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Abstract

We consider a framework for preference aggrega-
tion on multiple binary issues, where agents’ prefer-
ences are represented by (possibly cyclic) CP-nets.
We focus on the majority aggregation of the indi-
vidual CP-nets, which is the CP-net where the di-
rection of each edge of the hypercube is decided
according to the majority rule. First we focus on
hypercube Condorcet winners (HCWs); in particu-
lar, we show that, assuming a uniform distribution
for the CP-nets, the probability that there exists at
least one HCW is at least 1 — 1/e, and the expected
number of HCWs is 1. Our experimental results
confirm these results. We also show experimental
results under the Impartial Culture assumption. We
then generalize a few tournament solutions to se-
lect winners from (weighted) majoritarian CP-nets,
namely Copeland, maximin, and Kemeny. For each
of these, we address some social choice theoretic
and computational issues.

1 Introduction

In many multi-agent scenarios, the space of alternatives has a
combinatorial structure: there are p issues to decide on, each
issue ¢ takes a value from a set D;, and n agents (voters) gen-
erally have preferential dependencies among these issues. In
classical voting theory, voters submit their preferences as lin-
ear orders over the set of alternatives, and then a voting rule is
applied to select a set of winning alternatives. However, when
the set of alternatives has a multi-issue structure, the num-
ber of alternatives is exponential in the number of issues, and
therefore, as soon as the number of issues is not very small,
it is not realistic to ask voters to specify their preferences as
explicit linear orders.

Several other ways of proceeding have been considered:
(1) voting separately on each issue simultaneously, which is
known to lead to severe “multiple election paradoxes” [2];
(2) limiting the set of alternatives that voters may vote for,
which is quite arbitrary (who decides which alternatives are
allowed?), and leads the voters to express their preferences on
only a tiny fraction of the alternatives; (3) asking voters to
report only a (small) part of their preference relation and ap-
plying a voting rule that needs this information only, such as
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plurality, which is not always a bad idea, but the smaller the
part of their preference relation voters express, the more likely
it is that results will not be significant as soon as the number
of issues is large (2P > n); (4) imposing a domain restric-
tion such as separability (which allows for using method (1)
above), or a weaker restriction such as O-legality, which al-
lows for deciding on the issues one after the other [7]; (5)
using a compact preference representation language in which
the voters’ preferences are represented in a concise way; this
method does not require any domain restriction, but leads to
nontrivial computational issues.

In this paper, we take an approach that is intermediate be-
tween (3) and (5): we elicit only a part of the voters’ prefer-
ences — however, not a small part of it, but still, a part signif-
icantly smaller than the explicit specification of the full pref-
erences; and we use it to draw a (partial) preference relation,
using the semantics of a preference representation language,
namely CP-nets [1].

Group decision making in multi-issue domains via CP-net
aggregation has been considered in a number of papers, which
we briefly review in a structured (nonchronological) order.
Rossi et al. [11] were the first to address the aggregation of
CP-nets; given a collection of acyclic CP-nets, they define
several aggregation functions mapping the preference rela-
tions induced by the individual CP-nets to a collective pref-
erence relation. This approach was pushed further by Li et
al. [8], who give algorithms for computing Pareto-optimal al-
ternatives with respect to the preference relations induced by
the CP-nets, and fair alternatives with respect to a cardinaliza-
tion of these preference relations. Another path is followed
by Lang and Xia [7]; they also assume that the individual CP-
nets are acyclic, and furthermore share the same acyclic de-
pendence graph, and study a family of sequential voting rules
that consider the issues one after another, following the depen-
dence graph. Xia et al. [12] take still another direction: they
do not make any domain restriction on the individual CP-nets,
rather they consider separately every set of “neighboring” al-
ternatives differing only in the value of one issue, use a local
voting rule for deciding the common preferences over this set,
and finally, optimal outcomes are defined based on the aggre-
gated CP-net. They also introduce the notion of local Con-
dorcet winners, which are alternatives that beat each of their
neighbors in a pairwise majority duel. The latter notion was
studied further by Li et al. [9], who study some of its proper-



ties and propose (and implement) a SAT-based algorithm for
computing them.

