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We consider the following problem in which a given number of items has to be chosen 
from a predefined set. Each item is described by a vector of attributes and for each 
attribute there is a desired distribution that the selected set should have. We look for a 
set that fits as much as possible the desired distributions on all attributes. An example 
of application is the choice of members for a representative committee, where candidates 
are described by attributes such as gender, age and profession, and where we look for a 
committee that for each attribute offers a certain representation, i.e., a single committee 
that contains a certain number of young and old people, certain number of men and 
women, certain number of people with different professions, etc. Another example of 
application is the selection of a common set of items to be used by a group of users, 
where items are labelled by attribute values. With a single attribute the problem collapses 
to the apportionment problem for party-list proportional representation systems (in such 
a case the value of the single attribute would be a political affiliation of a candidate). We 
study the properties of the associated subset selection rules, as well as their computational 
complexity.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Consider the following example. A research department has to choose k members for a recruiting committee. A selected 
committee should be gender-balanced, ideally containing 50% of male and 50% of female. Additionally, a committee should 
represent different research areas in certain proportions: ideally it should contain 55% of researchers specialising in area 1, 
25% of experts in area 2, and 20% in area 3. Another requirement is that the committee should contain 30% of junior and 
70% of senior researchers, and finally, the repartition between local and external members should be kept in proportions 
30% to 70%. The pool of candidates from which the department can select members of such a committee is as shown in the 
table below.

In the given example, if the department wants to select k = 3 members, then it is easy to see that there exists no 
committee that would satisfy all the criteria perfectly. Nevertheless, some committees are better than others: intuitively 
we feel that in the selected committee the ratio of the numbers of members representing different genders should be 
either equal to 2:1 or to 1:2, the ratio of the numbers of members representing areas 1, 2 and 3, should be equal to 2:1:0. 
Further, the selected committee should contain one junior and two senior members, and exactly one member of the selected 
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Name Gender Group Age Affiliation
Ann F 1 J L
Bob M 1 J E

Charlie M 1 S L
Donna F 2 S E
Ernest M 1 S L
George M 1 S E
Helena F 2 S E

John M 2 J E
Kevin M 3 J E
Laura F 3 J L

committee should have local affiliation. Such relaxed criteria can be achieved by selecting Ann, Donna, and George. Now, let 
us consider the above example for the case when k = 4. In such a case, the ideal ratios between the numbers of members 
for each of the four attributes should be equal to 1:1, 2:1:1, 1:3, and 1:3, respectively. Observe, however, that there exists 
no committee satisfying such relaxed criteria. According to different criteria, in this case the best committee can be for 
instance {Ann, Charlie, Donna, George}, with two externals instead of three, or {Charles, Donna, George, Kevin}, with males 
being over-represented.

In this paper we formalise the intuition given in the above example and we define what it means for a committee to 
be optimal, with respect to multi-attribute proportional representation. In our approach we leverage classical tools from 
political and social sciences, in particular we adapt the concept of proportional apportionment from the political science 
literature [3] to the case of multiple attributes. The central question of the apportionment problem is how to distribute 
parliament seats between political parties, given the numbers of votes cast for each party. Indeed, we can consider our 
multi-attribute problem, with the single attribute being a political affiliation of a candidate, and the desired distributions 
being the proportions of votes cast for different parties. In such a case we can see that selecting a committee in our 
multi-attribute proportional representation system boils down to selecting a parliament according to some apportionment 
criterion.

To emphasise the analogy between our model and the apportionment methods, we should provide some discussion on 
where the desired proportions for attributes come from. Typically, but not always, they come from votes. For instance, each 
voter might give her preferred value for each attribute, and the ideal proportions coincide with the observed frequencies. 
For instance, out of 20 voters, 10 would have voted for a male and 10 for a female, 13 for a young person and 7 for a senior 
one, etc.1 It is worth mentioning that the voters might cast approval ballots, that is for each attribute they might define a 
set of approved values rather than pointing out the single most preferred one. On the other hand, sometimes, instead of 
votes, there are “global” preferences on the composition of the committee, expressed directly by the group, imposed by law, 
or by other constraints that should be respected as much as possible independently of voters’ preferences.

There is a variety of apportionment methods considered in the literature (we refer the reader to the survey of Balinski 
and Young [3]). They are evaluated by means of properties; among those that are deemed important and have been exten-
sively studied in the literature, we find non-reversal, respect of quota, population monotonicity, and house monotonicity (see [2]). 
We define the analogs of these properties for the multi-attribute domain. These properties give us some insights into the 
nature of multi-attribute committee selection mechanisms; in particular, their analysis allows us to view certain selection 
methods as generalisations of the appropriate apportionment rules. Specifically, following this approach, in this paper we 
define multi-attribute variants of the Hamilton rule and of the d’Hondt rule of apportionment, hereinafter referred to as the 
multi-attribute Hamilton rule and the multi-attribute d’Hondt rule.

The multi-attribute case, however, is also substantially different from the single-attribute one. In particular, multi-
attribute proportional representation systems exhibit computational problems that do not appear in the single-attribute 
setting. Indeed, in the second part of our paper we show that finding an optimal committee is often NP-hard. However, we 
show that this challenge can be addressed by designing efficient approximation and fixed-parameter tractable algorithms. 
In particular, the core technical contribution of this paper lies in the analysis of approximation guarantees provided by the 
local-search algorithm for the problem of finding an optimal committee, with respect to a certain measure of multi-attribute 
proportional representation.

We believe that the model formalised in this paper has broad applications. As an example, consider a political system 
where the voters do not vote for the candidates directly, but rather for their opinions on various issues. For instance, quoting 
Lang and Xia [32], in 2012, voters in California had to decide in simultaneous multiple referenda whether to adopt each 
of the given eleven propositions2; a similar vote also took place in Florida. Given that the voters vote on propositions, our 
algorithms can be used to find a set of candidates that, in some sense, best represents opinions of voters about propositions. 
The number of propositions can be even larger: for instance, political parties have usually quite elaborate programs in which 
they refer to tens or hundreds of issues.

1 How to aggregate in a consistent way ideal proportions specified by different voters is a nontrivial problem addressed in [15].
2 http://en .wikipedia .org /wiki /California _elections ,_November _2012.

http://en.wikipedia.org/wiki/California_elections,_November_2012
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Further, our algorithms can be useful for selecting diversified groups of people. For instance, assume that our goal is to 
prepare an advertisement campaign. In such a case it is often desirable to depute this task to a team where men, women, 
people with different age and different education level are well represented. Similarly, when we select a jury we would 
like it to be representative according to different criteria, such as ethnicity, gender, age, religious beliefs, education level 
and wealth. Admitting PhD students is another example, where we would like to have a diversity with respect to ethnicity, 
gender, nationality, but also with respect to skills, education background, or disciplines of interest.

As another example, consider a library offering a set of movies to buy. In ImDB3 movies can be described by many at-
tributes, such as genre, country, language, year, actors, directors, awards, etc. Users often look for movies by their attributes. 
Our algorithms can help such library to find a representative collection of movies that fits the collective will as much as 
possible. Finding a representative collective set of attribute-value items can be also used as a tool for implementing group 
recommendations [1], where the goal is to recommend a set of items for a group of agents, based on their (possibly con-
flicting) preferences: in some recent approaches to group recommendation (see [27] for a survey and comparison of four 
approaches), each item is seen as a set of features, users’ preferences over features are elicited, and the aim of the system 
is to suggest a few representative items, such as set of movies or a set of tourist activities that comply as much as possible 
with the users’ preferences over features.

This paper is organised as follows. In Section 2 we recall some useful concepts and definitions relating to methods of 
apportionment. We present our model in Section 3 and in Section 4 we introduce two different optimisation criteria and 
define multi-attribute committee selection rules optimising these criteria. In Section 5 we show that, although computation 
of optimal committees is generally NP-hard, there exist good approximation and fixed-parameter tractable algorithms for 
finding them. We position our work with respect to related areas in Section 6. In Section 7 we give a detailed discussion on 
the model and some of its possible extensions. Finally, in Section 8 we conclude and point to further research issues.

2. Preliminaries: methods of apportionment

For each integer i ∈N, by [i] we denote the set of the first i natural numbers, [i] = {1, . . . , i}.
Consider a sequence of t political parties, denoted as P1, . . . , Pt . For each i ∈ [t], let vi denote the number of votes given 

to party Pi . An apportionment rule is a method that given a distribution of votes among parties, v = (v1, . . . , vt) where vi
denotes the number of votes cast for party Pi , and the number of seats h (the size of the house), returns a distribution of 
the h seats among the t parties. We denote the number of seats allocated to party Pi by ri .

As is often the case in social choice, ties may occur and we have to choose between resoluteness and neutrality between 
parties: a resolute apportionment rule returns a single solution by sacrificing neutrality in case a tie occurs, and an irresolute 
apportionment rule returns all tied apportionments. In the rest of the paper we focus on resolute rules, and assume that 
ties are broken by an exogenous priority relation between parties. All our results are easily adaptable to irresolute rules.

Formally, an apportionment rule is a function A : Nt × N → Nt that for each v ∈ Nt and each h ∈ N returns a vector 
A(v, h) = (r1, . . . , rt) satisfying the following two conditions: (i) 

∑
i∈[t] ri = h, (ii) ri ∈ N ∪ {0} for each i ∈ [t]. We will use 

the symbol v+ to denote the sum of all votes, v+ = ∑t
i=1 vi .

There are numerous apportionment rules considered in the literature. The two most commonly-used classes of appor-
tionment rules are the largest remainder and the divisor methods [3], which we briefly describe below.

2.1. Largest remainder methods

The following definition describes one of the most prominent classes of apportionment methods.

Definition 1 (The largest remainder methods). Let q ∈ Q be a rational number. The largest remainder method with quota q
works in two steps. In the first step, each party Pi is allocated �vi/q� seats (the quota value must be chosen in such a 
way that the number of seats allocated in the first step is guaranteed to be between h − t and h). In the second step, 
the remaining seats are allocated to the parties so that each party is allocated either one or zero additional seats. The 
parties which are allocated an additional seat are the ones with the largest values of the remainders vi/q − �vi/q� (using the 
tie-breaking priority relation if necessary).

The most common choice of a quota is the Hare quota, defined as qHare = v+/h; the method based on the Hare quota is 
called the Hamilton method (also known as the largest remainder method or Hare–Niemeyer method).4 The Hamilton method 
was one of the first methods used in the contemporary democracies. Its definition dates back to the 18th century and it 
was first used to select the members of the U.S. House of Representatives between 1852 and 1900. Currently, with slight 
modifications, it is used in parliamentary elections in Russia, Ukraine, Tunisia, Namibia, and Hong Kong. Below we provide 
an example illustrating the Hamilton method.

3 http://www.imdb .com/.
4 Other common choices are the Droop quota 1 + v+

1+h , the Hagenbach–Bischoff quota v+
1+h and the Imperiali quota v+

2+h .

http://www.imdb.com/
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Example 1. Consider the instance with four parties and 100 voters. Assume that 4, 12, 33, and 51 votes were cast for parties 
P1, P2, P3, and P4, respectively. Let us set h = 10, thus qHare = v+/h = 10. In the first step the parties P1, P2, P3, and P4 are 
allocated 0, 1, 3, and 5 seats, respectively. The remainders for the four parties equal to 4/10, 2/10, 3/10, and 1/10, respectively. 
In the second step, the single remaining seat goes to the party with the highest remainder, i.e., to P1. Consequently, the 
allocation of the seats returned by the Hamilton method is given by the vector (1, 1, 3, 5). �
2.2. Divisor methods

Divisor methods (also known as highest average methods) constitute another class of common and important apportion-
ment methods.

Definition 2 (Divisor methods). Let d = (d1, d2, . . .) be a nondecreasing sequence of positive values. The divisor method de-
fined by sequence d starts with an empty allocation (0, . . . , 0), and in each of the h consecutive steps assigns one additional 
seat to some party. Let si( j) denote the number of seats allocated to party P j just before step i. In the i-th step the party 
P j with the highest ratio v j/dsi ( j)+1 is allocated an additional seat (using the tie-breaking priority relation if necessary). We 
denote this party as A(v, h, i).

The most commonly used sequences of divisors are dDHondt = (1, 2, 3, . . .) and dSL = (1, 3, 5, . . .). The divisor method 
based on the sequence dDHondt is called the d’Hondt method (it is also known as the Jefferson method or the Hagenbach–
Bischoff method). The definition of the d’Hondt method dates back to the 18th century as well, and it is currently used for 
apportionment in more than 40 countries. The divisor method based on the sequence dSL is known as the Sainte-Laguë 
method (sometimes referred to as the Webster method, Schepers method, or the method of major fractions) and is currently 
used in several countries.

Example 2. Consider the instance from Example 1. The below table shows the computation of the d’Hondt method. In the 
i-th iteration the i-th highest value from the table is selected and a seat is allocated to the party that corresponds to this 
value. For instance, the first seat will be allocated to party P4, which corresponds to the highest value of 51. The highest 
10 values are shown in bold font: these are the values that correspond to the 10 seats allocated to parties.

v1 v2 v3 v4
vi/1 4 12 33 51
vi/2 2 6 16.5 25.5
vi/3 1.33 4 11 17
vi/4 1 3 8.25 12.75
vi/5 0.8 2.4 6.6 10.2
vi/6 0.66 2 5.5 8.5
vi/7 0.57 1.71 4.71 7.28

According to the d’Hondt method the following parties will be allocated consecutive seats: we start by giving a seat to P4
(that is, A(v, 10, 1) = P4), because the largest value in the table is v4/1 = 51; then a seat to P3, because the second largest 
value is v3/1 = 33; then a second seat to P4, because the third largest value is v4/2 = 25.5; then a third seat to P4, and then 
P3, P4, P2, P3, P4, P4. In the end, parties P1, P2, P3, and P4 will get 0, 1, 3, and 6 seats, respectively. �
2.3. Properties of methods of apportionment

Several properties of apportionment methods have been studied, starting with Balinski and Young [2]. Below, we recall 
the definitions of the several of them, which will be useful in our further discussion. Recall that v denotes the vector of 
votes, v+ denotes the total number of all votes, h is the number of available seats and that (r1, . . . , rt) =A(v, h).

Non-reversal. The rule A is said to satisfy non-reversal if for each parties Pi , P j , ri ≥ r j holds whenever vi > v j .
Respect of quota. The rule A is said to respect quota if for each party Pi it holds that �vih/v+� ≤ ri ≤ 	vih/v+
.
Party population monotonicity. Consider two vectors of votes v = (v1, . . . , vt) and v ′ = (v ′

1, . . . , v
′
t) and a party Pi such 

that: (i) vi/v+ > v ′
i/v ′+ , and (ii) v j/v� = v ′

j/v ′
� for each j, � �= i. The rule A satisfies party population monotonicity if for 

each such vectors of votes v and v ′ , it holds that ri ≥ r′
i , where (r1, . . . , rt) =A(v, h) and (r′

1, . . . , r
′
t) =A(v ′, h). In 

other words, if the relative number of votes of a party increases ceteris paribus, then this party cannot receive less 
seats. Conditions (i) and (ii) are satisfied in particular if v is obtained from v ′ by adding more votes for Pi .

House monotonicity. The rule A satisfies house monotonicity if for each two numbers of available seats, h and h′ , with 
h′ > h, and for each party Pi it holds that r′

i ≥ ri , where (r1, . . . , rt) =A(v, h) and (r′
1, . . . , r

′
t) =A(v, h′).

The property that we call party population monotonicity is sometimes called population monotonicity (for instance, this 
is often the case in the literature on fair allocation, and sometimes in the literature on apportionment [19]). However, most 
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commonly in the context of apportionment, the term “population monotonicity” is used to refer to a stronger property, 
which covers cases when voters migrate between parties [2] (intuitively, party population monotonicity describes only cases 
when the population of one party grows while the populations of others remain unchanged). In particular, it is known that 
only divisor methods satisfy population monotonicity [3]. Party population monotonicity is more interesting for our study, 
since we will show that it is satisfied by the Hamilton method, and so this property will be useful in understanding the 
relation between the Hamilton method and its multi-attribute counterpart that we introduce in this paper.

One assumption that is often implicitly made in the analysis of the apportionment methods is that each party has 
at least h members, i.e., that there will always be enough candidates in each party to be given the allocated seats. This 
assumption will be very relevant in our further discussion. We will refer to it as to the full supply property. It is commonly 
known that under full supply property the Hamilton method satisfies non-reversal and respect of quota, and that it fails 
house monotonicity (this failure of house monotonicity is better known under the name Alabama paradox). It is also known 
that the Hamilton method fails population monotonicity, and we will show that it satisfies its weaker variant — the party 
population monotonicity. On the other hand, the d’Hondt method satisfies all four properties except the respect of quota.

Proposition 1. Under full supply property the Hamilton method satisfies party population monotonicity.

The proof of Proposition 1, as all proofs omitted from the main text, is relegated to the Appendix A.
We note that there are also other properties of the apportionment methods considered in the literature, such as consis-

tency, or the properties that deal with strategyproofness issues, such as resistance to party merging or to party splitting. We 
selected the above four properties for our analysis as the most basic ones, and perhaps the most often referred to in the 
literature. Moreover, as we shall soon see, they are relevant for our multi-attribute generalisation of apportionment, which 
does not seem to be the case for other properties listed above.

