. The communication complexity given in Step (1) is
upper bounded by nk log α. The communication complexity
given in Step (3) is upper bounded by n × i0 log α. Now, by

Lemma 2, we have i0 ≤ min(SY + 1, k
∑

x∈X∪Y s(x,P)

SY
) ≤

min(SY , k
∑

x∈X∪Y s(x,P)

SY
) + 1. Let ξ = k

∑
x∈X∪Y s(x, P).

If SY ≤ ξ
SY

then (SY)2 ≤ ξ, SY ≤ √
ξ and finally,

min(SY , ξ
SY

) ≤ √ξ. If SY > ξ
SY

then (SY)2 > ξ, SY >
√

ξ,

SY

√
ξ > ξ, ξ

SY
<
√

ξ, and finally min(SY , ξ
SY

) ≤ √ξ. There-

fore, i0 ≤ (k ×∑
x∈X∪Y s(x, P))1/2 + 1 =

√
kf(n, m) + 1,

from which we conclude that the communication complexity of (3)
is in O(n

√
kf(n, m) log α). �

For K-approval, we can improve this bound to O(nK log(k +
1)) by considering the following protocol. For any candidate z ∈
X ∪ Y and profile Q, sK(z, Q) denotes the K-approval score of z
for Q.

(1) Ask each voter whether she approves at least one new candidate
in Y ; if it is the case, use protocol π1 or π2 (which one is
best) of Section 4.1 to identify the candidates from Y that
she approves. For i = 1, . . . , n, let ri be the number of
candidates of Y approved by voter i.

(2) If sK(y1, P) > sK(x1, PX) then return y1 and stop.

(3) Let i0 = min{SY + 1, ,K kn
SY
-, p}.

For each voter i such that ri > 0: if, in her initial vote (in
PX), i ranked in the positions K − ri + 1, ..., K at least one
candidate xi such that i ≤ i0, then use protocol π1 or π2

(which one is best) of Section 4.1 to identify the candidates
xi that she ranked in positions K−ri +1, ..., K in her initial
vote and such that i ≤ i0.

EXAMPLE 2. Let K = 2, p = 4, n = 5 and k = 2. The anony-
mous compilation of the initial profile PX consists of the following
scores:

x1 : 2; x2 : 2; x3 : 2; x4 : 2; x5 : 2

Step 1 of the protocol reveals that voter 1 approves y1, y2; that
voter 2 approves y1; and that voters 3, 4 and 5 do not approve any
of the two new candidates. The scores of y1, y2 in the new profile
P are

y1 : 2; y2 : 1

while the number of new candidates approved by the voters are

r1 = 2; r2 = 1; r3 = r4 = r5 = 0

159

At step 2, since the score of y1 in P is not strictly larger than the
score of all the x1 in P , we continue to Step 3.
At step 3, we first compute SY = 3 and

i0 = min{SY + 1, ,K kn

SY
-, p} = min(4, 7, 5) = 4

which expresses that x5 has no chance to be the winner (because
in order x5 to win, x1, x2, x3, x4 should all lose at least one point,
which is not possible since y1 and y2 gather only 3 points).
Now, we ask voter 1 who among x1, x2, x3, x4 was ranked in posi-
tion 1 or 2 in her initial vote; she answers {x1, x2}.
Next, we ask voter 2 who among x1, x2, x3, x4 was ranked in posi-
tion 1 or 2 in her initial vote; she answers {x4}.
Since r3 = r4 = r5 = 0, we don’t have anything to ask to voters
3, 4 and 5. The scores of x1, x2, x3, x4 in P are

x1 : 1; x2 : 1; x3 : 2; x4 : 1

Due to the tie-breaking priority, the winner is x3.

PROPOSITION 5.1. The communication complexity of K-
approval with respect to the addition of k candidates is in
O(Kn log(k + 1)) in the sending-only model.