In this paper, we follow the direction of [12; 9]. The input
consists of arbitrary consistent CP-nets on a multi-issue do-
main whose issues are all binary. Because every preference
relation on a multi-issue domain extends the preference rela-
tion induced by some consistent CP-net, this method does not
require any domain restriction. Then we go further in study-
ing the properties of local Condorcet winners, which we re-
name hypercube Condorcet winners (HCWs) for reasons that
will be made clear. After giving some background on CP-nets
in Section 2 and introducing the majoritarian aggregation of
CP-nets in Section 3, we recall the notion of HCWs in Sec-
tion 4 and give a simple complexity result about the existence
of HCWs. Then we focus on an important problem, namely
the worst-case and expected numbers of HCWs under vari-
ous assumptions. We give a theoretical analysis in Section 5
and an experimental analysis in Section 6. Lastly, we show
how a few standard tournament solutions can be generalized
in a natural way to inputs consisting of CP-nets, and focus on
three of them (Copeland, maximin and Kemeny).

2 Multi-issue Domains and CP-nets

Let X be a finite set of alternatives (or candidates). A vote
V is a linear order on X, i.e., a transitive, antisymmetric, and
total relation on X. The set of all linear orders on X is denoted
by L(X). An n-voter profile P is a collection of n votes, that
is, P=(W,...,V,), where V; € L(X) forevery j < n. The
set of all profiles on X is denoted by P(X). A (voting) rule
r: P(X) — 2% maps any profile to a subset of alternatives.

In this paper, the set of all alternatives X' is a multi-issue
domain. We have a set of issues T = {x1,...,%p} (p > 2),
where each issue x; takes values in a finite domain D;. In
this paper, we assume that all issues are binary: for every ¢
we have D; = {0;,1;}. The set of alternatives is X = D; X

-+ X D, an alternative is uniquely identified by its values on
all issues. For any alternative d= (dq,...,dp) and any issue
X;, WE let in = dl and J,i = (dl, e dl 1,dz+1, e ,dp).
Forany I C Z, welet Dy = Hx cr Di, and D_; = Dz\{x,}-

A CP-net N over X consists of two components: (a) a di-
rected graph G = (Z, E) and (b) a set of conditional linear
preferences >—% over D;, for any ¢ < p and any setting @ of
the parents of x; in G (denoted by Parg(x;)). These con-
ditional linear preferences > over D; form the conditional
preference table for issue x;, denoted by CPT'(x;). When G
is acyclic, AV is said to be an acyclic CP-net. The size of a
CP-net is the cumulative size of all its conditional preference
tables.

The preference relation >, induced by A is the tran-
sitive closure of {(a;, @, %) > (bz, 0,2Z) i < pu €
DParc(x7)7 Qj, b; € Du a; >‘ b17 Ze D_ (Parc(xl)U{XT})}
If > s is asymmetric then J\/ is consistent. 1If G is acyclic,
then we know that V' is consistent [1].

Because all issues are binary, a CP-net N can be visualized
as a hypercube with directed edges in a p-dimensional space,
where each vertex is an alternative, and any two neighboring
vertices differ in only one component (issue): for any ¢ < p

and dii € D_;, there is a directed edge connecting (0;, dil)
and (1;,d_;), and the direction of the edge is from (0;,d_;)

to (1;,d_;) if and only if (0;,d_;) = (1;,d_;). For any
alternative d € X and any ¢ < p, we let d[« ] denote the
neighbor of d that only differs from d in the ith issue.
Example 1 Let p = 3 and let N be a CP-net defined as fol-
lows: the directed graph has an edge from x; to Xy and an
edge from x5 to x3; the CPTs are CPT(x1) = {01 > 11},
CPT(XQ) = {01 0o = 12,17 ¢ 19 > 02}, OPT(Xg) =
{02 : 03 = 13,12 : 13 > 03}. N is illustrated in Figure 1.
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Figure 1: The hypercube representation of a CP-net. (For simplic-
ity, 000 represents the alternative 010203, etc.)

