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Abstract

Several real-world situations can be represented in terms of agents that have prefer-
ences over activities in which they may participate. Often, the agents can take part
in at most one activity (for instance, since these take place simultaneously), and
there are additional constraints on the number of agents that can participate in an
activity. In such a setting we consider the task of assigning agents to activities in a
reasonable way. We introduce the simplified group activity selection problem provid-
ing a general yet simple model for a broad variety of settings, and start investigating
the case where upper and lower bounds of the groups have to be taken into account.
We apply different solution concepts such as envy-freeness and core stability to our
setting and provide a computational complexity study for the problem of finding
such solutions.

1 Introduction

Several real-world situations can be represented in terms of agents that have preferences
over activities in which they may participate, subject to some feasibility constraints on the
way they are assigned to the different activities. In this respect, ‘activity’ should be taken
in a wide sense; here are a few examples, each with its specificities which we will discuss
further:

1. a group of co-workers may have to decide in which project to work, given that each
project needs a fixed number of participants;

2. the participants to a big workshop, who are too numerous to fit all in a single restau-
rant, want to select a small number of restaurants (say, between two and four) out of
a wider selection, with different capacities, and that serve different types of food, and
to assign each participant to one of them;

3. a group of pensioners have to select two movies out of a wide selection, to be played
simultaneously in two different rooms, and each of them will be able to see at most
one of them;

4. a group of students have to choose one course each to follow out of a selection, given
that each course opens only if it has a minimum number of registrants and has also
an upper bound;

5. a set of voters want to select a committee of k representatives, given that each voter
will be represented by one of the committee members.

While these examples seem to vary in several aspects, they share the same general
structure: there is a set of agents, a set of available activities; each agent has preferences
over the possible activities; there are constraints bearing on the selection of activities and the
way agents are assigned to them; the goal is to assign each agent to one activity, respecting
the constraints, and respecting as much as possible the agents’ preferences.

Sometimes the set of selected activities is fixed (as Example 1), sometimes it will be
determined by the agents’ preferences. The nature of the constraints can vary: sometimes

1A previous version of this paper appeared in the proceedings of ADT’17 [8].
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there are constraints that are local to each activity (typically, bounds on the number of
participants, although we might imagine more complex constraints), as Examples 1, 2, 4, and
also 3 if the rooms have a capacity smaller than the number of pensioners; sometimes there
are global constraints, that bear on the whole assignment (typically, bounds on the number
of activities that can be selected; once again, we may consider more complex constraints), as
in Examples 2, 3, 5. Sometimes each agent must be assigned to an activity (as in Example
1), sometimes she has the option of not being assigned to any activity.

This class of problems can be seen as a simplified version of the group activity selection
problem (GASP), which asks how to assign agents to activities in a “good” way. In the
original form introduced by Darmann et al. [9], agents express their preferences both on the
activities and on the number of participants for the latter; in general, these preferences are
expressed by means of weak orders over pairs “(activity, group size)”. Darmann [7] considers
the variant of GASP in which the agents’ preferences are strict orders over such pairs and
analyzes the computational complexity of finding assignments that are stable or maximize
the number of agents assigned to activities.

Our model considers a simplified version of the group activity selection problem, called
s-GASP. Here, agents only express their preferences over the set of activities. However, the
activities come with certain constraints, such as restrictions on the number of participants,
concepts like balancedness, or more global restrictions. The goal is again to find a “good”
assignment of agents to activities, respecting both the agents’ preferences as well as the
constraints.

But what is a good assignment? Clearly, this essentially depends on the application on
hand, but there are several concepts in the social choice and game theory literature that
propose for an evaluative solution. We consider two classes of criteria for assessing the
quality of an assignment:

• solution concepts that mainly come from game theory and that aim at telling whether
an assignment is stable enough (that is, immune to some types of deviations) to be
implemented. First, individual rationality requires that each agent is assigned to an
activity she likes better than not being assigned to any activity at all. Then, a solution
concept considered both in hedonic games, where coalition building is studied, and in
matching theory, is the notion of stability. It asks whether the assignment is stable
in the sense that no agent would want to or be able to deviate from her coalition,
her match, or in our case, her assigned activity. Besides considering different variants
of core stability, it also makes sense in our setting to investigate variations of virtual
stability, meaning that it is not possible that an agent deviates from her assigned
activity due to the given constraints.

• criteria that mainly come from social choice theory and that measure, qualitatively or
quantitatively, the welfare of agents. A common quality measure in terms of efficiency
of an assignment is the notion of Pareto optimality: there should be no feasible assign-
ment in which there is an agent that is strictly better off, while the remaining agents
do not change for the worse. More generally, one may wish to optimize social welfare,
for some notion of utility derived from the agents’ preferences: for instance, one may
simply be willing to maximize the number of agents assigned to an activity. If fairness
is important in the design, the notion of envy-freeness makes sense: an assignment
respecting the constraints is envy-free if no agent strictly prefers the activity another
agent is assigned to.

Related Work.

Apart from GASP, our model is related to various streams of work:
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Course allocation, e.g. [5, 11, 17, 22]. Students bear preferences over courses they would
like to be enrolled in (these preferences are typically strict orders), and there are usually
constraints given on the size of the courses. Courses will only be offered if a minimum number
of participants is found, and there are upper bounds due to space or capacity limitations.
In particular, Cechlárová and Fleiner [5] consider a course-allocation framework, so for
them it makes sense that one agent can be matched to more than one activity (course),
while Kamiyama [17] and Monte and Tumennnasan [22] consider the case in which an agent
can be assigned to at most one activity (project). The latter works are very close to our
setting with constraints over group sizes. In contrast to the above works however, our
setting contains a dedicated outside option (the void activity), and agents’ preferences are
represented by weak orders over activities instead of strict rankings. In addition, our setting
has a certain vicinity to the assignment problems considered by Arulselvan et al. [2] and
Garg et al. [10].

Hedonic games (see the recent survey by Aziz and Savani [3]) are coalition formation
games where each agent has preferences over coalitions containing her. The stability notions
we will focus on are derived from those for hedonic games. However, in our model, agents
do not care about who else is assigned to the same activity as them, but only on the activity
to which they are assigned to.2

In multiwinner elections, there is a set of candidates, voters have preferences over single
candidates, and a subset of k candidates has to be elected. In some approaches to multi-
winner elections, each voter is assigned to one of the members of the elected committee,
who is supposed to represent her. Sometimes there are no constraints on the number of
voters assigned to a given committee member (as is the case for the Chamberlin-Courant
rule [6]), in which case each voter is assigned to her most preferred committee member; on
the other hand, for the Monroe rule [21], the assignment has to be balanced. A more general
setting, with more general constraints, has been defined by Skowron et al. [24]. Note that
multiwinner elections can also be interpreted as resource allocation with items that come in
several units ([24]) and as group recommendation (Lu and Boutilier [20]). While assignment-
based multiwinner elections problems are similar to simplified group activity selection, an
important difference is that for the former, stability notions play no role, as the voters are
not assumed to be able to deviate from their assigned representatives.

Contents and Outline.

In this work, we will take into account various solution concepts and ask two questions:
First, do “good” assignments exist? Can we decide this efficiently? And if they exist, can
we find them efficiently? Our second concern is optimization: we are looking for desirable
assignments that maximize the number of agents which can be assigned to an activity.
Again, we may ask whether an assignment that is optimal in this sense exists, and we can
try to find it.

We will focus on one family of constraints concerning the size of the groups—we assume
that each activity comes with a lower and an upper bound on the number of participants—
and give a detailed analysis of the described problems for this class.

Our results for this class are twofold. First, we show that it is often possible to find
assignments with desirable properties in an efficient way: we propose several polynomial
time algorithms to find good assignments or to optimize them. We complement these
findings with NP- and coNP-completeness results for certain solution concepts. Whenever

2Still, it is possible to express simplified group activity selection within the setting of hedonic games, by
adding special agents corresponding to activities, who are indifferent between all locally feasible coalitions.
See the work by Darmann et al. [9] for such a translation for the more general group activity selection
problem. But it is a rather artificial, and overly complex, representation of our model, which moreover does
not help characterizing and computing solution concepts.
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we encounter computational hardness, we identify tractable special cases: we will see that
basically all our problems can be solved in polynomial time if there is no restriction on
the minimum number of participants for the activities to take place. An overview of our
computational complexity results is given in Table 1 in Section 3; due to space constraints,
we do not elaborate all proofs. Second, we show that also in this class of problems considered,
there is a certain tension between the concepts of envy-freeness and Pareto optimality, even
for small instances.