3. The multi-attribute model

In this section we give a formal description of our model and discuss its specific elements. We explain that our model 
can be viewed as a generalisation of the apportionment setting to the case of multiple attributes and we discuss how the 
properties of the apportionment methods from Section 2.3 can be formulated in such a generalised model.

3.1. The formal setting

Let X = {X1, . . . , Xp} be a set of p attributes, each with a finite domain Di = {x1
i , . . . , x

qi
i }. We say that Xi is binary if 

|Di | = 2. We set D = D1 × . . . × D p , and let C = {c1, . . . , cm} be a set of candidates (also referred to as items); C is also re-
ferred to as the candidate database. Each candidate ci is represented as a vector of attribute values (X1(ci), . . . , Xp(ci)) ∈ D .5

For each i ∈ [p], by πi we denote a target distribution πi = (π1
i , . . . , πqi

i ) with 
∑qi

j=1 π
j

i = 1. We set π = (π1, . . . , πp). 

Typically, n voters have cast a ballot expressing their preferred value on every attribute Xi , and π j
i is the fraction of voters 

who have x j
i as their preferred value for Xi , but the results presented in the paper are independent from where the values 

π
j

i come from (see the discussion in the introduction).
A multi-attribute committee selection rule6 is a function R that for each database of candidates C , each vector of target 

distributions π and each committee size k ∈ [m], select a set of k candidates R(C, π, k) from C .7 Again, we focus on the 
resolute version of such rules, using a tie-breaking mechanism whenever necessary.

Intuitively, a good multi-attribute committee selection rule should select such candidates that the distribution of attribute 
values in the selected set is as close as possible to π . Let Sk(C) denote the set of all subsets of C of cardinality k. Given 
A ∈ Sk(C), the representation vector for A is defined as r(A) = (

r1(A), . . . , rp(A)
)
, where ri(A) = (r j

i (A) | j ∈ [qi]) for each 

i ∈ [p], and r j
i (A) = |{c∈A|Xi(c)=x j

i }|
k .

Example 3. Consider the example from the introduction. In this example there are p = 4 four attributes, X = {Gender, Group,

Age, Affiliation}. There are two possible values for the attribute “Gender”, thus D1 = {F , M} (x1
1 = F and x2

1 = M). Simi-
larly, D2 = {A, B, C}, with x1

2 = A, x2
2 = B , and x3

2 = C , etc. For example, Ann can be represented in our model as a tuple 
(F , A, J , L). The target distributions used in the introduction can be formulated in our model as:

5 By writing X j(ci), we slightly abuse notation, that is, we consider X j both as an attribute name and as a function that maps a candidate to an attribute 
value, yet this will not lead to any ambiguity.

6 We will stick to the terminology “committee” although the meaning of subsets of candidates has sometimes nothing to do with electing a committee.
7 Observe that the outputs of the committee selection rules for the single-attribute and the multi-attribute cases are different. In the single-attribute 

model the rule returns a vector while in the multi-attribute one, it returns a set of k candidates. This is because in the multi-attribute case it is often not 
reasonable to assume the full supply property, hence the exact structure of the candidate database is important — in particular, for our problem, it will be 
important which candidates exist in the database (and then which ones will be selected from it).



J. Lang, P. Skowron / Artificial Intelligence 263 (2018) 74–106 79
π1
1 = 0.5 π1

2 = 0.55 π1
3 = 0.3 π1

4 = 0.3

π2
1 = 0.5 π2

2 = 0.25 π2
3 = 0.7 π2

4 = 0.7

π3
2 = 0.2

Consider a three-element committee A = {Ann, Donna, George}. For this committee, the values in appropriate representation 
vectors are the following:

r1
1(A) = 2/3 r1

2(A) = 2/3 r1
3(A) = 1/3 r1

4(A) = 1/3

r2
1(A) = 1/3 r2

2(A) = 1/3 r2
3(A) = 2/3 r2

4(A) = 2/3

r3
2(A) = 0 �

The following definition formalises our intuition regarding which committees are considered ideal.

Definition 3. A committee A ∈ Sk(C) is perfect for π if ri(A) = πi for all i.

Thus, a perfect committee matches exactly the target distributions. Clearly, there is no perfect committee if for some 
i, j, π j

i is not an integer multiple of 1/k. In some of our results we will focus on target distributions such that for each 
i, j the value kπ j

i is an integer. We will refer to such target distributions as to natural distributions. Further, we see that 
the number of possible combinations of the attribute values grows exponentially with the number of nontrivial attributes 
(attributes which have at least two values). Consequently, even for natural distributions, finding a perfect committee cannot 
always be possible, simply because there are not sufficiently many appropriate candidates in the database. This observation 
suggests that the multi-attribute analog of the full supply property might be harder to satisfy in the multi-attribute setting 
(especially when the number of attributes is large). Below, we generalise the definition of the full supply property to the 
case of multiple attributes.

Definition 4. A candidate database C satisfies the full supply property with respect to k if for any x ∈ D there are at least k
candidates in C who have the value of each attribute Xi equal to x[i].

An alternative interpretation of the full supply property is that it is always possible to create any number of candidates 
corresponding to a specific vector of attribute values.

While in some cases, specifically when the number of attributes is very low and the number of candidates is very large, 
it is reasonable to expect that the database will satisfy the full supply property, it is a much less realistic assumption when 
the number of attributes is large and/or when the database is small. In this paper we show how to deal with such cases, 
and in particular, how to extend two standard methods of apportionment, the Hamilton method and the d’Hondt method, 
to the case of multiple attributes and to the case where the full supply property is violated. Nevertheless, the analysis of 
the full supply property for multiple attributes can also give us some interesting insights into the nature of the analysed 
multi-attribute committee selection rules, and in particular, it can allow us to view some of these rules as extensions of the 
classic methods of apportionment.

We can observe that there exists a straightforward polynomial-time algorithm for checking if the candidate database 
satisfies the full supply property. Indeed, first we need to check if the size of the database is at least equal to k|D|, and if 
this is the case, we should additionally check if for each x ∈ D there exists at least k appropriate candidates in the database.

3.2. Properties of multi-attribute committee selection rules

We now generalise the properties discussed in Section 2.3 to multi-attribute committee selection rules (which we simply 
refer to as “rules”).

Non-reversal. Intuitively, non-reversal says that if one value x of a certain attribute has a target value higher than that of 
another value y, then x should be represented in the resulting committee at least as well as y (in short, values 
that deserve more get more). Formally, a rule R satisfies non-reversal if for each triple (C, π, k), if R(C, π, k) = A, 
then for all i ∈ [p] and j, j′ ∈ [qi], π j

i > π
j′

i implies r j
i (A) ≥ r j′

i (A).
Respect of quota. A rule respects quota if its results match target distributions “almost” exactly, i.e., if they are allowed not 

to match them exactly, only because of the rounding issues. Formally, a rule R respects quota if for each triple 
(C, π, k), if R(C, π, k) = A, then for all i ∈ [p] and j ∈ [qi], either r j

i (A) = �kπ j
i � or r j

i (A) = 	kπ j
i 
.

Value monotonicity (with respect to attribute Xi). Informally, value monotonicity says that if we increase the demand for 
a certain value x of a certain attribute Xi while not changing other demands, then in the new committee x should 
be at least as well represented as in the old one. Formally, consider a candidate database C , an integer k, and two 
vectors of target distributions π and ρ , such that there exist i, j with: (i) π

j
> ρ

j , (ii) π
j′′

i /π j′
i = ρ

j′′
i /ρ j′

i for all 
i i
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j′, j′′ �= j, and (iii) ρ
j

i′ = π
j

i′ for all i′ �= i and all j ∈ [qi′ ]. R satisfies value monotonicity with respect to attribute 
Xi if for each such C , k, π and ρ , if R(C, k, π) = A and R(C, k, ρ) = B , then r j

i (A) ≥ r j
i (B).

House monotonicity. Informally, house monotonicity says that if we increase the number of available seats, then in the 
new committee each value of each attribute will be at least as well represented as in the old one. Formally, a rule 
R satisfies house monotonicity if for any candidate database C , target distribution π , and two integers k and k′
with k′ > k, if R(C, π, k) = A and R(C, π, k′) = B then r j

i (B) ≥ r j
i (A) holds for all i, j.

Clearly, these four definitions generalise the classical definitions of the properties when there is a single attribute (in par-
ticular, value monotonicity generalises party population monotonicity). Even though there could be other generalisations, 
those are arguably natural ones. In what follows, we will use these properties to argue that a certain class of multi-attribute 
committee selection rules can be viewed as extensions of the appropriate methods of apportionment.

4. Multi-attribute extensions of methods of apportionment

As we argued in the previous section, finding perfect committees in many cases might not be feasible, either because the 
target distributions are not natural, or because the candidate database does not satisfy the full supply property. These two 
observations lead us to define two metrics measuring how well a committee fits a target distribution. These two metrics 
induce two different methods of finding committees, which can be viewed as extensions of the Hamilton rule and of the 
d’Hondt rule to the multi-attribute domains. Other metrics will be briefly considered in Section 7.3.

4.1. Multi-attribute Hamilton rule

We start by defining what we believe to be the most natural metric measuring how close a given committee is to a 
target distribution and by arguing that such metric induces a rule which can be viewed as an extension of the Hamilton 
method: the L1 metric.

Definition 5 (Multi-attribute Hamilton rule). The multi-attribute Hamilton rule is the function RH that given a candidate 
database C , a vector of target distributions π , and an integer k, finds a committee A ∈ Sk(C) minimising 

∑
i, j |r j

i (A) − π
j

i |.

In other words, Multi-Attribute Hamilton Rule minimises the total variation distance between π/p and r/p viewed as 
probability distributions (we normalise π and r, multiplying them by 1/p, so that their sums are equal to 1, and so that 
they could be viewed as probability distributions). The above definition is illustrated by the following example.

Example 4. For the example from the introduction, we have X = {Gender, Group, Age, Affiliation}, D = {F , M} × {A, B, C} ×
{ J , S} × {L, E}, and X1(Ann) = F , X1(Bob) = M etc. Further, we have π1 = (0.5, 0.5), π2 = (0.55, 0.25, 0.2), π3 = (0.3, 0.7), 
and π4 = (0.3, 0.7). For k = 4, there are eight different committees which minimise our expression — let us show the 
calculation for one of them: A = {Ernest,George,Helena, Laura}. We have 

∑
i, j |r j

i (A) − π
j

i | = 0 + 0 + 0.05 + 0 + 0.05 +
0.05 + 0.05 + 0.2 + 0.2 = 0.6. �

Now, let us argue that Definition 5 can be viewed as an extension of the Hamilton method of apportionment. We start 
by considering the case of a single-attribute (p = 1). Without loss of generality, let us assume that the single attribute is a 
party affiliation. Moreover, let us for a moment assume the full supply property, i.e., that for each value x j

1 there are at least 
k candidates with value x j

1 (this is typically the case in party-list elections; in fact we need to use this assumption only to 
ensure that the Hamilton method is well defined). After defining π i

1 = vi
v+ for all i, we obtain the following result:

Proposition 2. When p = 1 and assuming there are at least k candidates for each value of the unique attribute, then RH coincides 
with the Hamilton apportionment rule.

Definition 5 is inspired by the idea of distance rationalisation of voting rules (see [23] for one of the most recent works 
on the topic). In distance rationalisation, one first defines the outcome of a voting rule for elections where there exist an 
obvious, non-controversial winning candidate; such elections are called consensus elections. Second, in order to define an 
outcome of a voting rule for an arbitrary election E we determine the closest consensus election E ′ according to some 
distance (for instance, one can use the swap distance to measure the closeness between preferences of voters expressed 
as rankings over candidates), and we set the outcome of the rule for E to the same set of winners as the outcome for E ′ . 
When viewed from this perspective, Proposition 2 can be viewed as giving a distance rationalisation of the Hamilton rule 
— the consensus apportionments are those where there exist perfect committees, and the distance is the Manhattan (or L1) 
distance.

Under the full supply assumption, a very similar result to Proposition 2 holds for multiple attributes.
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Proposition 3. Consider a candidate database that satisfies the full supply property. For any attribute Xi, any committee A that 
minimises 

∑
i, j |r j

i (A) −π
j

i | is a Hamilton committee for the single-attribute problem ({Xi}, D↓Xi , πi, k), where D↓Xi is the projection 
of D on {Xi}.

Proof. Let us fix an attribute Xi and towards a contradiction, let us assume that there exists a committee A that minimises ∑
i, j |r j

i (A) − π
j

i | and that is not a Hamilton committee for the single-attribute problem ({Xi}, D↓Xi , πi, k). By Proposition 2

we infer that there exists another committee B such that 
∑

j |r j
i (B) − π

j
i | < ∑

j |r j
i (A) − π

j
i |. We will show that it is pos-

sible to construct a committee D from A and B such that 
∑

i, j |r j
i (D) − π

j
i | < ∑

i, j |r j
i (A) − π

j
i |. This will contradict the 

assumption that A that minimises 
∑

i, j |r j
i (A) − π

j
i |.

We construct D as follows. We sort A and B in some fixed arbitrary way; let A = {a1, . . . , ak} and B = {b1, . . . , bk}. For 
each i ∈ [k] we take ai ∈ A and bi ∈ B , and define di as a candidate which has the value of the i-th attribute the same as bi

and the value of all other attributes the same as ai . We add di to D; the full supply assumption guarantees that it will always 
be possible to find such a candidate. We have that:∑

j

|r j
i (D) − π

j
i | =

∑
j

|r j
i (B) − π

j
i | <

∑
j

|r j
i (A) − π

j
i |

and that for each � �= i it holds that:∑
j

|r j
�(D) − π

j
� | =

∑
j

|r j
�(A) − π

j
� |.

Consequently, 
∑

i, j |r j
i (D) − π

j
i | < ∑

i, j |r j
i (A) − π

j
i |, which gives a contradiction and completes the proof. �

Note that the construction given in the proof gives us a practical way of constructing an optimal committee under the 
full supply assumption.

Further, below we also show that under the full supply assumption, the multi-attribute Hamilton rule satisfies the same 
from the four (multi-attribute variants) of the properties considered in Section 2.3 as the Hamilton method of apportion-
ment. We start by noticing that if a property fails to be satisfied in the single-attribute case, a fortiori it is not satisfied in 
the multi-attribute case. As a consequence, house monotonicity is not satisfied, even under the full supply assumption.

Proposition 4. Under the full supply assumption, non-reversal, respect of quota, and value monotonicity with respect to every attribute 
are all satisfied by the multi-attribute Hamilton rule. In the general case, non-reversal, and respect of quota are not satisfied. If Xi is a 
binary variable, then value monotonicity with respect to Xi is satisfied; however it is not satisfied in the general case.

Importantly, if a perfect committee A exists for C , π and k, then RH(C, π, k) = A.
We close this subsection by a short discussion on the metric that is minimised in the definition of the multi-attribute 

Hamilton rule. It is perfectly reasonable to consider other metrics such as maxi, j |r j
i (A) −π

j
i | (max-max) or 

∑
i max j |r j

i (A) −
π

j
i | (sum-max). In this paper we focus on 

∑
i, j |r j

i (A) − π
j

i | because we believe this is the most natural choice. For a 
discussion on other metrics we refer the reader to the conference version of this paper [31]. (Note that Proposition 3 does 
not hold with the max-max metric.)

Finally, note that similar extensions to other largest remainder methods can be defined in the same way, after changing 
the value of the quota.

4.2. Multi-attribute d’Hondt rule

In this subsection we extend the idea implemented in the d’Hondt apportionment method to the multi-attribute set-
ting. This generalisation would work for any other divisor method; for the sake of brevity, and also because the d’Hondt 
apportionment method is the most often used divisor method, throughout the rest of the paper we focus on this specific 
method. We first observe that the result of the d’Hondt apportionment can be formulated equivalently, as the solution to 
an optimisation problem.

Lemma 1. Consider the apportionment problem and an allocation r = (r1, . . . , rt). If for each i, j ∈ [t] it holds that vi/ri+1 ≤ v j/r j , then 
r is a d’Hondt apportionment.

Proof. For the sake of contradiction let us assume that r is not a d’Hondt apportionment. Let us run the d’Hondt method 
on v (breaking ties arbitrarily), outputting r∗ . Let u be the last step such that su(i) ≤ ri for all i: for some i we have 
su+1(i) = ri + 1 (such a step exists because r∗ �= r). By the pigeonhole principle, for some j we have su+1( j) = su( j) < r j . By 
definition of the d’Hondt procedure at step u, v j

su( j)+1 ≤ vi
su(i)+1 = vi

ri+1 . Since su( j) < r j we have vi
ri+1 ≥ v j

su( j)+1 >
v j
r j

, which 
contradicts the condition in the statement of the lemma. �
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This leads us to the following equivalent formulation of the d’Hondt rule. The following proposition states an analogous 
result for the d’Hondt method as Proposition 2 for the Hamilton rule.

Proposition 5. In the classical apportionment setting, an allocation (r1, . . . , rt) maximises the value of the expression∑
i∈[t]

∑
j∈[ri ] vi/ j if and only if it is one of the outcomes of the irresolute version of the d’Hondt apportionment rule.