A linear order V extends a CP-net \V, denoted by V' ~ N/,
if it extends > s.

3 Majoritarian Hypercube Aggregation

We assume that what is known about the voters’ preferences
is their underlying (consistent) CP-nets, i.e., for every voter,
we know the direction of every edge in the hypercube. Such
a collection of consistent CP-nets will be called a hypercube
profile, or for short, an H-profile. For the sake of simplicity,
we also assume that there is an odd number of agents.
Definition 1 Let Z = {x1,...,X,} be a set of binary issues.

An H-profile over I is a collection P = (Ni,...,N,) of
consistent CP-nets over I. A profile P, = (V1,...,V,,) of
linear orders over X extends an H-profile P = (N1,...,N,,)

(denoted by Py, ~ P) if for every j < n, V; extends N.

Definition 2 Given an H-profile P = (N4, ..., N,,), the ma-
Jjoritarian aggregation M (P) of P is the CP-net N* where
for any pair of nezghborlng alternatives & = (¥_;,x;) and
§ = (Z_i,x}), we have & = nr~ Y if and only there is a major-
ity of agents j such that T =, 1.

Similarly, we can define the majoritarian aggregation for a
profile composed of (possibly inconsistent) CP-nets. The ma-
joritarian aggregation has been defined and studied previously
under different names [12; 8]. In the weighted majoritarian
aggregation W (P), each edge in the hypercube is associated
with a weight, defined as follows. Suppose Z >+ ¥, then,
the weight on the edge & — ¢ is w(Z — ¢) = |[{j < n :
=y G — i S ne g =n; T3

Example 2 We have two issues, S (build a swimming pool)
and T (build a tennis court), and the following H-profile.

voters 1 voters 2 voters 3
S T S«—T S noedge T
= S:T~T||T:5=8 = =
§-5 S:T~T||T:S~5 T>T S5 r-T

Note that the profile Py, consisting of the three linear pref-
erence relations (ST = ST = ST = ST, ST = ST »~
ST = ST, ST = ST = ST = ST) extends P. The
(weighted) majority aggregation of N1, No and N3 is the fol-
lowing CP-net, depicted with its induced preference relation.
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Note that although N7, Na, and N3 are consistent, their
majoritarian aggregation is not, as it contains a cycle.

We note that usually the majoritarian aggregation is rep-
resented compactly as a CP-net (called the majoritarian CP-
net), rather than directly as a hypercube. CP-nets are a good
representation for majoritarian aggregations because the ma-
joritarian aggregation preserves preferential independencies
of the individual CP-nets. Therefore, the more structure the
individual CP-nets share, the more compact the majoritarian
CP-net is. Given a preference relation >, x € Z,Y C 7\ {x}
and Z =T\ ({x} UY), we say that x is preferentially inde-
pendent of Y given Z with respect to >, which we denote
by Ind(x,Y, Z, ), if for any z;,z, € Dy, §,¥ € Dy,
and Z € Dy, we have (z;,¥,2) > (z},¥,Z) if and only if
(5,9, 2) > (x},7,Z). Similarly, x is preferentially inde-
pendent of Y given Z with respect to a CP-net AV, which we
denote by Ind(x,Y, Z,N), if Ind(x,Y, Z, =) holds for any
> extending > . We immediate obtain the following propo-
sition. Most proofs are omitted due to the space constraint.

Proposition1 Letx € Z,Y C I\ {x}and Z =T\ ({x} U
Y). If Ind(x,Y, Z,Nj) holds for every j < n, then we have
Ind(x,Y, Z, M(N1,...,Ny,))

On the other hand, Ind(x,Y,Z, M(Ni,...,N,)) may
hold even if Ind(x,Y, Z,N;) fails to hold for some j (and
even for every j). For instance, take N7 = {a > a,b > b,ab:
c-cab:c>¢cab:c¢cab:c>ch No={a>a,b>
byab:c > ¢ab: ¢ c,ab:c > ¢c,ab:c>ch Ny ={a >
a,b > byab:c > ¢ab:c> cab:c > ¢,ab: ¢ > c}. Then
M (N1, N2, N3) is the CP-net with no edges, where the local
preferences are {a > a,b > b,c > ¢}. The next proposition
shows that the size of the majoritarian aggregation (as a CP-
net) can be exponentially larger than the sum of the sizes of
the individual CP-nets.