The remainder of this work is organized as follows. In Section 2, we formally introduce
the simplified model as well as possible constraints and several solution concepts. Section 3
is the main part of the paper and provides an analysis of the computational complexity of
the questions described above. Section 4 deals with the tension between envy-freeness and
Pareto optimality. In Section 5, we conclude and discuss future directions of research.

2 Model, Constraints, and Solution Concepts

We start with defining our model and with introducing the solution concepts we want to
consider.

2.0.1 Simplified Group Activity Selection, Constraints.

An instance (N,A, P,R) of the simplified group activity selection problem (s-GASP) is given
as follows. The set N = {1, . . . , n} denotes a set of agents and A = A∗ ∪ {a∅} a set of
activities with A∗ = {a1, . . . , am}, where a∅ stands for the void activity. An agent who is
assigned to a∅ can be thought of as not participating in any activity. The preference profile
P = 〈%1, . . . ,%n〉 consists of n votes (one for each agent), where %i is a weak order over
A (with strict part �i and indifference part ∼i) for each i ∈ N . The set R is a set of side
constraints that restricts the set of assignments.

A mapping π : N → A is called an assignment. Given assignment π, #(π) = |{i ∈
N : π(i) 6= a∅}| denotes the number of agents π assigns to a non-void activity; for activity
a ∈ A, πa := {i ∈ N : π(i) = a} is the set of agents π assigns to a.

The goal will be to find “good” assignments that satisfy the constraints in R. The
structure of the set R depends on the application. Some typical kinds of constraints are
(combinations of) the following cases:

1. each activity comes with a lower and/or upper bound on the number of participants;

2. no more than k activities can have some agent assigned to them;

3. the number of voters per activity should be balanced in some way.

Intuitively, if there are no constraints or the constraints are flexible enough, then agents
go where they want and the problem becomes trivial. If the constraints are tight enough
(e.g., perfect balancedness, provided |A| and |V | allow for it), then some agents are generally
not happy, but they are unable to deviate because most deviations violate the constraints.
The interesting cases can therefore be in between these two extreme cases.

In this work, we will start investigations for s-GASP for the first class of constraints: We
assume that each activity a ∈ A∗ comes with a lower bound `(a) and an upper bound u(a),
and all constraints in R are of the following type: for each a ∈ A∗, |πa| ∈ {0} ∪ [`(a), u(a)].
We lay particular focus on the special cases of `(a) = 1 and u(a) = n respectively.
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2.0.2 Feasible Assignments, Solution Concepts.

Let an instance (N,A, P,R) of s-GASP be given. A feasible assignment is an assignment
meeting the constraints in R. We will consider the following properties. A feasible assign-
ment π is

• envy-free if there is no pair of agents (i, j) ∈ N × N with π(j) ∈ A∗ such that
π(j) �i π(i) holds;

• individually rational if for each i ∈ N we have π(i) % a∅;

• individually stable if there is no agent i and no activity a ∈ A such that (i) a �i π(i)
and (ii) the mapping π′ defined by π′(i) = a and π′(k) = π(k) for k ∈ N \ {i} is a
feasible assignment;

• core stable if there is no set E ⊆ N and no activity a ∈ A such that (i) a �i π(i) for
all i ∈ E, (ii) πa ⊂ E holds if a ∈ A∗, and (iii) the mapping π′ defined by π′(i) = a
for i ∈ E and π′(k) = π(k) for k ∈ N \ E is a feasible assignment; (Note that the
respective activity a to which the set E of agents wishes to deviate must be either a∅
or currently unused.)

• strictly core stable if there is no set E ⊆ N and no activity a ∈ A such that (i) a %i π(i)
for all i ∈ E where a �i π(i) for at least one i ∈ E, (ii) πa ⊂ E holds if a ∈ A∗, and
(iii) the mapping π′ defined by π′(i) = a for all i ∈ E and π′(k) = π(k) for k ∈ N \E
is a feasible assignment;

• Pareto optimal if there is no feasible assignment π′ 6= π such that π′(i) %i π(i) for all
i ∈ N and π′(i) �i π(i) for at least one i ∈ N ;

For the class of constraints we consider, the notion of virtual stability is interesting. It
requires that any deviation from the assigned towards a more preferred activity a violates
the capacity constraints of a. Formally, we define the following stability concepts (for the
sake of conciseness we set `(a∅) = 1 and u(a∅) = n).

A feasible assignment π is

• virtually individually stable if there is no agent i and no activity a ∈ A with `(a) ≤
|πa|+ 1 ≤ u(a) such that a �i π(i) holds;

• virtually core stable if there is no set E ⊆ N and no activity a ∈ A with `(a) ≤ |E| ≤
u(a) such that (i) a �i π(i) for all i ∈ E, and (ii) πa ⊂ E holds if a ∈ A∗;

• virtually strictly core stable if there is no set E ⊆ N and no activity a ∈ A with
`(a) ≤ |E| ≤ u(a) such that (i) a %i π(i) for all i ∈ E where a �i π(i) for at least one
i ∈ E, and (ii) πa ⊂ E holds if a ∈ A∗.

Note that as in the definition of core stability, also in virtual core stability the respective
activity a to which the set E of agents wishes to deviate must be either the void activity a∅
or currently unused.

Finally, an individually rational assignment π is maximum individually rational if for
all individually rational assignments π′ we have #(π) ≥ #(π′). Analogously, maximum
feasible/envy-free/. . . /virtually strictly core stable assignments are defined.

The relationships between the solution concepts are shown in Figure 1. Notably for none
of the relations the converse holds as well. As the following theorem shows, the technical
subtleties of the solution concepts lead to some surprising results. This also fixes an error in
the corresponding figure in our previous work [6] where we wrongly claimed that (virtual)
core stability implies (virtual) individual stability.

Theorem 1 There are s-GASP-instances with assignments which are
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Pareto optimal strictly core stable individually stable

core stable
virtually strictly

core stable
virtually

individually stable

virtually core stable individually rational

Figure 1: Relations between the solution concepts we consider, where an arrow directed
from A to B means A implies B; e.g., a Pareto optimal assignment is also core stable.

1. (virtually) core stable but neither (virtually) individually stable nor (virtually) strictly
core stable,

2. virtually strictly core stable but not Pareto optimal,
3. Pareto optimal but not virtually strictly core stable,
4. individually stable but not individually rational,
5. individually stable and individually rational but not virtually individually stable.

Proof: We give a proof for the first statement and refer to the Appendix for the remaining
ones. Let A∗ = {a, b}, N = {1, 2, 3, 4}, a �i b �i a∅ for i ∈ {1, 2} and b �j a �j a∅ for
j ∈ {3, 4}. Furthermore `(a) = 1 and `(b) = 2. The assignment π with πa = {1} and
πb = {2, 3, 4} is not individually stable: the assignment π∗ with πa∗ = {1, 2} and πb∗ = {3, 4}
is an improvement for agent 2. The assignment π∗ also contradicts strict core stability of
π, as activity a and the coalition E = {1, 2} meet the conditions. The assignment π is core
stable: the only possible coalition would be E = {2}, but the transition to activity a is not
permitted as a is neither the void activity nor unused under π. Analogously, it follows that
π is also virtually core stable but neither virtually individually stable nor virtually strictly
core stable. �

3 Computational Complexity for s-GASP with Group
Size Constraints

We will now consider the computational complexity of s-GASP for various solution concepts.
An overview of our results is given in Table 1.

3.1 Finding “Good” Assignments

The first interesting question is whether “good” assignments exist and how to find them.
Obviously, assigning the void activity to every agent results in a feasible, individually ratio-
nal and envy-free assignment. However, this is not a satisfying solution in terms of stability
because agents will want to deviate. The good news is that for several stability concepts, a
corresponding assignment always exists and can efficiently be found.

Theorem 2 A strictly core stable assignment always exists and can be found in polynomial
time.