Proof. Define S(r, v) = ∑
i∈[t]

∑
j∈[ri ] vi/ j. Also, given an apportionment r and two attribute values (parties) i, j such that 

ri �= k and r j �= 0, let r[i+ j−] be the apportionment obtained from i by giving one more seat to i and one less to j from r.
First, we show that if allocation r = (r1, . . . , rt) maximises S(r, v), then it is a d’Hondt apportionment for v . For the sake 

of contradiction let us assume that r is not a d’Hondt apportionment. By Lemma 1 we know that in such a case there exist 
two parties i, j such that vi/ri+1 > v j/r j . Let r′ = r[i+ j−]. We have S(r′, v) = S(r, v) + vi/ri+1 − v j/r j > S(r, v), therefore r does 
not maximise S(r, v).

Next, we prove that if r is a d’Hondt apportionment for v , then it maximises S(r, v). For the sake of contradiction let us 
assume that there exists r′ such that S(r′, v) > S(r, v). Let r(0) = r. We define the following sequences of apportionments: 
for an integer s ≥ 0, if r(s) �= r′ then, since 

∑
i∈[t] r(s)

i = ∑
i∈[t] r′

i = k, there must exist two indices i and j such that r(s)
i > r′

i

and r(s)
j < r′

j . Let r(s+1) = r(s)[ j+i−]. We have S(r(s+1), v) − S(r(s), v) = v j/r(s)
j +1 − v j/r(s)

i . Consider the step in the execution 
of the d’Hondt method when the ri -th seat has been allocated to party Pi . At this step, party P j is allocated x seats with 
x ≤ r j ≤ r′

j − 1. Since the d’Hondt method allocated the seat to party Pi instead of P j it must hold that vi/r(s)
i ≥ vi/ri ≥

v j/x+1 ≥ v j/r j+1 ≥ v j/r(s)
j +1. Thus, each transformation does not increase the value of the expression. Yet, after a number 

of such transformations we reach (r′
1, . . . , r

′
t) which has a higher value of the expression than (r1, . . . , rt). This gives a 

contradiction and completes the proof. �
Observe that 

∑
j∈[ri ] vi/ j = viH(ri), where H(n) = ∑n

i=1
1/i denotes the n-th harmonic number. Proposition 5 leads us to 

the following extension of the d’Hondt method to multi-attribute scenarios.

Definition 6 (Multi-attribute d’Hondt rule). The multi-attribute d’Hondt rule is the function RdHondt that given a candidate 
database C , a vector of target distributions π , and an integer k, finds a committee A ∈ Sk(C) maximising 

∑
i, j π

j
i H(r j

i (A) ·k).

Since for each x ∈ N we have that log(x + 1) ≤ H(x) ≤ log(x + 1) + 1, the maximisation of 
∑

i, j π
j

i H(r j
i (A) · k) is in-

tuitively a very close objective to the maximisation of 
∑

i, j π
j

i log(r j
i (A) · k), which is equivalent to the maximisation of ∑

i, j π
j

i log
(

r j
i (A)/π j

i

)
, and so, to the minimisation of 

∑
i, j π

j
i log

(
π

j
i /r j

i (A)

)
, which is the Kullback–Leibler divergence from 

r/p to π/p viewed as probability distributions.8

Example 5. Consider again our running example. For k = 4 there are two optimal committees {Bob,Donna,Ernest,Helena}
and {Bob,Charlie,Donna,Helena}. The value of the optimised function for the first committee can be computed as 0.5 ·
H(2) +0.5 ·H(2) +0.55 ·H(2) +0.25 ·H(2) +0.3 ·H(1) +0.7 ·H(3) +0.3 ·H(1) +0.7 ·H(3) = 0.6 ·H(1) +1.8 ·H(2) +1.4 ·H(3) ≈
5.866. �

We can formulate a result for the multi-attribute d’Hondt rule that is analogous to Proposition 3 for the multi-attribute 
Hamilton rule.

Proposition 6. Consider a candidate database that satisfies the full supply property. For any attribute Xi , any committee A that max-
imises 

∑
i, j π

j
i H(r j

i (A) · k) is a d’Hondt committee for the single-attribute problem ({Xi}, D↓Xi , πi, k), where D↓Xi is the projection 
of D on {Xi}.

Let us now examine properties of the multi-attribute d’Hondt method. It is known that for a single-attribute case the 
d’Hondt method satisfies non-reversal, house monotonicity, and party population monotonicity, yet it does not respect 
quota.9 Consequently, respect of quota is not satisfied by the multi-attribute d’Hondt method even under the full supply 
assumption.

8 Thanks to one of the anonymous reviewers for this observation.
9 It is known that the d’Hondt method satisfies a weaker form of respect of quota — it respects lower quota, i.e., for each party Pi it holds that 

ri ≥ �vi h/v+�.
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Proposition 7. Under the full supply assumption, non-reversal, house monotonicity, and value monotonicity with respect to every 
attribute are all satisfied by the multi-attribute d’Hondt method. In the general case, non-reversal and house monotonicity are not 
satisfied. If Xi is a binary variable, then value monotonicity with respect to Xi is satisfied; however it is not satisfied in the general case.

Finally, let us observe that if a perfect committee A exists for C , π and k, then RdHondt(C, π, k) = A. This follows from 
Proposition 5 and from the fact that in the single-attribute case a committee that exactly matches the target distributions 
is always selected by the d’Hondt method. This property, which, as we have seen, also holds for RH, will be useful in our 
further discussion on computational properties of our multi-attribute rules.

5. Computing multi-attribute rules

Now, we are ready to formally define the main computational problems that we address in this paper.

Problem 1. We are given X , C , π , and k. In the OptimalHamiltonRepresentation we look for a committee A ∈ Sk(C) that 
minimises the expression 

∑
i, j |r j

i (A) − π
j

i |. In the OptimalDHondtRepresentation problem our goal is to find a committee 
A ∈ Sk(C) maximising 

∑
i, j π

j
i H(r j

i (A) · k).

In this section we investigate the computational complexity of the problem of finding optimal committees. We start with 
observing that the problem of deciding whether there is a perfect committee for a given instance is NP-complete.

Proposition 8. Given set of attributes X, a set of candidates C , a vector of target distributions π , an integer k, deciding whether there 
exists a perfect committee is NP-complete.

Proof. Membership is straightforward. Hardness follows by reduction from the NP-complete problem exact cover with 
3-sets, or x3c [28]. Let I = 〈X, S〉 with X = {x1, . . . , x3k} and S = {S1, . . . , Sn} with |Si | = 3 for each i. I is a positive 
instance of x3c iff there is a collection S ′ ⊆ S with |S ′| = k and ∪{S|S ∈ S ′} = X . Define the following instance of perfect 
committee: let X1, . . . , X3k be 3k binary attributes, and let C consist of m candidates c1, . . . , cm with Xi(c j) = 1 if xi ∈ S j and 
Xi(c j) = 0 if xi /∈ S j . Finally, for each i, π0

i = k−1
k and π1

i = 1
k . We want a committee of size k. A = {ci1 , . . . , cik } is perfect 

for π if for each Xi , there is exactly one j ∈ {1, . . . , k} such that Xi(ci j ) = 1, which is equivalent to saying that for each xi , 
there is exactly one S j ∈ {Si1 , . . . , Sik } such that xi ∈ S j . Thus, there is a perfect committee for π and C if and only if I is a 
positive instance. �

Since the multi-attribute Hamilton and d’Hondt methods always find a perfect committee if there exists one, this simple 
result implies that the decision problem associated with finding an optimal committee is NP-hard. In the next subsec-
tions we will explore two natural approaches to alleviate the NP-hardness of the problem: we will ask if the problem 
can be computed efficiently when certain natural parameters are small, and we will ask whether it can be well approxi-
mated.

In this paper we mostly present computational results for binary domains. However, this assumption is not as restrictive 
as it may seem — every instance of the OptimalHamiltonRepresentation problem can be transformed to a new instance 
with binary domains in the following way:

• Xnew = {Xi, j | i ∈ [p], j ∈ [|Di |]}; for each i, j we set Di, j = {0, 1}.

• Cnew = {c′
l | l = 1, . . . , m}; for each �, i, j we have Xi, j(c′

l) = 0 iff Xi(cl) = x j
i .

• πnew = (πi, j | i ∈ [p], j ∈ [|Di |]), where for all i = [p] and j = [|Di |], π0
i, j = π

j
i and π1

i, j = 1 − π
j

i .

The following proposition establishes the relation between the optimal committees for the original problem, and for the 
problem transformed to binary domains.

Proposition 9. For a given committee A and target distribution π , let Anew and πnew denote the committee and target distributions 
obtained as above. The following holds:

∑
i, j

|r j
i (Anew) − π

j
i | = 2

∑
i, j

|r j
i (A) − π

j
i |.

Proof.

∑
|r j

i (A) − π
j

i | =
∑∣∣∣∣∣

|{c ∈ A : Xi(c) = x j
i }|

k
− π

j
i

∣∣∣∣∣ =
∑∣∣∣∣ |{c ∈ Anew : Xi, j(c) = 0}|

k
− π0

i, j

∣∣∣∣

i, j i, j i, j
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Fig. 1. The functions h1, . . . , hk used in the proof of Theorem 2 for k = 4. Observe that for each x ∈ [k] the highest value v such that v ≤ hi(x) for each 
i ∈ [k] is equal to v = H(x).

= 1

2

∑
i, j

(∣∣∣∣ |{c ∈ Anew : Xi, j(c) = 0}|
k

− π0
i, j

∣∣∣∣ +
∣∣∣∣ |{c ∈ Anew : Xi, j(c) = 1}|

k
− π1

i, j

∣∣∣∣
)

= 1

2

∑
i, j

∑
�∈{0,1}

|r�
i, j(Anew) − π�

i, j| =
1

2

∑
i, j

|r j
i (Anew) − π

j
i |. �

Proposition 9 has interesting implications — first, it shows that the transformed instance has the same perfect com-
mittees, and the same optimal Hamilton committees as the original instance; then it shows how to obtain approximation 
guarantees for OptimalHamiltonRepresentation for arbitrary domains having guarantees for the problem restricted to bi-
nary domains, which will be useful in Section 5.3.

5.1. Parameterised complexity

In this section, we study the parameterised complexity of the problem of finding optimal Hamilton and d’Hondt com-
mittees. We are specifically interested whether for some natural parameters there exist fixed parameter tractable (FPT) algo-
rithms. We recall that the problem is FPT for a parameter P if its each instance I can be solved in time O ( f (P ) · poly(|I|))
for some computable function f . From the point of view of parameterised complexity, FPT is seen as the class of easy 
problems. There is also a whole hierarchy of hardness classes, FPT ⊆ W [1] ⊆ W [2] ⊆ · · · (for details, we point the reader to 
appropriate overviews [18,21,25,40]).

Obviously, the problem admits an FPT algorithm for the parameter m (we can enumerate all k-element subsets of the set 
of candidates and select the best one). Now, we present a negative result for parameter k (committee size) and a positive 
result for the parameter p (number of attributes).

Theorem 1. The problem of deciding whether there exists a perfect committee is W[1]-hard for the parameter k, even for binary 
domains.

Proof. By reduction from the W[1]-complete PerfectCode problem [13]. Let I be an instance of PerfectCode that consists 
of a graph G = (V , E) and a positive integer k. We ask whether there exists V ′ ⊆ V with |V ′| = k such that each vertex in 
V is adjacent to exactly one vertex from V ′ (by convention, a vertex is adjacent to itself). From I we construct the following 
instance I ′ of the problem of deciding whether there exists a perfect committee. For each v ∈ V there is a binary attribute 
Xv and a candidate cv . For each u, v ∈ V , Xv(cu) = 1 if and only if u and v are adjacent in G . We look for a committee of 
size k. For each v , π1

v = 1 − π0
v = 1

k . It is easy to see that perfect codes in I correspond to perfect committees in I ′ . �
Theorem 2. For binary domains, there exists an FPT algorithm for OptimalHamiltonRepresentation and for OptimalDHondtRep-

resentation for parameter p.

Proof. We will show a linear integer program for each of the two problems, OptimalHamiltonRepresentation and for
OptimalDHondtRepresentation, with the number of integer variables bounded by a function of p. Such a linear program, 
by the result of Lenstra [34, Section 5], can be solved in FPT time for parameter p. Currently, the best known running time 
of algorithms solving integer linear programs is O (n2.5n+o(n) · poly|I|), where n is the number of integer variables and |I|
is the length of encoding of the input instance [26,29]. We will start from describing the set of variables and constraints 
which are common for the two problems that we consider.

Each candidate can be viewed as a vector of values indexed with the attributes; there are 2p such possible vectors: 
v1, . . . , v2p . For each vi , let ai denote the number of candidates that correspond to vi . For each i ∈ [2p] we introduce 
an integer variable bi , which intuitively denotes the number of candidates corresponding to vi in an optimal committee. 
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Further, for each i ∈ [p] and each j ∈ [qi] we introduce a variable r j
i , which in the optimal solution will be equal to k · r j

i (A), 
where A is the optimal committee returned by our integer linear program. Consider the following set of linear constraints:

(a) : bi ∈ Z

(b) : bi ≥ 0

(c) : bi ≤ ai

(d) :
2p∑

i=1

bi = k

(e) : r j
i =

∑
�:v�[i]=x j

i

b� i ∈ [p], j ∈ [qi]

i ∈ [2p]

These constraints ensure that for a committee A described by the variables (bi)i∈[2p ] it holds that r j
i = k · r j

i (A), for each 
i ∈ [p] and j ∈ [qi]. Now, for OptimalHamiltonRepresentation we additionally introduce two real variables, x j

i and y j
i , for 

each i ∈ [p] and j ∈ [qi], and the following constraints:

(f) : x j
i ≥ 0

(g) : x j
i ≥ r j

i − k · π j
i

(h) : y j
i ≥ 0

(i) : y j
i ≥ k · π j

i − r j
i

i ∈ [2p], j ∈ [qi]

These constraints ensure that for each i ∈ [p] and j ∈ [qi] it holds that k|r j
i (A) − π

j
i | ≤ x j

i + y j
i . Thus, we can find an 

optimal Hamilton committee by minimising the objective function 
∑

i∈[p]
∑

j∈[qi ](x j
i + y j

i ) subject to constraints (a)–(i).
Finding an optimal d’Hondt committee requires an additional construction. The idea of this construction is similar to the 

one used by Caragiannis et al. [10]. Let us construct k linear functions: h1, . . . , hk , as follows. For each i ∈ [k] we define 
hi as a linear function such that hi(i − 1) = H(i − 1) and hi(i) = H(i), where H(i) denotes the i-th harmonic number. The 
functions (hi)i∈[k] for k = 4 are depicted in Fig. 1. Now, for each i ∈ [p] and j ∈ [qi] we introduce one real variable z j

i and 
the following constraints:

(j) : z j
i ≤ h�(r

j
i ) � ∈ [k]

The highest value of z j
i which satisfies constraints ( j) is equal to H(r j

i ). Thus, to find an optimal d’Hondt committee we 
need to maximise the expression 

∑
i∈[p]

∑
j∈[qi ] z j

i subject to constraints (a)–(e) and (j).
Of course, when there is no candidate corresponding to a given vector of values of the attributes vi , then we can skip 

the respective variable bi . This can make our ILPs more practical when the size of the candidate database is small. �
Example 6. Let p = 2, k = 5, and let the candidate database C consists of 4 candidates with value vector v1 = (0, 0), 2 
with value vector v2 = (1, 0), 2 candidates with value vector v3 = (0, 1) and 2 candidates with value vector v4 = (1, 1). Let 
π = ((0.2, 0.8), (0.6, 0.4)). The constraints (a)–(e) of the integer linear program are:

(a) : bi ∈ Z 1 ≤ i ≤ 4

(b) : bi ≥ 0 1 ≤ i ≤ 4

(c) : b1 ≤ 4; b2 ≤ 2; b3 ≤ 2; b4 ≤ 2

(d) : b1 + b2 + b3 + b4 = 5

(e) : r0
1 = b1 + b3; r1

1 = b2 + b4; r0
2 = b1 + b2; r1

2 = b3 + b4;
and a solution is (b1 = 1, b2 = 2, b3 = 0, b4 = 2): a perfect committee is obtained by taking one candidate with value 
vector (0, 0), two candidates with value vector (1, 0), and two with value vector (1, 1). Thus, this is an optimal d’Hondt and 
Hamilton committee. �

As a corollary of Theorem 2 we get that the problem of checking whether there exists a perfect committee is in FPT for 
the parameter p. We can see that the proof of Theorem 2 easily extends to the case where the size of each domain Di is 
bounded by a constant.
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Table 1
Running times (average and maximal) of the ILP for the problem of finding optimal Hamilton 
and d’Hondt committees. The entry “> 10 h” means that none of the ten experiments finished 
before the deadline of 10 hours.

m p k average maximal
50 20 5 0.06 s 0.07 s
50 20 10 0.33 s 1.17 s
100 50 10 55 s 98 s
100 50 25 2.7 h 9.5 h
300 80 40 > 10 h > 10 h

m p k average maximal
50 20 10 0.07 s 0.09 s
50 20 10 1.05 s 1.73 s
100 50 10 59 s 89 s
100 50 25 1.9 h 4.3 h
300 80 40 > 10 h > 10 h

a. Finding optimal Hamilton committees b. Finding optimal d’Hondt committees

A ← ∅;
for i ← 1 to k do

c ← argmaxc′∈C\A
∑

i, j π
j

i H(r j
i (A ∪ {c′}) · k) ;

A ← A ∪ {c};
return A;

Fig. 2. Greedy approximation algorithm for the OptimalDHondtRepresentation problem.

We conclude this section by a short discussion. Finding an optimal committee is likely to be difficult if the candidate 
database C is large, and the number of attributes not small. Assume |C | is large compared to the size of the domain ∏p

i=1 |Di |, that each attribute value appears often enough in C and that there is no strong correlation between attributes 
in C : then, the larger |C |, the more likely C satisfies the full supply property, in which case finding an optimal committee is 
easy. The really difficult cases are when |C | is not significantly larger than the domain, or when C shows a high correlation 
between attributes.

We have run a set of simple experiments to better understand the limitations of the ILP-based approach presented in the 
proof of Theorem 2. For several different values of the parameters m (the number of candidates), p (the number of binary 
attributes) and k (the size of the committee) we run the following simulations. We selected the value of each attribute 
for each candidate independently, following a uniform i.i.d. distribution. For each i ∈ [p] we set the target distribution for 
the i-th attribute to π0

i = π1
i = 1/2. For each combination of the parameter values (m, p, k) we run 10 experiments and 

computed the average and the worst-case time that the appropriate ILP required to solve the respective instance. For our 
experiments we used the Gurobi ILP solver and a desktop machine with 4 processors Intel Core i5-4200U, 1.62 GHz, 3072 KB 
of cache. The running times of our ILPs are summarised in Table 1.

We observe that for a small number of attributes, we can efficiently apply our FPT algorithms. Nevertheless, for large 
instances, with more than a hundred attributes and more than a few hundreds candidates, the ILP-based approach is no 
longer feasible. Following this observation, in the next two subsection we will discuss an alternative approach, which uses 
the concept of approximation. This approach is suitable when the number of attributes is too large for the ILP-based algo-
rithms.

One more reason for studying approximation algorithms for finding a committee is that an approximation algorithm 
can be viewed as a new rule, which might or might not inherit some good properties of the original rule that we aim to 
approximate (this view of approximation algorithms was taken first in [9]). This new rule is not only simpler to compute 
but also may be easier to understand by humans. Moreover, for low-stake domains where optimality is not crucial, it often 
does not matter whether we apply the initial rule of one of its approximations.

5.2. Approximating the multi-attribute d’Hondt method

Let us first consider the problem of approximating the multi-attribute d’Hondt method. We will use the following stan-
dard definition of approximation.

Definition 7. An algorithm A is an α-approximation algorithm for OptimalDHondtRepresentation if for each instance I of
OptimalDHondtRepresentation it holds that

∑
i, j

π
j

i H(r j
i (A) · k) ≥ α

∑
i, j

π
j

i H(r j
i (A∗) · k),

where A is the committee returned by A for I , and is A∗ an optimal committee.

For the OptimalDHondtRepresentation problem we show that a simple greedy algorithm from Fig. 2 achieves an ap-
proximation ratio of 1 − 1/e.
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Theorem 3. The greedy algorithm from Fig. 2 is a (1 − 1/e)-approximation algorithm for OptimalHamiltonRepresentation.

Proof. Consider the set function that we optimise f (A) = ∑
i, j π

j
i H(r j

i (A) · k). It can be expressed as a linear combination 
of functions f (A) = ∑

i, j f i, j(A), where f i, j(A) = H(r j
i (A)). We will now show that for each i and j the function f i, j is 

submodular. For that we need to show that for each A, B with A ⊂ B ⊂ C , and for each c ∈ C \ B it holds that:

f i, j(A ∪ {c}) − f i, j(A) ≥ f i, j(B ∪ {c}) − f i, j(B).

Now, if Xi(c) �= x j
i then r j

i (A ∪ {c}) = r j
i (A) and r j

i (B ∪ {c}) = r j
i (B), thus:

f i, j(A ∪ {c}) − f i, j(A) = 0 = f i, j(B ∪ {c}) − f i, j(B).

On the other hand, if Xi(c) = x j
i then r j

i (A ∪ {c}) = r j
i (A) + 1 and r j

i (B ∪ {c}) = r j
i (B) + 1. Since A ⊂ B , we have r j

i (B) ≥ r j
i (A)

and so:

f i, j(A ∪ {c}) − f i, j(A) = 1

r j
i (A) + 1

≥ 1

r j
i (B) + 1

= f i, j(B ∪ {c}) − f i, j(B).

Thus, each function f i, j is submodular. Also, f as a linear combination of submodular functions is submodular. The thesis 
follows from the famous result of Nemhauser et al. [39] which established the (1 − 1/e)-approximation bound for the greedy 
algorithm for the problem of maximising a submodular function. �
5.3. Approximating the multi-attribute Hamilton rule

Now, we move to the problem of approximating the multi-attribute Hamilton method. Before proceeding to presentation 
of our approximation algorithms for this problem, we define the notion of approximability used in our analysis. First, we 
observe that there is no hope for a polynomial time approximation algorithm according to the notion of multiplicative 
approximation, perhaps the most commonly used definition of approximation.

Proposition 10. Unless P = NP, for each computable function α : N → N there exists no polynomial-time algorithm that or each 
instance I of OptimalHamiltonRepresentation returns a committee A such that:∑

i, j

|r j
i (A) − π

j
i | ≤ α(|I|) ·

∑
i, j

|r j
i (A∗) − π

j
i |,

where A∗ is an optimal committee for I .

Proof. For the sake of contradiction, let us assume that such a polynomial-time algorithm exists. Then for each instance I
for which there exists a perfect committee A∗ , we have 

∑
i, j |r j

i (A∗) −π
j

i | = 0, and thus our algorithm would need to find a 
committee A with 

∑
i, j |r j

i (A) −π
j

i | = 0. This means that we could use our algorithm to find a perfect committee, whenever 
such exists. Yet, by Proposition 8 deciding whether there exists a perfect committee is NP-hard. �

Given this strong negative result, we move to analysing the additive approximation of the problem.

Definition 8. An algorithm A is an α-additive-approximation algorithm for OptimalHamiltonRepresentation if for each 
instance I of OptimalHamiltonRepresentation it holds that

∣∣∑
i, j

|r j
i (A) − π

j
i | −

∑
i, j

|r j
i (A∗) − π

j
i |∣∣ ≤ α,

where A is the committee returned by A for I , and A∗ an optimal committee.

Now, we are ready to show an approximation algorithm for the OptimalHamiltonRepresentation problem. The algorithm 
is given in Fig. 3 and is parameterised by an integer value �. It starts with a random collection of k samples and, in each 
step, it looks whether it is possible to replace some � candidates from the current solution with some other � candidates to 
obtain a better solution (if there exist many choices for replacing such � candidates the algorithm can pick an arbitrary of 
them). The algorithm continues until it cannot find any pair of sets of � candidates that would improve the current solution.

Let q = maxi∈[p] qi . For the sake of simplicity, assume that target distributions are natural (this is almost without loss 
of generality, as there we can always find target distributions that are close to the initial distributions; see the end of 
Section 5). We show that in that case, the running time of the local search algorithm is O (p2m�k�+1q�). For instance, the 
simplest variant of the algorithm (that is, the algorithm for � = 1) for binary domains works in time O (mp2k2). Indeed, 
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Parameters:
π = (π1, . . . , πp) — input target distributions.
� — the parameter of the algorithm.

A ← k random candidates from C ;
while there exist C� ⊂ C and A� ⊂ A such that |C�| = |A�| ≤ �, and∑

i, j

∣∣r j
i (A) − π

j
i

∣∣ >
∑

i, j

∣∣r j
i ((A \ A�) ∪ C�) − π

j
i

∣∣ do
A ← (A \ A�) ∪ C�;

return A;

Fig. 3. Local search approximation algorithm for the OptimalHamiltonRepresentation problem.

the algorithm starts with a random committee A; the worst case distance to the target distributions can be upper bounded 
by 

∑
i, j

∣∣r j
i (A) − π

j
i

∣∣ ≤ ∑
i, j 1 ≤ pq. In each iteration of the while loop the solution improves: since the distributions are 

natural, the distance must improve by at least 1/k. This is because for each i ∈ [p], j ∈ [qi] the values r j
i (A) and π j

i are 
integral multiples of 1/k, and so is the optimised value. Thus, there will be at most pqk iterations of the while loop. In each 
iteration we check all �-element subsets of the set of candidates and compare each such a subset with all �-element subsets 
of the current best committee — thus, there are at most m�k� such comparisons. For a single comparison we need to check 
all the attributes of the selected candidates in order to verify if replacing the appropriate subsets gives an improvement, 
which results in p� operations.

As we show now, the approximation guarantees depend on the value of the parameter �.

Theorem 4. Recall that p = |X |. For binary domains and natural distributions the local search algorithm from Fig. 3 with � = 1 is a 
p-additive-approximation algorithm for OptimalHamiltonRepresentation.

Proof. Let A∗ denote an optimal solution for a given instance I of the OptimalHamiltonRepresentation problem. Let A ∈
Sk(C) denote the set returned by the local search algorithm from Fig. 3. From the condition in the “while” loop, we know 
that there exist no c ∈ C and a ∈ A such that 

∑
i, j

∣∣r j
i (A) −π

j
i

∣∣ >
∑

i, j

∣∣r j
i ((A \ {a}) ∪ {c}) −π

j
i

∣∣. Now, let Xex ⊆ X denote the 
set of all attributes for which A achieves exact match with π , that is, such that for each Xi ∈ Xex, we have that r1

i (A) = π1
i

and r2
i (A) = π2

i .
Let us consider the procedure consisting in taking the candidates from A \ A∗ and, one by one, replacing them with 

arbitrary candidates from A∗ \ A. This procedure, in |A \ A∗| steps, transforms A into an optimal solution A∗ . We now 
estimate the total gain g induced by this procedure. For each candidate a ∈ A \ A∗ , by a′ ∈ A∗ \ A we denote the candidate 
which was taken to replace a in the procedure. For each attribute Xi ∈ X we define the gain gi(a, a′) of replacing a by a′
as:

gi(a,a′) =
∑

j∈{1,2}

(
|r j

i (A) − π
j

i | − |r j
i (A \ {a} ∪ {a′}) − π

j
i |

)
.

We now extend this definition to sets of k candidates:

gi(B, B ′) =
∑

j∈{1,2}

(
|r j

i (A) − π
j

i | − |r j
i ((A \ B) ∪ B ′) − π

j
i |

)
.

If Xi ∈ Xex, then ri(A) = πi , and so the replacement cannot improve the quality of the solution relatively to Xi , hence∑
i∈Xex

gi(A \ A∗, A∗ \ A) ≤ 0. (1)

Since the distribution is natural, we have that gi(a, a′) ∈
{
− 2

k ,0, 2
k

}
. This is because replacing a single candidate in A can 

change the value of |{c ∈ A : Xi(c) = x j
i }| by −1, 0, or 1, and so, it can change the value of r j

i (A) by − 1
k , 0, or 1

k . Moreover, 
for each attribute Xi /∈ Xex there are two possible cases:

1. r j
i (A) > π

j
i and each exchange of candidate that results in a negative gain increases r j

i (A).

2. r j
i (A) < π

j
i and each exchange that results in a negative gain decreases r j

i (A).

Intuitively, 1. and 2. mean that for attributes outside of Xex, the negative gains cumulate. Formally, for each X /∈ Xex:

gi(A \ A∗, A∗ \ A) ≤
∑

a∈A\A∗
gi(a,a′). (2)
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From the condition in the “while” loop, we have that for each a ∈ A \ A∗: 
∑

i gi(a, a′) ≤ 0, and so:∑
i

∑
a∈A\A∗

gi(a,a′) ≤ 0. (3)

We now give the following sequence of inequalities:

g =
∑

i

gi(A \ A∗, A∗ \ A) =
∑

i∈Xex

gi(A \ A∗, A∗ \ A) +
∑

i /∈Xex

gi(A \ A∗, A∗ \ A)

≤
∑

i /∈Xex

gi(A \ A∗, A∗ \ A) ≤
∑

i /∈Xex

∑
a∈A\A∗

gi(a,a′) ≤ −
∑

i∈Xex

∑
a∈A\A∗

gi(a,a′)

The last transition in the above sequence is due to Inequality (3). Consequently, we get that:

g ≤
∣∣∣ ∑

i∈Xex

∑
a∈A\A∗

gi(a,a′)
∣∣∣ ≤ |Xex| · k · 2

k
= 2|Xex|. (4)

Finally, for each attribute Xi /∈ Xex the loss relative to Xi , i.e., |r0
i (A) − π0| + |r1

i (A) − π1|, is at most 2. Thus, we get 
g ≤ 2(|X | − |Xex|), which leads to g ≤ |X |. �

One way to interpret the bound |X | is to observe that a solution that for half of the attributes gives exact match, and for 
other half is arbitrarily bad, is an |X |-approximate solution. We do not know whether the bound |X | is reached, but below 
we show a lower bound of 2

3 |X | on the error made by the algorithm with � = 1.

Example 7. Consider 3p binary attributes X1, . . . , X3p , 4� candidates C = {a1, . . . , a2�, b1, . . . , b2�}, and let k = 2�. For each 
i ≤ p, we have: for j ≤ �, Xi(a j) = 1 and Xi(b j) = 1; for j > �, Xi(a j) = 0 and Xi(b j) = 0. For each i such that p < i ≤ 2p we 
have: for j ≤ �, Xi(a j) = 1 and Xi(b j) = 0; for j > �, Xi(a j) = 0 and Xi(b j) = 1. For i > 2p we have: for each j, Xi(a j) = 1
and Xi(b j) = 0. Finally, for i ≤ 2p let π0

i = π1
i = 1

2 , and for i > 2p let π0
i = 1 − π1

i = 1. It can be easily checked that 
B = {b1, . . . , b2�} is a perfect committee. Now, A = {a1, . . . , a2�} is locally optimal. To check this, we consider two cases: 
in the first case, where (r ≤ � and q ≤ �) or (r > � and q > �), replacing ar with bq does not change the distance to the 
target distribution on each of the first p attributes, increases the distance on each of the next p attributes and decreases the 
distance on each of the last p attributes. For the second case, where (r ≤ � and q > �) or (r > �; q ≤ �), the line of reasoning 
is similar. Finally, 

∑
i, j

∣∣r j
i (A) − π

j
i

∣∣ = 2p = 2
3 |X |. �

A better approximation bound can be obtained with � = 2, yet the analysis of this case is much more involved.

Lemma 2. Consider n buckets X1, . . . , Xn, such that in the i-th bucket Xi there are xi white balls and yi black balls. Let A denote 
the number of pairs of balls such that both balls in the pair belong to the same bucket and are of different colour. Let us consider 
the procedure in which one iteratively selects a bucket and takes out two balls with different colours from the selected bucket. The 
procedure ends after B steps, when no further steps are possible (in each bucket, either there are no balls anymore, or all balls have the 
same colour). It holds that A ≥ B2

n .

Proof. Without loss of generality let us assume that for each i: xi ≤ yi . Thus, B = ∑
i xi and A = ∑

i xi yi ≤ ∑
i x2

i . The 

inequality 
∑

i x2
i ≥

(∑
i xi

)2

n follows from Jensen’s inequality [17] applied to the quadratic function. �
Lemma 3. Let xi , yi , Ai , 1 ≤ i ≤ n, be real values satisfying the following constraints:

1. xi ≥ Ai
2n−2(i−1)

, for each 1 ≤ i ≤ n,
2. Ai ≥ Ai−1 − 2xi−1 , for each 2 ≤ i ≤ n,
3. yi ≥ xi

2n−2(i−1)−1 , for each 1 ≤ i ≤ n.

Then:

n∑
i=1

yi ≥ |A1| ln n

4n
.

Proof. We can view the set of above inequalities 1, 2, 3 as a linear program with (3n − 1) variables (all xi and yi for 
1 ≤ i ≤ n and Ai for 2 ≤ i ≤ q; we treat A1 as a constant) and (3n − 1) constraints. Thus, we know that 

∑
i yi achieves the 

minimum when each from the above constraints is satisfied with equality.
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We show by induction that the values xi = A1
2n and Ai = 2n−2(i−1)

2n A1 constitute the solution to the set of equalities that 
is derived by taking constraints 1, and 2, and treating them as equalities. We can show that by induction: First, consider 
the base step, i.e., the case when i = 1. Since constraint 2 is defined only for i ≥ 2, we need to check only constraint 1. This 
constraint written in the form of equality gives us:

x1 = A1

2n − 2(i − 1)
= |A1|

2n
,

which proves that our hypothesis holds for i = 1. Next, let us assume that from the equalities 1 and 2 taken for i < j, it 
follows that xi = A1

2n and Ai = 2n−2(i−1)
2n A1, for i < j. We will show that from equalities 1 and 2 for i = j it follows that 

x j = A1
2n and A j = 2n−2( j−1)

2n A1:

x j = A j

2n − 2( j − 1)
= 1

2n − 2( j − 1)
· 2n − 2( j − 1)

2n
A1 = |A1|

2n
,

A j = A j−1 − 2x j−1 = 2n − 2(( j − 1) − 1)

2n
A1 − 2

|A1|
2n

= 2n − 2( j − 1)

2n
A1.

From constraint 3, treated as equality, we get:

yi = xi

2n − 2(i − 1) − 1
= |A1|

2n(2n − 2(i − 1) − 1)
.