Proposition 2 The largest ratio between the size of the ma-
joritarian CP-net and the sum of the sizes of the individual
CP-netsis 2P=2/(p — 1).

Proposition 2 only states that in the worst case, representing
the majoritarian aggregation as a CP-net is costly. However,
because of Proposition 1, we can expect the dependency graph
for the majoritarian CP-net, in practice, to have a limited num-
ber of edges, which can be computed easily by computing the
union of the edges in individual CP-nets.

4 Hypercube Condorcet Winners

Let P;, = (V4,...,V,,) be a profile of linear orders. We recall
that an alternative c is a Condorcet winner (CW) for Py, if for
every alternative b # ¢, c is preferred to b in a majority of
V;’s. Let CW (Pp) denote the set of Condorcet winner(s).
Definition 3 7 is a hypercube Condorcet winner (HCW)! for
P = (M,...,Ny) if for every neighbor §f of T, we have
T =pmep) U

I'This was called “local Condorcet winner” [12]. We use a differ-
ent name to emphasize that it is for binary multi-issue domains.

Let HCW(P) denote the set of all HCWs in the H-profile
P. We know from [9] (Theorem 1 and Corollary 1) that for
any H-profile P, Jp, .p CW(PL) € HCW(P), and the
inclusion is strict for some H-profile P.?

The following useful lemma states that any (possibly
cyclic) CP-net can be represented as the (weighted) majori-
tarian CP-net of an H-profile consisting of 2p — 1 consistent
CP-nets, whose size is no more than 2p — 1 times larger.

Lemma 1 Let N be a CP-net (consistent or not) over p bi-
nary variables. There exists an H-profile of 2p — 1 consistent
CP-nets P = (N1,...,Nop_1), such that (a) for every j < n,
the size of Nj is no larger than the size of N, (b) N' = M (P),
and (c) the weight of each edge in W (P) is 1.

Proposition 3 Deciding whether there exists at least one hy-
percube Condorcet winner for an H-profile is NP-complete.

Proof sketch: Membership is easy; the hardness proof
uses the following reduction from EXISTENCE OF NON-
DOMINATED OUTCOME IN A CP-NET, which is NP-
complete (Theorem 1 in [4]): to any CP-net N we associate
an H-profile P composed of the 2p — 1 CP-nets as in Lemma
1. & is an HCW for P iff Z is undominated in M (P). |

Note that Li et al. address the practical computation of
HCWs, via a reduction to SAT with cardinality formulas.

S How Many HCWs?

HCW is an important solution concept for majoritarian CP-
nets. Two questions naturally arise: (1) what is the probability
that there exists at least one HCW in the majoritarian CP-net,
and (2) what is the average number of HCWs?

The importance of these questions lies in the fact that if the
set of HCWs is empty most of the time, then this casts doubt
on the usefulness of the notion. On the other hand, if it is
likely to contain many alternatives, then it has little decisive
power, and listing all HCWs may even result in exponentially
large output. Fortunately, we argue that, at least under the fol-
lowing natural assumption on the distribution over profiles,
neither is the case. We assume that any CP-net (consistent or

not) is drawn with the same probability, which is 1/ op2" 7"
This distribution naturally induces a distribution for the ma-
joritarian CP-net, where the direction of each edge is drawn
i.i.d. uniformly at random (we recall that n is odd).

Proposition 4 The maximum number of HCWs is 2P~ 1,

Theorem 1 Suppose each CP-net is drawn i.i.d. uniformly
from the set of all CP-nets. The probability that there exists at
least one HCW in the majoritarian CP-net is at least 1 — %

Proof: Under this distribution the direction of each edge in
the majoritarian CP-net is generated i.i.d. uniformly at ran-

dom. Now, for every d e X, d is an HCW if for each
i < p, the edge between d and d[< i] goes in the direc-
tion d — d[« i]. Because the directions of these edges

are drawn independently, the probability that d is an HCW

is 2% Let EVEN (respectively, ODD) denote the set of alter-
natives d such that >, di is even (respectively, odd). Since

no two alternatives in EVEN are neighbours, for any pair of

Their results were established for a slightly different notion, due
to the handling of ties, but their proofs also hold for HCWs.



alternatives CZ: i/ in EVEN, the events “dis an HCW” and “y is
an HCW” are independent. Therefore, the probability that
-1
EVEN does not contain any HCW is (1 - 2%)21)
p—1
In(1-%)* =2"1.In(1- %), andIn(1 — %) < —%.

p—1
Therefore, In (1 — 2%)2 < —1 and the probability that

EVEN (and, symmetrically, ODD) does not contain any HCW
is at most \}E
Given that there is no HCW in ODD, intuitively the proba-
bility that there is no HCW in EVEN should be (slightly) less
than the (unconditioned) probability that there is no HCW in
EVEN. The existence of an HCW in ODD implies that all its
neighbors, which are all in EVEN, cannot be HCWs; therefore,
there seems to be a negative correlation between the events
“at least one HCW in ODD” and ““at least one HCW in EVEN,”
hence a positive correlation between “no HCW in ODD” and
“at least one HCW in EVEN,” and a negative correlation be-
tween the events “no HCW in ODD” and “no HCW in EVEN.”
Let Pr denote the uniform distribution over all (consistent or
not) CP-nets. We have the following claim, which is proved
by induction. We omit the proof due to the space constraint.

Claim 1 Pr(No HCW in EVEN|No HCW in ODD) <

Now,

1

NG
Therefore, the probability that there is no HCW overall is

no more than (%)2 = 1, which means that the probability

that there exists at least one HCW is at least 1 — é [ |

Theorem 1 is quite positive, because 1 — % is around 0.632,
which means that the probability of having at least one HCW
is significant. We conjecture that as p — oo, the probability
actually fends towards 1 — %

Proposition 5 Suppose each CP-net is drawn i.i.d. uniformly
from the set of all CP-nets. The expected number of HCWs in
the majoritarian CP-net is 1.

Proof: For each alternative, the probability that it is an
HCW is 1/2P. Therefore, the expected number of HCWs is

S sE[disan HCW] = 2¢ . L = 1. |

By Markov’s inequality, we obtain that the probability that
there are at least ¥ HCWs is at most 1/k. This shows that the
probability that we have many HCWs is low.

An arguably more natural distribution is the one where each
voter’s vote is a linear order and is drawn i.i.d. uniformly from
the set of all linear orders over X. For any profile P, of linear
orders over X, we can still compute the majoritarian CP-net
of the H-profile P, where Py, is an extension of P, and count
the number of HCWs. This setting is known as Impartial Cul-
ture, which is by far the most common probability distribution
in (computational or not) social choice theory for both theo-
retical analysis and simulations. The probability of the exis-
tence of one Condorcet winner (in non-multi-issue domains)
under Impartial Culture has been investigated (see e.g. [10;
51]), but the exact probability is still unknown. Surprisingly,
such probabilities are higher than one might expect.> For
HCWs, we have a similar observation in the next section,
where votes are drawn i.i.d. uniformly at random from all lin-
ear orders over all 27 alternatives.

3For example, for 20 alternatives and 37 voters, the probability
of the existence of a Condorcet winner is 0.33 by simulation [10].

6 Simulation Results

We run simulations to show the probability of the existence of
at least one HCW, as well as the average number of HCWs,
for the following two settings.

Setting 1 (Figure 2): The CP-nets are drawn i.i.d. uni-
formly; the number of issues ranges from 2 to 15; we gen-
erated 20000 samples for each setting. In Figure 2(a) we ob-
serve that the probability that there exists at least one HCW
is almost always above 0.632 ~ 1 — 1/e, and 0.632 seems to
be the limit as p increases. This observation is consistent with
Theorem 1, which only proves that 1 — 1/e is a lower bound.
In Figure 2(b) we observe that the average number of HCWs
is approximately 1 for any number of issues we have investi-
gated. This observation is consistent with Proposition 5.
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Figure 2: The direction of each edge in the hypercube is drawn
i.i.d. uniformly. (a) The probability that there exists at least one
HCW. (b) The average number of HCWs.

Li et al. [9] ran similar simulations to find the probability
that there exists at least one weak HCW (an alternative that
does not lose to any of its neighbors in pairwise elections).
However, they randomly generated CP-nets where each issue
has no more than 6 parents, while we do not have such a con-
straint on the number of parents of any issue.

Setting 2 (Figure 3): Each linear order over X is drawn
i.i.d. uniformly (i.e., Impartial Culture); the number of issues
ranges from 2 to 15; we tested the cases where the number
of voters is 501, 601, 701, 801, 901, and 1001; for each set-
ting we generated 10000 samples. In Figure 3(a) we observe
that the probability that there exists at least one HCW is al-
most 1 when there are 6 issues or more, and these probabilities
are insensitive to the number of voters (as long as it is larger
than 501). In Figure 3(b) we show the log average number of
HCWs when the number of voters is 1001 (results are similar
for other numbers of voters we have tested). We observe that
this number increases as the number of issues increases, and
there seems to be a linear correlation. These results justify
(experimentally) our conjecture that the probability of the ex-
istence of at least one HCW under Impartial Culture is larger
than the probability of the existence of at least one HCW when
the direction of each edge in the weighted majority graph is
drawn i.i.d. uniformly. They also suggest that under Impartial
Culture, we face the problem of having too many HCWs.

7 Hypercube-tournament Solution Concepts

All common tournament solution concepts can be naturally
extended to hypercubes. Note that hypercubes correspond to
partial tournaments on a multi-issue domain, and that extend-
ing tournament solution concepts to partial tournaments has
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Figure 3: The linear orders over X are drawn i.i.d. uniformly (Im-
partial Culture). (a) The probability that there exists at least one
HCW. When the number of issues is larger than 6, the probability is
almost one. (b) The log average number of HCWs.

been investigated in [3]. Therefore, the definitions below cor-
respond to those in [3] if we ignore the hypercube structure
of our partial tournaments. For each tournament solution 7',
we can define a voting rule over H-profiles by computing the
(weighted) majoritarian CP-net and applying the tournament
solution T to it. In previous work [12], we explored this idea
only for Schwartz. Here, we focus on Copeland, maximin, and

Kemeny. Let P be an H-profile, >7]3mj =M(P),and T € X.

7.1 H-Copeland

We recall that the Copeland score of an alternative, with re-
spect to a profile P, is the number of alternatives it beats in
pairwise elections,* and a Copeland winner is an alternative
with the maximum Copeland score. Let Copeland(P) denote
the set of all Copeland winners for P.

Given an H-profile P, we define the hypercube Copeland
score of an alternative to be the number of its neighbors it
beats in pairwise elections. This seems the most intuitive
way of defining a variant of the Copeland score when we
know only the hypercube. In both cases (Copeland and H-
Copeland), we maximize the number of outgoing edges in the
dominance graph, the difference is that in H-Copeland we use
the majority hypercube instead of the full majority graph.
Definition 4 (H-Copeland) Ler HC(Z,P) = #{i < p :
Z 5" @[« i]}. T is a hypercube Copeland winner for P if
it maximizes HC(Z, P). Let Hcopeland(P) denote the set of
hypercube Copeland winners for P.

Proposition 6 If HCW(P) # 0, then Hcopeland(P) =
HOW (P).

The next proposition studies the relationship between H-
Copeland winners and Copeland winners of the same profile.

Proposition 7 There exists an H-profile P and an exten-
sion Pr, of P such that Copeland(Pr) ¢ Hcopeland(P).
There exists an H-profile P' such that Hcopeland(P') &
UPLNP’ Copeland(Py).

Proof: Let P be composed of the following three CP-nets.

N N N3 M(N17N27N3)
ST<—3 ST——>ST ST<—5T ST<—3ST
T TA T
ST<«—0ST| |ST——>ST| |ST<—5T ST<«—3ST

“There are various methods for counting pairwise ties, but here
we assume an odd number of voters, so ties are excluded.

Let Vi = ST = ST » ST » ST be the extension of Ni;
the only extension of Ny is Vo = ST = ST = ST = ST,
and the only extension of N3 is V3 = ST = ST = ST >~
ST. Therefore, ST is a Copeland winner for Py, but not an
Hcopelana winner for P. Let P’ = (N7, N3, N3), where N]
isS:T =T;8S:T=T;T:S8=S;T:8 =8, N}
isS>=8;S:T>~T;S:T>TandNjisS = S;T >~
T; S:T>T.STisan Hcopeland Winner but not a Copeland
winner in any extension of P’ (P’ only has one extension). H

Proposition 8 Checking whether & is an H-Copeland winner

is CONP-complete.

Proof: Membership in CONP is straightforward. Hard-

ness is proved by a reduction from EXISTENCE OF NON-

DOMINATED OUTCOME IN A CP-NET, which is NP-

complete (Theorem 1 in [4]). Let A be the (possibly cyclic)

CP-net in an instance of EXISTENCE OF NON-DOMINATED

OUTCOME IN A CP-NET. We define a CP-net N/ over p + 1

issues as follows. Let I = {x1,...,Xp}.

e The restriction of A’ on D; when x,41 = 0 is /. That

is, forany i < p and any @ € Dp\(x,}, (05,0p41,%) =nr

(11’7 0p+1, ﬁ) if and only if (Oi, ﬂ:) N (11’7 ﬂ:)

e The restriction of A/ on D; when Xp+1 = 1is a CP-net

with no edges, such that for any i < p, 1; > 0,.

® X,,+1 has no incoming edges, and 0,41 > 1,41.

We note that the size of N’ is two times the size of A/ plus 1.
Now, by Lemma 1, there exists an H-profile P composed

of 2p + 1 consistent CP-nets such that M (P) = N’ and the

size of P is polynomial in N”. Let & = (1,...,1). Because &

only loses to (1,...,1,0) in their pairwise election, we have

HC(Z,P) = p — 1. Note that for any HCW d € D; in N,

(d,0) is an HCW for P, so that HC((d, 0), P) = p. Hence,
@ is an H-Copeland winner if and only if A/ has no HCW. B

7.2 H-maximin

Let Np(c;, ¢;) denote the number of votes that rank ¢; ahead
of ¢; in the profile P. We recall that the maximin rule selects
the alternatives ¢ maximizing min{Np(c,c’) : ¢ € X, #
c}. Let MM(P) denote the set of all maximin winners for P.
We define H-maximin as follows:

Definition 5 (H-maximin) For any H-profile P, let
Hmm(Z,P) = mini<,[{j < n @ & =5, Z[ i}
Z is a hypercube maximin winner for P if it maximizes
Hmm(Z, P). Let Hyaximin (P) denote the set of hypercube
maximin winners for P.

Note that Hyraximin 18 @ weighted H-tournament solution: it
is determined from the weighted majoritarian CP-net.
Proposition 9 If HCW(P) # 0, then Hypaximin(P) C
HCW(P).

The inclusion can be strict. Take the following H-profile
P = (N1,N3, N3), where N1 and Ny area : b > bya : b =
b;b:a > a;b:a > a,and N3is a > a;b = b. The weighted
majoritarian CP-netis a : b > b (weight 3); @ : b > b (weight
2);b:a > a(weight3); b : a > a (weight 2). Both ab and ab
are HCWs, while only ab is an H-maximin winner.
Proposition 10 There exists an H-profile P and an extension
Py, of P such that MM(Pr) € Huaximin(P). There exists an
H-profile P’ such that Hytaximin(P’) < UPﬁNP’ MM(Py).



Proof: The proposition can be proved with the same profiles
shown in the proof of Proposition 7. |

Proposition 11 Checking whether % is an H-maximin winner
is CONP-complete.

Proof: Membership in CONP is straightforward. The hard-
ness proof uses the same reduction as for H-Copeland. |

7.3 H-Kemeny

For any pair of linear orders V and V”, let d(V, V') denote the
number of pairs of alternatives {c, ¢’} on which V and V" dis-
agree. Givena profile P = (V4,...,V,,), a Kemeny consensus
for P is a linear order V' that minimizes > 7, d(V, Vj); an al-
ternative c is a Kemeny winner for P if c is ranked in the top
position in some Kemeny consensus for P. Let Kemeny(P)
denote the set of all Kemeny winners for P.

Now, we adapt the Kemeny rule to multi-issue domains as
follows. The main difference from Kemeny is that the dis-
tance function for H-Kemeny only counts the number of edges
in the hypercube on which two CP-nets differ.

Definition 6 Given two CP-nets N and N’ over p binary
variables, the distance dg (N, N') between N and N is the
number of edges in the hypercube on which N and N dif-
fer. Given an H-profile P = (N4,...,N,,) and a CP-net N,
the distance between N and P is defined by dy (N, P) =
> 1<j<n A (N, Nj). A hypercube Kemeny consensus for P

is a consistent CP-net N over {x1,...,Xp} that minimizes
the distance dg (N, P); an alternative T is a hypercube Ke-
meny winner (HKW) for P if & is undominated in some hy-
percube Kemeny consensus for P. We denote by HKcmcny(P)
the set of all HKWs for P.

We note that H-Kemeny is a weighted H-tournament solution.
Proposition 12 Hxemeny(P) 2 HCW(P).

The inclusion can be strict, even when HCW (P) # . (See
the profile P in the proof of Proposition 7.)

Proposition 13 There exists an H-profile P and an exten-
sion P, of P such that Kemeny(Pr) ¢ Hxkemeny(P).
There exists an H-profile P' such that Hgemeny(P') &
Upi . p Kemeny(Py).
Proof: The proposition can be proved with the same profiles
shown in the proof of Proposition 7. |
Next, we study the computational complexity of deciding
whether an alternative & is an H-Kemeny winner. We adopt
a compact representation for CP-net entries (already used in
[4]) that uses “else” to represent all the valuations of the par-
ents that are not mentioned in the CPT.

Proposition 14 Checking whether T is an H-Kemeny winner
is PHP-hard.

Proof sketch: Hardness is proved by reduction from KE-
MENY WINNER, which is PHP-complete [6]. In an instance of

KEMENY WINNER, we are given a profile P, = (V1,...,V,)
over C and an alternative ¢ € C. We are asked whether c is
a Kemeny winner. The idea behind the construction is that
for j < |C|, we first identify an alternative &; in X'. Then, we
“embed” the weighted majority graph of Py, into the weighted
majoritarian CP-net, such that each edge ¢; — c¢; in the
weighted majority graph of P;, corresponds to a path from

€; to €;. The length of each of these paths is 2 and they are
disjoint (except the start point and the end point). With this
construction, ¢; is a Kemeny winner if and only if é; is an
H-Kemeny winner. The details are omitted.

8 Future Work

We can extend our majoritarian approach to multi-issue do-
mains with non-binary issues as follows: for any issue ¢ and
any d_; in D_;, we compute the local (weighted) majority
graph based on agents’ local preferences over x;.

There are some open questions left for future research. Fig-
ure 2(a) suggests that when each CP-net is generated i.i.d. uni-
formly at random, the probability that there exists at least one
HCW in the majoritarian CP-net goesto 1 — 1/e as p — oo.
Figure 3(b) suggests that under the impartial culture assump-
tion, the log average number of HCWs is linear in the number
of issues. It would be desirable to find theoretical proofs for
these observations.

Another important direction is to investigate other tourna-
ment solutions, such as Slater, Banks, and the uncovered set.
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