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Abstract

We consider the following problem: There is a set of items (e.g., movies) and a group
of agents (e.g., passengers on a plane); each agent has some intrinsic utility for each of
the items. Our goal is to pick a set of K items that maximize the total derived utility of
all the agents (i.e., in our example we are to pick K movies that we put on the plane’s
entertainment system). However, the actual utility that an agent derives from a given
item is only a fraction of its intrinsic one, and this fraction depends on how the agent
ranks the item among the chosen, available, ones. We provide a formal specification of
the model and provide concrete examples and settings where it is applicable. We show
that the problem is hard in general, but we show a number of tractability results for its
natural special cases.

1 Introduction

A number of real-world problems consist of selecting a set of items for a group of agents
to jointly use. Examples of such activities include picking a set of movies to put on a
plane’s entertainment system, deciding which journals a university library should subscribe
to, deciding what common facilities to build, or even voting for a parliament (or other
assembly of representatives). Let us consider some common features of these examples.

First, there is a set of items1 and a set of agents; each agent has some intrinsic utility
for each of the items (e.g., this utility can be the level of appreciation for a movie, the
average number of articles one reads from a given issue of a journal, expected benefit from
building a particular facility, the feeling—measured in some way—of being represented by
a particular politician).

Second, typically it is not possible to provide all the items to the agents and we can only
pick some K of them, say (a plane’s entertainment system fits only a handful of movies, the

∗The preliminary version of this paper was presented at AAAI-2015.
1We use the term ‘item’ in the most neutral possible way. Items may be candidates running for an

election, or movies, or possible facilities, and so on.
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library has a limited budget, only several sites for the facilities are available, the parliament
has a fixed size).

Third, the intrinsic utilities for items extend to the sets of items in such a way that the
utility derived by an agent from a given item may depend on the rank of this item (from the
agent’s point of view) among the selected ones. Extreme examples include the case where
each agent derives utility from his or her most preferred item only (e.g., an agent will watch
his or her favorite movie only, will read/use the favorite journal/favorite facility only, will
feel represented by the most appropriate politician only), from his or her least preferred
item only (say, the agent worries that the family will force him or her to watch the worst
available movie), or derives 1/K of the utility from each of the available items (e.g., the
agent chooses the item—say, a movie—at random). However, in practice one should expect
much more complicated schemes (e.g., an agent watches the top movie certainly, the second
one probably, the third one perhaps, etc.; or, an agent is interested in having at least some
T interesting journals in the library; an agent feels represented by some top T members of
the parliament, etc.).

The goal of this paper is to formally define a model that captures all the above-described
scenarios, provide a set of examples where the model is applicable, and provide an initial
set of computational results for it in terms of efficient algorithms (exact or approximate)
and computational hardness results (NP-hardness and inapproximability results).

Our work builds upon, generalizes, and extends quite a number of settings that have
already been studied in the literature. We provide a deeper overview of this research in
Section 8 and here we only mention the two most directly related lines of work. First, our
model where the agents derive utility from their most preferred item among the selected
ones directly corresponds to winner determination under the Chamberlin–Courant’s voting
rule [7,18,48] (it is also very deeply connected to the model of budgeted social choice [39,40,
47]) and is in a certain formal sense a variant of the facility location problem. Second, the
case where for each item each agent derives the same fraction of the utility is, in essence,
the same as K-winner range-voting (or K-winner Borda [21]); that agents enjoy equally the
items they get is also a key assumption in the Santa Claus problem [6], and in the problem
of designing optimal picking sequences [10,14,33].

The paper is organized as follows. First, in Section 2 we discuss several important
modeling choices and provide the formal description of our model. Then, in Section 3, we
discuss the applicability of the model in various scenarios. Specifically, we show a number of
examples that lead to particular parameter values of our model. We give an overview of our
results in Section 4 and then, in Sections 5, 6, and 7, we present these results formally. In
Section 5 we present results regarding the complexity of computing exact solutions for our
model. In the next two sections we discuss the issue of computing approximate solutions.
First without putting restrictions on agents’ utilities (Section 6) and, then, for what we call
non-finicky utilities (Section 7). Intuitively put, under non-finicky utilities the agents are
required to give relatively high utility values to a relatively large fraction of the items). We
believe that the notion of non-finicky utilities is one of the important contributions of this
paper. We discuss related work in Section 8 and conclude in Section 9.
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2 The Model

In this section we give a formal description of our model. However, before we move on to
the mathematical details, let us explain and justify some high-level assumptions and choices
that we have made.

First, we assume that the agents have separable preferences. This means that the
intrinsic utility of an object does not depend on what other objects are selected. This is
very different from, for example, the case of combinatorial auctions. However, in our model
the impact of an object on the global utility of an agent does depend on its rank (according
to that agent) among the selected items. This distinction between the intrinsic value of
an item and its value distorted by its rank are also considered in several other research
fields, especially in decision theory (where it is known as “rank-dependent utility theory”)
and in multicriteria decision making, from which we borrow one of the main ingredients
of our approach, the ordered weighted average (OWA) operators [55] (for technical details
see the work of Kacprzyk et al. [32]). OWAs were recently used in social choice in several
contexts [3,23,29]; we discuss these works in detain in Section 8.

Second, throughout the paper we navigate between two views of the agents’ intrinsic
utilities:

1. Generally, we assume that the utilities are provided explicitly in the input as numerical
values, and that these values are comparable between agents. Yet, we make no further
assumptions about the nature of agents’ utilities: they do not need to be normalized,
they do not need to come from any particular range of values, etc. Indeed, it is
possible that some agent has very strong preferences regarding the items, modeled
through high, diverse utility values, whereas some other agent does not care much
about the selection process and has low utility values only.

2. In some parts of the paper (which will always be clearly identified), we assume that
utilities are heavily constrained and derive from non-numerical information, such as
approval ballots specifying which items an agent approves (leading to approval-based
utilities), or rankings over alternatives, from which utilities are derived using an agent-
independent scoring vector (typically, a Borda-like vector).

Formally, the latter view is a special case of the former, but we believe that it is worthwhile
to consider it separately. Indeed, many multiwinner voting rules (such as the Chamberlin–
Courant [18] rule or the Proportional Approval Voting rule [35]) fit the second view far
more naturally, whereas for other applications the former view is more natural.

Third, we take the utilitarian view and measure the social welfare of the agents as the
sum of their perceived utilities. One could study other variants, such as the egalitarian
variant, where the social welfare is measured as the utility of the worst-off agent. We leave
this as possible future research (our preliminary attempts indicated that the egalitarian
setting is computationally even harder than the utilitarian one). Very recently, Elkind and
Ismäıli [23] used OWA operators to define variants of the Chamberlin–Courant rule that
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lay between the utilitarian and egalitarian variants; we discuss this work in more detail in
Section 8.

2.1 The Formal Setting

Let N = [n] be a set of n agents and let A = {a1, . . . , am} be a set of m items. The goal is
to pick a size-K set W of items that, in some sense, is most satisfying for the agents. To
this end, (1) for each agent i ∈ N and for each item aj ∈ A we have an intrinsic utility
ui,aj ≥ 0 that agent i derives from aj; (2) the utility that each agent derives from a set of
K items is an ordered weighted average [55] of this agent’s intrinsic utilities for these items.

A weighted ordered average (OWA) operator over K numbers is a function defined
through a vector α(K) = 〈α1, . . . , αK〉 of K (nonnegative) numbers2 as follows. Let ~x =

〈x1, . . . , xK〉 be a vector of K numbers and let ~x↓ = 〈x↓1, . . . , x
↓
K〉 be the nonincreasing

rearrangement of ~x, that is, x↓i = xσ(i), where σ is a permutation of {1, . . . ,K} such that
xσ(1) ≥ xσ(2) ≥ . . . ≥ xσ(K). Then we set:

OWAα(K)(~x) =
∑K

i=1 αix
↓
i

To make the notation lighter, we write α(K)(x1, . . . , xK), instead of OWAα(K)(x1, . . . , xK).
We provide a more detailed discussion of the OWA operators useful in our context later

and here we only mention that, for example, they can be used to express the arithmetic aver-
age (through the size-K vector ( 1

K , . . . , 1
K )), the maximum and minimum operators (through

vectors (1, 0, . . . , 0), and (0, . . . , 0, 1), respectively) and the median operator (through the
vector of all zeros, with a single one in the middle position).

We formalize our problem of computing “the most satisfying set of K items” as follows.

Definition 1. In the OWA-Winner problem we are given a set N = [n] of agents, a
set A = {a1, . . . , am} of items, a collection of agent’s utilities (ui,aj )i∈[n],aj∈A, a positive

integer K (K ≤ m), and a K-number OWA α(K). The task is to compute a subset W =

{w1, . . . , wK} of A such that uα
(K)

ut (W ) =
∑n

i=1 α
(K)(ui,w1 , . . . , ui,wK

) is maximal.

Example 1. Consider six agents with the following utilities over the items from the set
A = {a1, a2, a3, a4, a5, a6}:

u(a1) u(a2) u(a3) u(a4) u(a5) u(a6)

3 agents 5 4 3 0 2 1
2 agents 4 0 2 3 1 5
1 agent 0 3 2 4 5 1

We want to select K = 3 items and we use OWA α = (2, 1, 0). What is the score of
{a1, a2, a6}? The first three agents get utility 2 × 5 + 4 = 14 each, the next two get

2The standard definition of OWAs assumes normalization, that is,
∑K

i=1 αi = 1. We do not make this
assumption here, for the sake of convenience; note that whether OWA vectors are normalized or not is
irrelevant to all notions and results of this paper.
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2 × 5 + 4 = 14 each, and the last one gets 2 × 3 + 1 = 7. So, the score of {a1, a2, a6}
is 42 + 28 + 7 = 77. Indeed, this is the optimal set; the next best ones are {a1, a2, a4},
{a1, a2, a5} and {a1, a5, a6}, all with score 75. The rule defined by the OWA α′ = (1, 1, 1),
known as 3-Borda (due to the very specific values of agents’ utilities; see Example 2 in the
next section), would choose {a1, a2, a3} and Chamberlin–Courant’s rule (in our terms, the
rule defined by the OWA operator α′′ = (1, 0, 0)) would choose {a1, a5, a6}.

For a family (α(K))∞K=1 of OWAs, we write α-OWA-Winner to denote the variant of
the problem where for each given solution size K we use OWA α(K). From now on we
will not mention the size of the OWA vector explicitly and it will always be clear from the
context. We implicitly assume that OWAs in our families are polynomial-time computable.

2.2 Classes of Intrinsic Utilities

While our general setting allows agents to express arbitrary utilities, we also focus on two
cases where they only provide dichotomous or ordinal information:

Dichotomous information. Agents provide dichotomous information if they only have
to specify which items they like. This information is then mapped into dichotomous
(or, as we typically refer to them, approval-based) utilities, defined by ui(aj) = 1 if i
likes aj and ui(aj) = 0 otherwise.

Ordinal information. Agents provide ordinal information if they only have to specify
their rankings over items, called their preference orders. This information is then
mapped into utilities using a scoring vector, exactly in the same way as positional
scoring rules (for single-winner voting) do. We focus on the partiuclar case where
this scoring vector is the Borda vector, i.e., if the rank of aj in i’s ranking is k then
ui(aj) = m− k. We refer to this setting as Borda-based utilities.

Naturally, these are special cases of our general setting. Yet using approval-based or Borda-
based utilities can be more convenient than using the general approach.

Example 2. The utilities of the agents from Example 1 are Borda-based and can be
expresses as the following preference orders:

3 agents : a1 ≻ a2 ≻ a3 ≻ a5 ≻ a6 ≻ a4

2 agents : a6 ≻ a1 ≻ a4 ≻ a3 ≻ a5 ≻ a2

1 agent : a5 ≻ a4 ≻ a2 ≻ a3 ≻ a6 ≻ a1

Both approval-based utilities and Borda-based utilities are inspired by analogous notions
from the theory of voting, where approval and Borda count are very well-known single-
winner voting rules (briefly put, under these rules we treat the utilities of the items as
their scores, sum up the scores assigned to the items by the voters, and elect the item
that has the highest score). Further, Borda-based utilities have been used in the original
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Chamberlin–Courant’s rule and in several works on fair division (see, e.g., a paper of Brams
and King [13]).

One of the high-level messages of this paper is that OWA-Winner problems tend to be
computationally easier for the case of Borda-based utilities than for the case of approval-
based ones (while we typically obtain NP-hardness in both settings, we find good approxima-
tion algorithms for many of the Borda-based cases, whereas for the approval-based setting
our algorithms are either significantly weaker or we obtain outright inapproximability re-
sults). This is so mostly because under Borda-based utilities all the agents assign relatively
high utility values to a relatively large fraction of items. In the following definition we try
to capture this property.

Definition 2. Consider a setting with m items and let umax denote the highest utility that
some agent gives to an item. Let β and γ be two numbers in [0, 1]. We say that the agents
have (β, γ)-non-finicky utilities if every agent has utility at least βumax for at least γm
items.

To understand this notion better, let us consider the following example.

Example 3. Let n = 3 and m = 6. The utilities are as defined below:

u(a1) u(a2) u(a3) u(a4) u(a5) u(a6)

Agent 1 10 10 9 8 5 0
Agent 2 6 5 0 10 8 10
Agent 3 8 0 10 6 10 7

The agents have (0.8, 0.5)-non-finicky utilities. Indeed, all there agents have utility at least
8 for at least half of the items. They also have (0.6, 23)-non-finicky utilities, and (0.5, 56)-
non-finicky utilities. We will also use the agents and items from this example later, when
presenting our algorithms.

As we can expect, Borda-based utilities are non-finicky in a very natural sense.

Observation 1. For every x, 0 ≤ x ≤ 1, Borda-based utilities are (x, 1− x)-non-finicky.

However there are also other natural cases of non-finicky utilities. For example, consider
agents that have approval-based utilities and where each agent approves of at least a γ
fraction of the items. These agents have (1, γ)-non-finicky utilities. (The reader may be
surprised here that approval-based utilities may be non-finicky even though we said that
we obtain inapproximability results for them. Yet, there is no contradiction here. These
inapproximability results rely on the fact that some agents approve of very few items.)

2.3 A Dictionary of Useful OWA Families

Below we give a catalog of OWA families that we focus on throughout the paper (in the
description below we take K to be the dimension of the vectors to which we apply a given
OWA).
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1. k-median OWA. For each k ∈ {1, . . . ,K}, k-med(K) is the OWA defined by the
vector of k − 1 zeros, followed by a single one, followed by K − k zeros. It is easy to
see that k-med(K)(x1, . . . , xK) is the k-th largest number in the set {x1, . . . , xK} and
is known as the k-median of ~x. In particular, 1-med(K)(~x) is the maximum operator,
K-med(K)(~x) is the minimum operator, and if K is odd, K+1

2 -med(K)(~x) is the median
operator.

2. k-best OWA. For each k ∈ {1, . . . ,K}, k-best(K) OWA is defined through the vector
of k ones followed byK−k zeros. That is, k-best(K)(~x) is the sum of the top k values in
~x (with appropriate scaling, this means an arithmetic average of the top k numbers).

K-best
(K)
K is simply the sum of all the numbers in ~x (after scaling, the arithmetic

average).

3. Arithmetic progression OWA. This OWA is defined through the vector
aprog[a](K) = 〈a + (K − 1)b, a + (K − 2)b, . . . , a〉, where a ≥ 0 and b > 0. (One
can easily check that the choice of b has no impact on the outcome of OWA-Winner;
this is not the case for a, though.)

4. Geometric progression OWA. This OWA is defined through the vector
gprog[p](K) = 〈pK−1, pK−2, . . . , 1〉, where p > 1. (This is without loss of general-
ity, because multiplying the vector by a constant factor has no impact on the outcome
of OWA-Winner; but the choice of p matters.)

5. Harmonic OWA. This OWA is defined through the vector 〈1, 12 ,
1
3 , . . . ,

1
K 〉,

6. Hurwicz OWA. This OWA is defined through a vector (λ, 0, . . . , 0, 1− λ), where λ,
0 ≤ λ ≤ 1, is a parameter.

Naturally, all sorts of middle-ground OWAs are possible between these particular cases,
and can be tailored for specific applications. As our natural assumption is that highly
ranked items have more impact than lower-ranked objects, we often make the assumption
that OWA vectors are nonincreasing, that is, α1 ≥ . . . ≥ αK . While most OWA operators
we consider in the paper are indeed nonincreasing, this is not the case for k-medians (except
for 1-median) and Hurwicz (except for λ = 1).

3 Applications of the Model

We believe that our model is very general. To substantiate this claim, in this section we
provide four quite different scenarios where it is applicable.

Generalizing Voting Rules. Our research started as an attempt to generalize the rule
of Chamberlin and Courant [18] for electing sets of representatives. For this rule, the voters
(the agents) have Borda-based utilities over a set of candidates and we wish to elect a K-
member committee (e.g., a parliament), such that each voter is represented by one member
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of the committee. If we select K candidates, then a voter is “represented” by the selected
candidate that she ranks highest among the chosen ones. Thus, winner determination
under Chamberlin–Courant’s voting rule boils down to solving 1-best-OWA-Winner for
the case of Borda-based utilities. On the other hand, solving K-best-OWA-Winner for
Borda-based utilities is equivalent to finding winners under K-Borda, the rule that picks K
candidates with the highest Borda scores (see the work of Elkind et al. [22] for a classification
of multiwinner voting rules, including, e.g., K-Borda and Chamberlin–Courant’s rule).

Our model extends one more appealing voting rule, known as Proportional Approval
Voting (PAV; see the work of Kilgour [35] for a review of approval-based multiwinner rules,
and the work of Aziz et al. [5] and Elkind and Lackner [24] for computational results). Win-
ner determination under PAV is equivalent to solving α-OWA-Winner for the harmonic
OWA, for the case of approval-based utilities.

Malfunctioning Items or Unavailable Candidates. Consider a setting where we pick
the items off-line, but on-line it may turn out that some of them are unavailable (for example,
we pick a set of journals the library subscribes to, but when an agent goes to a library, a
particular journal could already be borrowed by someone else; see the work of Lu and
Boutilier [38] for other examples of social choice with possibly unavailable candidates). We
assume that each item is available with the same, given, probability p (i.i.d.). The utility
an agent gets from a set of selected items W is the expected value of the best available
object. The probability that the i’th item is available while the preceding i − 1 items are
not, is proportional to p(1− p)i−1. So, to model the problem of selecting items in this case,
we should use the geometric progression OWA with initial value p and coefficient 1− p.

Uncertainty Regarding How Many Items a User Enjoys. There may be some
uncertainty about the number of items a user would enjoy (e.g., on a plane, it is uncertain
how many movies a passenger would watch; one might fall asleep or might only watch those
movies that are good enough). We give two possible models for the choice of the OWA
vectors:

1. The probability that an agent enjoys i items, for 0 ≤ i ≤ K, is uniformly distributed,
i.e., an agent would enjoy exactly his or her first i items in W with probability 1

K+1 .
So, the agent enjoys the i’th item if she enjoys at least i items, which occurs with
probability K−i+1

K+1 ; we should use OWA vector defined by αi = K− i+1 (we disregard
the normalizing constant), i.e., an arithmetic progression.

2. We assume that the values given by each user to each item are distributed uniformly,
i.i.d., on [0, 1] and that each user uses only the items that have a value at least θ,
where θ is a fixed (user-independent) threshold. Therefore, a user enjoys the item
in W ranked in position i if she values at least i items at least θ, which occurs
with probability

∑K
j=i

(K
i

)

(1 − θ)iθK−i, thus leading to the OWA vector defined by

αi =
∑K

j=i

(

K
i

)

(1− θ)iθK−i.

Ignorance About Which Item Will Be Assigned to a User. We now assume that
a matching mechanism will be used after selecting the K items. The matching mechanism
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is not specified; it might also be randomized. If the agents have a complete ignorance about
the mechanism used, then it makes sense to use known criteria for decision-making under
complete uncertainty:

1. The Wald criterion assumes that agents are extremely risk-averse, and corresponds to
α = K-med(K) = 〈0, . . . , 0, 1〉. The agents consider their worst possible items.

2. The Hurwicz criterion is a linear combination between the worst and the best out-
comes, and corresponds to α = (λ, 0, . . . , 0, 1 − λ) for some fixed λ ∈ (0, 1).

If the agents know that they are guaranteed to get one of their best i items, then the Wald
and Hurwicz criteria lead, respectively, to the OWAs α = i-med(K) and α = (λ, 0, . . . , 0, 1−
λ, 0, . . . , 0), with 1 − λ in position i. If the agents know that the mechanism gives them
one of their top i items, each with the same probability, then we should use i-best OWA.
More generally, the matching mechanism may assign items to agents with a probability that
decreases when the rank increases.

4 Overview of the Results

In this section we provide a high-level overview of our results. It turns out that computa-
tional properties of the OWA-Winner problem are quite varied and strongly depend on
the types of OWA operators and the allowed agent utilities. We present a summary of our
results in Table 1 (however, we stress that some of our technical results are not listed in the
table and can be found only in the following sections).

Our first observation is that without any restrictions, OWA-Winner is NP-hard. This
is hardly surprising since the problem generalizes other NP-hard problems, and it is natural
to ask if there are any special cases where it is easy. Unfortunately, as we show in Section 5,
they are very rare. For example, without restrictions on the agents’ utilities, OWA-Winner

can be solved in polynomial time either if we treat K as a constant or if we use the constant
OWA vector (i.e., if we use K-best OWA). Indeed, the problem becomes NP-hard already
for the (K − 1)-best OWA. This holds even if the agents are restricted to have approval-
based utilities (Theorem 6) or Borda-based utilities (Theorem 7). More generally, we show
that OWA-Winner is NP-hard for every family of OWA vectors that are nonconstant and
nonincreasing (Theorem 5), which captures a significant fraction of all interesting settings.

After considering the worst-case complexity of computing exact solutions in Section 5,
in Section 6 we focus on the approximability of the OWA-Winner problem. We show that
in this respect there is a significant difference between two main classes of OWA vectors,
those that are nonincreasing and the remaining ones. We show that for the nonincreasing
OWA vectors the standard greedy algorithm for optimizing submodular functions achieves
approximation ratio of (1−1/e), irrespective of the nature of the agents’ utilities (Lemma 12
and Theorem 13). On the other hand, we present evidence that there is little hope for
good approximation algorithms for the case of OWA vectors that are not nonincreasing
(Example 5 and Theorems 15 and 19).

9



general and (β, γ)–non-finicky
OWA family approval utilities and Borda utilities References

k-median (k fixed)
NP-hard NP-hard (Borda) Proposition 8

DkS-bounded (β − ǫ)-approx. Theorem 15 and Corollary 26
PTAS (Borda) Theorem 30

K-median
NP-hard NP-hard Theorems 6 and 7

MEBP-bounded ? Theorem 19, open problem

1-best
NP-hard (approval) NP-hard (Borda) Literature [39,48]
(1− 1

e
)-approx. (β − ǫ)-approx. Literature [39], Corollary 26

PTAS (Borda) Literature [53]

k-best (k fixed)
NP-hard (approval) NP-hard (Borda) Proposition 8
(1− 1

e
)-approx. (β − ǫ)-approx. Theorem 13 and Corollary 26

(K − 1)-best
NP-hard (approval) NP-hard (Borda) Theorems 6 and 7

PTAS PTAS Theorem 23

K-best P P folk result

arithmetic progression
NP-hard ? Theorem 3, open problem

(1− 1
e
)-approx. (1− 1

e
)-approx. Theorem 13

geometric progression
NP-hard ? Theorem 3, open problem

(1− 1
e
)-approx. β − ǫ Theorem 13, Corollary 31

Hurwicz[λ]
NP-hard (approval) ? Corollary 20, open problem
λ(1− 1

e
)-approx. λ(1− ǫ)-approx. Corollary 22

for each ǫ > 0

Table 1: Summary of our results for the OWA families from Section 2.3. For each OWA
family we provide four entries: In the first row (for a given OWA family) we give its worst
case complexity (in the general case and in the non-finicky utilities case), and in the second
row we list the best known approximation result (in the general case and in the non-finicky
utilities case). We write K to mean the cardinality of the winner set that we seek. In
the “References” column we point to the respective result in the paper/literature. For
negative results we indicate the simplest types of utilities where they hold; for positive
results we give the most general types of utilities where they hold. For approximability
results for the case of non-finicky utilities, we write (β − ǫ)-approx to mean that there is
a polynomial-time approximation algorithm whose approximation ratio approaches β as
the size of the committee increases (in effect, for each ǫ, ǫ > 0, there is a polynomial-
time algorithm that achieves β − ǫ approximation ratio, by using a brute-force algorithm
is the size of the committee is smaller than a certain constant). For inapproximability
results, by DkS-bounded and MEBP-bounded we mean, respectively, inapproximability
results derived from the Densest-k-Subgraph problem and from the Maximum Edge

Biclique Problem.

Next, in Section 7, we consider approximation algorithms for OWA-Winner for the
case where agents have non-finicky utilities. It turns out that for non-finicky utilities we
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can sometimes obtain much better approximability guarantees than in the general setting.
The key feature of non-finicky utilities assumption is that every agent gives sufficiently high
utility values to sufficiently many items, so that the algorithms have enough flexibility in
picking the items to achieve high quality results. Specifically, we show a strong approx-
imation algorithm for the case of non-finicky utilities and OWA vectors that concentrate
most of the weight in a constant number of their top coefficients (Theorems 25, 29, 30, and
Corollary 31). These results apply, for example, to the case of geometric progression OWAs,
ℓ-best OWAs, and ℓ-med OWAs (for fixed values of ℓ). Further, when applied to the case
of Borda-based utilities (which, as we have argued in Section 2.2, are non-finicky in a very
strong sense), we obtain polynomial-time approximation schemes (that is, approximation
algorithms that can compute solutions with an arbitrarily good precision, but whose run-
ning time depends polynomially only on the size of the problem but not necessarily on the
desired approximation ratio).

5 Computing Exact Solutions

We start our analysis by discussing the complexity of solving the OWA-Winner problem
exactly. In general, it seems that OWA-Winner is a rather difficult problem and below
we show this section’s main negative result. That is, we show that our problem is NP-
hard for any class of OWA vectors satisfying a certain natural restriction. Intuitively, this
restriction says that in a considered family of OWAs, the impact of more-liked items on the
total satisfaction of an agent is greater than that of the less-liked ones.

Theorem 3. Fix an OWA family α such that for every K, α(K) is nonincreasing and
nonconstant. α-OWA-Winner is NP-hard, even for approval-based utilities.

For the sake of readability, we first prove two simpler results that we later use in the
proof of Theorem 3. In these proofs, we give reductions from the standard VertexCover

problem and from CubicVertexCover, its variant restricted to cubic graphs.

Definition 4. In the VertexCover problem we are given an undirected graph G = (V,E),
where V = {v1, . . . , vm} is the set of vertices and E = {e1, . . . , en} is the set of edges, and
a positive integer K. We ask if there is a set C of up to K vertices such that each edge
is incident to at least one vertex from C. The CubicVertexCover problem the same
problem, restricted to graphs where each vertex has degree exactly three.

VertexCover is well-known to be NP-hard [28]; NP-hardness for CubicVertex-

Cover was shown by Alimonti and Kann [1].

Theorem 5. Fix an OWA family α, such that there exists p such that for every α(K) we

have α
(K)
p > α

(K)
p+1. α-OWA-Winner is NP-hard, ever for approval-based utilities.

Proof. We give a reduction from CubicVertexCover problem. Let I be an instance
of CubicVertexCover with graph G = (V,E), where V = {v1, . . . , vm} and E =
{e1, . . . , en}, and positive integer K. W.l.o.g., we assume that n > 3.
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We construct an instance I ′ of α-OWA-Winner. In I ′ we set N = E (the agents
correspond to the edges), A = V ∪ {b1, b2, . . . bp−1} (there are (p − 1) dummy items; other
items correspond to the vertices), and we seek a collection of items of size K + p− 1. Each
agent ei, ei ∈ E, has utility 1 exactly for all the dummy items and for two vertices that
ei connects and for each of the dummy items (for the remaining items ei has utility 0). In
effect, each agent has utility 1 for exactly p+ 1 items.

We claim that I is a yes-instance of CubicVertexCover if and only if there exists a
solution for I ′ with the total utility at least n

∑p
i=1 αi + (3K − n)αp+1.

(⇒) If there is a vertex cover C of size K for G, then by selecting the items W =
C ∪ {b1, b2, . . . bp−1} we obtain the required utility of the agents. Indeed, for every agent ei
there are at least p items in W for which i gives value 1 (the p−1 dummy items and at least
one vertex incident to ei). These items contribute the value n

∑p
i=1 αi to the total agents’

utility. Additionally, since every non-dummy item has value 1 for exactly 3 agents, and
since every agent has at most (p+1) items with value 1, there are exactly (3K − n) agents
that have exactly (p + 1) items in W with values 1. These (p + 1)’th additional utility-1
items of the (3k − n) agents contribute (3K − n)αp+1 to the total utility. Altogether, the
agents’ utility is n

∑p
i=1 αi + (3K − n)αp+1, as claimed.

(⇐) Let us assume that there is a set of (K + p − 1) items with total utility at least
n
∑p

i=1 αi + (3K − n)αp+1. In I ′ we have (p− 1) items that have value 1 for each of the n
agents, and every other item has value 1 for exactly 3 agents. Thus, the sum of the utilities
of K + p − 1 items (without applying the OWA operator yet) is at most (p − 1)n + 3K =
pn + (3K − n). Thus, the total utility of the agents (now applying the OWA operator)
is n

∑p
i=1 αi + (3K − n)αp+1 only if for each agent ei the solution contains p items with

utility 1. Since there are only p − 1 dummy items, it means that for each agent ei there
is a vertex vj in the solution such that ej is incident to vj . That is, I is a yes-instance of
CubicVertexCover.

Theorem 6. (K−1)-best-OWA-Winner is NP-complete even for approval-based utilities.

Proof. Membership in NP is clear. We show a reduction from the VertexCover problem.
Let I be an instance of VertexCover with graph G = (V,E), where V = {v1, . . . , vm}
and E = {e1, . . . , en}, and with a positive integer K (without loss of generality, we assume
that K ≥ 3 and K < m).

We construct an instance I ′ of (K − 1)-best-OWA-Winner in the following way. We
let the set of items be A = V and we form 2n agents, two for each edge. Specifically, if ei
is an edge connecting two vertices, call them vi,1 and vi,2, then we introduce two agents, e1i
and e2i , with the following utilities: e1i has utility 1 for vi,1 and for vi,2, and has utility 0 for
all the other items; e2i has opposite utilities—it has utility 0 for vi,1 and for vi,2, and has
utility 1 for all the remaining ones.

Let W be some set of K items (i.e., vertices) and consider the sum of the utilities derived
by the two agents e1i and e2i from W under (K−1)-best-OWA. If neither vi,1 nor vi,2 belong
to W , then the total utility of e1i and e2i is equal to K − 1 (the former agent gets utility
0 and the latter one gets K − 1). If only one of the items, i.e., either vi,1 or vi,2, belongs
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to W , then the total utility of e1i and e2i is equal to K (the former agent gets utility 1 and
the latter one still gets K − 1). Finally, if both items vi,1, vi,2 belong to W , then the total
utility of e1i and e2i is also equal to K (the former gets utility 2 and the latter gets utility
K − 2). Thus the total utility of all agents is equal to K · n if and only if the answer to
the instance I is “yes”. This shows that the reduction is correct and, since the reduction is
computable in polynomial time, the proof is complete.

Using a proof that combines the ideas of the proof of Theorems 5 and 6, we show that
indeed OWA-Winner is NP-hard for a large class of natural OWAs.

Proof of Theorem 3. We give a reduction from CubicVertexCover. Let I be an in-
stance of CubicVertexCover with graph G = (V,E), where V = {v1, . . . , vm} and
E = {e1, . . . , en}, and with positive integer K.

Now let us consider α(2K). Since α(2K) is nonincreasing and nonconstant, one of the
two following conditions must hold.

1. There exists p ≤ K such that α
(2K)
p > α

(2K)
p+1 .

2. There exists p > K such that α
(2K)
p > α

(2K)
p+1 , and for every p ≤ K, we have α

(2K)
p =

α
(2K)
p+1 .

If (1) is the case then we use a reduction similar to that in the proof of Theorem 5.
The only difference is that apart from the set D1 of (p − 1) dummy items (ranked first by
all agents), we introduce the set D2 of (2K − p + 1) dummy items and (2K − p + 1) sets
N1, N2, . . . , N2K−p+1, each consisting of 2n dummy agents. The dummy items from D2 are
introduced only to fill-up the solution up to 2K members. The dummy agents from Ni have
utility 1 for each of the items from D1 and for the i’th item from D2 (they have utility 0 for
all the other items). This is to enforce that the items from D2 are selected in the optimal
solution. The further part of the reduction is as in the proof of Theorem 5.

If (2) is the case, then we use a reduction similar to that in the proof of Theorem 6. We
let the set of items be A = V ∪D1∪D2, whereD1, |D1| = p+1−K, andD2, |D2| = 2K−p−1
are sets of dummy items that we need for our construction. Similarly as in the proof of
Theorem 6, for each edge ei ∈ E we introduce two agents e1i and e2i . Here, however, we
additionally need the set F of (2n+ 1) dummy agents. Each dummy agent from F assigns
utility 1 to each dummy item from D2 and utility 0 to the remaining items—consequently,
since |F | > 2n, each dummy item from D2 must be selected to every optimal solution.
Further, each non-dummy agent assigns utility 1 to each dummy agent from D1—this way
we ensure that every item from D1 must be selected to every optimal solution. Finally,
the utilities of the non-dummy agents for the non-dummy items are defined exactly as in
the proof of Theorem 6. This ensures that the optimal solution, apart from D1 and D2,
will contain the non-dummy items that correspond to the vertices from the optimal vertex
cover.
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One may wonder if our just-presented hardness results also hold for other restrictions
on agents’ utilities. Below we show a variant of the result from Theorem 6 for Borda-based
utilities. It follows by an application of a similar idea as in the proof of Theorem 6, but the
restriction to Borda-based utilities requires a much more technical proof (available in the
appendix).

Theorem 7. (K − 1)-best-OWA-Winner is NP-hard even for Borda-based utilities.

5.1 Inherited Hardness Results

We now consider the cases of k-best-OWA-Winner and k-med-OWA-Winner (where k is
a constant). By results of Procaccia, Rosenschein and Zohar [48] and Lu and Boutilier [39],
we know that the 1-best-OWA-Winner problem is NP-hard both for both approval-based
utilities and Borda-based utilities (in this case the problem is equivalent to winner deter-
mination under appropriate variants of Chamberlin–Courant voting rule; in effect, many
results regarding the complexity of this rule are applicable for this variant of the prob-
lem [7,52,53,56]). A simple reduction shows that this result carries over to each family of
k-best OWAs and of k-med OWAs, where k is a fixed positive integer (note that for the
case of approval-based utilities, these results also follow through Thoerem 3).

Proposition 8. For each fixed k, k-best-OWA-Winner and k-med-OWA-Winner are
NP-complete, even if the utility profiles are restricted to be approval-based or Borda-based.

Proof. Let k be a fixed constant. It is easy to see that k-best-OWA-Winner and k-
med-OWA-Winner are both in NP. To show NP-hardness, we give reductions from 1-
best-OWA-Winner (either with approval-based utilities or with Borda-based utilities) to
k-best-OWA-Winner and to k-med-OWA-Winner (with the same types of utilities).

Let I be an instance of 1-best-OWA-Winner with n agents, m items, and where we seek
a winner set of size K. We form an instance I ′ of k-best-OWA-Winner that is identical to
I except that: (1) We add k − 1 special items b1, . . . , bk−1 such that under approval-based
utilities each agent i has utility 1 for each item bj, 1 ≤ j ≤ k − 1, and under Borda-based
utilities each agent i has utility m+j−1 for item bj , 1 ≤ j ≤ k−1. (2) We set the size of the
desired winner set to be K ′ = K+k−1. It is easy to see that if there is an optimal solution
W ′ for I ′ that achieves some utility x, then there is a solution W ′′ for I ′ that uses all the
k − 1 items b1, . . . , bk−1 and also achieves utility x. Further, the set W ′′ − {b1, . . . , bk−1} is
an optimal solution for I and, for I, has utility x−

∑n
i=1

∑k−1
j=1 ui,bj = x− n

∑k−1
j=1 u1,bj .

Analogous argument shows that 1-best-OWA-Winner reduces to k-med-OWA-

Winner (also for approval-based and for Borda-based utilities).

We leave the problem of generalizing the above two theorems to more general classes of
OWA vectors as a technical (but conceptually easy) open problem.
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5.2 Rare Easy Cases

While the OWA-Winner problem is in general NP-hard, there are also some natural easy
cases. For example, the problem is in P provided that we seek a winner set of a fixed size.
Naturally, in practice the variant of the problem with fixed K has only limited applicability.

Proposition 9. For each fixed constant K (the size of the winner set), OWA-Winner is
in P.

Proof. For a profile with m items, there are only O(mK) sets of winners to try. We try
them all and pick one that yields highest utility.

Similarly, the problem is in P when the number of available items is fixed (it follows by
applying the above proposition; if the number of items is fixed then so is K). Throughout
the rest of the paper we focus on the α-OWA-Winner variant of the problem, where K is
given as part of the input and α represents a family of OWAs, one for each value of K.

It is easy to note that for K-best OWA (that is, for the family of constant OWAs
α = (1, . . . , 1)) the problem is in P.

Proposition 10. K-best-OWA-Winner is in P.

Proof. Let I be an input instance with m items and n agents, where we seek a winner set
of size K. It suffices to compute for each item the total utility that all the agents would
derive if this item were included in the winner set and return K items for which this value
is highest.

Indeed, if the agents’ utilities are either approval-based or Borda-based, K-best-OWA-

Winner boils down to (polynomial-time) winner determination for K-best approval rule
and for K-Borda rule [21], respectively (see also the work of Elkind et al. [22] for a general
discussion of multiwinner rules). However, in light of this fact, Theorems 6 and 7 appear
quite surprising.

Given the results in this section so far, we conjecture that the family of constant OWAs,
that is, the family of K-best OWAs, is the only natural family for which α-OWA-Winner

is in P. We leave this conjecture as a natural follow-up question.3

5.3 Integer Programming

In spite of all the hardness results that we have seen so far, we still might be in a position
where it is necessary to obtain an exact solution for a given α-OWA-Winner instance, and
where the brute-force algorithm from Proposition 9 is too slow. In such a case, it might

3It is tempting to conjecture that for all families of non-constant OWAs, not just the natural ones, the
problem is NP-hard. This, however, is not the case. Indeed, by following the arguments of the classic
theorem of Ladner [36], it is possible to show a polynomial-time computable family of OWAs such that α-
OWA-Winner is in NP, but is neither NP-complete nor in P. (Intuitively put, such a family could consist
of interspersed long fragments where the OWAs are either K-best or 1-best. The K-best fragments would
prevent the problem from being NP-complete, while the 1-best fragments would prevent it from being in P.)
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be possible to use an integer linear programming (ILP) formulation of the problem, given
below. We believe that this ILP formulation is interesting in its own right and, in particular,
that it is interesting future work to experimentally assess the size of instances for which it
yields solutions in reasonable amount of time.

Theorem 11. OWA-Winner reduces to computing a solution for the following integer
linear program.

minimize
n
∑

i=1

m
∑

j=1

K
∑

k=1

αkui,ajxi,j,k

subject to:

(a) :
m
∑

i=1

xi = K

(b) : xi,j,k ≤ xj , i ∈ [n]; j, k ∈ [K]

(c) :

m
∑

j=1

xi,j,k = 1 , i ∈ [n]; k ∈ [K]

(d) :
K
∑

k=1

xi,j,k = 1 , i ∈ [n]; j ∈ [m]

(e) :
m
∑

j=1

ui,ajxi,j,k ≥
m
∑

j=1

ui,ajxi,j,(k+1) , i ∈ [n]; k ∈ [K − 1]

(f) : xi,j,k ∈ {0, 1} , i ∈ [n]; j, k ∈ [K]

(g) : xj ∈ {0, 1} , j ∈ [m]

Proof. Consider an input instance with n agents N = [n] and m items A = {a1, . . . , am},
where we seek a winner set of size K, under OWA α = (α1, . . . , αK). For each i ∈ N ,
aj ∈ A, we write ui,aj to denote the utility that agent i derives from item aj.

We form an instance of ILP with the following variables: (1) For each i ∈ N , j ∈ [m],
and k ∈ [K], there is an indicator variable xi,j,k (intuitively, we interpret xi,j,k = 1 to
mean that for agent i, item aj is the k-th most preferred one among those selected for the
solution). (2) For each j ∈ [m], there is an indicator variable xj (intuitively, we interpret
xj = 1 to mean that aj is included in the solution). Given these variables (and assuming
that we enforce their intuitive meaning), the goal of our ILP is to maximize the function
∑n

i=1

∑m
j=1

∑K
k=1 αkui,ajxi,j,k.

We require that our variables are indeed indicator variables and, thus, take values from
the set {0, 1} only (constraints (f) and (g)). We requite that the variables of the form
xi,j,k are internally consistent. (constraint (c) says that each agent ranks only one of the
candidates from the solution as k-th best, constraint (d) say that there is no agent i and
item aj such that i views aj as ranked on two different positions among the items from the
solution.) Then, we require that variables of the form xi,j,k are consistent with those of the
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Algorithm 1: The greedy algorithm for finding the utilitarian set of K winners.

Notation:
αℓ ← input OWA operator α, restricted to its top ℓ entries.

W ← ∅;
for ℓ← 1 to K do

gain ← {};
foreach a ∈ A \W do

gain [a]← uαℓ

ut
(W ∪ {a})− u

αℓ−1

ut
(W );

W ←W ∪ argmax
a∈A\W

(gain [a]);

return W ;

form xj (constraint (b)) and that exactly K items are selected for the solution (constraint
(a)).

Our final constraint, constraint (e), requires that variables xi,j,k indeed for each agent
sort the items from the solution in the order of descending utility values. We mention that
constraint (e) is necessary only for the case of OWAs α that are not-nonincreasing. For
a nonincreasing α, an optimal solution for our ILP already ensures the correct “sorting”
(otherwise our goal function would not be maximized).

We should note that linear-programming formulations of OWA-based optimization prob-
lems have appeared in the literature far before our work; see, for example, the paper of
Ogryczak and Śliwinski [46]. Yet, we use the OWA operators in a very different way and,
thus, our approach is different. (In essence, Ogryczak and Śliwiński use an OWA operator
to aggregate a number of values, whereas we use a simple sum to aggregate the agents’
perceived utilities, but we compute these perceived utilities by applying an OWA operator
to each agent’s individual, intrinsic utilities.)

6 Approximation: General Utilities and Approval Utilities

The OWA-Winner problem is particularly well-suited for applications that involve recom-
mendation systems (see, e.g., the work of Lu and Boutilier [39] for a discussion of 1-best-
OWA-Winner in this context). For recommendation systems it often suffices to find good
approximate solutions instead of perfect, exact ones, especially if we only have estimates
of agents’ utilities. It turns out that the quality of the approximate solutions that we can
produce for OWA-Winner very strongly depends on both the properties of the particular
family of OWAs used and on the nature of agents’ utilities.

First, we show that as long as our OWA is nonincreasing, a simple greedy algorithm
achieves

(

1− 1
e

)

approximation ratio. This result follows by showing that for a nonincreas-
ing OWA α, the function uαut (recall Definition 1) is submodular and nondecreasing, and by
applying the famous result of Nemhauser et al. [44].
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Recall that if A is some set and u is a function u : 2A → R+, then we say that: (1) u is
submodular if for each W and W ′, W ⊆W ′ ⊆ A, and each a ∈ A \W ′ it holds that:

u(W ∪ a)− u(W ) ≥ u(W ′ ∪ a)− u(W ′),

and (2) u is nondecreasing if for each W ⊆ A and each a ∈ A it holds that u(W ∪ {a}) ≥
u(W ).

Lemma 12. Let I be an instance of OWA-Winner with a nonincreasing OWA α. The
function uαut is submodular and nondecreasing.

Proof. Let I be an instance of OWA-Winner with agent set N = [n], item set A =
{a1, . . . , am}, desired solution size K, and OWA α = 〈α1, . . . , αK〉. For each agent i ∈ N
and each item aj ∈ A, ui,aj is a nonnegative utility that i derives from aj .

Since all the utilities and all the entries of the OWA vector are nonnegative, we note
that uαut is nondecreasing. To show submodularity, we decompose uαut as follows:

uαut(W ) =
K−1
∑

ℓ=1

(αℓ − αℓ+1)u
ℓ-best-OWA
ut (W ) + αKuK-best-OWA

ut (W )

For each W ⊆ A, i ∈ N and ℓ ∈ [m], let Top(W, i, ℓ) be the set of those ℓ items from W
whose utility, from the point of view of agent i, is highest (we break ties in an arbitrary
way). Since nonnegative linear combinations of submodular functions are submodular, it
suffices to prove that for each i ∈ N and each ℓ ∈ [m], function uℓi(W ) =

∑

w∈Top(W,i,ℓ) ui,w
is submodular.

To show submodularity of uℓi , consider two sets, W and W ′, W ⊆ W ′ ⊆ A, and some
a ∈ A \W ′. We claim that:

uℓi(W ∪ {a})− uℓi(W ) ≥ uℓi(W
′ ∪ {a})− uℓi(W

′). (1)

Let uW and uW ′ denote the utilities that the i-th agent has for the ℓ-th best items from W
and W ′, respectively (or 0 if a given set has fewer than ℓ elements). Of course, uW ′ ≥ uW .
Let ua denote i-th agent’s utility for a. We consider two cases. If ua ≤ uW , then both sides
of (1) have value 0. Otherwise:

uℓi(W
′ ∪ {a})− uℓi(W

′) = max(ua − uW ′ , 0)

uℓi(W ∪ {a}) − uℓi(W ) = ua − uW ,

which proves (1) and completes the proof.

Based on the above result, we can easily show that Algorithm 1 is a polynomial time
(1 − 1/e)-approximation for the OWA-Winner problem, for the case of nonincreasing
OWA vectors (see Theorem 13 below). Algorithm 1 is a natural incarnation of the greedy
algorithm of Nemhauser et al. [44]. It starts by setting the found-so-far solution W to be
empty. Then, in each iteration it extends W by adding this item that causes the greatest
increase in the utility.
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Example 4. Let the items and agents be as in Example 3. Let K = 3 and consider OWA
vector α = (2, 1, 0). Throughout the K = 3 iterations, we obtain the following gain values
(the contents of W are given at the beginning of each iteration; below we also explain some
of the computation):

W u
αℓ−1
ut (W ) gain(a1) gain(a2) gain(a3) gain(a4) gain(a5) gain(a6)

Iter. 1 ∅ 0 48 30 38 48 46 34
Iter. 2 {a1} 48 − 15 21 28 27 21
Iter. 3 {a1, a4} 76 − 2 7 − 8 5

At the beginning of the first iteration W = ∅ and the algorithm simply computes the
utility of each item separately, using OWA operator α1 = 〈2〉. For example, uα1

ut ({a1}) =
2 · (10 + 6 + 8) = 48. In the first iteration both a1 and a4 lead to the highest gain and, so,
the algorithm is free to pick either of them. We assume it picks a1. In the second iteration,
we have W = {a1} and, for example, the gain value for a4 is computed as:

uα2
ut ({a1, a4})− uα1

ut ({a1}) = 2 · (10 + 10 + 8) + (8 + 6 + 6)− 48 = 76− 48 = 28.

It is the highest gain value and so the algorithm includes a4 in the solution. In the third
iteration, item a5 has the highest gain and so the algorithm includes it in W . Finally, the
algorithm outputs W = {a1, a4, a5}.

Theorem 13. For a nonincreasing OWA α, Algorithm 1 is a polynomial time (1 − 1/e)-
approximation algorithm for the problem of finding the utilitarian set of K winners.

Proof. The thesis follows from the results of Nemhauser et al. [44] on approximating non-
decreasing submodular functions.

Algorithm 1 has interesting interpretation in the context of voting systems. This greedy
algorithm can be viewed not only as an approximation algorithm, but also as a new iterative
voting rule. Indeed, many popular voting rules are defined as iterative (greedy) algorithms.
Such rules are not only polynomially solvable, but also are easier to understand for the
society. Further, Caragiannis et al. [17] and, later, Elkind et al. [22], advocate viewing
approximation algorithms for computationally hard voting rules as new election systems,
and study their axiomatic properties (often showing that they are better than those of the
original rules).

Here we give another interesting observation. It turns out that the algorithm from
Theorem 13, when applied to the case of approval-based utilities and the harmonic OWA, is
simply the winner determination procedure for the Sequential Proportional Approval Voting
rule [11] (developed by the Danish astronomer and mathematician Thorvald N. Thiele, and
used for a short period in Sweden during early 1900’s). That is, the Sequential Proportional
Approval Voting rule is simply an approximation of the PAV rule (the Proportional Approval
Voting rule). We believe that this observation gives another evidence that approximation
algorithms for computationally hard voting rules can indeed be viewed as new full-fledged
voting rules. (We point readers interested in approval-based multiwinner voting rules to

19



the overview of Kilgour [35] and to the works of Aziz et al. [4,5], Elkind and Lackner [24],
and Skowron and Faliszewski [52]).

Is a (1− 1
e )-approximation algorithm a good result? After all, 1− 1

e ≈ 0.63 and so the
algorithm guarantees only about 63% of the maximum possible satisfaction for the agents.
Irrespective if one views it as sufficient or not, this is the best possible approximation
ratio of a polynomial-time algorithm for (unrestricted) OWA-Winner with a nonincreasing
OWA. The reason is that 1-best-OWA-Winner with approval-based utilities is, in essence,
another name for the MaxCover problem, and if P 6= NP, then (1 − 1

e ) is approximation
upper bound for MaxCover [25]. We omit the exact details of the connection between
MaxCover and 1-best-OWA-Winner and instead we point the readers to the work of
Skowron and Faliszewski [52] who discuss this point in detail (we mention that they refer
to what we call 1-best-OWA-Winner as winner determination for Chamberlin–Courant’s
voting rule).

For OWAs that are not nonincreasing, it seems that we cannot even hope for a (1− 1
e )-

approximation algorithm. There are two arguments to support this belief. First, such
OWAs yield utility functions that are not necessarily submodular and, so, it is impossible
to apply the result of Nemhauser et al. [44]. As an example, we show that 2-med-OWA
yields a utility function that is not submodular.

Example 5. Let us consider a single agent, two sets of items W = {c, d} and W ′ = {b, c, d}
(of course W ⊂ W ′), and 2-med-OWA α. The utilities of the agent over the items a, b, c,
and d are equal to 10, 9, 2, and 1, respectively. We get:

uαut(W ∪ {a}) − uαut(W ) = 2− 1 = 1, uαut(W
′ ∪ {a}) − uαut(W

′) = 9− 2 = 7.

That is, uαut is not submodular. Indeed, this example works even for approval-based utilities:
it suffices to set the utilities for a and b to be 1, and for c and d to be 0.

Second, it is quite plausible that there are no constant-factor approximation algorithms
for many not-nonincreasing OWAs. As an example, let us consider the case of families of
OWAs with the following structure: their first entries are zeros followed by some nonzero
entry at a sufficiently early position. If there were a good approximation algorithm for win-
ner determination under such OWAs, then there would be a good approximation algorithm
for the Densest-K-Subgraph problem, which seems unlikely.

Definition 14. In a Densest-k-Subgraph problem we are given an undirected graph
G = (V,E) and a positive integer K. We ask for a subgraph S with K vertices with the
maximal number of edges.

Theorem 15. Fix some integer ℓ, ℓ ≥ 2. Let α be a family of OWAs such that each OWA
in the family (for at least ℓ numbers) has 0s on positions 1 through ℓ−1, and has a nonzero
value on the ℓ’th position. If there is a polynomial-time x(n)-approximation algorithm for
α-OWA-Winner then there is a polynomial-time x(n)-approximation algorithm for the
Densest-k-Subgraph problem.
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We should mention that Theorem 15 holds for a somewhat more general class of OWAs
than stated explicitly. The proof relies on the fact that the first entry of the OWA is zero
and that after the first non-zero entry of the OWA there are still K − 1 positions, where K
is the parameter from the input Densest-K-Subset instance.

Proof of Theorem 15. Let I be an instance of the Densest-K-Subgraph problem with
graph G = (V,E) and positive integer K. From I we construct an instance I ′ of α-OWA-

Winner, where the set of agents N is E, the set of items is A = V ∪ {d1, . . . , dℓ−2} (or V
if ℓ = 2), and we seek a winner set of size K + ℓ− 2. Agents utilities are set as follows: For
each agent e and each item dj , 1 ≤ j ≤ ℓ − 2, the utility of e for dj is 1. If e is an edge
in G than connects vertices u and v then agent e’s utility for u and v is 1 and is 0 for the
remaining items from V .

It is easy too see that the items d1, . . . , dℓ−2 all belong to every optimal solution for I ′.
It is also easy to see that in each optimal solution the utility of each agent e is nonzero
(and exactly equal to αℓ, the ℓ-th entry of the OWA α used) if and only if both items
corresponding to the vertices connected by e are included in the solution. Thus the total
utility of every optimal solution for I ′ is equal to αℓ times the number of edges that connect
any two vertices corresponding to the items from the solution.

Let A be a polynomial-time x(n)-approximation algorithm for α-OWA-Winner. If A,
returns a solution S for I ′ with none-zero utility, then the items d1, . . . , dℓ−2 all belong to
S. Let us take the vertices corresponding to the items S \ {d1, . . . , dℓ−2}. The number of
the edges connecting these vertices is equal to the total utility of S divided by αℓ. Thus,
from x(n)-approximation solution for I ′ we can extract an x(n)-approximation solution for
I. This completes the proof.

It seems that theDensest-k-Subgraph is not easy to approximate. Khot [34] ruled out
the existence of a PTAS for the problem under standard complexity-theoretic assumptions,
Bhaskara et al. [9] showed polynomial integrality gap, Raghavendra and Steurer [50] and
Alon et al. [2] proved that there is no polynomial-time constant approximation under non-
standard assumptions. Finally, the best approximation algorithm for the problem that we
know of, due to Bhaskara et al. [8], has approximation ratio O(n1/4+ǫ), where n is the
number of vertices in the input graph.

As a further evidence that OWAs that are not nonincreasing are particularly hard to
deal with from the point of view of approximation algorithms, we show that for an extreme
example of an OWA family, i.e., for the K-med OWAs, there is a very strong hardness-of-
approximation result. We start from the following graph problem.

Definition 16. In the Maximum Edge Biclique Problem (MEBP) we are given a
balanced bipartite graph (U ∪ V,E) where U ∪ V is the set of vertices (‖U‖ = ‖V ‖) and E
is the set of edges (there are edges only between the vertices from U and V ). We ask for
a biclique (i.e., a subgraph S, such that every vertex from U ∩ S is connected with every
vertex from V ∩ S) with as many edges as possible.
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According to Feige and Kogan [26], there exists a constant c such that there is no
polynomial (2c

√
lgn/n)-approximation algorithm for MEBP unless for some ǫ we have

3-SAT ∈ DTIME(2n
3/4+ǫ

). Currently it seems unlikely that such an algorithm for 3-SAT
exists. For our argument it is more convenient to define and use the following variant of
MEBP.

Definition 17. In MEBP-V we are given the same input as in MEBP and a positive
integer K. We ask for a biclique S such that ‖S ∩ V ‖ = K and S contains as many edges
as possible.

Lemma 18. There exists a constant c such that there is no polynomial-time
(2c

√
lgn/n)-approximation algorithm for MEBP-V unless for some ǫ we have 3-SAT ∈

DTIME(2n
3/4+ǫ

).

Proof. For the sake of contradiction, let us assume that there exists a constant c and
a polynomial-time (2c

√
lgn/n)-approximation algorithm A for MEBP-V. By running A

for every value of K ranging from 1 to ‖V ‖, we obtain a polynomial-time (2c
√
lgn/n)-

approximation algorithm for MEBP. This stays in contradiction with the result of
Feige and Kogan [26].

Theorem 19. There exists a constant c such that there is no polynomial-time (2c
√
lgn/n)-

approximation algorithm for K-med-OWA-Winner unless for some ǫ we have 3-SAT ∈
DTIME(2n

3/4+ǫ
).

Proof. Let us assume that there is a constant c and a polynomial-time (2c
√
lgn/n)-

approximation algorithm A for K-med-OWA-Winner. We will show that we can use
A to solve instances of MEBP-V with the same approximation ratio. By Lemma 18, this
will prove our theorem.

Let I be an instance of MEBP-V with bipartite graph G = (U ∪ V,E) and positive
integer K. From I we construct an instance I ′ of K-med-OWA-Winner in the following
way. We let the set of agents N be U , the set of items A be V , and we seek a winner
set of size K. The utility of agent u from item v is equal to 1 if and only if u and v are
connected in G; otherwise it is 0. Now we note that there is a one-to-one correspondence
between the solutions for I and for I ′. Let S be a solution for I with x edges: S ∩ V is also
a solution for I ′ with the utility at least equal to x/K. Let S be a solution for I ′ with the
utility x. All the agents from U with non-zero utilities, together with S, form a biclique
with Kx edges. Thus, from the (2c

√
lgn/n)-approximation solution for I ′ we can extract a

(2c
√
lgn/n)-approximation solution for I. This completes the proof.

As a corollary of the above proof, we also have that Hurwicz[λ]-OWA-Winner is NP-
hard (through an almost identical proof, but with a certain dummy candidate added, that
gets utility 1 from everyone, and with the size of the winner set extended by 1).

Corollary 20. Hurwicz[λ]-OWA-Winner is NP-hard
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The reader may wonder why for the case of Hurwicz[λ] OWA we only obtain NP-
hardness and not inapproximability. The reason is that due to the added dummy candidate
it is easy to find a winner set with nonnegligible utility. In fact, this is a general property
of the Hurwicz[λ] OWA and we show an approximation algorithm for it with a constant
approximation ratio. This shows that even for OWAs that are not nonicreasing it is some-
times possible to find positive approximation results (though later we will argue that this
approximation is not fully satisfying).

Proposition 21. Let A be a β-approximation algorithm for 1-best-OWA-Winner. A is
a λ · β-approximation algorithm for Hurwicz[λ]-OWA-Winner.

Proof. Let us consider some instance IH of Hurwicz[λ]-OWA-Winner, where the goal is to
pick a set of K items. We construct an instance I1 that is identical to IH , but for the 1-best-
OWA, and we run algorithm A on I1. The algorithm outputs some set W = {w1, . . . , wK}
(a β-approximate solution for I1). We claim that W is a λβ-approximate solution for IH .

Let WH = {wH
1 , . . . , wH

K} be an optimal solution for IH and let W 1 = {w1
1, . . . , w

1
K} be

an optimal solution for I1. We first note that the following holds (recall the ~x↓ notation for
sorted sequences):

u
Hurwicz[λ]
ut (WH) =

n
∑

i=1

(

λu↓
i,wH

1
+ (1− λ)u↓

i,wH
K

)

≤
n
∑

i=1

u↓
i,wH

1
≤

n
∑

i=1

u↓
i,w1

1
= u1-bestut (W 1).

In effect, we have that u1-bestut (W 1) ≥ u
Hurwicz[λ]
ut (WH). Now, it is easy to verify that for W

(or, in fact, for any set of K items) it holds that:

u
Hurwicz[λ]
ut (W ) =

n
∑

i=1

(

λu↓i,w1
+ (1− λ)u↓i,wK

)

≥ λ
n
∑

i=1

u↓i,w1
= λu1-bestut (W ).

Finally, combining these two inequalities and the fact that W is a β-approximate solution
for 1-bestOWA-Winner, we get:

u
Hurwicz[λ]
ut (W ) ≥ λu1-bestut (W ) ≥ λβu1-bestut (W 1) ≥ λβu

Hurwicz[λ]
ut (WH).

This completes the proof.

By using Algorithm 1 in the general case, and the PTAS of Skowron et al. [53] for
1-best-OWA-Winner with Borda-based utilities, we get the following corollary.

Corollary 22. (1) There is an algorithm that for Hurwicz[λ]-OWA-Winner with no re-
strictions on the utility functions achieves approximation ratio λ(1− 1

e ). (2) For each posi-
tive ǫ, there is an algorithm that for Hurwicz[λ]-OWA-Winner for the case of Borda-based
utilities achieves approximation ration λ(1− ǫ).

23



Nonetheless, Corollary 22 has a bitter-sweet taste. In essence, it says that instead of
using Hurwicz[λ] OWAs, we might as well use 1-best OWAs. If one wanted to use Hurwicz[λ]
OWAs for some important reason, then our approximation result would not be sufficient.
Yet, from a different perspective, one could interpret Corollary 22 as suggesting that such
an important reason is unlikely to exist (for large values of λ).

Nonetheless, the idea of using a simpler OWA instead of a more complex one can lead to
quite intriguing results. Based on this approach, below we show a PTAS for OWA-Winner

for a family OWAs that are similar to K-best OWAs (this restriction is necessary to defeat
the relation with the MaxCover problem which precludes arbitrarily good approximation
algorithms).

Theorem 23. Consider a nonincreasing OWA α, α = 〈α1, . . . , αK〉. Let I be an instance
for α-OWA-Winner (where we seek a winner set of size K). An optimal solution for the
same instance but with K-best-OWA is a (

∑K
i=1 αi)/(Kα1)-approximate solution for I.

Proof. Let I be the instance of α-OWA-Winner described in the statement of the theorem,
let W ∗ be one of its optimal solution, and let W be an optimal solution for the same
instance, but with the K-best-OWA. Note that W is also an optimal solution for the K-
number constant OWA β = 〈α1, . . . , α1〉. We claim that the following inequalities hold (uαut
is defined with respect to the instance I and uβut is defined with respect to instance I with
β as the OWA):

uαut(W ) ≥

∑K
i=1 αi

Kα1
uβut(W ) ≥

∑K
i=1 αi

Kα1
uβut(W

∗) ≥

∑K
i=1 αi

Kα1
uαut(W

∗),

The second inequality holds because W is an optimal solution for I with OWA β. To
see why the first and the third inequalities hold, let us focus on some agent i. The third
inequality is simpler and so we prove it first.

Let u∗1, . . . , u
∗
k be the utilities, in the nonincreasing order, that agent i has for the items

in W ∗. Thus the utility that i gets from W ∗ under α is
∑K

i=1 αiu
∗
i . Since for each i,

1 ≤ i ≤ K, we have αi ≤ α1, i’s utility under α is less or equal to i’s utility under β,
∑K

i=1 α1u
∗
i .

We now prove the first inequality. Let u1, . . . , uK be the utilities, in the nonincreasing
order, that agent i has for the items in W . Our goal is to show that:

α1u1 + · · ·+ αKuK ≥

∑K
i=1 αi

Kα1
α1u1 + · · · +

∑K
i=1 αi

Kα1
α1uK =

∑K
i=1 αi

K
u1 + · · ·+

∑K
i=1 αi

K
uK .

This inequality is equivalent to

Kα1u1 + · · ·+KαKuK ≥
K
∑

i=1

αiu1 + · · · +
K
∑

i=1

αiuK ,

which itself is equivalent to

u1(Kα1 −
∑K

i=1 αi) + · · ·+ uK(KαK −
∑K

i=1 αi) ≥ 0.
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We can rewrite the left-hand side of this inequality as:

(u1 − u2)(Kα1 −
∑K

i=1 αi) + (u2 − u3)(Kα1 +Kα2 − 2
∑K

i=1 αi) + · · ·+

+ (uK−1 − uK)(
∑K−1

j=1 Kαj − (K − 1)
∑K

i=1 αi) + uK(
∑K

j=1Kαj −K
∑K

i=1 αi).

We claim that each summand in this expression is nonnegative. Since u1, . . . , uK is a
nonincreasing sequence of nonnegative utilities, we have that for each j, 1 ≤ j ≤ K − 1,
uj − uj+1 is nonnegative, and so is uK . Now fix some t, 1 ≤ t ≤ K. We have:

∑t
j=1Kαj − t

∑K
i=1 αi =

∑t
j=1(K − t)αj − t

∑K
i=t+1 αi

≥ t(K − t)αt − t

K
∑

i=t+1

αi ≥ t(K − t)αt − t(K − t)αt = 0

This completes the proof.

As a consequence of this theorem, we immediately get the following result.

Theorem 24. Let f : N → N be a function computable in polynomial-time with respect to
the value of its argument, such that f(K) is o(K). There is a PTAS for (K − f(K))-best-
OWA-Winner.

Proof. Let us fix some ǫ, 0 < ǫ < 1. We give a polynomial time ǫ-approximation algorithm
for (K − f(K))-best-OWA-Winner. Since f(K) is o(K), there is some value Kǫ such that

for each K ≥ Kǫ it holds that
K−f(K)

K ≥ ǫ. If for our input instance we are to find a winner
set of size K, K ≥ Kǫ, then we simply run the polynomial-time algorithm for K-best-OWA.
Otherwise, we seek a winner set of size at most Kǫ and we try all subsets of items of size K.
Since, in this case, K is bounded by a constant, our algorithm runs in polynomial time.

While Theorem 24 suffers from the same criticism as Corollary 22, it is still a very
interesting result, especially when contrasted with Theorem 15. Theorem 24 says that
there is a PTAS for α-OWA-Winner for OWA family 〈1, . . . , 1, 0〉, whereas Theorem 15
suggests that it is unlikely that there is a constant-factor approximation algorithm for α-
OWA-Winner with OWA family 〈0, 1, . . . , 1〉. Even though these two OWA families seem
very similar, the fact that one is nonincreasing and the other one is not makes a huge
difference in terms of approximability of OWA-Winner.

7 Approximation: Non-Finicky Utilities

One of the greatest sources of hardness of the OWA-Winner problem, that we rely on in
our proofs, is that the agents may have very high utilities for some very small subsets of
items, and very low utilities for the remaining ones (consider, e.g., approval-based utilities
where each agent approves of relatively few items). In such cases, intuitively, either we find
a perfect solution or some of the agents have to be very badly off. On the other hand, for

25



Algorithm 2: An algorithm for nonincreasing OWAs where at most first ℓ entries are
nonzero, for the case of (β, γ)-non-finicky utilities.

Notation:
Φ← a map giving the number of free slots per agent; at first, for each agent i we have
Φ[i] = ℓ.
rank(j, a) = ‖{b ∈ A : uj,b > uj,a}‖ gives the rank of item a according to agent i.

x← γm;
S ← ∅;
for i← 1 to K do

a← argmaxa∈A\S‖{j | Φ(j) > 0 ∧ rank(j, a) < x}‖;

foreach j ∈ {j | Φ(j) > 0} do
if rank(j, a) < x then

Φ[j]← Φ[j]− 1;

S ← S ∪ {a};
return S

Borda-based utilities when some agent does not get his or her top items, it is still possible to
provide the agent with not-much-worse ones; the utilities decrease linearly. