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Abstract We consider a setting where one has to organize one or several group activ-
ities for a set of agents. Each agent will participate in at most one activity, and her
preferences over activities depend on the number of participants in the activity. The
goal is to assign agents to activities based on their preferences in a way that is socially
optimal and/or stable. We put forward a general model for this setting, which is a
natural generalization of anonymous hedonic games. We then focus on a special case
of our model where agents’ preferences are binary, i.e., each agent classifies all pairs
of the form ‘(activity, group size)’ into ones that are acceptable and ones that are not.
We formulate several solution concepts for this scenario, and study them from the
computational point of view, providing hardness results for the general case as well
as efficient algorithms for settings where agents’ preferences satisfy certain natural
constraints.
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1 Introduction

There are many real-life situations where a group of agents is faced with a choice of
multiple activities, the members of the group have differing preferences over these
activities, and it is feasible for the group to split into smaller subgroups, so that each
subgroup can pursue its own activity. Consider, for instance, a companywhich, as a ser-
vice to its employees, wants to provide free sports classes, and allows each employee
to take at most one class (Skowron et al. 2015). Another example would be a work-
shop whose organizers would like to arrange one or more social activities for the free
afternoon.1 The available activities include a hike, a bus trip, and a table tennis com-
petition. As they will take place simultaneously, each attendee can select at most one
activity (or choose not to participate). If the preferences for activities do not depend on
the number of participants and there are no constraints on the number of participants
for each activity, then one can simply elicit the attendees’ preferences over the activi-
ties, and assign each of them to their favorite activity. However, the situation becomes
more complicated if one’s preferences may depend on the number of other attendees
who choose the same activity. For instance, the bus trip has a fixed transportation
cost that has to be shared equally among its participants (while more complex cost-
sharing schemes are possible, participants may view them as unfair), which implies
that, typically, an attendee i is only willing to go on the bus trip if the number of other
participants of the bus trip exceeds a threshold �i . Similarly, i may only be willing to
play table tennis if the number of attendees who signed up for the tournament does
not exceed a threshold ui : as there is only one table, the more participants, the less
time each individual spends playing.

Neglecting to take the number of participants of each activity into account may lead
to highly undesirable outcomes, such as a bus that is shared by two persons, each of
them paying a high cost, and a 48-participant table tennis tournament with one table.
Adding constraints on the number of participants for each activity is a practical, but
imperfect solution, as the agents’ preferences over group sizes may differ: while some
attendees (say, senior faculty) may be willing to go on the bus trip with just 4–5 other
participants, others (say, graduate students) cannot afford it unless the number of partic-
ipants exceeds 10. Thus, in this paper, we will focus on a more fine-grained approach:
eliciting the agents’ preferences over pairs of the form ‘(activity, group size)’ (together
with the option ‘do nothing’, which we refer to as the void activity), rather than over
activities themselves, and allocating agents to activities based on this information.

Our goal is to formalize and study the problem of finding a good assignment of
agents to activities based on agents’ preferences over pairs of the form ‘(activity, group
size)’, which we will refer to as the Group Activity Selection Problem (GASP). We
aim to put forward a model for this problem that is expressive enough to capture many
real-life activity selection scenarios, yet simple enough to admit efficient procedures
for finding good assignments of agents to activities. Due to our choice of motivating
applications, we assume that the central authority knows (or, rather, can reliably elicit)
the agents’ true preferences, and its goal is to find an assignment of players to activi-

1 Some of the co-authors of this paper had to deal with this problemwhen co-organizing aDagstuhl seminar.
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ties that, informally speaking, is stable and/or maximizes the overall satisfaction. We
describe the basic structure of the problem, and discuss plausible constraints on the
number and type of available activities and the structure of agents’ preferences. We
adapt various notions of stability from the hedonic games literature (such as Nash sta-
bility, individual stability and core stability) to our setting. We then focus on a simple
preference model, where agents’ preferences are trichotomous: each agent identifies
a set of alternatives that he prefers to the void activity and a set of alternatives that
he likes less than the void activity, and is indifferent among the alternatives in each
set. For this simplified model, we briefly discuss the relationships among the solution
concepts we define, and then focus on the algorithmic problem of finding a ‘good’
(socially optimal and/or stable) outcome.We show that, in general, the associated com-
putational problems are NP-hard, but identify a number of interesting special cases
that admit efficient exact or approximate algorithms.

We do not aim to provide a complete analysis of the group activity selection prob-
lem; rather, we view our work as a first step towards understanding the algorithmic
and incentive issues that arise in this setting. We hope that our paper will lead to future
research on this topic; to facilitate this, throughout the paper we highlight several
possible extensions of our model as well as list some problems left open by our work.

1.1 Related work

The model considered in this paper is closely related to that of anonymous hedonic
games (Banerjee et al. 2001), where, just as in our setting, players have to split into
groups and each player has preferences over possible group sizes. The main difference
between anonymous hedonic games and our problem is that, in our setting, the agents’
preferences depend not only on the group size, but also on the activity that has been
allocated to their group; thus, our model can be seen as a generalization of anonymous
hedonic games. We remark that we can represent our problem as a general (i.e., non-
anonymous) hedonic game (Banerjee et al. 2001; Bogomolnaia and Jackson 2002), by
creating a dummy agent for each activity and endowing it with suitable preferences
(see Sect. 2.2 for details). However, our setting has useful structural properties that
distinguish it from a generic hedonic game: for instance, it allows for succinct repre-
sentation of players’ preferences, and, as we will see, has several natural special cases
that admit efficient algorithms for finding good outcomes.

Our setting also has some similarities to those of congestion games (Vöcking 2006)
and cost-sharing games (Jain and Mahdian 2007). Indeed, in such games agents also
have preferences over the number of other agents they share resources with: specifi-
cally, in congestion games an agent’s utility decreases with the number of agents who
chose the same resource, and in cost-sharing games sharing the resource with a larger
number of other agents lowers the cost. Ourmodel differs from both of these settings in
two important aspects: on the one hand,we do not require all activities to be of the same
‘type’ (i.e., some activities may behave as resources in congestion games, while others
may behave as resources in cost-sharing games), and, on the other hand,we assume that
agents’ preferences are ordinal (and, in most of the paper, binary) rather than numeric.

Some recent proposals are also related to our model. Lee and Shoham (2015) inves-
tigate the anonymous stable invitation problem, where the goal is to find a set of agents

123



770 A. Darmann et al.

to be invited to an event, given agents’ preferences over the number of invitees. This
problem corresponds to the special case ofGASPwith only one non-void activity. Lee
and Shoham focus on proving impossibility and possibility results concerning strate-
gyproofness; they give a very simple strategyproof mechanism that finds a maximum
stable invitation in the case of increasing preferences. They also consider a more gen-
eral, non-anonymous version of the problem. Spradling et al. (2013) consider hedonic
games with roles and teams, where agents have preferences over pairs consisting of a
role (that they will play in their coalition) and the composition of roles that make up
the coalition. Similarly to our setting, in this model agents have preferences over both
coalitions and actions; however, in the model of Spradling et al. actions are associated
with individual players rather than the coalition as a whole. Lu and Boutilier (2012)
discuss a model of cooperative group buying, which can be embedded into GASP
(more specifically, GASP with decreasing preferences, see Sect. 2). This model has
a set of buyers and a set of items with volume discounts. Each buyer ranks all pairs
( j, p j ), where j is an item and p j is a possible discounted price of this item; the
discounted price of j is a function of the number of buyers who are matched to j .

After the conference version of our paper has been published, several authors
explored the complexity of finding good allocations in GASP, both in the approval-
based model, which is the focus of our work (Lee and Vassilevska Williams 2017),
and in the ordinal model, where each agent ranks pairs of the form ‘(activity, group
size)’ (Darmann 2015). Igarashi et al. (2017a, b) and subsequently Gupta et al. (2017)
considered a variant of GASP where agents are connected by a social network and
members of each group have to form a connected subgraph in this network; they adapt
the solution concepts that we propose to this richer setting, and put forward a num-
ber of algorithms and complexity results. A survey of this literature is provided by
Darmann and Lang (2017).

2 Formal model

We start by giving a formal definition of our model.

Definition 1 An instance of the Group Activity Selection Problem (GASP) is given
by a set of agents N = {1, . . . , n}, a set of activities A = A∗ ∪ {a∅}, where A∗ =
{a1, . . . , am}, and a profile P , which consists of n votes (one for each agent): P =
(V1, . . . , Vn). The vote of agent i describes his preferences over the set of alternatives
X = X∗∪{a∅}, where X∗ = A∗×{1, . . . , n}; alternative (a, k), a ∈ A∗, is interpreted
as “activity a with k participants”, and a∅ is the void activity.

The vote Vi of an agent i ∈ N (also denoted by �i ) is a weak order over X∗;
its induced strict preference and indifference relations are denoted by �i and ∼i ,
respectively. We set Si = {(a, k) ∈ X∗ | (a, k) �i a∅}; we say that voter i approves
of all alternatives in Si , and refer to the set Si as the induced approval vote of voter i .
We assume that no agent can be prevented from switching from his current assignment
to the void activity; as a consequence, we can assume that each agent i is indifferent
among all alternatives in {(a, k) ∈ X∗ | a∅ �i (a, k)}.

Throughout the paper we will mostly focus on a special case of our problem where
no agent is indifferent between the void activity and any other alternative (i.e., for every
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i ∈ N we have {x ∈ X∗ | x ∼i a∅} = ∅), and each agent is indifferent between all the
alternatives in Si . In other words, preferences are trichotomous: the agent partitions X
into three clusters Si , {a∅} and X\(Si ∪ {a∅}), is indifferent between two alternatives
in the same cluster, prefers any (a, k) in Si to a∅, and a∅ to any (a, k) in X\(Si ∪{a∅});
we denote this special case of our problem by a-GASP.

It will be convenient to distinguish between activities that are unique and ones that
exist in multiple copies. For instance, if there is a single tennis table and two buses,
then we can organize one table tennis tournament, two bus trips (we assume that there
is only one potential destination for the bus trip, so these trips are identical), and an
unlimited number of hikes (again, we assume that there is only one hiking route). This
distinction will be useful for the purposes of complexity analysis: for instance, some
of the problems we consider are easy when we have k copies of one activity, but hard
when we have k distinct activities. Formally, we say that two activities a and b are
equivalent if for every agent i and every j ∈ {1, . . . , n} it holds that (a, j) ∼i (b, j).
We say that an activity a ∈ A∗ is k-copyable if A∗ contains exactly k activities that
are equivalent to a (including a itself). We say that a is simple if it is 1-copyable;
if a is k-copyable for k ≥ n, we will say that it is ∞-copyable (note that we would
never need to organize more than n copies of any activity). If some activities in A∗
are equivalent, A∗ can be represented more succinctly by listing one representative of
each equivalence class, together with the number of available copies. However, as long
as we make the reasonable assumption that each activity exists in at most n copies,
this representation is at most polynomially more succinct.

Our model can be enriched by specifying a set of constraints Γ . One constraint
that arises frequently in practice is a global cardinality constraint, which specifies
a bound K on the number of activities to be organized. More generally, we could
also consider more complex constraints on the set of activities that can be organized
simultaneously, which can be encoded, e.g., by a propositional formula or a set of
linear inequalities. We leave the study of this more general setting as a topic for future
work. There can also be external constraints on the number of participants for each
activity: for instance, a bus can fit at most 40 people. However, these constraints can be
incorporated into agents’ preferences, by assuming that all agents view the alternatives
that do not satisfy these constraints as unacceptable.

2.1 Special cases

We now consider some natural restrictions on agents’ preferences that may simplify
the problem of finding a good assignment. We first need to introduce some additional
notation. Given a vote Vi and an activity a ∈ A∗, let S↓a

i = {k | (a, k) ∈ Si }; the
set S↓a

i is the projection of Si onto {a} × {1, . . . , n}. Also, for integers i, j , we write
[i, j] = {z ∈ Z | i ≤ z ≤ j}; note that [i, j] = ∅ for i > j .

Example 1 Let A∗ = {a, b} and consider an agent i whose vote Vi is given by

(a, 8) �i (a, 7) ∼i (b, 4) �i (a, 9) �i (b, 3) �i (b, 5) �i (a, 6) �i (b, 6) �i a∅ �i . . . .

Then Si = {a} × [6, 9] ∪ {b} × [3, 6] and S↓a
i = [6, 9].
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We are now ready to define two types of restricted preferences for a-GASP that
are directly motivated by our running example, namely, increasing and decreasing
preferences. Informally, under increasing preferences an agent prefers to share each
activity with as many other participants as possible (e.g., because each activity has an
associated cost, which has to be split among the participants), and under decreasing
preferences an agent prefers to share each activity with as few other participants as
possible (e.g., because each activity involves sharing a limited resource). Of course,
an agent’s preferences may also be increasing with respect to some activities and
decreasing with respect to others, depending on the nature of each activity.We provide
a formal definition for a-GASP only; however, it can be extended to GASP in a
straightforward way.

Definition 2 Consider an instance (N , A, P) of a-GASP.We say that the preferences
of agent i are increasing (INC) with respect to an activity a ∈ A∗ if there exists a
threshold �ai ∈ {1, . . . , n + 1} such that S↓a

i = [�ai , n]. Similarly, we say that the
preferences of agent i are decreasing (DEC) with respect to an activity a ∈ A∗ if there
exists a threshold uai ∈ {0, . . . , n} such that S↓a

i = [1, uai ].
We say that an instance (N , A, P) of a-GASP is increasing (respectively, decreas-

ing) if the preferences of each agent i ∈ N are increasing (respectively, decreasing)
with respect to each activity a ∈ A∗. We say that an instance (N , A, P) of a-GASP
is mixed increasing–decreasing (MIX) if there exists a set A+ ⊆ A∗ such that for
each agent i ∈ N his preferences are increasing with respect to each a ∈ A+ and
decreasing with respect to each a ∈ A− = A∗\A+.

For some activities, an agent may have both a lower and an upper bound on the
acceptable group size: e.g., one may prefer to go on a hike with at least three other
people, but does not want the group to be too large (so that it can maintain a good
pace). In this case, we say that an agent has interval (INV) preferences; note that
INC/DEC/MIX preferences are a special case of interval preferences.

Definition 3 Consider an instance (N , A, P) of a-GASP.We say that the preferences
of agent i are interval (INV) if for each a ∈ A∗ there exists a pair of thresholds
�ai , u

a
i ∈ {1, . . . , n} such that S↓a

i = [�ai , uai ].
Other natural constraints on preferences include restricting the size of Si (or, more

liberally, that of S↓a
i for each a ∈ A∗), or requiring agents to have similar preferences:

for instance, one could limit the number of agent types, i.e., require that the set of
agents can be split into a small number of groups so that the agents in each group
have identical preferences. We will not define such constraints formally, but we will
indicate if they are satisfied by the instances constructed in the hardness proofs in
Sect. 4.1.

Example 2 Consider an instance of a-GASP with n = 5, A∗ = {a, b} and voters’
preferences given by the following table (where+/− indicates approval/disapproval):
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(a, 1) (a, 2) (a, 3) (a, 4) (a, 5) (b, 1) (b, 2) (b, 3) (b, 4) (b, 5)

1 + + + − − − − − − −
2 + + − − − − − − − −
3 + − − − − − + + + +
4 + + − − − − + + + +
5 + + − − − − − − + +

This instance of a-GASP is mixed increasing–decreasing. Now, suppose that we
add another agent whose preferences are described by the last line of the table below:

(a, 1) (a, 2) (a, 3) (a, 4) (a, 5) (a, 6) (b, 1) (b, 2) (b, 3) (b, 4) (b, 5) (b, 6)

1 + + + − − − − − − − − −
2 + + − − − − − − − − − −
3 + − − − − − − + + + + +
4 + + − − − − − + + + + +
5 + + − − − − − − − + + +
6 − − + + + + − − − − − −

The resulting instance is no longer mixed increasing–decreasing.

2.2 GASP and hedonic games

Recall that a hedonic game (Banerjee et al. 2001; Bogomolnaia and Jackson 2002)
is given by a set of agents N , and, for each agent i ∈ N , a weak order ≥i over
all coalitions (i.e., subsets of N ) that include i (the associated strict preference and
indifference relations are denoted by >i and =i , respectively). That is, in a hedonic
game each agent has preferences over coalitions that he can be a part of. A coalition
S, i ∈ S, is said to be unacceptable for player i if {i} >i S. A hedonic game is said to
be anonymous if each agent is indifferent among all coalitions of the same size that
include him, i.e., for every i ∈ N and every S, T ⊆ N\{i} such that |S| = |T | it holds
that S ∪ {i} ≥i T ∪ {i} and T ∪ {i} ≥i S ∪ {i}.

At a first glance, it may seem that the GASP formalism is more general than that
of hedonic games, since in GASP the agents care not only about their coalition, but
also about the activity they have been assigned to. However, we will now argue that
GASP can be embedded into the hedonic games framework.

Given an instance of the GASP problem (N , A, P) with |N | = n, where the i-
th agent’s preferences are given by a weak order �i , we construct a hedonic game
H(N , A, P) as follows. We create n + m players; the first n players correspond to
agents in N , and the last m players correspond to activities in A∗. The last m players
are indifferent among all coalitions. For each i = 1, . . . , n, player i ranks every non-
singleton coalition with no activity players as unacceptable; similarly, all coalitions
with two or more activity players are ranked as unacceptable. The preferences over
coalitions with exactly one activity player are derived naturally from the weak orders
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774 A. Darmann et al.

�i : if S, T are two coalitions involving player i , x is the unique activity player in S,
and y is the unique activity player in T , then i weakly prefers S to T in H(N , A, P) if
and only if (x, |S| − 1) �i (y, |T | − 1), and i weakly prefers S to {i} in H(N , A, P)

if and only if (x, |S| − 1) �i a∅. We emphasize that the resulting hedonic games
are not anonymous. Further, while this embedding allows us to apply the standard
solution concepts for hedonic games without redefining them, the intuition behind
these solution concepts is not always preserved (e.g., because activity players never
want to deviate). Therefore, in Sect. 3,wewill provide formal definitions of the relevant
hedonic games solution concepts adapted to the setting of GASP.

We remark that when A∗ consists of a single ∞-copyable activity (i.e., there are
n activities in A∗, all of them equivalent to each other), GASP become equivalent
to anonymous hedonic games. Such games have been studied in detail by Ballester
(2004), who provides a number of complexity results for them. In particular, he shows
that finding an outcome that is core stable, Nash stable or individually stable (see
Sect. 3 for the definitions of some of these concepts in the context of GASP) is NP-
hard. Clearly, all these complexity results also hold for GASP. However, they do not
directly imply similar hardness results for a-GASP.

3 Solution concepts

Having discussed the basic model of GASP, as well as a few of its extensions and
special cases, we are ready to define what constitutes a solution to this problem.

Definition 4 An assignment for an instance (N , A, P) of GASP is a mapping π :
N → A; π(i) = a∅ means that agent i does not participate in any activity. Each
assignment naturally partitions the agents into at most m + 1 = |A| groups: we set
π0 = {i ∈ N | π(i) = a∅} and π j = {i ∈ N | π(i) = a j } for j = 1, . . . ,m. Given
an assignment π , the coalition structure CSπ induced by π is the coalition structure
over N defined as follows:

CSπ =
{
π j | j = 1, . . . ,m, π j �= ∅

}
∪

{
{i} | i ∈ π0

}
.

Clearly, not all assignments are equally desirable. As a minimum requirement, no
agent should be assigned to a coalition that he deems unacceptable. More generally,
we prefer an assignment to be stable, i.e., no agent (or group of agents) should have
an incentive to change its activity. Thus, we will now define several solution concepts,
i.e., classes of desirable assignments. We will state our definitions for the general case
of GASP and then indicate how they simplify in the case of a-GASP. Given the
connection to hedonic games pointed out in Sect. 2.2, we will proceed by adapting the
standard hedonic game solution concepts to our setting; however, this has to be done
carefully to preserve the intuition that is specific to our model.

The first solution concept that we will consider is individual rationality.

Definition 5 Given an instance (N , A, P) of GASP, an assignment π : N → A is
said to be individually rational if for every j = 1, . . . ,m and every agent i ∈ π j it
holds that (a j , |π j |) �i a∅.
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In the case of a-GASP, this definition can be rewritten as follows: π is individually
rational if for every j = 1, . . . ,m and every agent i ∈ π j it holds that (a j , |π j |) ∈
Si . Clearly, if an assignment is not individually rational, there exists an agent that
can benefit from abandoning his coalition in favor of the void activity. Further, an
individually rational assignment always exists: for instance, we can set π(i) = a∅
for all i ∈ N . However, given an instance of a-GASP, a benevolent central authority
would want to maximize the number of agents that are assigned to non-void activities.
Formally, let #(π) = |{i ∈ N | π(i) �= a∅}| denote the number of agents assigned to a
non-void activity. We say that π is maximum individually rational if π is individually
rational and #(π) ≥ #(π ′) for every individually rational assignment π ′. Further, we
say thatπ is perfect2 ifπ is individually rational and #(π) = n.We denote the size of a
maximum individually rational assignment for an instance (N , A, P) by #(N , A, P).
In Sect. 4, we study the complexity of computing a perfect or maximum individually
rational assignment for a-GASP, both for the general model and for the special cases
defined in Sect. 2.1.

Example 3 Consider the first instance of a-GASP from Example 2 (the one with
n = 5). There are three maximum individually rational assignments for it:

– π1(1) = π1(2) = a, π1(3) = π1(4) = b, π1(5) = a∅;
– π2(1) = π2(5) = a, π2(3) = π2(4) = b, π2(2) = a∅;
– π3(2) = π3(5) = a, π3(3) = π3(4) = b, π3(1) = a∅.

However, there is no perfect assignment. On the other hand, if agent 5 is removed,
then there is a perfect assignment, namely, π4(1) = π4(2) = a, π4(3) = π4(4) = b.

Definition 6 Given an instance (N , A, P) of GASP, an assignment π : N → A is
said to be Nash stable if

(1) π is individually rational,
(2) for every agent i ∈ N with π(i) �= a∅ and every a j ∈ A∗\{π(i)} it holds that

(π(i), |π(i)|) �i (a j , |π j | + 1), and
(3) for every agent i ∈ N with π(i) = a∅ and every a j ∈ A∗ it holds that a∅ �

(a j , |π j | + 1).

In the case of a-GASP, this definition simplifies as follows: π is Nash stable if
it is individually rational and for every agent i ∈ N such that π(i) = a∅ and every
a j ∈ A∗ it holds that (a j , |π j |+1) /∈ Si . If π is not Nash stable, then there is an agent
assigned to the void activity who wants to join a group that is engaged in a non-void
activity, i.e., he would have approved of the size of this group and its activity choice
if he was one of them. Note that in a-GASP an agent assigned to a non-void activity
wants to deviate only if he disapproves of that activity, i.e., we do not have to worry
about agents moving from one non-void activity to another one.

The requirement of Nash stability is much stronger than that of individual rational-
ity, and there are cases where a Nash stable assignment does not exist.

2 The terminological similarity with the notion of perfect partition in a hedonic game (Aziz et al. 2013) is
intentional; in a hedonic game a perfect partition assigns each agent to his most preferred coalition, whereas
in an a-GASP a perfect assignment maps each agent to one of her approved alternatives.
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Proposition 1 For each n ≥ 2, there exists an instance (N , A, P) of a-GASP with
|N | = n that does not admit a Nash stable assignment. This holds even if |A∗| = 1
and all agents have interval preferences.

Proof Consider an instance (N , A, P) of a-GASP with A∗ = {a} and induced
approval votes given by S1 = {(a, 1)}, S2 = {(a, 2)} and Si = ∅ for all i ≥ 3;
note that all approved sets are intervals. The two individually rational assignments are
π1 with π1(i) = a∅ for all i ∈ N and π2 with π2(1) = a and π2(i) = a∅ for all
i ∈ N\{1}. Neither of these assignments is Nash stable: in π1 agent 1 wants to engage
in a, and in π2 agent 2 wants to join agent 1. ��
Example 4 Let us consider again the instances of a-GASP in Example 2. For the
instance with n = 5 there are two Nash stable assignments: π1 and π2. For the
instance with n = 6 no assignment is Nash stable.

In Definition 6 an agent is allowed to join a coalition even if the members of this
coalition are opposed to this. In contrast, the notion of individual stability only allows
a player to join a group if none of the existing group members objects.

Definition 7 Given an instance (N , A, P) of GASP, an assignment π : N → A is
said to be individually stable if

(1) π is individually rational,
(2) for every agent i ∈ N with π(i) �= a∅ and every a j ∈ A∗\{π(i)} such that

(a j , |π j | + 1) �i (π(i), |π(i)|) there exists an agent i ′ ∈ π j with (a j , |π j |) �i ′
(a j , |π j | + 1), and

(3) for every agent i ∈ N with π(i) = a∅ and every a j ∈ A∗ such that (a j , |π j | +
1) �i a∅ there exists an agent i ′ ∈ π j with (a j , |π j |) �i ′ (a j , |π j | + 1).

For a-GASP, we obtain the following simpler notion: π is individually stable if for
each agent i ∈ N with π(i) = a∅ and each a j ∈ A∗ it holds that (a j , |π j | + 1) /∈ Si ′
for some i ′ ∈ π j ∪ {i}.
Proposition 2 Every instance of a-GASP admits an individually stable assignment;
moreover, this assignment can be computed by the following simple algorithm.

1. Initialize π with π(i) = a∅ for all i ∈ N ;
2. While there is (i, a j ) ∈ N × A∗ with

(a) π(i) = a∅
(b) (a j , |π j | + 1) ∈ Si
(c) (a j , |π j | + 1) ∈ Si ′ for all i ′ ∈ π j

3. Do π(i) ← a j

4. End while
5. Return π .

Proof Note first that the whenever the body of theWhile loop is executed, the number
of agents assigned to a non-void activity increases by one, and no agent is ever unas-
signed from a non-void activity. This means, in particular, that the algorithm always
terminates. Conditions (b) and (c) in Step 2 ensure that agents assigned to a non-void
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activity are always happy with the number of participants assigned to that activity, i.e.,
for every i ∈ N with π(i) �= a∅ it holds that (a j , |π j |) ∈ Si . Hence, the assignment
returned by the algorithm is individually rational. Now, when the algorithm stops,
either there are no agents assigned to the void activity, in which case the returned
assignment π is perfect (and, a fortiori, individually stable), or for every agent i such
that π(i) = a∅ there is no a j such that (a j , |π j | + 1) ∈ Si and (a j , |π j | + 1) ∈ Si ′
for all i ′ ∈ π j . Hence π is individually stable. ��

We remark that an analogue of Proposition 2 for hedonic games with dichotomous
preferences has been observed by Peters (2016) (Proposition 2).

Note also that if all agents have increasing preferences, individual stability is equiv-
alent to Nash stability: no player would object to having new members join his group.

Example 5 Consider the execution of our algorithm on the first instance of a-GASP
in Example 2 (the one with n = 5). Initially, everyone is assigned to a∅. Then the
algorithm proceeds as follows:

– 1 �→ a;
– 2 �→ a, because agent 1 does not object to that.

At this point the algorithm terminates: it cannot assign anyone to a because agent 2
would object, and it cannot assign anyone to b, because no agent approves (b, 1). The
resulting assignment is individually stable, even though it is far from being maximum-
size: e.g., the first assignment in Example 3 is also individually stable, yet assigns four
agents to non-void activities.

A related solution concept for hedonic games is contractual individual stability:
under this concept, an agent is only allowed to move from one coalition to another if
neither the members of his new coalition nor the members of his old coalition object
to the move. It is not hard to adapt this concept for GASP.

Definition 8 Given an instance (N , A, P) of GASP, an assignment π : N → A is
said to be contractually individually stable if

(1) π is individually rational,
(2) for every agent i ∈ N with π(i) �= a∅ and every a j ∈ A∗\{π(i)} such that

(a j , |π j | + 1) �i (π(i), |π(i)|) there exists an agent i ′ ∈ π j with (a j , |π j |) �i ′
(a j , |π j | + 1) or an agent i ′′ ∈ π i\{i} with (ai , |π(i)|) �i ′′ (ai , |π(i)| − 1), and

(3) for every agent i ∈ N with π(i) = a∅ and every a j ∈ A∗ such that (a j , |π j | +
1) �i a∅ there exists an agent i ′ ∈ π j with (a j , |π j |) �i ′ (a j , |π j | + 1).

However, in a-GASP, for individually rational assignments contractual individual
stability is equivalent to individual stability. Indeed, in a-GASP no agent assigned to
a non-void activity has an incentive to deviate, so we only need to consider deviations
from singleton coalitions.

The solution concepts discussed so far deal with individual deviations; resistance
to group deviations is captured by the notion of the core and its variants. One typically
distinguishes between strong group deviations, which are beneficial for each member
of the deviating group, and weak group deviations, where the deviation should be
beneficial for at least one member of the deviating group and non-harmful for others;
these notions of deviation correspond to, respectively, the core and the strict core.
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Definition 9 Given an instance (N , A, P) of GASP, an assignment π : N → A
is said to be core stable (or in the core) if it is individually rational and there is no
E ⊆ N , E �= ∅, such that for some a j ∈ A∗ with π j ⊆ E it holds that (a j , |E |) �i

(π(i), |π(i)|) for all i ∈ E .

In the context of a-GASP, if the initial assignment is individually rational, strong
group deviations amount to players in π0 forming a coalition in order to engage in a
non-void activity. Therefore, the definition of core stability simplifies as follows: an
assignment π is in the core if it is individually rational and there is no E ⊆ π0 such
that for some a j ∈ A∗ with π j = ∅ it holds that (a j , |E |) ∈ Si for all i ∈ E .