PROOF. The communication complexity given in Step (3) is up-
per bounded by SY log(i0 + 1). Actually, if a voter does not ap-
prove a candidate xi with i ≤ i0 he returns 0 and else he returns
its index. Moreover, since on the one hand a candidate approved
in PX and not approved in P for voter i is ranked at position
between K + 1 and K + ri and on the other hand, we also get∑n

i=1 ri = SY , then we ask exactly SY questions. Using Lemma

2, we get k
∑

x∈X∪Y sK(x,P)

SY
= k Kn

SY
for K-approval. Thus, we

obtain

SY log(i0 + 1)
≤ SY log(kKn

SY
+ 1)

≤ SY log((k+1)Kn
SY

)

because SY ≤ Kn. The mapping f(x) = x log((k+1)Kn
x

)
with x ∈ [1, Kn] reaches its maximum value for

x = min((k+1)Kn
e

, Kn) = O(Kn). Hence SY log(i0 + 1) =
O(Kn log(k + 1)). �

The previous protocol can be improved further, by noticing that
in the cases where SY > nK

2
(i.e., the new candidates gather more

than half of the points), it may be less consuming to ask each voter
whom among the initial candidates she still approves instead of
whom among the initial candidates she no longer approves.

6. CONCLUSION
This paper advances the (sparse) state of the art in communica-

tion and voting, investigating for the first time (to the best of our
knowledge) the definition of elicitation protocols for a dynamic set
of candidates and a compilation function used to store the initial
profile. We emphasized the trade-off between storage and elici-
tation which has to be made in these situations, as storing more
information generally allows to come up with protocols which al-
leviate the elicitation burden. This model is relevant in many con-
texts which may differ significantly in terms of the constraints that
need to be considered. In a multiagent system involving distributed
decision-making about some joint plan, the number of candidates
may be huge and there may be concerns about the storage capacity
of each agent. On the other hand, in an electronic voting platform,

even for a moderate number of candidates, the stress should bear
on minimizing the communication burden on voters, so as to be an
incentive for participation. Furthermore, there may be exogenous
constraints: for instance, privacy issues may require that the initial
profile must be stored anonymously.

The first contribution of this paper was to set up this model. Our
initial results gave insights on these different aspects, illustrating
how the trade-off may be dealt with. For the Borda and Copeland
rules, we note that our Θ(n(log(p + k)!− log(p!)) can be seen as
a generalization of the bounds proven in [4] (by setting p = 0). We
also noted that the basic constructions used in the fooling sets are
reminiscent of those of [4]. When k is small, the gain in commu-
nication due to storage can be seen clearly: for instance, if k = 1,
then we get a communication complexity in Θ(n log p) instead of
Θ(np log(p). We then identified the communication complexity
of K-approval (which was not studied in [4]), and finally, we dis-
cussed stronger compilation functions. Surprisingly, we showed
that for a family of scoring rules including K-approval, even un-
der the much stronger compilation technique consisting of storing
anonymously the score of each candidate, we can design a protocol
which will not be more demanding for the agents than what can be
achieved with full storage of the profile.

7. ACKNOWLEDGEMENTS
This work was partially supported by the ANR project ComSoc

(ANR-09-BLAN-0305).

8. REFERENCES
[1] Nadja Betzler and Britta Dorn. Towards a dichotomy for the

possible winner problem in elections based on scoring rules.
Journal of Comp. and System Sciences, 76(8):812–836, 2010.

[2] Yann Chevaleyre, Jérôme Lang, Nicolas Maudet, and
Guillaume Ravilly-Abadie. Compiling the votes of a
subelectorate. In Proceedings of the Twenty-First
International Joint Conference on Artificial Intelligence
(IJCAI-09), pages 97–102, 2009.

[3] Yann Chevaleyre, Jérôme Lang, Nicolas Maudet, and Jérôme
Monnot. Possible winners when new candidates are added:
the case of scoring rules. In Proceedings of the 24th AAAI
Conference on Artificial Intelligence (AAAI-2010), pages
762–767, 2010.

[4] Vincent Conitzer and Tuomas Sandholm. Communication
complexity of common voting rules. In Proceedings of the 6th
ACM Conference on Electronic Commerce (EC-05), pages
78–87, 2005.

[5] Eyal Kushilevitz and Noam Nisan. Communication
complexity. Cambridge University Press, 1997.

[6] Ariel Procaccia. A note on the query complexity of the
condorcet winner problem. Information Processing Letters,
108(6):390–393, 2008.

[7] Ilya Segal. The communication requirements of social choice
rules and supporting budget sets. Journal of Economic Theory,
136(1):341-378, 2007

[8] Lirong Xia and Vincent Conitzer. Compilation complexity of
common voting rules. In Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence (AAAI-10), pages
915–920, 2010.

[9] Lirong Xia, Jérôme Lang, and Jérôme Monnot. Possible
winners when new alternatives join: New results coming up!
In Proceedings of the 10th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS-2011),
pages 829–836, 2011.

160