Thus, we infer that 
∑n

i=1 yi is minimised when yi = |A1|
2n(2n−2(i−1)−1)

. We recall that Hn denotes the n-th harmonic number 
(Hn = ∑n

i=1
1
i ), and that ln(n + 1) < Hn ≤ 1 + ln(n). As a result we get:

n∑
i=1

yi ≥ A1

2n

n∑
i=1

1

(2n − 2(i − 1) − 1)
≥ A1

2n

n∑
i=1

1

2n − 2(i − 1)
(5)

= A1

4n

n∑
i=1

1

(n − i + 1))
= A1

4n
Hn ≥ A1

lnn

4n
. � (6)

Theorem 5. For binary domains and natural distributions the local search algorithm from Fig. 3 with � = 2 is a ln(k/2)
2 ln(k/2)−1

(|X | +
6|X |

k

)
-additive-approximation algorithm for OptimalHamiltonRepresentation.

Proof. In this proof we use similar idea to the proof of Theorem 4, but the proof is technically more involved. As before, by 
A∗ and A we denote the optimal solution and the solution returned by the local search algorithm, respectively. Similarly to 
the previous proof, by Xex ⊂ X we denote the set of all attributes for which A achieves exact match with π , i.e.,

Xex = {
Xi ∈ X : r1

i (A) = π1
i

}
.

We also define the set Xaex ⊂ X of all attributes for which A achieves almost exact match with π , i.e.,

Xaex =
{

Xi ∈ X : |r1
i (A) − π1

i | ≤ 1

k

}
.

Let q f = |A\A∗|
2 and q = �q f �. Let us rename the candidates from A \ A∗ so that A \ A∗ = {a1, a2, . . . , a2q f }, and the candidates 

from A∗ \ A, so that A∗ \ A = {a′
1, a

′
2, . . . , a

′
2q f

}. Hereinafter, we follow a convention in which the elements from A∗ \ A are 
marked with primes. Renaming of the candidates that we described above, allows us to the define the following sequence 
of pairs (a1, a′

1), . . . , (a2q f , a
′
2q f

) in which each element from A \ A∗ is paired with (assigned to) exactly one element from 
A∗ \ A.

For each pair (a j, a′
j) and for each attribute Xi we consider what happens if we replace ai in A \ A∗ with a′

i . One of three 
scenarios can happen, after such a replacement:

1. The value r0
i (A) can increase by 1

k (in this case r1
i (A) decreases by 1

k ), which we denote by Xi(a j ↔ a′
j) = 1,

2. The value r0
i (A) can decrease by 1

k (in this case r1
i (A) increases by 1

k ), which we denote by Xi(a j ↔ a′
j) = −1, or

3. The value r0
i (A) can remain unchanged (in this case r1

i (A) also remains unchanged), which we denote by Xi(a j ↔ a′
j)=0.

We follow a procedure which, in q consecutive steps, replaces pairs of candidates from A \ A∗ , with the pairs of candi-
dates from A∗ \ A. A pair (ai, a j) is always replaced with (a′

i, a
′
j). In other words, when looking for a pair from A∗ \ A to 

replace (ai, a j) we follow the assignment rule induced by renaming, as described above. The way in which we create pairs 
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Table 2
An example illustrating the concept of annihilating pairs. In this example we have Xex = {X1, X2, X3, X4, X5, X6, X7} and Ā1 = {a1, a2, a3, a4}. The cell 
in row “Xi(a j ↔ a′

j)” for j ∈ [4] and in column “Xi = X�” for � ∈ [7] denotes the value of X�(a j ↔ a′
j). We recall that Xi(ai ↔ a′

i) = 1 if replacing ai

with a′
i moves A further from the target distribution in one direction and Xi(ai ↔ a′

i) = −1 if replacing ai with a′
i moves A further from the target 

distribution in the other direction. Here, we have W1(X1) = {((a1, X1), (a2, X1)
)
, ((a1, X1), (a4, X1)

)}, W1(X2) = {((a1, X2), (a2, X2)
)
, ((a1, X2), (a3, X2)

)}, 
W1(X3) = {((a1, X3), (a3, X3)

)
, ((a1, X3), (a4, X3)

)
, ((a2, X3), (a3, X3)

)
, ((a2, X3), (a4, X3)

)}, etc. Further, W1 = W1(X1) ∪ W1(X2) ∪ W1(X3) ∪ W1(X4) ∪
W1(X5) ∪ W1(X6) ∪ W1(X7). There are many choices for the set W , but it must hold that P = |W | = 6; we give the following example: W =
{((a1, X1), (a2, X1)

)
, ((a1, X2), (a2, X2)

)
, ((a1, X3), (a3, X3)

)
, ((a2, X3), (a4, X3)

)
, ((a1, X4), (a4, X4)

)
, ((a1, X7), (a3, X7)

)}.

Xi = X1 Xi = X2 Xi = X3 Xi = X4 Xi = X5 Xi = X6 Xi = X7

Xi(a1 ↔ a′
1) 1 1 1 1 0 0 −1

Xi(a2 ↔ a′
2) −1 −1 1 0 0 1 0

Xi(a3 ↔ a′
3) 0 −1 −1 0 1 0 1

Xi(a4 ↔ a′
4) −1 1 −1 −1 1 0 −1

within A \ A∗ for replacement (the way how (ai, a j) is selected in each of q consecutive steps) will be described later. After 
this whole procedure A can differ from A∗ with at most one element, hence, having distance to the optimal distribution at 
most equal to |X | 2

k . Let us define the sequence of sets Ā1, Ā2, . . . , Āq in the following way: we define Ā1 = A \ A∗ , and we 
define Ā j+1 as Ā j after removing the pair from A \ A∗ that was used in replacement in the j-th step of our procedure.

As before, for each B ⊆ A \ A∗ and B ′ ⊆ A∗ \ A, and for each attribute Xi ∈ X we define the gain gi(B, B ′):

gi(B, B ′) =
∑

j∈{1,2}

(
|r j

i (A) − π
j

i | − |r j
i ((A \ B) ∪ B ′) − π

j
i |

)
.

Similarly as in the proof of Theorem 4, we observe that for Xi /∈ Xaex the negative gains cumulate: i.e., that for each sequence 
of disjoint sets B1, B2, . . . , Bs and B ′

1, B
′
2, . . . , B

′
s such that for every 1 ≤ j ≤ s, B j ⊆ A \ A∗ , B ′

j ⊆ A∗ \ A, and |B j | = |B ′
j | ≤ 2

we have that:

gi(
⋃

j

B j,
⋃

j

B ′
j) ≤

∑
j

gi(B j, B ′
j). (7)

Why is this the case? If Xi /∈ Xaex, then the distance between A and the target distribution on attribute Xi is at least equal 
to 2 · 2

k . In other words: |r0
i (A) −π0

i | ≥ 2
k and |r1

i (A) −π1
i | ≥ 2

k . Without loss of generality let us assume that r0
i (A) −π0

i ≥ 2
k . 

Since each set B j and each set B ′
j has at most two elements, replacing B j with B ′

j can change the distance between A and 
the target distribution, for each attribute, by at most 2

k . Consequently, if gi(B j, B ′
j) is negative, then it means that replacing 

B j with B ′
j makes the difference r0

i (A) − π0
i even greater. Thus, each such replacement with the negative gain g causes A

to move further from the target distribution by the value g . Naturally, each replacement with the positive gain g causes 
A to move closer to the target distribution by at most g . Consequently, after the sequence of replacement ∪ j B j ↔ B ′

j the 
distance on the attribute Xi cannot improve by more than 

∑
j gi(B j, B ′

j).
In contrast to the proof of Theorem 4, we note that here we require that Xi /∈ Xaex instead of Xi /∈ Xex — the above 

observation is not valid if Xi ∈ Xaex even if Xi /∈ Xex.10

Next, for each Ā j , and each attribute Xi ∈ Xex, we define a set W j of annihilating pairs as:

W j(Xi) = {
((ax, Xi), (ay, Xi)) : ax ∈ Ā j;ay ∈ Ā j; x < y; Xi(ax ↔ a′

x) = −Xi(ay ↔ a′
y)

}
.

Intuitively, if ((ax, Xi), (ay, Xi)) ∈ W j , then both replacing ax with a′
x and replacing ay with a′

y move the original set A (i.e., 
the set before any of the replacements) further from the target distribution for the attribute Xi , but replacing {ax, ay} with 
{a′

x, a′
y} does not change the distance of A from the target distribution for the attribute Xi .

For each j, we set W j = ∪i∈Xex W j(Xi). Let us denote by P the number of annihilated pairs of candidates considered in 
the process of replacing candidates from A \ A∗ with candidates from A∗ \ A. Formally, P is the size of the maximal subset 
W ⊆ W1 composed of disjoint annihilating pairs, i.e., for each i ≤ p, for each ax , and for each ay , if ((ax, Xi), (ay, Xi)) ∈ W
then there exists no b �= ay such that ((ax, Xi), (b, Xi)) ∈ W or ((b, Xi), (ax, Xi)) ∈ W . From Lemma 2, after defining each 
bucket Xi as containing xi white balls and yi black balls, where xi (respectively, yi ) is the number of candidates a j ∈ Ā1

with the value Xi(a j ↔ a′
j) equal to 1 (respectively, −1), it follows that W1 ≥ P 2

|Xex| . The concept of annihilating pairs is 
explained on example in Table 2.

10 Consider an example in which π1
i = 1

k and r1
i (A) = 2

k . Let us consider sets B = {b1, b2}, B ′ = {b′
1, b′

2}, C = {c1, c2}, C ′ = {c′
1, c′

2} such that: Xi(c1) =
Xi(c2) = Xi(b′

1) = Xi(b′
2) = d1

i , and Xi(c′
1) = Xi(c′

2) = Xi(b1) = Xi(b2) = d2
i . Thus, we have that:

• Replacing B with B ′ results with r1
i (A) = 4

k .
• Replacing C with C ′ results with r1

i (A) = 0.

• Replacing B ∪ C with B ′ ∪ C ′ results with r1
i (A) = 2

k .

We can repeat this reasoning for r2
i (A), thus having, gi(B, B ′) = − 4

k , gi(C, C ′) = 0 and gi(B ∪ C, B ′ ∪ C ′) = 0.
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Fig. 4. Figure illustrating that for Xi ∈ Xex, gi({a1, a2}, {a′
1, a′

2}) is greater than (gi(a1, a′
1) + gi(a2, a′

2)) if and only if ((a1, Xi), (a2, Xi)) is an annihilating 
pair. The figure presents 3 scenarios: a) ((a1, Xi), (a2, Xi)) is an annihilating pair. Both replacing a1 with a′

1 and replacing a2 with a′
2 moves us further from 

the target distribution for attribute Xi (the target distribution is marked as a black dot), thus gi(a1, a′
1) = − 2

k and gi(a2, a′
2) = − 2

k . However these changes 
annihilate, and gi({a1, a2}, {a′

1, a′
2}) = 0. b) gi(a1, a′

1) = − 2
k and gi(a2, a′

2) = − 2
k , but these changes do not annihilate, and thus: gi({a1, a2}, {a′

1, a′
2}) = − 4

k . 
c) gi(a1, a′

1) = − 2
k and gi(a2, a′

2) = 0, if at least one change does not move the solution against the target distribution, the changes do not annihilate, and 
gi({a1, a2}, {a′

1, a′
2}) = gi(a1, a′

1) + gi(a2, a′
2).

We are now ready to describe the way in which we select pairs from A \ A∗ in our procedure. In each step j, the pair 
(a j,1, a j,2) from A \ A∗ is selected in the following way. For each candidate a let s j,1(a) be the number of pairs p in W j

such that p = ((a, ·), (·, ·)) or p = ((·, ·), (a, ·)), let a j,1 be such that s j,1(a j) = maxa∈ Ā j
s j,1(a), and let s j,1 = s j,1(a j). Next, 

for each candidate b let s j,2(b) be the number of pairs p in W j such that p = ((a j,1, ·), (b, ·)) or p = ((b, ·), (a j,1, ·)), let a j,2
be such that s j,2(b) = maxb∈ Ā j

s j,2(b), and let s j,2 = s j,2(a j,2).
Let us consider the procedure described above on the example from Table 2. The candidate a1 belongs to 8 pairs in 

W1 (a1 belongs to 2 pairs for attribute X1, X2, and X3, and to one pair for attributes X4 and X7), thus: s1,1(a1) = 8. 
Moreover, s1,1(a2) = 5, s1,1(a3) = 6, and s1,1(a4) = 7. Consequently, a1 will be the candidate that will be replaced with 
a′

1 in the first step: a j,1 = a1 and s j,1 = 8. Further, s1,2(a2) = 2 (there are two annihilating pairs including a1 and a2, i.e.:(
(a1, X1), (a2, X1)

)
and 

(
(a1, X2), (a2, X2)

)
); similarly: s1,2(a3) = 3, and s1,2(a4) = 3. Thus, an arbitrary of the two candidates, 

a3 and a4, say a3, will be the second candidate that will be replaced with a′
3 in the first step. In the second step only two 

candidates, a2 and a4, are left, so both will be replaced with a′
2 and a′

4 in the second step. Nevertheless, let us illustrate our 
definitions also in the second step of the replacement procedure. The set Ā2 consists of two remaining candidates: a2 and 
a4. We have W2 = {((a2, X2), (a4, X2)

)
, 
(
(a2, X3), (a4, X3)

)}. Naturally, s2,1(a2) = s2,1(a4) = s2,2(a2) = s2,2(a4) = 2.
We want now to derive bounds on the values s j,1 and s j,2. The following inequalities hold:

1. s j,1 ≥ 2|W j |
2q f −2( j−1)

for each 1 ≤ j ≤ q.

W j contains pairs of candidates belonging to Ā j . Ā1 has 2q f candidates, and Ā j+1 is obtained from Ā j by removing 
two candidates. Consequently, Ā j has 2q f − 2( j − 1) candidates, and thus, W j contains pairs of 2q f − 2( j − 1) different 
candidates. From the pigeonhole principle it follows that there exists a candidate that belongs to at least 2|W j |

2q f −2( j−1)

pairs. Naturally, we also get the weaker constraint: s j,1 ≥ |W j |
2q f −2( j−1)

.

2. |W j | ≥ |W j−1| − 2s j−1,1 for each 2 ≤ j ≤ q.
Each candidate in W j−1 belongs to at most s j−1,1 pairs (this follows from the definition of s j−1,1). W j contains all 
pairs that W j−1 contained, except for the pairs involving a j−1,1, a j−2,2 (to obtain Ā j , we removed these two candidates 
from Ā j−1). Consequently, W j is obtained from W j−1 by removing at most 2s j−1,1 pairs of candidates.

3. s j,2 ≥ s j,1
2q f −2( j−1)−1 for each 1 ≤ j ≤ q.

In W j , there are s j,1 pairs of candidates involving a j,1. As we noted before, W j contains pairs of 2q f −2( j −1) different 
candidates. Thus, in W j , a j,1 is paired with at most 2q f − 2( j − 1) − 1 candidates. From the pigeonhole principle it 
follows that a j,1 must be paired with some candidate at least s j,1

2q f −2( j−1)−1 times.

From Lemma 3 we get that:

q∑
j=1

s j,2 ≥ |W1| ln q

4q
. (8)

Before we proceed further let us make three observations regarding annihilating pairs. First, we note that for each 
Xi ∈ Xex, and each ax and ay , if the value gi({ax, ay}, {a′

x, a′
y}) is different from (gi(ax, a′

x) + gi(ay, a′
y)) than it is greater 

from (gi(ax, a′
x) + gi(ay, a′

y)) by 4
k . We also note that gi({ax, ay}, {a′

x, a′
y}) is greater than (gi(ax, a′

x) + gi(ay, a′
y)) if and only 

if the changes Xi(ax ↔ a′
x) and Xi(ay ↔ a′

y) annihilate (this is illustrated in Fig. 4). Further, we recall that the value s j,2

counts all attributes for which a j,1 and a j,2 constitute an annihilating pair. Thus, for each 1 ≤ j ≤ q:
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Fig. 5. Figure illustrating the effect of replacing 10 candidates for an attribute Xi ∈ Xex. Each replacement imposes a negative gain: gi(a j , a′
j) = − 2

k for 
1 ≤ j ≤ 10. Thus, ∑a∈A\A∗ gi(a, a′) = − 20

k . In this example four pairs annihilated, and, consequently, gi(A \ A∗, A∗ \ A) = − 4
k .

∑
i∈Xex

gi({a j,1,a j,2}, {a′
j,1,a′

j,2}) =
∑

i∈Xex

(
gi(a j,1,a′

j,1) + gi(a j,2,a′
j,2)

)
+ s j,2

4

k
(9)

Our second observation is similar in spirit to the first one. We note that for each Xi ∈ Xex:

gi(A \ A∗, A∗ \ A) −
∑

a∈A\A∗
gi(a,a′) = the number of pairs that annihilated for Xi × 4

k
.

The above equality is illustrated in Fig. 5. As a consequence, we get that:

∑
Xi∈Xex

(
gi(A \ A∗, A∗ \ A) −

∑
a∈A\A∗

gi(a,a′)
)

= the number of pairs that annihilated × 4

k
.

We recall that after the replacement procedure A can differ from A∗ with at most one element, hence, having distance to 
the optimal distribution at most equal to |X | 2

k . Thus:

∑
Xi∈Xex

(
gi(A \ A∗, A∗ \ A) −

q∑
j=1

(
gi(a j,1,a′

j,1) + gi(a j,2,a′
j,2)

))
≤ P · 4

k
+ |X |2

k
. (10)

Our third observation says that:

∑
Xi∈Xaex\Xex

gi(A \ A∗, A∗ \ A) −
∑

Xi∈Xaex\Xex

q∑
j=1

gi({a j,1,a j,2}, {a′
j,1,a′

j,2}) ≤ |Xaex \ Xex| . (11)

Where does Inequality (11) come from? Let us use the geometric interpretation, like the one from Fig. 5. Let us consider 
an Xi , Xi ∈ Xaex. For Xi , A lies in a distance of 2

k on the left or on the right from the target distribution. Without loss of 
generality, let us assume it lies on the right. Now, if gi({a j,1, a j,2}, {a′

j,1, a
′
j,2}) < 0 then replacing (a j,1, a j,2) with (a′

j,1, a
′
j,2)

moves the current solution right. If gi({a j,1, a j,2}, {a′
j,1, a

′
j,2}) = 2

k , then replacing (a j,1, a j,2) with (a′
j,1, a

′
j,2) moves the 

current solution by 2
k on left. If gi({a j,1, a j,2}, {a′

j,1, a
′
j,2}) = 0, then replacing (a j,1, a j,2) with (a′

j,1, a
′
j,2) either does not 

move the solution or moves it by 4
k on left.

Let us define yi = gi(A \ A∗, A∗ \ A) − ∑q
j=1 gi({a j,1, a j,2}, {a′

j,1, a
′
j,2}). If the solution moves q times to the right, then 

the total gain − 
∑q

j=1 gi({a j,1, a j,2}, {a′
j,1, a

′
j,2}) will be maximised, achieving q 4

k . In such a case however, the value gi(A \
A∗, A∗ \ A) will be equal to −q 4

k , and thus the value yi will be equal to 0. After some consideration, the reader will see that 
the value yi is maximised if the current solution moves q

2 times right and q
2 times left, each time by the value of 4

k . This 
way, the moves to the right induce the total gain of q

2 · 4
k , the moves to the left induce the zero gain, but as a consequence, 

the current solution for Xi does not change (gi(A \ A∗, A∗ \ A) = 0). Thus, for each Xi ∈ Xaex, yi is upper bounded by 
q
2 · 4

k ≤ 1, which proves Inequality (11).
We can further proceed with the proof by observing that from the condition in the “while” loop we get that for each 

1 ≤ j ≤ q:

0 ≥
∑

i

gi({a j,1,a j,2}, {a′
j,1,a′

j,2})

≥
∑

i∈Xex

gi({a j,1,a j,2}, {a′
j,1,a′

j,2}) +
∑

i /∈Xex

gi({a j,1,a j,2}, {a′
j,1,a′

j,2})

From (9):
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≥
∑

i∈Xex

(
gi(a j,1,a′

j,1) + gi(a j,2,a′
j,2)

)
+ s j,2

4

k
+

∑
i /∈Xex

gi({a j,1,a j,2}, {a′
j,1,a′

j,2}).

Thus, we get:

−
∑

i∈Xex

(
gi(a j,1,a′

j,1) + gi(a j,2,a′
j,2)

)
− 4

k
s j,2 > +

∑
i /∈Xex

gi({a j,1,a j,2}, {a′
j,1,a′

j,2}). (12)

Next, we give the following sequence of inequalities:

g =
∑

i

gi(A \ A∗, A∗ \ A)

=
∑

Xi∈Xex

gi(A \ A∗, A∗ \ A) +
∑

Xi∈Xaex\Xex

gi(A \ A∗, A∗ \ A) +
∑

Xi /∈Xaex

gi(A \ A∗, A∗ \ A)

From Inequality (7), for all i /∈ Xaex , we have gi(A \ A∗, A∗ \ A) ≤ ∑
a∈A\A∗ gi(a, a′). Since the set A \ A∗ and ⋃q

j=1{a j,1, a j,2} can differ by at most one candidate (which induces distance 2|X |
k to the optimal solution), we have that

∑
Xi /∈Xaex

gi(A \ A∗, A∗ \ A) ≤
∑

Xi /∈Xaex

q∑
j=1

gi({a j,1,a j,2}, {a′
j,1,a′

j,2}) + 2|X |
k

.

And, as a consequence:

g ≤
∑

Xi∈Xex

gi(A \ A∗, A∗ \ A) +
∑

Xi∈Xaex\Xex

gi(A \ A∗, A∗ \ A)

+
∑

Xi /∈Xaex

q∑
j=1

gi({a j,1,a j,2}, {a′
j,1,a′

j,2}) + 2|X |
k

≤
∑

Xi∈Xex

gi(A \ A∗, A∗ \ A) +
∑

Xi∈Xaex\Xex

gi(A \ A∗, A∗ \ A)

+
∑

Xi /∈Xex

q∑
j=1

gi({a j,1,a j,2}, {a′
j,1,a′

j,2}) −
∑

Xi∈Xaex\Xex

q∑
j=1

gi({a j,1,a j,2}, {a′
j,1,a′

j,2}) + 2|X |
k

.

From Inequality (11) we get:

g ≤
∑

Xi∈Xex

gi(A \ A∗, A∗ \ A) +
∑

Xi /∈Xex

q∑
j=1

gi({a j,1,a j,2}, {a′
j,1,a′

j,2}) + 2|X |
k

+ |Xaex \ Xex| .

From Inequality (12):

g ≤ 2|X |
k

+ |Xaex \ Xex| +
∑

Xi∈Xex

gi(A \ A∗, A∗ \ A)

−
∑

Xi∈Xex

q∑
j=1

(
gi(a j,1,a′

j,1) + gi(a j,2,a′
j,2)

)
− 4

k

∑
j

s j,2.

From Inequality (8):

g ≤ 2|X |
k

+ |Xaex \ Xex| − |W1| ln q

4q
· 4

k

+
∑

i∈Xex

⎛
⎝gi(A \ A∗, A∗ \ A) −

q∑
j=1

(
gi(a j,1,a′

j,1) + gi(a j,2,a′
j,2)

)⎞
⎠

From Inequality (10):

g ≤ 4|X |
k

+ |Xaex \ Xex| − |W1| ln q

kq
+ P

4

k
.
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As we noted before, from Lemma 2, we have that W1 ≥ P 2

|Xex| . Thus:

g ≤ 4|X |
k

+ |Xaex \ Xex| + 4

k

(
P − P 2 ln q

4|Xex|q
)

.

Since q ≤ k
2 , and since the function ln x

x is decreasing for x ≥ 1:

g ≤ 4|X |
k

+ |Xaex \ Xex| + 4

k

(
P − P 2 ln(k/2)

2|Xex|k
)

The function f (P ) = P − P 2 ln(k/2)
2|Xex|k takes its maximum for P = |Xex|k

ln(k/2)
. Thus:

g ≤ 4|X |
k

+ |Xaex \ Xex| + 4

k
· |Xex|k

2 ln(k/2)
= 4|X |

k
+ |Xaex \ Xex| + 2|Xex|

ln(k/2)
.

Since our local-search algorithm for � = 2 also tries to perform local swaps on single candidates, we can repeat the anal-
ysis from the proof of Theorem 4. Thus, using Inequality (4) from there, we get that g ≤ 2|Xex|, and as a consequence: (

1
2 − 1

ln(k/2)

)
g ≤ |Xex| − 2|Xex|

ln(k/2)
.

For each attribute Xi ∈ X \ Xaex the distance from A and the target distribution is bounded by 2. For Xi ∈ Xaex this 
distance is bounded by 2

k . Thus, we get that g ≤ 2(|X | − |Xex| − |Xaex \ Xex|) + |X | 2
k , and so:

g +
(

1

2
− 1

ln(k/2)

)
g + 1

2
g ≤4|X |

k
+ |Xaex \ Xex| + 2|Xex|

ln(k/2)

+ |Xex| − 2Xex|
ln(k/2)

+ (|X | − |Xex| − |Xaex \ Xex|) + |X |2

k

= |X | + 6|X |
k

Finally, we get:

g ≤ ln(k/2)

2 ln(k/2) − 1

(
|X | + 6|X |

k

)

which completes the proof. �
Since a brute-force algorithm can be used to compute an optimal solution for small values of k, Theorem 5 implies 

that for every ε > 0 we can achieve an additive approximation of 1
2 (|X | + ε). That is, we can guarantee that the solution 

returned by our algorithm will be at least 4 times better than a solution that is arbitrarily bad on each attribute. A natural 
open question is whether the local search algorithm achieves even better approximation guarantees for larger values of �.

One may argue that the restriction to natural target distributions is quite strong. However, for a given vector of target 
distributions π , we can easily find a vector ρ of target natural distributions such that 

∑
i, j

∣∣ρ j
i − π

j
i

∣∣ ≤ 2|X |
k . For instance for 

k = 5 and p = |X | = 3 the distribution

π =
((

2

5
+ 1

10
,

3

5
− 1

10

)
,

(
1

5
+ 1

7
,

4

5
− 1

7

)
,

(
1

6
,1 − 1

6

))

is not natural, yet there exists a natural distribution

ρ =
((

2

5
,

3

5

)
,

(
1

5
,

4

5

)
, (0,1)

)

such that 
∑

i, j

∣∣ρ j
i − π

j
i

∣∣ ≤ 2|X |
k . Thus, the results from Theorem 4 and Theorem 5 can be modified by providing approxima-

tion ratios that are worse by an additive value of 2|X |
k but valid for arbitrary target distributions. Again, since an optimal 

solution can easily be computed for small values of k, we can get approximation guarantees arbitrarily close to the ones 
given by Theorem 4 and Theorem 5, even for non-natural target distributions.

Below we show a lower bound of 2|X |
7 for the approximation ratio of the local search algorithm from Fig. 3 with � = 2.

Example 8. Consider 7 binary attributes X1, . . . , X7, and the set of 12p candidates C = {a1, . . . , a2p, a′
1, . . . , a

′
2p, b1, . . . , b2p,

b′ , . . . , b′ , c1, . . . , c2p, c′ , . . . , c′ }. For each i ∈ [k], we have:
1 2p 1 2p
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X1 X2 X3 X4 X5 X6 X7

ai 1 0 1 1 0 0 1
a′

i 0 1 0 0 1 1 1

bi 0 0 0 0 0 0 0
b′

i 0 0 1 1 1 1 0

ci 1 1 1 1 0 0 0
c′

i 1 1 0 0 1 1 0

We note that for each candidate the value of the attribute X3 is the same as of X4 and the value of the attribute X5 is the 
same as of X6. For i ∈ {1, 2, 3, 4, 5, 6} let π0

i = π1
i = 1

2 , and let π0
7 = 1 − π1

7 = 1.
Let us fix k = 4p. It can be easily checked that the set consisting of p copies of candidates bi , b′

i , ci , c′
i is a perfect 

committee. On the other hand, the set A consisting of 2p copies of candidates ai and a′
i is locally optimal. Indeed, replacing 

candidate ai or a′
i with bi or b′

i moves the solution closer to the target distribution on X7, but the further from the target 
distribution on X1 or X2. The same situation happens if we replace candidates ai or a′

i with ci or c′
i . If we replace two 

a-candidates with the pair consisting of one b-candidate (bi or b′
i ) and one c-candidate (ci or c′

i ), then such a replacement 
will move the solution closer by 4/k to the target distribution on X7, but will move the solution further by 2/k on two 
attributes from {X3, X4, X5, X6}.

Finally, 
∑

i, j

∣∣r j
i (A) − π

j
i

∣∣ = 2p = 2
7 |X |. �

6. Related work

Our model is related to the following research areas:

6.1. Apportionment for party-list representation systems

As we already pointed out, classical apportionment methods correspond to the restriction of our model to a single 
attribute (albeit with a different motivation). See the work of Balinski and Young [3] for a survey. While voting on multi-
attribute domains and multiwinner elections have led to significant research effort in computational social choice, this is 
less the case for party-list representation systems. Ding and Lin [20] studied a game-theoretic model for a party-list pro-
portional representation system under specific assumptions, and show that computing the Nash equilibria of the game is
NP-hard.

6.2. Biapportionment

The biapportionment setting [4,5] has some similarities with our multi-attribute proportional representation setting 
(MAPR). In biapportionment we are given two attributes, one corresponding to parties and the other one to voting dis-
tricts. The input consists of (1) hard constraints expressing lower and upper bounds on the number of candidates to be 
elected in each district, and similarly, bounds on the number of candidates to elected from each party; (2) for each district 
i and party P j , a value pij corresponding to the number of votes for party P j in district i. (2) induces a soft proportion-
ality constraint: the number of elected candidates from party P j in district i should be as much as possible proportional 
to pij .

There are however substantial differences between biapportionment and MAPR. First, we do not have anything that 
corresponds to the values pij : while in biapportionment the target composition of the committee consists of a target number 
of seats for each combination of the two attributes, in MAPR, on the other hand, we have a smaller input consisting of a 
target number for each value of each attribute.11 The second (and most important) difference between biapportionment 
and MAPR is that in MAPR we have a limited supply of available candidates characterised each by a tuple of attribute 
values: in our words, we focus on the case when the full supply assumption is not satisfied, which not only corresponds 
to the practical cases we have in mind, but is required in practice when the number of attributes is large. On the other 
hand, in biapportionment, it is implicitly assumed that there are enough candidates so that there always exists a solution 
satisfying given (often restrictive) hard constraints. Note finally that the computation of biapportionment methods has been 
investigated in a few recent papers [33,43,44].

6.3. Constrained approval voting

Constrained approval voting (CAP) [7,41] is also close to MAPR. In CAP there are also multiple attributes, candidates 
are represented by tuples of attribute values, there is a target composition of the committee and we try to find a com-
mittee close to this target. However, there are also substantial differences between MAPR and CAP. First, in CAP, like in 

11 Yet, a target number of seats for each combination of two or more attributes could be incorporated to our model by providing an attribute that 
corresponds to the Cartesian product of the given attributes; but, for combinatorial reasons, this ceases to be realistic for more than two or three attributes.
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biapportionment, the target composition of the committee, exogenously defined, consists of a target number of seats for 
each combination of attributes (called a cell), that is, for each z ∈ D1 × . . . × D p , we have a value s(z); while in MAPR, as we 
said above, we have a smaller input consisting of a target number for each value of each attribute. Note that the input in 
CAP is exponentially large in the number of attributes, which makes it infeasible in practice as soon as this number exceeds 
a few units (probably CAP was designed for very small numbers of attributes). Second, in CAP, the selection criterion of an 
optimal committee is made in two consecutive steps: first a set of admissible committees is defined, and the choice between 
these admissible committees is made by using approval ballots, and the chosen committee is the admissible committee 
maximising the sum, over all voters, of the number of candidates approved (there are no target fractions as in MAPR). 
A simple translation of CAP into an integer linear programming problem is given in [41,48].

6.4. Voting on multi-attribute domains and judgement aggregation

Another interesting degenerated case is when k = 1, i.e., when we must select a single candidate from the database. The 
ideal case is when there exists a candidate in the database whose value on each attribute i coincides with the attribute 
value x j

i . In this case, this candidate should certainly be selected; otherwise, the most representative candidate should be 
selected, for some measure of representativity.

This problem relates to voting in multi-attribute (or combinatorial) domains (cf. the recent survey chapter [32]). There, 
the aim is to output a single winning combination of attributes given the preferences of voters over combinations of at-
tribute values, generally expressed in some compact form. When k = 1, our model can be viewed as a voting problem in a 
constrained multi-attribute domain (constrained because not all combinations are feasible). Another important difference is 
that in voting in multi-attribute domains, the focus is generally on the way of dealing with nonseparable preferences; here, 
the issue is avoided, as throughout our paper preferences are assumed to be separable.12

Our model also relates to judgement aggregation (see [24] for a recent survey). In judgement aggregation, there is a set of 
propositions {ϕ1, . . . , ϕp}; the set of consistent (and complete) judgement sets is a subset J of ×p

i=1{ϕi, ¬ϕi}; a judgement
aggregation profile V = (V 1, . . . , Vn) is a collection of judgement sets from J ; an irresolute judgement aggregation rule 
F maps a judgement aggregation profile to a nonempty subset of J ; such a rule is said to be based on the weighted 
majoritarian judgement set if its output can be computed from the vector αV = (α1, . . . , αp), where α j is the proportion of 
judgement sets in V which contain ϕi .

Now, consider a multi-attribute proportional representation (MAPR) setting where all attributes are binary; we can view 
each attribute Xi as a proposition ϕi . Next, for each database candidate c ∈ C , the judgement set J c is defined by J c =
{ϕi : i ∈ [p], Xi(c) = 1} ∪ {¬ϕi : i ∈ [p], Xi(c) = 0}. The set of consistent judgement sets JC is defined as JC = { J c | c ∈ C}; 
in other words, J ∈ JC is consistent if and only if there is a candidate c in C such that (X1(c), . . . , Xp(c)) corresponds 
to J .

Finally, let (α1, . . . , αp) = (π1
1 , . . . , π p

1 ). Let R be an irresolute MAPR rule; R induces an irresolute judgement aggrega-
tion rule FR , based on the weighted majoritarian judgement set, defined by FR(V ) = { J c | {c} ∈ R(C, αV , 1)}. Conversely, 
from a judgement aggregation rule F based on the weighted majoritarian judgement set we can define a MAPR rule RF

restricted to k = 1, by RF (C, α, 1) = {{c}, J c ∈ F (Vα)}. It is interesting to see which judgement aggregation rules correspond 
to the two MAPR rules we have defined when k = 1.

The median judgement aggregation rule13 is defined as follows: given a weighted majoritarian judgement set αV =
(α1, . . . , αp) and J ∈J , let ( J |α) = ∑

i,ϕi∈ J αi +∑
i,¬ϕi∈ J (1 −αi). Then median(α) = argmax J∈J ( J |α). Now, let C be a can-

didate database over a domain of binary attributes, and k = 1. Given αV , we have {c} ∈ RH (C, αV , 1) if 
∑p

i=1

∑
j=1,2 |π j

i −
Xi(c)| is minimum; now,

p∑
i=1

∑
j=1,2

|π j
i − Xi(c)| =

∑
i∈[p],Xi(c)=1

(1 − αi) +
∑

i∈[p],Xi(c)=0

αi

= p −
⎛
⎝ ∑

i∈[p],Xi(c)=1

αi +
∑

i∈[p],Xi(c)=0

(1 − αi)

⎞
⎠ = p − ( Jc|α),

therefore RH (αV ) contains {c} if ( J c|α) is maximum, that is, if J c ∈ median(α).

12 Extending our model to nonseparable preferences would consist in expressing preferences such as if the gender ratio is 50–50 then the ideal group ra-
tio is 40–30–30, otherwise 50–25–25, or else we want a gender ratio 50–50 or a seniority ratio 50–50. We are not sure whether it is worth developing this 
generalisation.
13 This rule has been introduced independently in several different papers under different names, and it is probably not relevant to cite them here. 

A recent paper on the median rule, together with an axiomatisation, is [38].
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The calculations for the multi-attribute d’Hondt rule are similar:∑
i∈[p]

∑
j=1,2

π
j

i H(r j
i ({c}) =

∑
i∈[p],Xi(c)=1

π1
i +

∑
i∈[p],Xi(c)=0

π0
i

=
∑

i∈[p],Xi(c)=1

αi +
∑

i∈[p],Xi(c)=0

1 − αi = ( Jc|α).

Therefore, RdHondt(αV ) contains {c} if J c ∈ median(α). In summary:

Observation 1. FRH and FRdHondt coincide with the median judgement aggregation rule.

6.5. Multiwinner (or committee) elections

In multiwinner elections the voters vote directly for candidates and do not consider attributes that characterise them. 
Thus, in this literature, the term “proportional representation” [14,37] has a different meaning: these methods are ‘represen-
tative’ because each voter feels represented by some member of the elected committee. The computational aspects of full 
proportional representation and its extensions have raised a lot of attention lately [42,6,16,47,36]. Our study of the proper-
ties of multi-attribute proportional representation is close in spirit to the work of Elkind et al. [22], who gives a normative 
study of multiwinner election rules. Budgeted social choice [35,46] is technically close to committee elections, but it has a 
different motivation: the aim is to make a collective choice about a set of objects to be consumed by the group (perhaps, 
subject to some constraints) rather than about the set of candidates to represent voters.

There exists an interesting line of research on multiwinner voting [11,12,30,8,45,32], where it is assumed that the elected 
committee runs a sequence of independent ballots on various issues — for instance consider a parliament voting on issues 
such as monetary politics, changes to the national-health care system, or educational reforms. Each issue can be represented 
by an attribute; in this setting our MAPR methods can be used to find a representative committee with respect to its 
collective views on a certain set of issues.

7. Discussion of the model and of its possible extensions

In this section we discuss several other approaches to the problem of achieving proportional representation with respect 
to multiple attributes, and we compare them with the model discussed so far.

7.1. Lower and upper quotas for attributes

In Section 3 we assumed that the input contains a vector of target distributions which describe desirable proportions 
of values for different attributes in an ideal committee — such an ideal committee might not exist, e.g., because there is 
not enough diversity within the candidate database (in particular, the candidate database might not satisfy the full supply 
property), or even if an ideal committee exists it might be computationally infeasible to find one. For this reason we 
formulated two optimisation metrics which, intuitively, allow one to assess how good are certain committees, and to find 
committees which are good enough, though not necessary ideal. Thus, it is natural to consider another approach: instead 
of getting a vector of ideal target distributions, we could assume that for each value of each attribute we are given a lower 
and an upper bound (also referred to as lower and upper quota, respectively) on the number of committee members with 
such a value of the respective attribute. For instance, instead of specifying that we would like to have 50% of men and 50% 
of women in a committee, we could ask for a committee with at least 40% of women and at least 40% of men.

Having lower and upper quotas for attributes gives more flexibility and makes it more likely that a committee satisfying 
the constraints exists. However, if the number of attributes is large (for instance, hundreds or thousands) and the size of 
the candidate database is moderate, it is still likely that a committee satisfying all the constraints does not exist. Further, 
coming up with the constraints which, on the one hand are restrictive enough to implement multi-attribute proportionality 
to the extent that would be satisfactory, and on the other hand are liberal enough to ensure that a committee satisfying the 
constraints exists, is much less straightforward and requires more cognitive effort than simply providing a vector of ideal 
distributions.

Interestingly, our results from Section 5.1 can be extended to the model with lower and upper quotas. Indeed, for the 
hardness it suffices to observe that the problem of finding a perfect committee can be easily formulated in the model 
with lower and upper quotas — it suffices to set the upper and lower quotas to the same value, equal to the value of the 
respective target distribution. For the positive result from Theorem 2 it suffices to change constraints (g) and (i) in the proof 
of the theorem so that variables x j

i and y j
i are compared against specific quotas instead of kπ j

i . Also the analysis from the 
proofs of Theorem 4 and Theorem 5 carries over to the case with quotas: in the proofs of these theorems one needs to 
define Xex as the set of all attributes for which the analysed committee A does not exceed the lower and upper bounds. 
Specifically, our local search algorithm would treat lower and upper quotas as soft constraints and would approximate the 
total violation of the constraints:
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∑
r j

i (A)<π
j
i

(
π

j
i − r j

i (A)
)

+
∑

r j
i (A)>π

j
i

(
r j

i (A) − π
j
i

)
,

where π j
i and π j

i denote the lower and upper quotas, respectively (cf. Definition 8).

7.2. Dependent attributes

In our model we assume that the attributes are independent, which sometimes may lead to undesirable outcomes. For 
example, consider an instance where the goal is to select a committee consisting of 50% of men and 50% of women and 
of 50% of junior and 50% of senior people. In this instance, for k = 10, a committee A that consists of 5 junior men and 5 
senior women is a perfect committee. However, junior women and senior men are clearly underrepresented in A. Another 
example is when our goal is to select a set of k movies and when half of the population likes drama movies with Meryl 
Streep starring the main role and the other half likes action movies with Dwayne Johnson. A set of k/2 action movies with 
Meryl Streep and k/2 drama movies with Dwayne Johnson would form a perfect committee, even though it is incompatible 
with the voters’ preferences.14

This phenomenon is known as the separability dilemma:

• either preferences are assumed to be separable: in that case, they are cheap to communicate (and computing the 
outcome is generally easy); but it is a strong domain restriction. In our example, if we assumed that the preferences of 
the society expressed by the target distributions were separable, then a set with k/2 action movies with Meryl Streep 
and k/2 drama movies with Dwayne Johnson would form an excellent solution.

• or we don’t make such an assumption and allow preferential dependencies between attributes. This increases the cost 
of communication exponentially in the worst case, and makes computation harder.

Both approaches are often seen as too extreme, and the usual trade-off consists in allowing a reasonable amount of 
preferential dependencies. We can for instance introduce an artificial attribute combining some dependent attributes. For 
instance, in our first example we could introduce a combined attribute (Gender, Age) and we could require that there 
are 25% of committee members representing each of the four values: (male, junior), (male, senior), (female, junior), and 
(female, senior). Since combining the attributes leads to an exponential growth of the length of the representation of the 
target distributions, this approach is only possible when the number of dependent attributes is relatively small (see also the 
discussion below Definition 3 in Section 3, and the discussion on Constrained Approval Voting in Section 6.3).

7.3. Other metrics measuring the distance to the target distributions

In Section 4 we defined the multi-attribute d’Hondt rule and the multi-attribute Hamilton rule in terms of minimisation 
or maximisation of sums of expressions. Another possibility is to define the L∞-multi-attribute d’Hondt rule as the one 
which outputs a committee A maximising mini

∑
j π

j
i H(r j

i (A) · k) and the L∞-multi-attribute Hamilton rule which outputs 
a committee A minimising maxi

∑
j |r j

i (A) − π
j

i |. Both approaches have their advantages and shortcomings. For instance, 
with the L1 metric it may happen that there exists an optimal committee which is far from the target distributions for 
half of the attributes while there exists another committee which violates the target distribution for each attribute, but to 
a significantly lower extent. Such a committee seems more appropriate in the context of proportional representation. On 
the other hand, if we follow an L∞-optimisation approach, it may happen that among a large number of attributes there 
exists a single “outlier” attribute Xi with the target distribution set to π1

i = 1 in spite of the fact that all candidates in the 
database have the value of this attribute equal to x0

i . In such case a rule would select any committee, in particular it could 
select a committee which is far from the target distributions for every attribute, even though there might exist a committee 
which would be perfect for all attributes except for Xi . Naturally, there exist intermediate approaches — for instance, one 
could aim at maximising/minimising the Lp norms of the appropriate expressions.

The results from Section 5.1 easily extend to the case of optimising L∞-aggregate. For instance, the ILPs from the proof 
of Theorem 2 can be naturally extended to the L∞-optimisation case, by using the standard constructions for implementing 
the “max” operator in the objective function. A natural question which remains open is whether the L∞-variants of our 
problems can be well approximated.

8. Conclusion

In this paper we have defined and studied multi-attribute generalisations of a well-known class of apportionment meth-
ods, in particular of the Hamilton and the d’Hondt methods of apportionment, albeit with motivations that go far beyond 
party-list elections (such as the selection of a collective set of candidates). We have formulated several axioms, commonly 

14 We thank the anonymous AIJ reviewer for suggesting this example.
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considered in the political science literature in the context of apportionment, for multi-attribute committee selection rules. 
Motivated with this axiomatic approach we have identified two multi-attribute committee selection rules that can be con-
sidered as extensions of the Hamilton and d’Hondt methods to multi-attribute scenarios.

We have studied the computational complexity of the problem of finding committees that, in some sense, best fit some 
given distribution of attribute values. We have found out that the problem is in general NP-hard, but that it can be han-
dled efficiently if the number of attributes is small. We have shown that the multi-attribute extensions of the Hamilton 
and d’Hondt methods can be well approximated. In particular, we have provided an interesting involved analysis of the 
local-search algorithm in the context of our multi-attribute setting.
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Appendix A. Proofs omitted from the main text

Proposition 1. Under full supply property the Hamilton method satisfies party population monotonicity.

Proof. Consider an instance I of the apportionment problem, and let I ′ be an instance obtained from I by increasing the 
quota vi/v+ for one party Pi , but leaving the ratios of quotas between the other parties unchanged. Let us consider the 
Hamilton method as the process that in steps allocates seats to parties (the first step is rounding down the quotas, and the 
next steps correspond to allocating seats to the parties in the descending order of their remainders). We want to prove that 
if this is the case that the Hamilton method assigns an x-th seat to Pi before assigning a y-th seat to P j �= Pi in I , then it 
is also the case in I ′ . This will show that the number of seats assigned to Pi in I ′ is at least as large as in I .

We know that the quota of Pi in I ′ is higher than in I . Also, for any other party P j �= Pi , we know that the quota of 
P j in I ′ is lower than in I (this is because the ratios of the quotas of the other parties remain unchanged; note that this 
argument would not work if we used population monotonicity instead of party population monotonicity). Thus, in the phase 
of rounding quotas down Pi will get at least the same number of seats in I ′ as in I . Also, if P j got the same number of 
seats after rounding in I ′ as it got in I , then the remainder of Pi is higher than the remainder of P j in I ′ whenever it is the 
case that it was higher in I . Thus, if the Hamilton method assigned a seat to Pi before P j in I , then it must also happen 
in I ′ . �
Proposition 2. When p = 1 and assuming there are at least k candidates for each value of the unique attribute, then RH coincides 
with the Hamilton apportionment rule.

Proof. Let s∗
j denote the ideal number of seats for party P j , i.e., s∗

j = π jk. Let A be a committee of size k and let R j(A) =
k r j(A) be the number of members of A that belong to party P j . Since |R j(A) − s∗

j | = k|r j(A) − π j|, we need to show that 
the following two assertions are equivalent:

1. A minimises 
∑

j |R j(A) − s∗
j |.

2. A is a Hamilton committee.

We first show 1 ⇒ 2. Assume A is not a Hamilton committee: then there exists an attribute value (party) that receives 
strictly more or strictly less seats than it would receive according to the Hamilton method. Naturally, there must also exist 
an attribute that receives strictly less or strictly more seats, respectively. Formally, this means that there are two attribute 
values (parties), say 1 and 2, such that the target number of seats for parties 1 and 2 are s∗

1 = p + α1 and s∗
2 = q + α2, with 

p, q being integers and 1 > α2 > α1 ≥ 0, and such that R1(A) ≥ p + 1 and R2(A) ≤ q. We have

∑
j

|R j(A) − π j| =
∑
j �=1,2

|R j(A) − s∗
j | + |R1(A) − s∗

1| + |R2(A) − s∗
2|

≥
∑
j �=1,2

|R j(A) − s∗
j | + (1 − α1) + α2.

Consider the committee A′ obtained from A by giving one less seat to 1 and one more to 2 and consider the following 
three cases
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Case 1: If R1(A) > p + 1 then:
∑

j

|R j(A) − s∗
j | −

∑
j

|R j(A′) − s∗
j |

= |R1(A) − s∗
1| − |R1(A′) − s∗

1| + |R2(A) − s∗
2| − |R2(A′) − s∗

2|
≥ 1 + (1 − α2) − α2 > 0.

Case 2: If R2(A) < q then similarly, 
∑

j |R j(A) − s∗
j | −

∑
j |R j(A′) − s∗

j | > 0.

Case 3: If R1(A) = p + 1 and R2(A) = q then we have:
∑

j

|R j(A) − s∗
j | =

∑
j �=1,2

|R j(A) − s∗
j | + (1 − α1) + α2

and
∑

j

|R j(A′) − s∗
j | =

∑
j �=1,2

|R j(A′) − s∗
j | + (1 − α2) + α1

Hence:
∑

j

|R j(A) − s∗
j | −

∑
j

|R j(A′) − s∗
j | = 2(α2 − α1) > 0.

In all three cases, A does not minimise 
∑

j |R j(A) − s∗
j |, which gives a contradiction.

It remains to be shown that 2 ⇒ 1, i.e., that if A is a Hamilton committee then it minimises 
∑

j |R j(A) − s∗
j |. If there 

is a unique Hamilton committee then this follows immediately from 1 ⇒ 2. Assume there are several Hamilton committees 
A1, . . . , Aq . Then there are q parties, w.l.o.g., let us call them P1, . . . , Pq , with equal remainders α ∈ [0, 1), that is, s∗

1 =
p1 + α, . . . , s∗

q = pq + α, and these committees differ only with respect to whether they get an extra seat or not. We easily 
check that for any two A, A′ of these committees we have 

∑
j |R j(A) − s∗

j | =
∑

j |R j(A′) − s∗
j |. �

Proposition 4. Under the full supply assumption, non-reversal, respect of quota, and value monotonicity with respect to every attribute 
are all satisfied by the multi-attribute Hamilton rule. In the general case, non-reversal, and respect of quota are not satisfied. If Xi is a 
binary variable, then value monotonicity with respect to Xi is satisfied; however it is not satisfied in the general case.

Proof. Under the full supply assumption, the result easily comes from Proposition 3 and the fact that the property holds in 
the single-attribute case.

In the general case, we give counterexamples. For respect of quota, we have two binary attributes, and two candidates a, 
b with value vectors (x2

1, x
2
2) and (x1

1, x
1
2), k = 1, π defined as π1

1 = 0, π2
1 = 1, π1

2 = 1, π2
2 = 0. The committee minimising 

our metric is either {a} or {b}, and does not respect quota even though all values kπ j
i are integers.

For non-reversal we have two binary attributes and six candidates: a, b, c, each with vector (x1
1, x

1
2) and d, e, f , each 

with vector (x2
1, x

2
2). We have a target distribution π defined as follows: π1

1 = 0.35, π2
1 = 0.65, π1

2 = 1, π2
2 = 0. We set 

k = 3. The committees minimising our metric are {a, b, c} and all triples made up from two candidates out of {a, b, c} and 
one out of {d, e, f }. In all cases, we have r1

1(A) > r2
1(A) even though π1

1 < π2
1 .

Now, we prove that value monotonicity holds for binary domains. In the following we will use notation ‖r(A) − π‖ =∑
i, j |r j

i (A) − π
j

i |. Consider a binary attribute Xi , with Di = {x0
i , x

1
i }. Assume that ρ0

i > π0
i (and so ρ1

i < π1
i ), and that for 

all i′ �= i we have ρi′ = πi′ . Let A be an committee minimising our metric for π and, for the sake of contradiction, assume 
that for all committees B minimising our metric for ρ we have r0

i (B) < r0
i (A). Let B be such a committee. The proof is 

a case by case study, with six cases to be considered: (C1) r0
i (B) ≤ π0

i < ρ0
i ≤ r0

i (A); (C2) π0
i ≤ r0

i (B) ≤ ρ0
i ≤ r0

i (A); (C3) 
π0

i < ρ0
i ≤ r0

i (B) < r0
i (A); (C4) r0

i (B) ≤ π0
i ≤ r0

i (A) ≤ ρ0
i ; (C5) π0

i ≤ r0
i (B) < r0

i (A) ≤ ρ0
i ; and (C6) r0

i (B) < r0
i (A) ≤ π0

i < ρ0
i .

• Case 1: r0
i (B) ≤ π0

i < ρ0
i ≤ r0

i (A). In this case we have r1
i (B) ≥ π1

i > ρ1
i ≥ r1

i (A) and the following holds:

‖r(B) − π‖ =
∑
i′ �=i

∑
j

|r j
i′(B) − π

j
i′ | + (π0

i − r0
i (B)) + (r1

i (B) − π1
i ) (1)

=
∑
i′ �=i

∑
j

|r j
i′(B) − ρ

j
i′ | + (ρ0

i − r0
i (B)) + (r1

i (B) − ρ1
i ) + π0

i − π1
i − ρ0

i + ρ1
i (2)

= ‖r(B) − ρ‖ + 2(π0 − ρ0) (3)
i i
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< ‖r(A) − ρ‖ + 2(π0
i − ρ0

i ) (4)

=
∑
i′ �=i

∑
j

|r j
i′(A) − ρ

j
i′ | + (r0

i (A) − ρ0
i ) + (ρ1

i − r1
i (A)) + 2(π0

i − ρ0
i ) (5)

=
∑
i′ �=i

∑
j

|r j
i′(A) − ρ

j
i′ | + (r0

i (A) − π0
i ) + (π1

i − r1
i (A)) + π0

i − π1
i − ρ0

i + ρ1
i + 2(π0

i − ρ0
i ) (6)

= ‖r(A) − π‖ + 4(π0
i − ρ0

i ) (7)

≤ ‖r(A) − π‖ (8)

(4) comes from the fact that A does not minimise f for ρ . Since, there is one strong inequality in the sequence, we 
imply that A does not minimise f for π , a contradiction.

• Case 2: π0
i ≤ r0

i (B) ≤ ρ0
i ≤ r0

i (A).

‖r(B) − π‖ =
∑
i′ �=i

∑
j

|r j
i′(B) − π

j
i′ | + (r0

i (B) − π0
i ) + (π1

i − r1
i (B))

=
∑
i′ �=i

∑
j

|r j
i′(B) − ρ

j
i′ | + (ρ0

i − r0
i (B)) + (r1

i (B) − ρ1
i ) + 2r0

i (B) − π0
i − ρ0

i − 2r1
i (B) + π1

i + ρ1
i

= ‖r(B) − ρ‖ + 4r0
i (B) − 2π0

i − 2ρ0
i

< ‖r(A) − ρ‖ + 4r0
i (B) − 2π0

i − 2ρ0
i

=
∑
i′ �=i

∑
j

|r j
i′(A) − ρ

j
i′ | + (r0

i (A) − ρ0
i ) + (ρ1

i − r1
i (A)) + 4r0

i (B) − 2π0
i − 2ρ0

i

=
∑
i′ �=i

∑
j

|r j
i′(A) − ρ

j
i′ | + (r0

i (A) − π0
i ) + (π1

i − r1
i (A)) + π0

i − ρ0
i − π1

i + ρ1
i + 4r0

i (B)

− 2π0
i − 2ρ0

i

= ‖r(A) − π‖ + 4r0
i (B) − 4ρ0

i

≤ ‖r(A) − π‖
Again we obtain a contradiction.

• Case 3: π0
i < ρ0

i ≤ r0
i (B) < r0

i (A).

‖r(B) − π‖ =
∑
i′ �=i

∑
j

|r j
i′(B) − π

j
i′ | + (r0

i (B) − π0
i ) + (π1

i − r1
i (B))

=
∑
i′ �=i

∑
j

|r j
i′(B) − ρ

j
i′ | + (r0

i (B) − ρ0
i ) + (ρ1

i − r1
i (B)) − π0

i + ρ0
i + π1

i − ρ1
i

= ‖r(B) − ρ‖ − 2π0
i + 2ρ0

i

< ‖r(A) − ρ‖ − 2π0
i + 2ρ0

i

=
∑
i′ �=i

∑
j

|r j
i′(A) − ρ

j
i′ | + (r0

i (A) − ρ0
i ) + (ρ1

i − r1
i (A)) − 2π0

i + 2ρ0
i

=
∑
i′ �=i

∑
j

|r j
i′(A) − ρ

j
i′ | + (r0

i (A) − π0
i ) + (π1

i − r1
i (A)) + π0

i − ρ0
i − π1

i + ρ1
i − 2π0

i + 2ρ0
i

= ‖r(A) − π‖
• Case 4: r0

i (B) ≤ π0
i ≤ r0

i (A) ≤ ρ0
i .

‖r(B) − π‖ =
∑
i′ �=i

∑
j

|r j
i′(B) − π

j
i′ | + (π0

i − r0
i (B)) + (r1

i (B) − π1
i )

=
∑
i′ �=i

∑
j

|r j
i′(B) − ρ

j
i′ | + (ρ0

i − r0
i (B)) + (r1

i (B) − ρ1
i )π0

i − ρ0
i − π1

i + ρ1
i

= ‖r(B) − ρ‖ + 2π0
i − 2ρ0

i

< ‖r(A) − ρ‖ + 2π0 − 2ρ0

i i
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=
∑
i′ �=i

∑
j

|r j
i′(A) − ρ

j
i′ | + (ρ0

i − r0
i (A)) + (r1

i (A) − ρ1
i ) + 2π0

i − 2ρ0
i

=
∑
i′ �=i

∑
j

|r j
i′(A) − ρ

j
i′ | + (r0

i (A) − π0
i ) + (π1

i − r1
i (A)) − 2r0

i (A) + 2r1
i (A) + π0

i + ρ0
i − π1

i − ρ1
i

+ 2π0
i − 2ρ0

i

= ‖r(A) − π‖ − 4r0
i (A) + 4π0

i

≤ ‖r(A) − π‖
• Case 5: π0

i ≤ r0
i (B) < r0

i (A) ≤ ρ0
i .

‖r(B) − π‖ =
∑
i′ �=i

∑
j

|r j
i′(B) − π

j
i′ | + (r0

i (B) − π0
i ) + (π1

i − r1
i (B))

=
∑
i′ �=i

∑
j

|r j
i′(B) − ρ

j
i′ | + (ρ0

i − r0
i (B)) + (r1

i (B) − ρ1
i ) + 2r0

i (B) − 2r1
i (B) − π0

i − ρ0
i + π1

i + ρ1
i

= ‖r(B) − ρ‖ + 4r0
i (B) − 2π0

i − 2ρ0
i

< ‖r(A) − ρ‖ + 4r0
i (B) − 2π0

i − 2ρ0
i

=
∑
i′ �=i

∑
j

|r j
i′(A) − ρ

j
i′ | + (ρ0

i − r0
i (A)) + (r1

i (A) − ρ1
i ) + 4r0

i (B) − 2π0
i − 2ρ0

i

=
∑
i′ �=i

∑
j

|r j
i′(A) − ρ

j
i′ | + (r0

i (A) − π0
i ) + (π1

i − r1
i (A)) + 4r0

i (B) − 2r0
i (A) + 2r1

i (A) + π0
i + ρ0

i

− π1
i − ρ1

i − 2π0
i − 2ρ0

i

= ‖r(A) − π‖ + 4r0
i (B) − 4r0

i (A)

≤ ‖r(A) − π‖
• Case 6: r0

i (B) < r0
i (A) ≤ π0

i < ρ0
i .

‖r(B) − π‖ =
∑
i′ �=i

∑
j

|r j
i′(B) − π

j
i′ | + (π0

i − r0
i (B)) + (r1

i (B) − π1
i )

=
∑
i′ �=i

∑
j

|r j
i′(B) − ρ

j
i′ | + (ρ0

i − r0
i (B)) + (r1

i (B) − ρ1
i ) + π0

i − ρ0
i − π1

i + ρ1
i

= ‖r(B) − ρ‖ + 2π0
i − 2ρ0

i

< ‖r(A) − ρ‖ + 2π0
i − 2ρ0

i

=
∑
i′ �=i

∑
j

|r j
i′(A) − ρ

j
i′ | + (ρ0

i − r0
i (A)) + (r1

i (A) − ρ1
i ) + 2π0

i − 2ρ0
i

=
∑
i′ �=i

∑
j

|r j
i′(A) − ρ

j
i′ | + (π0

i − r0
i (A)) + (r1

i (A) − π1
i ) − π0

i + ρ0
i + π1

i − ρ1
i + 2π0

i − 2ρ0
i

= ‖r(A) − π‖
Finally, we give an example showing that value monotonicity does not hold in the general case. First, we describe 
the set of attributes. We have one distinguished attribute X1 with 5 possible values x1

1, x2
1, x3

1, x4
1, and x5

1 and 64 
groups of binary attributes, indexed with the pairs of integers i, j ∈ {1, 2, 3, 4}. These groups of attributes are denoted 
as X(1,1), X(1,2), . . . X(1,8), X(2,1), . . . X(8,8) . Each group contains some large number λ of indistinguishable attributes, each 
having the same set of possible values {x1

2, x
2
2}. We have 16 alternatives A1, A2, . . . , A8, and B1, B2, . . . B8, and our goal is to 

select a subset of k = 8 of them.
We start with describing these alternatives on binary attributes: each alternative Ai has the value x1

2 on all attributes 
X(i,·) and the value x2

2 on all the remaining ones; each alternative Bi has the value x1
2 on all attributes X(·,i) and the value 

x2
2 on all the remaining ones. For the binary attributes we set the target probabilities to π1

2 = 1/8 and π2
2 = 7/8. Due to this 

construction, we see that the only two subsets that perfectly agree with target distributions on each of binary attributes 
are A = {A1, A2, . . . , A8} and B = {B1, B2, . . . , B8}. Indeed, every subset S including Ai and B j , would have r(S) ≥ 1/4 at 
least for one group of attributes X(i, j) . Since λ is large, we infer that, independently of what happens on the distinguished 
attribute X1, the only possible winning committee is either A = {A1, A2, . . . , A8} or B = {B1, B2, . . . , B8}.
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Next, let us describe what happens on the attribute X1. The vector 〈r j
1(A)〉 is equal to 〈r j

1(A)〉 = (1/2, 0, 1/2, 0, 0). For the 
committee B , we have 〈r j

1(B)〉 = (1/4, 1/4, 1/4, 1/8, 1/8), and the vector of target distributions for X1 is equal π1 = (0, 0, 3/8 +
ε, 5/8 − ε, 0). We can see that ‖r(A) − π‖ = 1/2 + 1/8 − ε + 5/8 − ε = 1.25 − 2ε . Since, ‖r(B) − π‖ = 1/4 + 1/4 + 1/8 +
ε + 4/8 − ε + 1/8 = 1.25, we get that A is a winning committee. However, if we modify the target fractions so that ρ1 =
(1/4, 0, 9/32 + ε1, 15/32 − ε2, 0), we will get ‖r(A) − ρ‖ = 1/4 + 7/32 − ε1 + 15/32 − ε2 = 30/32 − ε1 − ε2 and ‖r(B) − ρ‖ =
1/4 + 1/32 + ε1 + 11/32 − ε2 + 1/8 = 24/32 + ε1 − ε2, thus, B is winning according to ρ . However, B has lower representation of 
x1

1 than A, and ρ was obtained from π , by increasing the fraction of π1
1 . This completes the proof. �

Proposition 6. Consider a candidate database that satisfies the full supply property. For any attribute Xi , any committee A that max-
imises 

∑
i, j π

j
i H(r j

i (A) · k) is a d’Hondt committee for the single-attribute problem ({Xi}, D↓Xi , πi, k), where D↓Xi is the projection 
of D on {Xi}.

Proof. The idea from the proof of Proposition 3 works also for this proposition. If there exists a committee A which 
maximises 

∑
i

∑
j π

j
i H(r j

i (A) · k) and which is not a d’Hondt committee for the single-attribute problem ({Xi}, D↓Xi , πi, k), 
then by Proposition 5 there exists a committee B such that 

∑
j π

j
i H(r j

i (B) · k) >
∑

j π
j

i H(r j
i (A) · k). Similarly as in the proof 

of Proposition 3, it is possible to build a committee D from A and B such that 
∑

i

∑
j π

j
i H(r j

i (D) ·k) >
∑

i

∑
j π

j
i H(r j

i (A) ·k), 
which gives a contradiction and completes the proof. �
Proposition 7. Under the full supply assumption, non-reversal, house monotonicity, and value monotonicity with respect to every 
attribute are all satisfied by the multi-attribute d’Hondt method. In the general case, non-reversal and house monotonicity are not 
satisfied. If Xi is a binary variable, then value monotonicity with respect to Xi is satisfied; however it is not satisfied in the general case.

Proof. Similarly as in the proof of Proposition 4 we infer that the result for full supply assumption follows from Proposi-
tion 6 and from the fact that the respective properties holds in the single-attribute case.

In the general case, we give counterexamples. For non-reversal, the same example as in the proof of Proposition 4 works 
also for the case of the multi-attribute d’Hondt method.

For house monotonicity we have two binary attributes and three candidates: a with vector (x1
1, x

2
2), b with vector (x2

1, x
1
2), 

and c with vector (x2
1, x

2
2). We have a target distribution π defined as follows: π1

1 = π1
2 = 0.5 − ε and π2

1 = π2
2 = 0.5 + ε , 

for some small positive ε . For k = 1 candidate c should be selected, while for k = 2 committee {a, b} is optimal.
Now, we prove that value monotonicity holds for binary domains. Consider a binary attribute Xi , with Di = {x0

i , x
1
i }. 

Assume that ρ0
1 > π0

1 , and that for all i′ �= i we have ρi′ = πi′ . Let A be an committee maximising our metric for π and, for 
the sake of contradiction, assume that for all committees B maximising our metric for ρ we have r0

i (B) < r0
i (A). Let B be 

such a committee.
∑

i

∑
j

π
j

i H(r j
i (B) · k) =

∑
i �=1

∑
j

π
j

i H(r j
i (B) · k) + π0

1 H(r0
1(B) · k) + (1 − π0

1 )H(k − r0
1(B) · k)

=
∑
i �=1

∑
j

ρ
j

i H(r j
i (B) · k) + ρ0

1 H(r0
1(B) · k) + (1 − ρ0

1 )H(k − r0
1(B) · k)

+ (ρ0
1 − π0

1 ) · (H(k − r0
1(B) · k) − H(r0

1(B) · k))

>
∑

i

∑
j

ρ
j

i H(r j
i (A) · k) + (ρ0

1 − π0
1 ) · (H(k − r0

1(B) · k) − H(r0
1(B) · k))

≥
∑

i

∑
j

ρ
j

i H(r j
i (A) · k) + (ρ0

1 − π0
1 ) · (H(k − r0

1(A) · k) − H(r0
1(A) · k))

=
∑
i �=1

∑
j

ρ
j

i H(r j
i (A) · k) + ρ0

1 H(r0
1(A) · k) + (1 − ρ0

1 )H(k − r0
1(A) · k)

+ (ρ0
1 − π0

1 ) · (H(k − r0
1(A) · k) − H(r0

1(A) · k))

=
∑
i �=1

∑
j

π
j

i H(r j
i (A) · k) + π0

1 H(r0
1(A) · k) + (1 − π0

1 )H(k − r0
1(A) · k)

=
∑

i

∑
j

π
j

i H(r j
i (A) · k).

We get that B is better with respect to our metric than A for π , a contradiction.
Finally, from the proof of Proposition 4 we can reuse parts of the construction showing that value monotonicity 

does not hold in the general case. Let us recall that the construction there ensures that one of the two committees, 
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A = {A1, A2, . . . , A8} or B = {B1, B2, . . . , B8}, needs to be selected. Additionally we can have two attributes, X1 and X2, 
each with three possible values. These two attributes determine whether A or B is going to be selected. We select A and B
so that:

〈r j
1(A)〉 = (0,1,0) 〈r j

1(B)〉 = (0,0,1)

〈r j
2(A)〉 = (1/8, 7/8,0) 〈r2

1(B)〉 = (0,0,1).

We set π1 = (0, 0.1, 0.9). Now, consider π2 = (0, 1, 0). For the two attributes the values of committees A and B are equal 
to:

committee A : 0.1 · H(8) + H(7) ≈ 2.86, committee B : 0.9 · H(8) ≈ 2.44.

Consequently, A will be selected by the multi-attribute d’Hondt method. Now, consider what happens when we change π2

to ρ2 = (1, 0, 0). For the two attributes the values of committees A and B are now equal to:

committee A : 0.1 · H(8) + H(1) ≈ 1.27, committee B : 0.9 · H(8) ≈ 2.44.

Yet, B has lower representation of x0
2 than A, and ρ was obtained from π , by increasing the fraction of π0

2 . This shows that 
value monotonicity is not satisfied in the general case and completes the proof. �
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