It is immediate from Definition 9 that every instance of a-GASP has a non-empty
core, and an outcome in the core can be constructed by a natural algorithmgiven below;
we note that for hedonic games with dichotomous preferences, a similar algorithm has
been proposed by Aziz et al. (2016) (Proposition 8).

1. Initialization: π(i) ← a∅ for all i ∈ N ; A′ ← A∗;
2. While there is an activity a ∈ A′ and an integer k with 1 ≤ k ≤ n such that at least

k agents assigned to a∅ approve (a, k)
3. Do assign these k agents to a; remove a from A′
4. End while
5. Return π .

Definition 10 Given an instance (N , A, P) of GASP, an assignment π : N → A
is said to be strictly core stable (or in the strict core) if it is individually rational
and there is no E ⊆ N such that for some a j ∈ A∗ with π j ⊆ E it holds that
(a j , |E |) �i (π(i), |π(i)|) for all i ∈ E and (a j , |E |) �i (π(i), |π(i)|) for some
i ∈ E .

For a-GASP, we obtain the following definition: an assignment π is strictly core
stable if it is individually rational and there is no E ⊆ N with E ∩ π0 �= ∅ such that
for some a j ∈ A∗ with π j ⊆ E it holds that (a j , |E |) ∈ Si for all i ∈ E . Here, the
condition E ∩ π0 �= ∅ ensures that al least one deviating agent strictly prefers the
new outcome. Note that, in contrast to strong deviations, weak deviations may involve
agents engaged in a non-void activity.

Condition π j ⊆ E in Definitions 9 and 10 captures that intuition that deviating
agents cannot prevent other agents from engaging in their selected activity, and, to
join a group that has selected some activity, the deviators require cooperation of the
group members.

While the core of an a-GASP is always non-empty, the strict core may be empty. In
addition, note that a maximum individually rational assignment is always individually
stable and in the core, but may not be in the strict core; this holds even if agents have
increasing preferences.

Example 6 Consider an instance (N , A, P) of a-GASP where N = {1, 2, 3}, A∗ =
{a, b}, S1 = {(a, 2), (a, 3)}, S2 = {(b, 2), (b, 3)}, and S3 = {(a, 2), (a, 3), (b, 2),
(b, 3)}. Both agent 1 and agent 2 want to form a coalition with agent 3 (who is happy
to oblige), but have incompatible preferences over activities. Thus, the strict core of
this game is empty.
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By adding activities not approved by any agents and agents that do not approve any
activities, we can extend Example 6 to any A∗ with |A∗| ≥ 2 and any n ≥ 3. However,
the following proposition illustrates that both of these conditions are necessary: if
|A∗| = 1 or n ≤ 2, the strict core of an a-GASP is guaranteed to be non-empty.

Proposition 3 For every instance of a-GASPwith n ≤ 2 or |A∗| = 1 every maximum
individually rational assignment is in the strict core.

Proof If n = 1, our claim is immediate. Now, suppose that n = 2. If our instance
admits a perfect assignment, then this assignment is in the strict core. Thus, suppose
that this is not the case. If the unique individually rational assignment π is such that
π(1) = π(2) = a∅, there is nothing that the agents can do, so π is in the strict core.
Finally, suppose that in every maximum individually rational assignment exactly one
agent is assigned to the void activity. Then any acceptable deviation that improves his
welfare results in a perfect assignment, a contradiction.

If A∗ = {a1}, consider a maximum individually rational assignment π ; we have
#π = |π1|. If a coalition E can successfully deviate fromπ , thenπ1 ⊂ E ,π0∩E �= ∅.
Hence, by assigning all agents in E to a1 we obtain an individually rational assignment
π ′ with #π ′ > #π , a contradiction. ��

It is not hard to see that strict core stability implies core stability and individual
stability, and Nash stability implies individual stability. However, the converse impli-
cations are not true.Moreover, Nash stability does not imply core stability or strict core
stability, core stability does not imply individual stability, and neither core stability
nor strict core stability imply Nash stability.

4 Computing good outcomes

In this section, we consider the computational complexity of finding a “good” assign-
ment for a-GASP. We mostly focus on finding perfect or maximum individually
rational assignments; towards the end of the section, we also consider Nash stability
and strict core stability. Besides the general case of our problem, we consider special
cases obtained by combining constraints on the number and type of activities (e.g.,
unlimited number of simple activities, a constant number of copyable activities, etc.)
and constraints on voters’ preferences (INC, DEC, INV, etc.). Note that if we can find
a maximum individually rational assignment, we can easily check if a perfect assign-
ment exists, by looking at the size of our maximum individually rational assignment.
Thus, we will state our hardness results for the “easier” perfect assignment problem
and phrase our polynomial-time algorithms in terms of the “harder” problem of finding
a maximum individually rational assignment.

4.1 Individual rationality: hardness results

We start by presenting four NP-completeness results, which show that deciding
whether a perfect assignment exists is hard even under fairly strong constraints on
preferences and activities. We remark that this problem is in NP (one can check in
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linear time if a given assignment is individually rational and assigns each agent to a
non-void activity), so in what follows we will only provide the proofs ofNP-hardness.

Our first hardness result applies when all activities are simple and the agents’
preferences are increasing.

Theorem 1 It is NP-complete to decide whether a-GASP admits a perfect assign-
ment, even when all activities in A∗ are simple and all agents have increasing
preferences.

Proof We provide a reduction from Exact Cover by 3- Sets (X3C). Recall that
an instance of X3C is a pair 〈X,Y〉,where X = {1, . . . , 3q} and Y = {Y1, . . . ,Yp} is
a collection of 3-element subsets of X ; it is a “yes”-instance if X can be covered by
exactly q sets from Y , and a “no”-instance otherwise. It is known that X3C remains
NP-complete even when restricted to instances 〈X,Y〉 in which for every pair of sets
Yg,Y j ∈ Y with g �= j we have |Yg∩Y j | ≤ 1 (see Jiang et al. 2011). Given an instance
〈X,Y〉 of X3C that satisfies this restriction, we construct an instance of a-GASP as
follows. We set N = {1, . . . , 3q} and A∗ = {a1, . . . , ap}. For each agent i , we define
his vote Vi so that the induced approval vote Si is given by Si = {(a j , k) | i ∈ Y j , k ≥
3}, and let P = (V1, . . . , Vn). Clearly, (N , A, P) is an instance of a-GASP with
increasing preferences and the description size of this instance is polynomial in q and
p. The condition |Yg ∩ Y j | ≤ 1 for g �= j ensures that all activities are simple. We
claim that 〈X,Y〉 is a “yes”-instance of X3C if and only if (N , A, P) admits a perfect
assignment.

Indeed, suppose that there is a set of indices I ⊆ {1, . . . , p} such that |I | = q
and ∪i∈I Yi = X . Define the assignment π by π(i) = a j , where j is such that (1)
i ∈ Y j and (2) j ∈ I . As {Yi }i∈I is a partition of X , this assignment is well-defined
and each agent is assigned to a non-void activity. Moreover, for each agent i ∈ N we
have (π(i), 3) ∈ Si and the number of agents assigned to π(i) in π is exactly 3, so π

is individually rational. Hence, π is a perfect assignment.
Conversely, assume that π is a perfect assignment for (N , A, P). Consider an

alternative a j ∈ A∗ with π j �= ∅. Since a j is approved by exactly 3 agents, we have
|π j | ≤ 3. On the other hand, since no agent approves of (a j , 1) or (a j , 2), it has
to be the case that |π j | = 3. Now, since π is a perfect assignment, it follows that
there are exactly q activities a j with |π j | = 3. Therefore, the collection of subsets
{Y j | |π j | = 3} is an exact cover for X . ��

Our second hardness result applies to simple activities and decreasing preferences,
and holds even if each agent is willing to share each activity with at most one other
agent. Its proof (together with proofs of Theorems 3 and 4) is delayed to appendix A.

Theorem 2 It is NP-complete to decide whether a-GASP admits a perfect assign-
ment, even when all activities in A∗ are simple, all agents have decreasing preferences,
and, moreover, for every agent i ∈ N and every alternative a ∈ A∗ we have
S↓a
i ⊆ {1, 2}.

Our third hardness result also concerns simple activities and decreasing preferences.
However, unlike Theorem 2, it holds even if each agent approves of at most 3 activities.
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Theorem 3 It is NP-complete to decide whether a-GASP admits a perfect assign-
ment, even when all activities in A∗ are simple, all agents have decreasing preferences,
and, moreover, for every agent i ∈ N it holds that |{a | S↓a

i �= ∅}| ≤ 3.

Our fourth hardness result applies even when there is only one activity, which is ∞-
copyable, and every agent approves at most two alternatives; however, the agents’
preferences constructed in our proof do not satisfy any of the structural constraints
defined in Sect. 2.1.

Theorem 4 It is NP-complete to decide whether a-GASP admits a perfect assign-
ment, even when all activities in A∗ are equivalent (i.e., A∗ consists of a single
∞-copyable activity a) and for every agent i ∈ N we have |S↓a

i | ≤ 2.

4.2 Individual rationality: easiness results

The hardness results in Sect. 4.1 imply that if A∗ contains an unbounded number of
distinct activities, finding a maximum individually rational assignment is computa-
tionally hard, even under strong restrictions on agents’ preferences (such as INC or
DEC). Thus, we can only hope to develop an efficient algorithm for this problem if
we assume that the total number of activities is small (i.e., bounded by a constant) or,
more liberally, that the number of pairwise non-equivalent activities is small, and the
agents’ preferences satisfy additional constraints. We will now consider both of these
settings, starting with the case where m = |A∗| is bounded by a constant.

Theorem 5 There exists an algorithm that given an instance of a-GASP finds a
maximum individually rational assignment and runs in time (n + 1)mpoly(n).

Proof Wewill check, for each r = 0, . . . , n, if there is an individually rational assign-
ment π with #(π) = r , and output the maximum value of r for which this is the case.
Fix an r ∈ {0, . . . , n}. For every vector (n1, . . . , nm) ∈ {0, . . . , n}m that satisfies
n1 + · · · + nm = r we will check if there exists an assignment of agents to activities
such that for each j = 1, . . . ,m exactly n j agents are assigned to activity a j (with
the remaining agents being assigned to the void activity), and each agent approves of
the resulting assignment. Each check will take poly(n) steps, and there are at most
(n + 1)m vectors to be checked; this implies our bound on the running time of our
algorithm.

For a fixed vector (n1, . . . , nm), we construct an instance of the network flow
problem as follows. Our network has a source s, a sink t , a node i for each player
i = 1, . . . , n, and a node a j for each a j ∈ A∗. There is an arc of unit capacity from
s to each agent, and an arc of capacity n j from node a j to the sink. Further, there is
an arc of unit capacity from i to a j if and only if (a j , n j ) ∈ Si . It is not hard to see
that an integral flow F of size r in this network corresponds to an individually rational
assignment of size r . It remains to observe that it can be checked in polynomial time
whether a given network admits a flow of a given size. ��
Moreover, when A∗ consists of a single simple activity a, a maximum individually
rational assignment can be found by a straightforward algorithm.
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Proposition 4 Given an instance (N , A, P) of a-GASP with A∗ = {a}, we can
find a maximum individually rational assignment for (N , A, P) in time O(s), where
s = ∑

i∈N |Si |.
Proof Clearly, (N , A, P) admits an individually rational assignment π with #(π) = k
if and only if | {i | (a, k) ∈ Si } | ≥ k.We use an integer arrayC[�], � ∈ N .We initialize
C[�] = 0 for all � ∈ N . Then for each i ∈ N we scan the set Si ; for each (a, j) ∈ Si
we increment C[ j] by 1. This procedure can be completed in time O(s); at the end
of this step for each � ∈ N the cell C[�] of our array stores the number of agents
who approve (a, �). We then scan this array right to left to find the largest value of �

with C[�] ≥ �. Once this value is found, another scan through agents’ approval lists
is sufficient to find a corresponding coalition. ��
Example 7 Consider the following instance of a-GASP with n = 6 and A∗ = {a}.

(a, 1) (a, 2) (a, 3) (a, 4) (a, 5) (a, 6)

1 − − − + + +
2 − + + + + +
3 − − + + − −
4 − + + − − −
5 − − − + + +
6 + + + + + +

We obtain

C[6] = 4,C[5] = 4,C[4] = 5,C[3] = 4,C[2] = 3,C[1] = 1.

Thus, our algorithm finds � = 4 and outputs the coalition {1, 2, 3, 5}.
Now, suppose that A∗ contains many activities, but most of them are equivalent to

each other; for instance, A∗ may consist of a single k-copyable activity, for a large
value of k. Then the algorithm described in the proof of Theorem 5 is no longer
efficient, but this setting still appears to be more tractable than the one with many
distinct activities. Of course, by Theorem 4, in the absence of any restrictions on
the agents’ preferences, finding a maximum individually rational assignment is hard
even for a single ∞-copyable activity. However, we will now show that this problem
becomes easy if we additionally assume that the agents’ preferences are increasing or
decreasing.

Observe first that for increasing preferences having multiple copies of the same
activity is not useful: if there is an individually rational assignment where agents are
assigned to multiple copies of an activity, we can reassign these agents to a single copy
of this activity without violating individual rationality. Thus, we obtain the following
easy corollary to Theorem 5.

Corollary 1 Let (N , A, P) be an instance of a-GASP with increasing preferences
where A∗ contains at most K activities that are pairwise non-equivalent. Then we can
find a maximum individually rational assignment for (N , A, P) in time nK poly(n).
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If all preferences are decreasing, we can simply eliminate all ∞-copyable activities.
Indeed, consider an instance (N , A, P) of a-GASP where some activity a ∈ A∗ is
∞-copyable. Then we can assign each agent i ∈ N such that (a, 1) ∈ Si to his own
copy of a; clearly, this will only simplify the problem of assigning the remaining
agents to the activities.

It remains to consider the case where the agents’ preferences are decreasing, there
is a limited number of copies of each activity, and the number of distinct activities
is small. While we do not have a complete solution for this case, we can show that
in the case of a single k-copyable activity a natural algorithm succeeds in finding a
maximum individually rational assignment.

Theorem 6 Given a decreasing instance (N , A, P) of a-GASP where A∗ consists
of a single k-copyable activity (i.e., A∗ = {a1, . . . , ak}, and all activities in A∗ are
pairwise equivalent),we can find a maximum individually rational assignment in time
O(n log n).

Proof Since all activities in A∗ are pairwise equivalent, we can associate each agent
i ∈ N with a single number ui ∈ {0, . . . , n}, which is the maximum size of a coalition
assigned to a non-void activity that he is willing to be a part of. We will show that
our problem can be solved by a simple algorithm. Specifically, we sort the agents in
non-increasing order of ui s. From now on, we will assume without loss of generality
that u1 ≥ · · · ≥ un . To form the first group, we find the largest value of i such that
ui ≥ i , and assign agents 1, . . . , i to the first copy of the activity. In other words, we
continue adding agents to the group as long as the agents are happy to join. We repeat
this procedure with the remaining agents until either k groups have been formed or all
agents have been assigned to one of the groups, whichever happens earlier.

Clearly, the sorting step is the bottleneck of this procedure, so the running timeof our
algorithm is O(n log n). It remains to argue that it produces a maximum individually
rational assignment. To show this, we start with an arbitrary maximum individually
rational assignment π and transform it into the one produced by our algorithmwithout
lowering the number of agents that have been assigned to a non-void activity. We will
assume without loss of generality that π assigns all k copies of the activity (even
though this is not necessarily the case for the algorithm).

First, suppose that π(i) = a∅, π( j) = a� for some i < j and some � ∈ {1, . . . , k}.
Then we can modify π by setting π(i) = a�, π( j) = a∅. Since i < j implies
ui ≥ u j , the modified assignment is individually rational. By applying this operation
repeatedly, we can assume that the set of agents assigned to a non-void activity forms
a contiguous prefix of 1, . . . , n.

Next, wewill ensure that for each � = 1, . . . , k the group of agents that are assigned
to a� forms a contiguous subsequence of 1, . . . , n. To this end, let us sort the coalitions
in π according to their size, from the largest to the smallest, breaking ties arbitrarily.
That is, we reassign the k copies of our activity to coalitions in π so that � < r implies
|π�| ≥ |πr |. Now, suppose that there exist a pair of players i, j such that i < j ,
π(i) = a�, π( j) = ar , and � > r (and hence |π�| ≤ |πr |).We have u j ≥ |πr | ≥ |π�|,
ui ≥ u j ≥ |πr |, so ifwe swap i and j (i.e., modifyπ by settingπ( j) = a�,π(i) = ar ),
the resulting assignment remains individually rational. Observe that every such swap
increases the quantity � = ∑k

t=1
∑

s∈π t (s · t) by at least 1: prior to the swap, the
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contribution of i and j to � is i� + jr , and after the swap it is ir + j� > i� + jr .
Since for any assignment we have � ≤ kn(n + 1)/2, eventually we arrive to an
assignment where no such pair (i, j) exists. At this point, each π�, � = 1, . . . , k,
forms a contiguous subsequence of 1, . . . , n, and, moreover, � < r implies i ≤ j for
all i ∈ π�, j ∈ πr .

Now, consider the smallest value of � such that π� differs from the �-th coalition
constructed by the algorithm (let us denote it by γ �), and let i be the first agent in
π�+1. The description of the algorithm implies that π� is a strict subset of γ � and
agent i belongs to γ �. Thus, if we modify π by moving agent i to π�, the resulting
allocation remains individually rational (since i is happy in γ �). By repeating this step,
we will gradually transform π into the output of the algorithm (possibly discarding
some copies of the activity). This completes the proof. ��
Example 8 Consider the following instance of a-GASPwith n = 7 and A∗ consisting
of a single 3-copyable activity a.

(a, 1) (a, 2) (a, 3) (a, 4) (a, 5) (a, 6) (a, 7)

1 + + + + + + −
2 + + + + − − −
3 + + + + − − −
4 + + + − − − −
5 + + − − − − −
6 + + − − − − −
7 + − − − − − −

With ui being the maximum size of a coalition agent i is willing to be part of, we
have u1 ≥ · · · ≥ u7. The algorithm described in the proof of Theorem 6 starts by
assigning agents 1, 2, 3 to the first copy of a. It then assigns agents 4 and 5 to the
second copy of a. Finally, agent 6 is assigned to the third copy of a, and agent 7 is
assigned to the void activity.

The algorithm described in the proof of Theorem 6 can be extended to the case where
we have one k-copyable activity a and one simple activity b, and the agents have
decreasing preferences over both activities. For each s = 1, . . . , n we will look for
the best solution in which s players are assigned to b; we will then pick the best of
these n solutions. For a fixed s let Ns = {i ∈ N | (b, s) ∈ Si }. If |Ns | < s, no solution
for this value of s exists. Otherwise, we have to decide which size-s subset of Ns to
assign to b. It is not hard to see that we should simply pick the agents in Ns that have
the lowest level of tolerance for a, i.e., we order the agents in Ns by the values of
uai = max{ j ∈ N | (a, j) ∈ Si } from the smallest to the largest, and pick the first s
agents. We then assign the remaining agents to copies of a using the algorithm from
the proof of Theorem 6. Indeed, any assignment can be transformed into one of this
form by swapping agents so that the individual rationality constraints are not broken.
It would be interesting to see if this idea can be extended to the case where instead of
a single simple activity b we have a constant number of simple activities or a single
k′-copyable activity.
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We conclude this section by giving an O(
√
n)-approximation algorithm for finding

a maximum individually rational assignment in a-GASP with a single ∞-copyable
activity.

Theorem 7 There exists a polynomial-timealgorithm that givenan instance (N , A, P)

of a-GASP where A∗ consists of a single ∞-copyable activity a, outputs an individ-
ually rational assignment π with #(π) = �( 1√

n
)#(N , A, P).

Proof We say that an agent i is active in π if π(i) �= a∅; a coalition of agents is said
to be active if it is assigned to a single copy of a. We construct an individually rational
assignment π iteratively, starting from the assignment where no agent is active. Let
N∗ = {i | π(i) = a∅} be the current set of inactive agents (initially, we set N∗ = N ).
At each step, we find the largest subset of N∗ that can be assigned to a single fresh
copy of a without breaking the individual rationality constraints, and append this
assignment to π . We repeat this step until the inactive agents cannot form another
coalition.

Nowwe compare the number of active agents in π with the number of active agents
in amaximum individually rational assignment π∗. To this end, let us denote the active
coalitions of π by B1, . . . , Bs , where |B1| ≥ · · · ≥ |Bs |. If |B1| ≥ √

n, we are done,
so assume that this is not the case. Note that since B1 was chosen greedily, this implies
that |C | ≤ √

n for every active coalition C in π∗.
Let C be the set of active coalitions in π∗. We partition C into s groups by setting

C1 = {C ∈ C | C ∩ B1 �= ∅} and Ci = {C ∈ C | C ∩ Bi �= ∅,C /∈ C j for j < i} for
i = 2, . . . , s. Note that every active coalition C ∈ π∗ intersects some coalition in π :
otherwise we could add C to π . Therefore, each active coalition in π∗ belongs to one
of the sets C1, . . . , Cs . Also, by construction, the sets C1, . . . , Cs are pairwise disjoint.
Further, since the coalitions in Ci are pairwise disjoint and each of them intersects Bi ,
we have |Ci | ≤ |Bi | for each i = 1, . . . , s. Thus, we obtain

#(π∗) =
∑

i=1,...,s

∑

C∈Ci

|C | ≤
∑

i=1,...,s

∑

C∈Ci

√
n

≤
∑

i=1,...,s

|Ci |√n ≤
∑

i=1,...,s

|Bi |√n ≤ #(π)
√
n.

Example 9 Consider the following parameterized instance of a-GASP with n =
k(k+1)

2 , where A∗ consists of a single ∞-copyable activity a and k ∈ N. For each

i = 1, . . . , k−1, we set S↓a
i = {k, k− i}, and we set S↓a

k = {k}. We then split players
k + 1, . . . , n into consecutive groups of size k − 1, k − 2, . . . , 1 and for each player i
in a group of size h we set S↓a

i = {h + 1}: formally, for each h ∈ {k − 1, . . . , 1} and
each i such that 1+ ∑k

j=h+1 j ≤ i ≤ ∑k
j=h j we set S↓a

i = {h + 1}. For k = 4, i.e.,
n = 10, we obtain the following instance:
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(a, 1) (a, 2) (a, 3) (a, 4) (a, 5) (a, 6) (a, 7) (a, 8) (a, 9) (a, 10)

1 − − + + − − − − − −
2 − + − + − − − − − −
3 + − − + − − − − − −
4 − − − + − − − − − −
5 − − − + − − − − − −
6 − − − + − − − − − −
7 − − − + − − − − − −
8 − − + − − − − − − −
9 − − + − − − − − − −
10 − + − − − − − − − −

We start by analyzing the behavior of the algorithm from the proof of Theorem 7 for
k = 4. In the first step, the algorithm assigns a largest possible subset of agents—say
{1,2,3,4}— to the first copy of a. But then it is easy to verify that no further agent can
be assigned to a copy of a. On the other hand, in the maximum individually rational
assignment each of the sets {4, 5, 6, 7}, {1, 8, 9}, {2, 10}, and {3} gets a single copy of
a.

Thus, the algorithm yields an assignment with only 4 agents assigned to a non-void
activity, while the maximum individually rational assignment assigns all 10 agents to
a copy of a.

In general, the algorithm assigns the agents {1, . . . , k} to the first copy of a, and
makes no further assignments. However, the maximum individually rational assign-
ment assigns all of the n = k(k+1)/2 agents to a copy of a: For each h ∈ {1, . . . , k−2}
the set of agents

{
1 + ∑k

j=h+1 j, . . . ,
∑k

j=h j, k − h − 1
}
is assigned to a different

copy of a, agent k − 1 gets his own copy of a, and another copy of a is allocated to
{k, . . . , 2k − 1}.

Example 9 shows that our analysis of the algorithm described in the proof of The-
orem 7 is tight up to a constant factor. However, this does not rule out the possibility
that an algorithm with a better approximation ratio may exist.

4.3 Nash stability

We have shown that a-GASP does not not always admit a Nash stable assignment
(Proposition 1). In fact, it is difficult to determine whether a Nash stable assignment
exists.

Theorem 8 It is NP-complete to decide whether a-GASP admits a Nash stable
assignment.

Proof We reduce from the problem of deciding whether a-GASP admits a per-
fect assignment. Let (N , A, P) be an instance of a-GASP. We define an instance
(N ′, A′, P ′) of a-GASP by setting N ′ = N ∪ {n + 1}, A′ = A ∪ {b}, and
P ′ = (V ′

1, . . . , V
′
n+1), where for each i ∈ N , V ′

i is constructed so that its induced
approval vote S′

i is given by S′
i = Si ∪ {(b, 1)} and S′

n+1 = {(b, 2)}. By construction,
the size of (N ′, A′, P ′) is polynomial in that of (N , A, P).
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Assume that (N , A, P) admits a perfect assignment π . Define an assignment π ′
for (N ′, A′, P ′) as follows: π ′(i) = π(i) for all i ∈ N , and π ′(n + 1) = a∅. Clearly,
π ′ is Nash stable.

Conversely, assume that (N ′, A′, P ′) admits a Nash stable assignment π ′. If two or
more agents are assigned to b, thenπ ′ is not individually rational (because there is only
one agent who is willing to share b) and hence not Nash stable. If exactly one agent
is assigned to b, by individual rationality it is an agent i ∈ N , so π ′ is not Nash stable
because n + 1 would like to join b. Therefore, no agent is assigned to b. Now, if there
is an agent i ∈ N with π ′(i) = a∅, then π ′ is not Nash stable because i would like to
engage in b. Therefore, each agent i ∈ N is assigned to a non-void activity. Since π ′
is individually rational, this means that its restriction to N is a perfect assignment for
(N , A, P). ��
However, if agents’ preferences satisfy INC, DEC, or MIX, a Nash stable assignment
always exists and can be computed efficiently.

Theorem 9 Given a mixed increasing–decreasing instance (N , A, P) of a-GASP,
we can find a Nash stable assignment in polynomial time.

Proof Suppose first that agents’ preferences are increasing, i.e., A∗ = A+. We can
then start by choosing an arbitrary individually rational assignment π (e.g., π(i) = a∅
for all i ∈ N ). If π is not Nash stable, there exists an agent i ∈ N with π(i) = a∅ and
an activity a j ∈ A∗ such that (a, |π j | + 1) ∈ Si . We can then modify π by setting
π(i) = a j ; clearly, this assignment remains individually rational. If the resulting
assignment is still not Nash stable, we can repeat this step. Since at each step the
number of agents assigned to the void activity goes down by 1, this process stops after
at most n steps.

For decreasing preferences, we proceed as follows. We consider the activities one
by one; at step j , we consider activity a j . Let N j ⊆ N be the set of agents that remain
unassigned at the beginning of step j . Let N j,� = |{i ∈ N j | (a j , �) ∈ Si }|, and set
k = max{� | N j,� ≥ �}. Thus, k is the size of the largest group of currently unassigned
agents that can be assigned to a j . By our choice of k, the set N j contains at most k
agents that are willing to share a j with k +1 or more other agents. We assign all these
agents to a j ; if the resulting coalition contains � < k agents, we assign k−� additional
agents that approve of (a j , k) to a j (the existence of these k − � agents is guaranteed
by our choice of k). This completes the description of the j-th step. Note that no agent
that remains unassigned after this step wants to be assigned to a j : indeed, this activity
is currently shared among k agents, so if he were to join, the size of the group that is
assigned to a j would increase to k+1, and none of the unassigned agents is willing to
share a j with k + 1 other agents. If some agents remain unassigned after n steps, we
assign them to the void activity. To see that this assignment is Nash stable, consider
an agent i assigned to the void activity. For each activity a j he did not want to join the
coalition of agents assigned to a j during step j . Since the set of agents assigned to a j

did not change after step j , this is still the case.
For mixed decreasing–increasing instances, we first remove all activities in A+ and

apply our second algorithm to the remaining instance; we then consider the unassigned
agents and assign them to activities in A+ using the first algorithm. ��
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Moreover, the problem of finding aNash stable assignment that maximizes the number
of agents assigned to a non-void activity admits an efficient algorithm if A∗ consists
of a single simple activity.

Theorem 10 Given an instance (N , A, P) of a-GASP with A∗ = {a} we can, in
polynomial time, find a Nash stable assignment maximizing the number of agents
assigned to a non-void activity among all Nash stable assignments, or decide that no
Nash stable assignment exists.

Proof For each k = n, . . . , 0, we will check if there exists a Nash stable assignment
π with #(π) = k, and output the largest value of k for which this is the case.

For each i ∈ N , let S′
i = S↓a

i . For k = n a Nash stable assignment π with #(π) = n
exists if and only if n ∈ S′

i for each i ∈ N . Assigning every agent to a∅ is Nash stable
if and only if 1 /∈ S′

i for each i ∈ N . Now we assume 1 ≤ k ≤ n − 1 and set

U1 = {i ∈ N | k ∈ S′
i , k + 1 /∈ S′

i },
U2 = {i ∈ N | k /∈ S′

i , k + 1 ∈ S′
i },

U3 = {i ∈ N | k ∈ S′
i , k + 1 ∈ S′

i }.

If |U1| + |U3| < k, there does not exist an individually rational assignment π with
#(π) = k. If U2 �= ∅, no Nash stable assignment π with #(π) = k can exist, since
each agent from U2 would want to deviate. If |U3| > k, no Nash stable assignment
π with #(π) = k can exist, since at least one agent in U3 would not be assigned to a
and thus would be unhappy. Finally, if |U1| + |U3| ≥ k, |U3| ≤ k, U2 = ∅, we can
construct a Nash stable assignment π by assigning all agents from U3 and k − |U3|
agents fromU1 to a. Since we have π(i) = a∅ for all i with k /∈ S′

i and π(i) �= a∅ for
all i with k + 1 ∈ S′

i , no agent is unhappy. ��

4.4 Core and strict core stability

We have seen that an assignment in the core always exists and can be computed
by a simple algorithm (see Sect. 3). We will now consider computational problems
associated with the strict core.

We first observe that verifying whether a given assignment is in the core/strict core
is easy. Indeed, in both cases, given an assignment π , we can iterate over all activities
in A∗ and all potential sizes of a deviating coalition. For a fixed a j ∈ A∗ and k ∈ N ,
let s( j, k) be the number of players in π0 who approve (a j , k). If s( j, k) ≥ k, then
π is not in the core, and if s( j, k) < k for all a j ∈ A∗ and all k ∈ N , then π is core
stable. For the strict core, we check if there are at least k − |π j | − s( j, k) players
in N\(π j ∪ π0) who approve (a j , k); π is not in the strict core if and only if this
condition is satisfied for some a j ∈ A∗ and k ∈ N . This implies, in particular, that
deciding whether a given assignment is in the strict core is in NP.

Next, we will show that for decreasing preferences an assignment in the strict core
can be computed efficiently, while for increasing preferences this is not the case.
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Proposition 5 For every instance of a-GASP with decreasing preferences the strict
core is non-empty.Moreover, given an instance (N , A, P) of a-GASPwith decreasing
preferences, we can find an assignment in the strict core in polynomial time.

Proof Fix an instance (N , A, P) of a-GASP with decreasing preferences, and con-
sider the algorithm used to construct an assignment in the core (page 11). Let π

be the assignment constructed by this algorithm. Assume there is a subset E ⊆ N
with E ∩ π0 �= ∅ and an a j ∈ A∗ with π j ⊂ E such that (a j , |E |) ∈ Si for all
i ∈ E . Clearly, we have |E | > |π j |. Let E ′ = E ∩ (π j ∪ π0). By construction,
|π j | < |E ′| ≤ |E |. Since all agents have decreasing preferences, for each i ∈ E ′ it
holds that (a j , |E ′|) ∈ Si . It follows that when the agents in π j were assigned to a j

by the algorithm, it would have been possible to assign all agents in E ′—and hence
more than |π j | agents—to a j , a contradiction. Thus, the assignment π is in the strict
core. Clearly, the algorithm runs in polynomial time. ��
Theorem 11 It is NP-complete to decide whether a-GASP admits an assignment in
the strict core, even when all agents have increasing preferences and all activities are
simple.

Proof We have already argued that this problem is in NP. In order to prove NP-
hardness, we provide a reduction from the problem of deciding whether a given
instance of a-GASPwith increasing preferences and simple activities admits a perfect
assignment (this problem is NP-complete by Theorem 1).

Let (N , A, P) be an instance of the perfect assignment problem for a-GASP with
increasing preferences and simple activities. Let N ′ = N ∪ {n + 1, n + 2} and A′ =
A ∪ {b, c}. For each i ∈ N , let V ′

i be such that

S′
i = Si

⋃
{(a, n + 1), (a, n + 2) | (a, n) ∈ Si }

⋃
{(b, n + 1), (b, n + 2)} .

Further, let V ′
n+1 and V ′

n+2 be such that

S′
n+1 = ({c} × [2, n + 2]) ∪ ({b} × [n + 1, n + 2]}), S′

n+2 = {c} × [2, n + 2].

Set P ′ = (V ′
1, . . . , V

′
n+2). Obviously, (N ′, A′, P ′) is an instance of a-GASP with

increasing preferences and simple activities, which can be constructed in polynomial
time. In what follows, we will show that (N , A, P) admits a perfect assignment if and
only if (N ′, A′, P ′) has a non-empty strict core.

Suppose thatπ is a perfect assignment for (N , A, P). Thenwe can setπ ′(i) = π(i)
for i ∈ N and π ′(n + 1) = π ′(n + 2) = c to obtain a perfect assignment π ′ for
(N ′, A′, P ′); clearly, a perfect assignment is in the strict core.

On the other hand, suppose thatπ ′ is in the strict core of (N ′, A′, P ′). Ifπ ′(n+2) �=
c, then π ′(n+2) = a∅. Thus, no agent can be assigned to c, because π ′ is individually
rational. Hence, for E = {n + 1, n + 2} we have {i ∈ N ′ | π ′(i) = c} ⊂ E ,
(c, |E |) ∈ S′

i for i ∈ E , E ∩ π0 �= ∅, which violates the strict core condition. It
follows that π ′(n + 2) = c.

Since π ′ is individually rational and S↓c
i = ∅ for all i ∈ N , this means that

π ′(n + 1) = c. Consequently, no agent can be assigned to b under π ′, and hence
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Table 1 Summary of results

perfect Nash strict core

Unrestricted NP-c (Theorem 1) NP-c (Theorem 8) NP-c (Theorem 11)

Increasing NP-c (Theorem 1) P (Theorem 9) NP-c (Theorem 11)

Decreasing NP-c (Theorem 2) P (Theorem 9) P (Proposition 5)

Single activity (s.) P (Proposition 4) P (Theorem 10) P (Proposition 3)

Single activity (c.) NP-c (Theorem 4) ? NP-c (Corollary 2)

NP-c stands for “NP-complete”. For perfect (respectively,Nash, strict core), the problem is to decide
whether a given instance admits a perfect assignment (respectively, a Nash stable assignment, a strictly core
stable assignment); the easiness results in the first column extend to the problem of finding a maximum
individually rational assignment. The rows “single activity (s.)” and “single activity (c.)” correspond to A∗
composed of, respectively, a single simple activity and a single ∞-copyable activity. Hardness results for
increasing and decreasing preferences hold even if all activities are simple

π ′(i) /∈ {b, c} for all i ∈ N . Now, suppose that for some i ∈ N we have π ′(i) = a∅.
Then, for Ẽ = N ∪ {n + 1} we have {i ∈ N ′ | π ′(i) = b} ⊂ Ẽ , (b, |Ẽ |) ∈ S′

i for
all i ∈ Ẽ , and Ẽ ∩ π0 �= ∅. Again, this is a contradiction with the fact that π ′ is in
the strict core. Hence, for all i ∈ N we must have π ′(i) �= a∅, i.e., π ′|N is a perfect
assignment for (N , A, P). ��

For a single simple activity, Proposition 3 shows that finding an assignment in the
strict core of a given instance of a-GASP is easy. In contrast, for a single∞-copyable
activity, this problem is hard. This can be shown by adapting the reduction in the proof
of Theorem 4: it can be verified that for instances of a-GASP constructed in that proof
it holds that an assignment is in the strict core if and only if it is perfect. We thus obtain
the following corollary.

Corollary 2 It is NP-complete to decide whether a-GASP admits an assignment in
the strict core, even when A∗ consists of a single ∞-copyable activity a and for every
i ∈ N we have |S↓a

i | ≤ 2.

5 Conclusions and future work

We have defined a new model for selecting multiple group activities, discussed its
connections with hedonic games, defined several stability notions, and, for all of them,
we have obtained several complexity results. A number of our results are positive:
finding desirable assignments proves to be tractable for several restrictions of the
problem that are meaningful in practice (Table 1).

We see our work as a starting point in investigating the group activity selection
problem. There are two obvious directions in which it can be extended:

– relaxing the anonymity assumption and have agents express their preferences over
pairs consisting of an activity and a coalition, as done in the work of Anshelevich
and Sekar (2014);

– instead of focusing on dichotomous preferences, have agents express rankings of
the alternatives (or utility functions).
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It would also be interesting to study strategic behavior in GASP: Is there a rule
for assigning agents to activities that would encourage the agents to report their true
preferences, under reasonable restrictions on the agents’ preference structure? What
is the quality of assignments produced by such rules?
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A Proofs for Section 4.1

Theorem 2 It is NP-complete to decide whether a-GASP admits a perfect assign-
ment, even when all activities in A∗ are simple, all agents have decreasing preferences,
and, moreover, for every agent i ∈ N and every alternative a ∈ A∗ we have
S↓a
i ⊆ {1, 2}.

Proof Consider the following restricted variant of the problem of scheduling on unre-
lated machines. There are n jobs andm machines. An instance of the problem is given
by a collection of numbers {pi j | i = 1, . . . , n, j = 1, . . . ,m}, where pi j is the run-
ning time of job i onmachine j , and pi j ∈ {1, 2,+∞} for every i = 1, . . . , n and every
j = 1, . . . ,m. It is a “yes”-instance if there is a mapping ρ : {1, . . . , n} → {1, . . . ,m}
assigning jobs tomachines so that themakespan is atmost 2, i.e., for each j = 1, . . . ,m
it holds that

∑
i :ρ(i)= j pi j ≤ 2. This problem is known to be NP-hard [see the proof

of Theorem 5 in Lenstra et al. (1990)].
Given an instance {pi j | i = 1, . . . , n, j = 1, . . . ,m} of this problem, we construct

an instance of a-GASP as follows. We set N = {1, . . . , n}, A∗ = {a1, . . . , am}.
Further, for each agent i ∈ N we construct a vote Vi so that the induced approval

vote Si satisfies S
↓a j
i = {1} if pi j = 2, S

↓a j
i = {1, 2} if pi j = 1, and S

↓a j
i = ∅ if

pi j = +∞. Clearly, these preferences satisfy the constraints in the statement of the
theorem, and our reduction can be performed in polynomial time.

Suppose there is a mapping ρ that assigns jobs to machines so that the makespan is
at most 2, and consider an assignment π given by π(i) = a j if and only if ρ(i) = j .
Clearly, under this assignment each agent is assigned to a non-void activity, and,

moreover, π(i) = a j implies S
↓a j
i �= ∅ (since otherwise the completion time of

machine j under ρ would be +∞). Now, consider an agent i with π(i) = a j . Since
under ρ each machine can be assigned at most 2 jobs, we have |π j | ≤ 2. Thus, if

S
↓a j
i = {1, 2}, agent i is clearly satisfied. Further, if S

↓a j
i = {1}, we have pi j = 2.

Therefore, under ρ no job other than i can be assigned to machine j , which, in turn,
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means that under π no agent other than i is assigned to activity a j . Thus, in this case
i is satisfied as well. Since this holds for each i ∈ N , it follows that π is a perfect
assignment.

Conversely, let π be a perfect assignment for (N , A, P), and consider a mapping ρ

given by ρ(i) = j if and only if π(i) = a j . Since under π each agent is assigned to a
non-void activity, ρ assigns each job to some machine. Further, since π is individually
rational, the completion time of each machine is finite, and each machine is assigned
at most 2 jobs. Now, consider a machine j , j ∈ {1, . . . ,m}. If pi j = 1 for each job i
with ρ(i) = j , the completion time of machine j is at most 2. On the other hand, if

pi j = 2 for some job i with ρ(i) = j , then S
↓a j
i = {1}, which means that under π

no agent other than i can be assigned to activity a j . This, in turn, means that i is the
only job assigned to machine j under ρ, and hence in this case the completion time
of machine j is at most 2 as well. Since this holds for every machine, the makespan
of ρ is at most 2. ��

Theorem 3 It is NP-complete to decide whether a-GASP admits a perfect assign-
ment, even when all activities in A∗ are simple, all agents have decreasing preferences,
and, moreover, for every agent i ∈ N it holds that |{a | S↓a

i �= ∅}| ≤ 3.

Proof We reduce Monotone 3- SAT to our problem. Recall that an instance of
Monotone 3- SAT is given by a set of variables X = {x1, . . . , x�} and a set of
three-literal clauses C = {C1, . . . ,Cq} over X , where each clause in C contains pos-
itive literals only or negative literals only. It is a “yes”-instance if there exists a truth
assignment to variables in X that satisfies all clauses and a “no”-instance otherwise.
For a literal x , let oc(x) be the number of occurrences of x in C. Without loss of
generality, we can assume that the clauses C1, . . .Cp contain positive literals only,
while the clauses Cp+1, . . . ,Cq contain negative literals only, and that oc(xi ) > 0
and oc(x̄i ) > 0 for each xi ∈ X .

We will now define an instance of restricted network flow problem F (for an
illustration, see Fig. 1). Later, we will show that it corresponds to an instance of
a-GASPwith simple activities and decreasing preferences where each agent approves
of at most three activities.

– We introduce a source s and a sink t .
– For each variable xi

– we introduce a node vi and an arc of unlimited capacity from s to vi ;
– we introduce two nodes xi and x̄i , an arc labelled wi from vi to xi , and an arc
labelled w̄i from vi to x̄i .

– For each i = 1, . . . , �, the capacity of the arc wi is set to oc(xi ) and the capacity
of the arc w̄i is set to oc(x̄i ) · (q� + 1).

– For each “positive” clause C j , 1 ≤ j ≤ p, we introduce a node with the same
label.

– For each “negative” clause C j , p + 1 ≤ j ≤ q, we introduce q� + 1 nodes with

the respective labels C (1)
j , . . . ,C (q�+1)

j .
– For each i = 1 . . . , � and each j = 1, . . . , p we introduce unit capacity arcs from

xi to C j if xi appears in C j .
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Fig. 1 Flow instance F

– For each i = 1, . . . , � and each j = p + 1, . . . , q we introduce unit capacity arcs
from xi and x̄i to C

(1)
j , . . . ,C (q�+1)

j if x̄i appears in C j .

– Finally, we connect each C1, . . .Cp,C
(1)
p+1, . . . ,C

(q�+1)
q to t by a unit capacity

arc.

We will now show that there is a satisfying truth assignment for X if and only if
there is a flow of size (q� + 1)(q − p) + p in F that passes through at most one of
{xi , x̄i } for each i = 1, . . . , �. The “if” direction is obvious, so let us consider the “only
if” direction. Observe that a flow f of size (q� + 1)(q − p) + p that uses at most one
of {xi , x̄i } for each i = 1, . . . , � is a maximum flow in our network. Therefore it has
to send a unit of flow through each of the nodes C1, . . .Cp,C

(1)
p+1, . . . ,C

(q�+1)
q . Now

suppose that there is a j ∈ {p+1, . . . , q} such that all of the nodes C (1)
j , . . . ,C (q�+1)

j

are reached via positive literals only. Thenwemust have
∑�

i=1 oc(xi ) ≥ q�+1, which
is impossible. Thus, for each j ∈ {p + 1, . . . , q}, f sends flow through at least one
of C (1)

j , . . . ,C (q�+1)
j via at least one negative literal x̄i . By construction, the capacity

of w̄i is large enough that we can modify f so that through all of C (1)
j , . . . ,C (q�+1)

j
the flow is sent via negative literals only. Recall that by construction,each “positive”
clause C1, . . . ,Cp is reachable only via nodes that are contained in the clause. Thus,
there exists a flow that passes through at most one of {xi , x̄i } for each i = 1, . . . , �,
sends flow from positive literals only to positive clauses and from negative literals
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only to (copies of) negative clauses, and passes through all clauses. Clearly, such a
flow corresponds to a satisfying truth assignment.

Finally, we will now argue that the restricted flow problem described above can be
interpreted as an instance of a-GASP. Indeed, we can view each node v j as an activity,

and each node C1, . . .Cp,C
(1)
p+1, . . . , C

(q�+1)
q as an agent. Each agent approves of

the three activities the agent is reachable from. In more detail, for each agent i ∈
{C1, . . .Cp} we define his vote Vi so that the induced approval vote Si is given by

Si =
⋃

j :i is reachable from v j

{v j } × [1, oc(x j )],

and for each agent i ∈ {C (1)
p+1, . . . ,C

(q�+1)
q } we define his vote Vi so that the induced

approval vote Si is given by

Si =
⋃

j :i is reachable from v j

{v j } × [1, oc(x̄ j )(q� + 1)].

Note that we always have oc(x j ) < oc(x̄ j )(q� + 1). By construction, an agent is
connected to x j if she accepts up to oc(x j ) participants in activity v j ; if she accepts
up to oc(x̄ j )(q� + 1) participants, she is connected to x̄ j as well. Thus, a flow of size
(q� + 1)(q − p) + p corresponds to a perfect assignment. It remains to observe that
our reduction can be performed in polynomial time ��
Theorem 4 It is NP-complete to decide whether a-GASP admits a perfect assign-
ment, even when all activities in A∗ are equivalent (i.e., A∗ consists of a single
∞-copyable activity a) and for every i ∈ N we have |S↓a

i | ≤ 2.

Proof Note that this variant of a-GASP can be viewed as an anonymous hedonic
game, and a perfect assignment corresponds to a partition of players into coalitions so
that each agent approves of the size of his coalition. Therefore, when constructing an
instance of a-GASP in ourNP-hardness reduction, wewill only describe the coalition
sizes that each agent approves of, without mentioning the activity explicitly.

We reduce from a restricted version of X3C (see the proof of Theorem 1), where
it is assumed that every element of the ground set X appears in at most three sets
in Y; X3C is known to remain NP-hard under this restriction (Garey and Johnson
1979). Given an (X,Y) instance of X3C, for each x ∈ X let t (x) denote the number
of subsets in Y that contain x ; note that 0 ≤ t (x) ≤ 3. We pick |X | + |Y| pairwise
distinct positive integers that are multiples of 4: for every subset Y ∈ Y we pick an
integer z(Y ) ≥ 4, and for every element x ∈ X we pick an integer z(x) ≥ 4. We will
now construct an instance of a-GASP as follows:

– for every element x ∈ X , we introduce a groupGx of z(x)−t (x)+1 corresponding
element-players and set S↓a

i = {z(x)} for all i ∈ Gx ;
– for every subset Y ∈ Y , we introduce a group GY of z(Y ) − 3 corresponding
subset-players and set S↓a

i = {z(Y ) − 3, z(Y )} for all i ∈ GY ;
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– for every element x ∈ X and every subset Y ∈ Y with x ∈ Y , we introduce a
corresponding choice-player P(x,Y ) and set S↓a

P(x,Y ) = {z(x), z(Y )}.
Observe that this reduction can be performed in polynomial time.We claim that (X,Y)

is a “yes”-instance of X3C if and only if the constructed instance of a-GASP admits
a perfect assignment.

First, suppose that (X,Y) is a “yes”-instance of X3C, which is certified by a col-
lection of subsets Y ′ ⊆ Y .

– For every subset Y ∈ Y ′ with Y = {x, y, z}, we form a coalition consisting of the
z(Y ) − 3 subset-players in GY and of the three choice-players P(x,Y ), P(y,Y ),
P(z,Y ). The coalition size is z(Y ), and all these players are happy.

– For every subset Y ∈ Y\Y ′, the players in GY form their own coalition of size
z(Y ) − 3; all these players are happy.

– For every element x ∈ X , the z(x)−t (x)+1 element-players inGx forma coalition
together with the remaining t (x)−1 choice-players P(x,Y ) with Y ∈ Y\Y ′. The
coalition size is z(x), and all these players are happy.

Conversely, suppose that our instance of a-GASP admits a perfect assignment π .
Consider an element x ∈ X , and consider the corresponding z(x)− t (x)+ 1 element-
players in Gx . All these players must be in a coalition of size z(x), and for this they
need exactly t (x) − 1 choice-players P(x,Y ) with x ∈ Y to join. Hence exactly one
of the choice-players P(x,Y ) with x ∈ Y remains unassigned, and must look for
another coalition. The only option for him is a coalition of size z(Y ); hence he must be
together with the z(Y )−3 subset-players in GY and with the two other choice-players
P(y,Y ) and P(z,Y ) for this subset Y . Then we say that the corresponding subset Y
is selected by its three choice-players. It is easy to verify that there are exactly |X |/3
subsets selected, and that they form an exact cover. ��
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