Recall that a strictly core stable assignment is also core stable and individually stable.
Hence, as a consequence of the above theorem, also a core stable and an individually stable
assignment always exist and can efficiently be found. As it turns out, an analogous result
holds for virtually individually stable assignments.
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find assignment that is general u(a) = n `(a) = 1

feasible in P (Prop 6) in P (Prop 6) in P (Prop 6)

individually rational in P (Thm 3) in P (Thm 3) in P (Cor 19)

envy-free in P (trivial) in P (trivial) in P (trivial)

individually stable in P (Thm 2) in P (Thm 2) in P (Cor 19)

core stable in P (Thm 2) in P (Thm 2) in P (Cor 19)

strictly core stable in P (Thm 2) in P (Thm 2) in P (Cor 19)

virtually individually stable in P (Thm 3) in P (Thm 3) in P (Cor 19)

virtually core stable NP-c (Cor 5) NP-c (Cor 5) in P (Cor 19)

virtually strictly core stable NP-c (Thm 4) NP-c (Thm 4) in P (Cor 19)

Pareto optimal NP-h (Thm 17) NP-h (Thm 17) in P (Thm 18)

is there an assignment π with
#(π) ≥ k (k ∈ N) that is

general u(a) = n `(a) = 1

feasible in P (Prop 6) in P (Prop 6) in P (Prop 6)

individually rational NP-c (Thm 7;
Thm 10 of [5])

NP-c (Thm 7) in P (Thm 8)

envy-free NP-c (Thm 16) in P (trivial) ?

individually stable ? ? in P (Cor 19)

core stable ? ? in P (Cor 19)

strictly core stable NP-c (Thm 15) NP-c (Thm 15) in P (Cor 19)

virtually individually stable NP-c (Thm 14) NP-c (Thm 14) in P (Cor 19)

virtually core stable NP-c (Cor 5) NP-c (Cor 5) in P (Cor 19)

virtually strictly core stable NP-c (Thm 4) NP-c (Thm 4) in P (Cor 19)

Pareto optimal NP-h (Thm 20) ? in P (Thm 18)

Table 1: Overview of results for constraints |πa| ∈ {0} ∪ [`(a), u(a)], a ∈ A∗.

Theorem 3 A virtually individually stable assignment always exists and can be found in
polynomial time.

Proof: In an instance (N,A, P,R) of s-GASP, we initially assign each agent to a∅, i.e., set
π(i) := a∅ for i ∈ N . For a ∈ A∗ with `(a) ≥ 2, if no agent is assigned to such a, then
`(a) ≤ |πa| + 1 cannot hold. Hence, in what follows, we only consider activities a ∈ A∗

with `(a) = 1. For 1 ≤ i ≤ n, assign agent i to the best ranked such activity a �i a∅ with
|πa| < u(a) and update π (i.e., set π(i) := a while π(j) remains unchanged for j ∈ N \ {i}).
It is easy to see that the resulting assignment π is virtually individually stable. �

In contrast, a virtually core stable (and thus a virtually strictly core stable) assignment
does not always exist as Example 26 (see appendix) shows; in particular, the problem
to decide whether or not a virtually strictly core stable assignment exists turns out to be
computationally difficult.

Theorem 4 It is NP-complete to decide if there is a virtually strictly core stable assignment,
even when for each activity a ∈ A∗ we have u(a) = n.

In the instance considered in the proof of the above theorem (see Appendix), an assign-
ment is virtually strictly core stable if and only if it is virtually core stable. As a consequence,
we get the following corollary.

Corollary 5 It is NP-complete to decide if there is a virtually core stable assignment, even
if for each activity a ∈ A∗ we have u(a) = n.
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However, for the case of `(a) = 1 for each a ∈ A∗, we get a positive complexity result
(see Section 3.2). In particular, we can show that in this case a virtually strictly core stable
assignment that maximizes the number of agents assigned to a non-void activity can be
found in polynomial time.

Turning to Pareto optimality, in the special case of `(a) = 1 for each a ∈ A∗, there is
a simple algorithm to compute a Pareto optimal assignment. In that case, it is easy to see
that a Pareto optimal assignment is always individually rational. Thus, neglecting activities
ranked below a∅, we start with the assignment π(i) = a∅ for each i ∈ N and iteratively
assign an agent to the best-ranked among the activities a with |πa| < u(a). However, in
the case of `(a) = 1 for each a ∈ A∗ we can even find a Pareto optimal assignment that
maximizes the number of agents assigned to a non-void activity in polynomial time (see
Section 3.2).

3.2 Maximizing the Number of Agents Assigned to a Non-Void
Activity

We now turn to an optimization problem: Among all feasible assignments that feature a
certain property, one is usually interested in finding one that maximizes the number of
agents that are assigned to a non-void activity, thus keeping the number of agents who
cannot be enrolled in any activity low.

3.2.1 Feasible and Individually Rational Assignments

On the positive side, if we are only interested in a feasible assignment maximizing the number
of agents assigned to a non-void activity, we can find such an assignment in polynomial time.

Proposition 6 In polynomial time we can find a feasible assignment that maximizes the
number of agents assigned to a non-void activity.

But already for individual rational assignments it is hard to decide whether all agents
can be assigned to a non-void activity.

Theorem 7 It is NP-complete to decide if there is an individually rational assignment that
assigns each agent to some a ∈ A∗, even if for each activity a ∈ A∗ we have u(a) = n.

However, if we assume that each activity admits a group size of 1, then we can find an
optimal individually rational assignment efficiently.

Theorem 8 If for each activity a ∈ A∗ we have `(a) = 1, then in polynomial time we can
find a maximum individually rational assignment.

Proof: Reduction to max integer flow with upper bounds which is solvable in polynomial
time (see, e.g., Ahuja et al. [1]) . Given an instance I = (N,A, P,R) of s-GASP with
`(a) = 1 for all a ∈ A∗, we construct an instance M of max integer flow with directed
graph G = (V,E). Set V := {s, t} ∪N ∪A∗, and let the edges and their capacities be given
as follows: for each i ∈ N , introduce edge (s, i) with capacity 1; for each a ∈ A∗ and i ∈ N
introduce an edge (i, a) of capacity 1 if a %i a∅ holds; for each a ∈ A∗, introduce edge (a, t)
of capacity u(a). It is easy to see that a max integer flow from s to t induces a maximum
individually rational assignment in I and vice versa. �

In the remainder of this subsection, we consider a special kind of constraints. We assume
that for each activity, the upper bound equals the lower bound, i.e., for all activities a ∈ A∗
we have `(a) = u(a) = q for some q ∈ N—an activity can only take place if exactly q agents
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sign up for it. In this case, maximizing the number of agents assigned to an activity is
the same as maximizing the number of activities that can take place. These constraints
can also be thought of as asking for some kind of balancedness (hence can also be seen
as belonging to type 3 of the constraints presented in Section 2.0.1) and seem natural in
many applications: For example, for q = 1, the time slots available for taking an oral exam
with a teacher can be seen as activities on which students express their preferences. Each
student can only be assigned to one of these dates. For q = 2, the activities could be squash
courts or climbing routes and can only be used by pairs of agents. In both settings, one
is interested in satisfying as many students/players as possible (as well as in charging the
maximum number of time slots/courts or routes).

Finding maximum individually rational assignments for such settings turns out to be
solvable in polynomial time for q = 1. The same holds for two-player activities (q = 2). In
contrast, for q ≥ 3, the problem becomes NP-complete.

We will also make use of the following notation: Let A′ ⊆ A∗ be a subset of non-void
activities. The notation A′ %i a∅ denotes that agent i does not strictly prefer the void
activity compared to any of the activities in A′. When we use this notation to define a
preference order for an agent i it means that we may choose any order of these activities
such that a %i a∅ for all a ∈ A′ and a∅ %i b for all b ∈ A \A′.

Theorem 9 Let q ∈ {1, 2}. Further, let `(a) = u(a) = q for each activity a ∈ A∗. Then,
we can compute a maximum individually rational assignment in polynomial time.

Proof: We show that any instance of s-GASP with `(a) = u(a) = q for each activity a ∈ A∗
can be reduced to Maximum Matching in polynomial time. Let I = (N,A, P,R) be such
an instance of s-GASP.

Let us first consider the case q = 1. We construct a bipartite graph G = (VN ∪ VA, E)
as follows: Let VN := {vi | i ∈ N} and VA := {va | a ∈ A∗}, i.e., we create a vertex vi for
each agent i ∈ N and a vertex va for each activity a ∈ A∗. For each pair (vi, va) ∈ VN × VA
we create the edge {vi, va} ∈ E if and only if agent i ranks activity a higher than the void
activity. It is easy to see that a maximum matching in the constructed graph corresponds
to a maximum individually rational assignment for the given instance of s-GASP.

Let us now consider the case q = 2. We construct a graph G = (VN ∪ VA ∪ VA′ , E) as
follows: First, we create the same vertex sets VN and VA as in the previous case. Then,
we create another vertex set V ′A := {v′a | a ∈ A∗} that contains a copy of each vertex in
VA, i.e., each activity a ∈ A∗ is represented by exactly two vertices. Informally, va and
v′a represent the two available places of each activity and each agent that is interested in
the activity is therefore interested in both of these places. For each activity a ∈ A∗ and
each agent i ∈ N , we create the edges {vi, va} ∈ E and {vi, v′a} ∈ E if and only if agent
i ranks the activity a higher than the void activity (this preference does not have to be
strict). Additionally, we create the edges {va, v′a} ∈ E for each activity a ∈ A∗. Note that
the graph is not bipartite anymore. W.l.o.g. we can assume that for each activity a ∈ A∗ a
maximum matching in the constructed graph either contains {va, v′a} or two edges {vi, va},
{vj , v′a} for some i, j ∈ N with i 6= j (if only one of the vertices va, v

′
a is matched, we simply

replace the corresponding edge with {va, v′a}). The first part represents that no agent is
assigned to activity a and the second part that agents i and j are both assigned to a. It is
easy to see that such a maximum matching corresponds to a maximum individually rational
assignment for the given instance of s-GASP(see Figure 2 in the Appendix for an example). �

Corollary 10 Let q ∈ {1, 2}. Further, let `(a) = u(a) = q for each activity a ∈ A∗. Then,
we can decide in polynomial time if there is an individually rational assignment that assigns
each agent to some a ∈ A∗.
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The above result also holds for the case that the groups sizes are all in the interval [1, 2]
(see Appendix; the below corollary also follows from a more general theorem for weighted
many-to-one matchings by Arulselvan et al. [2]).

Corollary 11 Let 1 ≤ `(a) ≤ u(a) ≤ 2 for each activity a ∈ A∗. Then, we can decide in
polynomial time if there is an individually rational assignment that assigns each agent to
some a ∈ A∗.
Theorem 12 Let q ≥ 3. It is NP-complete to decide if there is an individually rational
assignment that assigns each agent to some a ∈ A∗, even if for each activity a ∈ A∗ we have
`(a) = u(a) = q.

Proof: Membership in NP is easy to see. We show NP-hardness by reduction from Perfect
H-matching, where we are given a graph G = (V,E) and a second graph H. The task is
to cover the graph G with vertex-disjoint copies of H, i.e., the vertex sets of the copies of
H must be a partition of V . The problem to decide if such a cover exists is NP-complete
for all graphs H containing a component with at least three vertices [18] (our notation is
similar to Berman et al. [4]). Given an instance of Perfect H-matching, where H is the
complete graph on q vertices (i.e., a clique of size q), we construct the instance of s-GASP
as follows.

Let V = {v1, v2, . . . , vn} be the set of vertices of G. Further, let cq be the number of
cliques of size q in G and let C := {Cj | 1 ≤ j ≤ cq} be the corresponding subsets of vertices.
Note that C can be computed in polynomial time since q is a constant. For each clique
Cj ∈ C we create an activity aj . The set A of activities is then A = {a∅} ∪

⋃q
j=1{aj}.

Then, we create an agent i for each vertex vi and construct her preference as follows: Let
A+
i be the set of activities corresponding to the cliques {Cj ⊆ C | vi ∈ Cj}, i.e., the cliques

of size q that contain the vertex vi. Then, we set A+
i %i a∅ %i A \ A+

i , where the ranking
of the activities in A+

i and A \ A+
i can be chosen arbitrarily. The restrictions R are given

by |πa| ∈ {0, q} for all a ∈ A∗. Then there exists a vertex-disjoint cover of G if and only if
there is an individually rational assignment as required.

“⇒” Let S ⊆ C cover the graph with vertex-disjoint copies of the complete graph with
q vertices. For each clique Cj ∈ S, we assign all agents i where vi ∈ Cj to the activity
aj . By construction, the restrictions are satisfied and each agent is assigned to exactly one
(non-void) activity ranked higher than a∅. Hence, the assignment is individually rational.

“⇐” Let π be an individually rational assignment of the agents to non-void activities
that satisfies |πa| ∈ {0, q} for each activity a ∈ A∗. Let J be the set of indices of the
activities aj with |πaj | = q. Then, S =

⋃
j∈J {Cj} covers the graph G with vertex-disjoint

copies of the complete graph with q vertices (this follows from the fact that each agent is
assigned to exactly one non-void activity). �

Corollary 13 Let q ≥ 3 and k ∈ N. It is NP-complete to decide if there is an individually
rational assignment that assigns at least k agents to activities, even if for each activity
a ∈ A∗ we have `(a) = u(a) = q.

3.2.2 Stable and Envy-Free Assignments

Unfortunately, deciding whether or not there is a a virtually individually stable or strictly
core stable assignment exists turns out to be compuationally hard even if the upper bound
of each activity equals n.

Theorem 14 It is NP-complete to decide if there is a virtually individually stable assign-
ment that assigns each agent to some a ∈ A∗, even if for each activity a ∈ A∗ we have
u(a) = n.
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Theorem 15 It is NP-complete to decide if there is a strictly core stable assignment that
assigns each agent to some a ∈ A∗, even if for each activity a ∈ A∗ we have u(a) = n.

For envy-freeness, maximizing the number of “active” agents turns again out to be hard.

Theorem 16 It is NP-complete to decide if there is an envy-free assignment that assigns
each agent to some a ∈ A∗.

However, we obtain tractability for envy-freeness if we loosen the constraints on the
upper bounds of the group sizes: Clearly, if there is an activity with “unlimited” capacity
(i.e., its upper bound equals n), we can assign all agents to it and obtain envy-freeness. It is
not clear yet whether the problem becomes tractable if `(a) = 1 holds for all a ∈ A∗. This
is the case though if all preference orders are strict (see Proposition 27 in Appendix).

3.3 Pareto Optimality

In this subsection, we consider the computational complexity involved in maximizing the
number of agents assigned to non-void activities in Pareto optimal assignments. In the
framework of course allocation, if all agents have strict preferences, it is known that a
Pareto optimal matching—that assigns an agent to an activity (course) only if the activity
is acceptable for the agent—can be found in polynomial time ([5, 17]). Since in our setting
(i) the agents’ preferences are represented by weak orders and (ii) Pareto optimality does
not require individual rationality, these results do not immediately translate. For the latter
reason, the computational intractability result by Cechlárová and Fleiner [5] (for finding a
Pareto optimal matching maximizing the number of agents assigned to a non-void activity
if each agent can be assigned to at most one activity) does not immediately translate to
our setting either. Our first results shows that finding a Pareto optimal assignment (or of
finding one that maximizes the number of agents assigned to non-void activities) in s-GASP
is NP-hard even for the case u(a) = n for each activity a.

Theorem 17 It is NP-hard to find a Pareto optimal assignment in an instance of s-GASP,
even when u(a) = n for each a ∈ A∗.

However, as the following theorem shows, if we relax the constraints on the lower bound of
the group sizes the problem of finding a Pareto optimal assignment becomes computationally
tractable.

Theorem 18 If for each activity a ∈ A∗ we have `(a) = 1, then in polynomial time we
can find a Pareto optimal assignment that maximizes the number of agents assigned to a
non-void activity.

Note that in the case `(a) = 1 for each a ∈ A∗, also any strictly core stable, core stable,
or individually stable assignment is individually rational. In addition, in this case virtual
(strict) core stability coincides with (strict) core stability, and virtually individual stability
coincides with individual stability. Hence we can state the following corollary.

Corollary 19 If for each activity a ∈ A∗ we have `(a) = 1, then in polynomial time we
can find a maximum individually rational assignment that is Pareto optimal, (virtually)
individually stable, (virtually) core stable and (virtually) strictly core stable.

However, as the following theorem shows, in contrast to the case of the lower bound
being 1 for each activity (Theorem 18), in general it turns out to be computationally hard
to decide if there is a Pareto optimal assignment that assigns each agent to a non-void
activity.

Theorem 20 It is NP-hard to decide if there is a Pareto optimal assignment that assigns
each agent to a non-void activity.
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4 Envy-Freeness versus Pareto Optimality

In many social choice settings, there is a tension between envy-freeness and Pareto optimal-
ity. This is also the case for our simplified group activity selection problem, as the following
propositions show.

Proposition 21 For any k ≥ 2, there is an instance (N,A, P,R) of s-GASP with |N | = k
and `(a) = 1 for each a ∈ A∗, for which there does not exist an assignment π which is both
Pareto optimal and envy-free.

Proof: We provide a proof for k = 2, which easily extends to n = k for any k > 2. Consider
the instance with N = {1, 2}, A∗ = {a}, with the rankings a �1 a∅ and a �2 a∅, and the
restrictions given by `(a) = u(a) = 1. Any Pareto optimal assignment assigns exactly one
agent to a, which is clearly not envy-free. �

Interestingly, this tension also holds if the only relevant constraint is the lower bound of
the activities (i.e., u(a) = n for all a).

Proposition 22 For any k ≥ 6, there is an instance (N,A, P,R) of s-GASP with |N | = k
and u(a) = k for each a ∈ A∗, for which there does not exist an assignment π which is both
Pareto optimal and envy-free.

Proof: We provide the idea of the proof for k = 6 and refer to the Appendix for details.
Consider the instance of s-GASP with N = {1, 2, 3, 4, 5, 6}, A∗ = {a, b, c} and for any x ∈ A∗
we have `(x) = 3, u(x) = 6. The rankings are

%1: a �1 b �1 c �1 a∅ %4: a �4 b �4 c �4 a∅
%2: b �2 c �2 a �2 a∅ %5: b �5 c �5 a �5 a∅
%3: c �3 a �3 b �3 a∅ %6: c �6 a �6 b �6 a∅

.

Due to the feasibility constraints, there are only 4 types of feasible assignments, none
of which is both envy-free and Pareto optimal. �

5 Conclusion

We have formulated a simplified version of GASP where the assignment of agents to activities
depends on the agents’ preferences as well as on exogenous constraints. This model is
powerful enough to capture many real world applications. We have made a first step by
analyzing one family of constraints and have studied several solution concepts for this family.

An obvious next step is to drive a similar analysis for other interesting classes of
constraints as described in Section 2. In particular, it would be interesting to characterize
families of constraints guaranteeing or not guaranteeing existence of a stable solution
for the different solution concepts we considered, or exploring forbidden structures that
prevent stability. Also, it would be nice to provide a detailed analysis of the parameterized
complexity of the hard cases, as done by Lee and Williams [19] for the stable invitation
problem, and by Igarashi et al. [15, 16] and Gupta et al. [12] for GASP on social networks.
Another variant would be to consider typed agents as in the work by Spradling and
Goldsmith [25].

Acknowledgement. We thank Henning Fernau for pointing us to the construction that
helped to prove Theorem 9.
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Appendix

Proofs of Section 1

Theorem 1 There are s-GASP-instances with assignments which are

1. (virtually) core stable but neither (virtually) individually stable nor (virtually) strictly
core stable,

2. virtually strictly core stable but not Pareto optimal,

3. Pareto optimal but not virtually strictly core stable,

4. individually stable but not individually rational,

5. individually stable and individually rational but not virtually individually stable.

Proof: Below, we give three examples which show that Statements 2-5 hold. Example 23
shows Statement 2. Example 24 shows Statement 3 and Statement 4. Finally, Example 25
shows that Statement 5 holds. �

Example 23 Let N = {1, 2}, A∗ = {a, b} with ∀x ∈ A∗ : `(x) = 1 = u(x). Consider the
following preference profile:

%1: a �1 b �1 a∅
%2: b �2 a �2 a∅

Then, the assignment π with π(1) = b and π(2) = a is virtually strictly core stable but not
Pareto optimal.

Example 24 Let N = {1, 2}, A∗ = {a, b} with ∀x ∈ A∗ : `(x) = 2 = u(x) and the
following preference profile:

%1: a �1 a∅ �1 b
%2: b �2 a∅ �2 a

Assignment π with πa = {1, 2} is Pareto optimal and individually stable, but neither virtually
strictly core stable nor individually rational.

Example 25 Let N = {1, 2, 3}, A∗ = {a, b} with `(a) = 1 , u(a) = 2 and `(b) = 2 = u(b),
with the following preference profile:

%1: a �1 b �1 a∅
%2: a �2 b �2 a∅
%3: b �3 a �3 a∅

Assignment π with π(1) = a and πb = {2, 3} is individually stable and individually rational
but not virtually individually stable.

Proofs of Section 3

Proofs of Section 3.1

Theorem 2 A strictly core stable assignment always exists and can be found in polynomial
time.

Proof: The basic idea behind algorithm 1 is as follows. Starting with a feasible assignment
π, for each agent i and each activity b which i prefers to π(i) we check whether there
is a subset of agents including agent i that want to deviate to b such that the resulting
assignment is feasible. That is, we check whether there is a subset E ⊃ πb such that (i)
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for all j ∈ E we have that b %j π(j) holds (recall that for agent i b �i π(i) holds) and (ii)
π′ with π′(i) = b for i ∈ E and π′(j) = π(j) for j ∈ N \ E is a feasible assignment. In
order to do so, for each activity c ∈ A \ {b}, we compute the possible numbers of agents
in the set πc that agree with joining b and can be removed from πc while still enabling a
feasible assignment—these numbers are stored in the set Rc. Finally, given these numbers,
we need to verify if—including i and the agents in πb—these add up to an integer contained
in [`(b), u(b)] by taking exactly one number from each activity (note that 0 must be removed
from Ra since we need to include agent i; also, note that for activity b we need to include
the whole amount |πb| of agents assigned to b under π). The latter problem reduces to
the Multiple-Choice Subset-Sum problem (see [23]), which, in our case, allows for an
overall polynomial time algorithm for finding a strictly core stable assignment.

Algorithm 1 Algorithm for finding a strictly core stable assignment in an instance
(N,A, P,R) of s-GASP.

1: Let π be a maximum individually rational assignment.
2: Ra′ := ∅ for all a′ ∈ A, N ′ := ∅, B := ∅, i := 0, π′(j) = a∅ for all j ∈ N
3: while N \N ′ 6= ∅ do
4: i := minN \N ′

5: a := π(i)
6: D := {b ∈ A : b �i a}
7: while D 6= ∅ do
8: take b ∈ D
9: B := {j ∈ N : b %j π(j)}

10: for c ∈ A \ {b} do
11: Rc := {0}
12: for 1 ≤ h ≤ |πc ∩B| do
13: if |πc| − h ∈ [`(c), u(c)] then
14: Rc := Rc ∪ {h}
15: end if
16: end for
17: end for
18: Ra := Ra \ {0}
19: if Ra 6= ∅ then
20: if ∃S with (|πb|+

∑
j∈S j) ∈ [`(b), u(b)] such that (i) |S| = |A| − 1 and

(ii) for all a′ ∈ A \ {b} we have |S ∩Ra′ | = 1 then
21: take such a set S
22: for a′ ∈ A \ {b}, let ha′ denote the unique element in S ∩Ra′

23: π′(i) := b
24: set π′(j) := b for (ha − 1) arbitrarily chosen j ∈ (πa ∩B) \ {i}
25: for a′ ∈ A \ {a, b} do
26: set π′(j) := b for ha′ arbitrarily chosen j ∈ πa′ ∩B
27: end for
28: for each of the remaining agents g set π′(g) := π(g);
29: π := π′.
30: end if
31: end if
32: D := D \ {b}
33: end while
34: N ′ := N ′ ∪ {i}
35: end while

As far as the running time of algorithm 1 is concerned, its bottleneck is to decide
whether we can add up the above-mentioned numbers to be in the interval [`(b), u(b)]. In
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the Multiple-Choice Subset-Sum problem, we ask if taking exactly one number of each
member of a given family of subsets of non-negative integers adds up to a given number.
Applying for instance Pisinger’s algorithm [23] for that problem3 requires a running time of
O(m2) per execution. Clearly, for each interval, we need to execute the algorithm at most
(m + 1) times. Thus, the overall running time of our algorithm can roughly be bounded
by O(nm4), because in the worst case we solve an instance of the Multiple-Choice
Subset-Sum problem at most once for each agent and activity, i.e., nm times. �

Example 26 Let N = {1, 2, 3} and A∗ = {a, b, c}, with a �1 b �1 c � a∅, b �2 c �2 a � a∅,
and c �3 a �3 b � a∅. The restrictions on the activities are given by |πx| ∈ {0} ∪ [2, 3],
for each x ∈ A∗. By the restrictions given, there is at most one non-void activity to which
agents can be assigned. Clearly, for any activity z ∈ A there is a y ∈ A∗ such that two
agents prefer y to z. As a consequence, there can be no virtually core stable assignment.

Theorem 4 It is NP-complete to decide if there is a virtually strictly core stable assignment,
even when for each activity a ∈ A∗ we have u(a) = n.

Proof: Membership in NP is not difficult to verify. The proof proceeds by a reduction
from Exact Cover by 3-Sets (X3C). The input of an instance of X3C consists of a pair
〈X,Z〉, where X = {1, . . . , 3q} and Z = {Z1, . . . , Zp} is a collection of 3-element subsets
of X; the question is whether we can cover X with exactly q sets of Z. X3C is known
to be NP-complete even when each element of X is contained in exactly three sets of Z
(see [13, 14]); note that in such a case p = 3q holds. For each i ∈ X, let the sets containing
i be denoted by Zi1 , Zi2 , Zi3 with i1 < i2 < i3.
Define instance I = (N,A, P,R) of s-GASP as follows. Let N = {Vi,1, Vi,2, Vi,3 | 1 ≤ i ≤ p}
and A∗ = {yi, ai, bi, ci | 1 ≤ i ≤ p}. For 1 ≤ i ≤ p, let `(ai) = `(bi) = `(ci) = 2,
and `(yi) = 9. For each a ∈ A∗, let u(a) = |N |. Since any virtually strictly core stable
assignment is individually rational, in the profile P we omit the activities ranked below a∅;
for each i ∈ {1, . . . , p}, let the ranking of the agents Vi,1, Vi,2, Vi,3 (each of which represents
element i ∈ X) be given as follows:

Vi,1 : yi1 �i,1 yi2 �i,1 yi3 �i,1 ai �i,1 bi �i,1 ci �i,1 a∅
Vi,2 : yi2 �i,2 yi3 �i,2 yi1 �i,2 bi �i,2 ci �i,2 ai �i,2 a∅
Vi,3 : yi3 �i,3 yi1 �i,3 yi2 �i,3 ci �i,3 ai �i,3 bi �i,3 a∅

Note that each set Z contains three elements, and hence each yi, 1 ≤ 1 ≤ p, is preferred
to a∅ by exactly 9 agents. We show that there is an exact cover in instance 〈X,Z〉 if and
only if there is a virtually strictly core stable assignment in instance I.

Assume there is an exact cover C. Consider the assignment π defined by π(Vi,h) = yj
if i ∈ Zj and Zj ∈ C, for i ∈ {1, . . . , p} and h ∈ {1, 2, 3}. Since C is an exact cover,
assignment π is well-defined and feasible; note that each agent is assigned to an activity she
ranks first, second or third. In addition, note that for Zj ∈ C, each agent that prefers yj to
a∅ is assigned to yj . Assume a set of agents E wishes to deviate to another activity d, such
that at least one member i ∈ E prefers d over π(i) while there is no j ∈ E with π(j) �j d.
By the definition of π, d ∈ {yi | 1 ≤ i ≤ p} holds. Observe that πd = ∅ holds because C is
an exact cover. Due to `(d) = 9, it hence follows that each agent of those who prefer d to
a∅ must prefer d to the assigned activity, which is impossible since, by construction of the
instance, for at least one of these agents j the assigned activity is top-ranked, i.e., π(j) �j d
holds. Therewith, π is virtually strictly core stable.

3In Pisinger’s work [23], the algorithm is formulated for positive weights only but extends to non-negative
integers.
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Conversely, assume there is a virtually strictly core stable assignment π. Assume that
there is an agent Vi,h who is not assigned to one of the activities yi1 , yi2 , yi3 . Then, by
`(yi) = 9 and the fact that exactly 9 agents prefer yi to a∅ for each i ∈ {1, . . . , p}, it
follows that no agent is assigned to one of yi1 , yi2 , yi3 ; in particular none of Vi,1, Vi,2, Vi,3 is
assigned to one of these activities. Analogously to Example 26 it then follows that there is
no virtually strictly core stable assignment, in contradiction with our assumption.
Thus, π assigns each agent Vi,h to one of the activities yi1 , yi2 , yi3 . For each i ∈ {1, . . . , p},
by `(yi) = 9 and the fact that exactly 9 agents prefer yi to a∅ it follows that to exactly one
of yi1 , yi2 , yi3 exactly 9 agents are assigned, while no agent is assigned to the remaining two
activities. As a consequence, the set C = {Zi | |πyi | = 9, 1 ≤ i ≤ p} is an exact cover in
instance 〈X,Z〉.�

Proofs of Section 3.2

Proposition 6 In polynomial time we can find a feasible assignment that maximizes the
number of agents assigned to a non-void activity.

Proof: We need to find the maximum number k such that taking, for each a ∈ A∗,
exactly one number of {0} ∪ [`(a), u(a)] adds up to k. This problem corresponds to the
Multiple-Choice Subset-Sum problem (see [23]); in our case, the latter allows for an
overall polynomial time algorithm since u(a) in bounded by n. �

Theorem 7 It is NP-complete to decide if there is an individually rational assignment that
assigns each agent to some a ∈ A∗, even if for each activity a ∈ A∗ we have u(a) = n.

Proof: The proof proceeds by a reduction from Exact Cover by 3-Sets (X3C).
The input of an instance of X3C consists of a pair 〈X,Z〉, where X = {1, . . . , 3q}, and
Z = {Z1, . . . , Zp} is a collection of 3-element subsets of X; the question is whether we
can cover X with exactly q sets of Z. X3C is known to be NP-complete even when each
element of X is contained in exactly three sets of Z (see [13, 14]); note that in such a case
p = 3q holds. For each i ∈ X let the sets containing i be denoted by Zi1 , Zi2 , Zi3 with
i1 < i2 < i3.
Given such an instance 〈X,Z〉 of X3C, we construct an instance I = (N,A, P,R) of
s-GASP as follows. Set N := X, A := {a1, . . . , ap} and let P be an arbitrary profile such
that for each i ∈ N the ranking restricted to the four top-ranked activities is given by
ai1 �i ai2 �i ai3 �i a∅. The restrictions are given by |πa| ∈ {0} ∪ [3, n], for all a ∈ A∗.
If there is an exact cover C, consider the assignment π given by π(i) = aj , with i ∈ Zj
and Zj ∈ C, for i ∈ N . Clearly, since C is an exact cover, π is well-defined since for any
i ∈ X, i ∈ Zj holds for exactly one set Zj ∈ C. In addition, it is not hard to verify that
π is feasible (since each Zj contains exactly three elements and hence either no agent or
exactly three agents are assigned to aj), individually rational, and assigns each agent to a
non-void activity.
On the other hand, if an assignment π satisfies these properties, then to any non-void
activity either zero or exactly three agents are assigned (recall that in the original
X3C-instance, each set contains exactly three elements). I.e., for exactly q activi-
ties a ∈ A∗ we have |πa| > 0. Since all agents are assigned to a non-void activity, with
individual rationality we get that D = {Zj | |πaj | > 0, 1 ≤ j ≤ p} is an exact cover for X. �

Corollary 11 Let 1 ≤ `(a) ≤ u(a) ≤ 2 for each activity a ∈ A∗. Then, we can decide in
polynomial time if there is an individually rational assignment that assigns each agent to
some a ∈ A∗.
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Figure 2: Reducing an instance I of s-GASP with `(a) = u(a) = 2 for each activity a ∈ A∗
to Maximum Matching (see Theorem 9). In this example, the set of agents is N :=
{1, 2, 3, 4}, the set of non-void activities is A∗ = {a, b, c} and the relevant preferences are
{a, b} %1 a∅, {b} %2 a∅, {b} %3 a∅ and {b} %4 a∅. A maximum matching is indicated by
bold edges. The normalized version (as described in Theorem 9) of the maximum matching
on the left is depicted on the right. The matching on the right corresponds to a maximum
individually rational assignment for I (i.e., π(1) = π(4) = a∅ and π(2) = π(3) = b).

Proof: Let I = (N,A, P,R) be such an instance of s-GASP. We adapt the previous
proof by constructing a graph G = (V,E) as follows: Let VN := {vi | i ∈ N} ⊆ V and
VA := {va | a ∈ A∗} ⊆ V . For each pair (vi, va) ∈ VN × VA we create the edge {vi, va} ∈ E
if and only if a %i a∅. Let A≤2 ⊆ A∗ be the non-void activities with upper bound 2 and let
A2 ⊆ A≤2 bet the non-void activities with lower and upper bound 2. Then, we create the
vertex set V ′A≤2

:= {v′a | a ∈ A≤2} ⊆ V . For each activity a ∈ A≤2 and each agent i ∈ N ,

we create the edge {vi, v′a} ∈ E if and only if a %i a∅. Additionally, we create the edges
{va, v′a} ∈ E for each activity a ∈ A2. �

Theorem 14. It is NP-complete to decide if there is a virtually individually stable assign-
ment that assigns each agent to some a ∈ A∗, even if for each activity a ∈ A∗ we have
u(a) = n.

Proof: The proof follows analogously to the proof of Theorem 7. �

Theorem 15. It is NP-complete to decide if there is a strictly core stable assignment that
assigns each agent to some a ∈ A∗, even if for each activity a ∈ A∗ we have u(a) = n.

Proof: For membership in NP, assume an assignment π to be given. It is sufficient to
determine, for each agent i and activity a �i π(i), whether there is a subset E ⊇ (π(a)∪{i})
such that for each e ∈ E it holds that a %e π(e), such that the assignment resulting from
the deviation is still feasible. Scanning, in the worst case, the whole profile for each agent
and activity, and checking the feasibility constraints, can be done in polynomial time.

For NP-hardness, we again reduce from Exact Cover by 3-Sets (X3C). Given an
instance 〈X,Z〉 of X3C, where X = {1, . . . , 3q} and Z = {Z1, . . . , Zp} is a collection of
3-element subsets of X, we ask whether X can be covered by q sets of Z. Again, we assume
that each element of X is contained in exactly three sets of Z (see [13, 14]) (this implies
p = 3q holds). For each i ∈ X let Zi1 , Zi2 , Zi3 denote the sets containing i.
Given 〈X,Z〉 we construct instance I = (N,A, P,R) of s-GASP as follows. Set N := X, A :=
{a1, . . . , ap} and let P be an arbitrary profile such that for each i ∈ N the ranking restricted
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to the four top-ranked activities is given by ai1 ∼i ai2 ∼i ai3 �i a∅. The restrictions are
given by |πa| ∈ {0} ∪ [3, n], for all a ∈ A∗.

Assume there is an exact cover C. Let the assignment π be given by π(i) = aj , with
i ∈ Zj and Zj ∈ C, for i ∈ N . Because C is an exact cover, π is well-defined and feasible
(each set Zj contains exactly three elements of X, therefore either exactly three agents or
no agent at all is assigned to activity aj). Also, π assigns each agent to one of the three
activities she has top-ranked. As a consequence, π is strictly core stable because no agent i
can prefer any activity over π(i).
On the other hand, assume there is a strictly core stable assignment π which assigns each
agent to a non-void activity. By the restrictions, to any non-void activity either zero or
exactly three agents are assigned. That means, for exactly q activities a ∈ A∗ we have
|πa| > 0. Assume an agent iis assigned to an activity a with a∅ %i a. Then, since each set of
Z contains exactly three elements, the group E of agents with E := {i ∈ N | ai1 � a∅}∪πai1
is of size at least 3, and each e ∈ E has a %e π(e) with i ∈ E strictly preferring ai1 over π(i).
This, however, contradicts with strict core stability of π. Hence, each agent is assigned to
one of her top-ranked activities; as a consequence, D = {Zj | |πaj | > 0, 1 ≤ j ≤ p} is an
exact cover for X. �

Theorem 16 It is NP-complete to decide if there is an envy-free assignment that assigns
each agent to some a ∈ A∗.
Proof: Reduction from X3C. Let 〈X,Z〉 be an instance of X3C with X = {1, . . . , 3q}
and Z = {Z1, . . . , Zp}, where each element of X is contained in exactly three sets of Z.
Again, let the sets containing i be denoted by Zi1 , Zi2 , Zi3 with i1 < i2 < i3, for each
i ∈ X. Construct instance I = (N,A, P,R) of s-GASP as follows. Let N := {1, . . . , 6q}
and A∗ := {a1, . . . , ap} ∪ {b1, . . . b3q}. Let σ be a fixed strict ranking on A′ := {a1, . . . , ap}.
Finally, let P be a profile such that (i) for each i ∈ X the ranking restricted to the (2 + p)
top-ranked activities is given by ai1 �i ai2 �i ai3 �i bi �i a∅ �i σi, where σi corresponds
to the ranking σ restricted to the set A′ \ {ai1 , ai2 , ai3}; and (ii) for 1 ≤ i ≤ 3q the ranking
of agent (3q + i) restricted to the (2 + p) top-ranked activities is bi �(3q+i) a∅ �(3q+i) σ.
The restrictions in R are given by |πa| ∈ {0} ∪ [3, 3], for a = aj ∈ A∗ with j ∈ {1, . . . , p},
and |πb| ∈ {0} ∪ [1, 1], for b = bj ∈ A∗, j ∈ {1, . . . , 3q}.
Given an exact cover C, consider the assignment π defined by (i) for i ∈ N \X: π(i) = bi
and (ii) for i ∈ X: π(i) = aj iff i ∈ Zj with Zj ∈ C. It is easy to see that π is feasible and
assigns each agent to a non-void activity. Obviously, none of the agents i ∈ N \ X envies
another agent because each of these agents is assigned to her top-ranked activity. On the
other hand, each agent i ∈ X is assigned to one of her three top-ranked activities. By the
fact that C is an exact cover, it follows that from the three top-ranked activities of agent i,
only π(i) is used, i.e., a positive number of agents is assigned. Thus, also i ∈ X does not
envy another agent.

On the other hand, let assignment π satisfy the stated properties. In particular, each
agent is assigned to a non-void activity. Clearly, no agent i ∈ X can be assigned to some bj
because otherwise agent 3q + j would envy i. I.e.,

π(i) ∈ A′ for all i ∈ X (1)

holds. Let N ′ = {g ∈ N \X | π(g) ∈ {a1, . . . , ap}}.
If N ′ = ∅, then π(3q + i) = bi follows for each i ∈ {1, . . . , 3q}. Thus, in order to avoid

envy, each agent i ∈ X must be assigned to one of her three top-ranked activities. For any
activity a ∈ A′ with πa 6= ∅ the restrictions imply that exactly three agents are assigned to
a. Hence, it is not difficult to verify that D = {Zj ∈ Z : |πaj | > 0, 1 ≤ j ≤ p} forms an
exact cover for X in instance 〈X,Z〉.
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Let N ′ 6= ∅. If N ′ contains two agents g, h such that π(g) 6= π(h), then one of these
agents must envy the other by the fact that the two agents’ rankings over {a1, . . . , ap}
coincide. Hence, all members of N ′ must be assigned to the same activity a ∈ {a1, . . . , ap}.
Let X ′ = {i ∈ X : π(i) /∈ {ai1 , ai2 , ai3}}.
Assume X ′ 6= ∅, i.e., there is an agent i ∈ X which is not assigned to one of her three
top-ranked activities.
First, we show that π(i) = a must hold for each i ∈ X ′. Assume the opposite, i.e., π(i) 6= a
for some i ∈ X ′. Recall that π(i) ∈ A′ holds (see (1)), and thus π(i) ∈ A′ \ {ai1 , ai2 , ai3}
follows. Then, in the strict ranking σ we must have a �σ π(i) because otherwise the
members in N ′ envy i. However, this implies that in �i we must have a �i π(i) due to
π(i) ∈ A′ \ {ai1 , ai2 , ai3}; i.e., i envies the members in N ′. Therewith, π(i) = a follows.
From πa 6= ∅ (due to N ′ 6= ∅) and the given restrictions we can conclude that exactly three
agents are assigned to a. With |N ′| 6= 0 it follows that |X ′| ∈ {1, 2} holds. Recall that each
agent of X \X ′ is assigned to one of her three top-ranked activities. In addition, note that
by the given restrictions to each active a′ ∈ A′ \ {a} exactly three agents must be assigned,
all of which must be members of X \X ′ (recall that (i) all members of X ′ are assigned to a
and (ii) all members of N \X are either assigned to a or to some b ∈ {b1, . . . , b3q}). This,
however, is impossible, since from |X| = 3q and |X ′| ∈ {1, 2} with X ′ ⊂ X it follows that
|X \X ′| ∈ {3q − 1, 3q − 2} holds.
Thus, X ′ = ∅ holds. Assume π(i) = a for some i ∈ X. By N ′ 6= ∅ we know that there
can be at most two such agents and we get a contradiction to the size of X analogously to
above. Hence, π(i) 6= a holds for all i ∈ X. As a consequence, for each agent i ∈ X we have
π(i) ∈ {ai1 , ai2 , ai3} such that to π(i) exactly three agents, all members of X, are assigned
(again, recall that for j ∈ N \X it holds that π(j) ∈ {a, b1, . . . , b3q}). In other words, the
collection D = {Zj ∈ Z : |πaj ∩X| > 0, 1 ≤ j ≤ p} is an exact cover for X. �

Proposition 27 If all agents have strict linear orders on the set of activities and `(a) =
1 for all a ∈ A∗, then it can be decided in polynomial time if there exists an envy-free
assignment which assigns all agents to a non-void activity.

Proof: A simple greedy algorithm can determine if there exists such an envy-free assign-
ment. The first step is to assign each agent to her most preferred non-void activity; this is
possible because of `(a) = 1 for all a ∈ A∗. If the resulting (provisional) assignment πp is
feasible, i.e., for all activities a ∈ A∗ the statement u(a) ≥ |πap | holds true, we are done. If
this is not the case, we remove all activities a with u(a) > |πap | from the set of activities
(envy-freeness will only be accomplished if no agent is assigned to any of these activities)
and start over with the first step. This algorithm either stops because all activities have
been removed, or it produces an envy-free assignments which assign all agents to a non-void
activity. �

Proofs of Section 3.3

Theorem 17 It is NP-hard to find a Pareto optimal assignment in an instance of s-GASP,
even when u(a) = n for each a ∈ A∗.
Proof: Again we reduce from Exact Cover by 3-Sets (X3C). An instance 〈X,Z〉 of
X3C consists of a set X = {1, . . . , 3q} and a collection Z = {Z1, . . . , Zp} of 3-element
subsets of X; we ask whether X can be covered by q sets of Z. We can assume that each
element of X is contained in exactly three sets of Z (see [13, 14]) (this implies p = 3q holds).
For i ∈ X let again Zi1 , Zi2 , Zi3 denote the three sets containing element i.
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Given 〈X,Z〉 we construct instance I = (N,A, P,R) of s-GASP as follows. Let N = X,
A = {a1, . . . , ap}; let P be some profile such that for each i ∈ N , (i) the ranking restricted
to the four top-ranked activities corresponds to ai1 ∼i ai2 ∼i ai3 �i a∅, and (ii) for every
remaining activity c we have a∅ �i c. With n = |N |, the restrictions are given by |πa| ∈
{0} ∪ [3, n] for all a ∈ A∗.

Consider instance I of s-GASP. Let π be a Pareto optimal assignment. If π assigns an
agent i ∈ N to an alternative c with a∅ %i c, then by Pareto optimality of π it follows that
there does not exist a Pareto optimal assignment µ with µ(i) �i a∅ for each agent i. I.e.,
either each Pareto optimal assignment or no Pareto optimal assignment assigns at least one
agent i to an activity different from ai1 , ai2 , ai3 . We complete the proof by showing that a
Pareto optimal assignment µ with µ(i) �i a∅ for each i ∈ N exists if and only if there is an
exact cover in instance 〈X,Z〉 of X3C.

If there is a Pareto optimal assignment for µ(i) �i a∅ for each i ∈ N , each agent i ∈ N
is assigned to a non-void activity. By `(a) = 3 for a ∈ A∗ and since each aj is preferred over
a∅ by exactly three agents, it follows that the collection D = {Zj | |πaj | = 3, 1 ≤ j ≤ p}
is an exact cover for X. On the other hand, given an exact cover C for instance 〈X,Z〉,
the assignment π which assigns i ∈ N to activity aj for the unique set Zj of C which
contains element i is feasible and assigns each agent to one of her top-ranked activities. As
a consequence, π is Pareto optimal. �

Theorem 18 If for each activity a ∈ A∗ we have `(a) = 1, then in polynomial time we
can find a Pareto optimal assignment that maximizes the number of agents assigned to a
non-void activity.

Proof: In that case, any Pareto optimal assignment is individually rational. Let k be
the maximum number of agents assigned to non-void activities by an individually rational
assignment. Hence, it is sufficient to find a Pareto optimal assignment π with #(π) = k.
Given an instance I = (N,A, P,R) of s-GASP with `(a) = 1 for all a ∈ A∗, we construct an
instance F of the minimum cost flow problem. Instance F corresponds to instanceM of the
proof of Theorem 8 except that we add the following edge costs: for each a ∈ A∗ and i ∈ N
edge (i, a) has cost −(1+ |{b ∈ A∗|a �i b, b �i a∅}|), all remaining edges have zero cost. Let
f be a minimum integer cost flow of size k in instance F . Then f induces the assignment
π by setting π(i) = a iff f sends a unit of flow through edge (i, a). Clearly, π is Pareto op-
timal since otherwise a flow f ′ of lower total cost than the total cost of f could be induced. �

Theorem 20 It is NP-hard to decide if there is a Pareto optimal assignment that assigns
each agent to a non-void activity.

Proof: We provide a reduction from Exact Cover by 3-Sets (X3C). Let 〈X,Z〉 be an
instance of X3C consisting of a set X = {1, . . . , 3q} and a collection Z = {Z1, . . . , Zp} of
3-element subsets of X. Again, we assume that each element of X is contained in exactly
three sets of Z (see [13, 14]) (this implies p = 3q holds). For i ∈ X let again Zi1 , Zi2 , Zi3
denote the three sets containing element i.
Given 〈X,Z〉 we construct instance I = (N,A, P,R) of s-GASP as follows. Let N = X,
A = {a1, . . . , ap} ∪ {b}; let P be some profile such that for each i ∈ N , (i) the ranking
restricted to the five top-ranked activities corresponds to b ∼i ai1 ∼i ai2 ∼i ai3 �i a∅, and
(ii) for every remaining activity c we have a∅ �i c. With n = |N |, the restrictions are given
by |πb| ∈ {0} ∪ [n− 1, n− 1], and |πa| ∈ {0} ∪ [3, 3] for all a ∈ A∗ \ {b}.

Consider instance I of s-GASP. Observe that an assignment π which assigns an agent
i ∈ N to an alternative c with a∅ �i c cannot be Pareto optimal, since under π′ – which
assigns i to a∅ and each of the remaining agents to b – agent i is strictly better off while no
agent is worse off. Also, any assignment π that assigns at most n− 2 agents to a non-void
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activity is not Pareto optimal: Under λ – which assigns all of these agents and all but one
of the agents of πa∅ to b and the remaining agent to a∅, makes at least one agent better off
(an agent of πa∅ who is assigned to b under λ) while no agent is worse off.
Therefore, a Pareto optimal assignment must be individually rational and assigns at least
n − 1 agents to non-void activities. Note that any assignment that assigns exactly n − 1
agents to non-void activities must assign all of these agents to b, because n is a multiple of
3 and due to `(a) = u(a) = 3 for a ∈ A∗ \ {b}. We complete the proof by showing that
there is a Pareto optimal assignment µ with #(µ) = n if and only if there is an exact cover
in instance 〈X,Z〉 of X3C.

If there is a Pareto optimal assignment for µ with #(µ) = n, each agent i ∈ N is
assigned to a non-void activity. By the above observation, µ is individually rational.
Clearly, by the bounds `(a) = u(a) = 3 for a ∈ A∗ \ {b} no agent can be assigned to b;
also, it follows that the collection D = {Zj | |πaj | = 3, 1 ≤ j ≤ p} is an exact cover for X.
On the other hand, given an exact cover C for instance 〈X,Z〉, the assignment π which
assigns i ∈ N to activity aj for the unique set Zj of C which contains element i is fea-
sible and assigns each agent to one of her top-ranked activities. Thus, π is Pareto optimal. �

Proofs of Section 4

Proposition 22 For any k ≥ 6, there is an instance (N,A, P,R) of s-GASP with |N | = k
and u(a) = k for each a ∈ A∗, for which there does not exist an assignment π which is both
Pareto optimal and envy-free.

Proof: We provide the proof for k = 6, which easily extends to k = n for any n > 6.
Consider the instance of s-GASP with N = {1, 2, 3, 4, 5, 6}, A∗ = {a, b, c} and for any x ∈ A∗
we have `(x) = 3, u(x) = 6. The rankings are

%1: a �1 b �1 c �1 a∅ %4: a �4 b �4 c �4 a∅
%2: b �2 c �2 a �2 a∅ %5: b �5 c �5 a �5 a∅
%3: c �3 a �3 b �3 a∅ %6: c �6 a �6 b �6 a∅

.

Due to the feasibility constraints, there are only 4 types of feasible assignments:

(i) 3-5 agents are assigned to the same activity x 6= a∅, and the rest to a∅;

(ii) all agents are assigned to the void activity;

(iii) all agents are assigned to the same activity x 6= a∅;

(iv) 3 agents are assigned to the same activity x 6= a∅ and the other 3 agents are assigned
to another activity y /∈ {x, a∅}.

The assignments of type (i) and (ii) are Pareto dominated by some assignment of
type (iii). An assignment π1 of type (iii) is envy-free but not Pareto optimal. Due to
the symmetrical construction of the preferences profiles, we can assume without loss of
generality πa1 = N . But then the assignment is Pareto dominated by the assignment π2 with
πa2 = {1, 3, 4} and πc2 = {2, 5, 6}. An assignment of type (iv) cannot be envy-free. Without
loss of generality we can assume x = a and y = b. Assume, for the sake of contradiction,
that there is an envy-free assignment. Agents 1 and 4 must be assigned to activity a and
agents 2 and 5 to activity b. As the preference profiles of the remaining agents both rank a
strictly better than b, the assignment cannot be an envy-free assignment. �
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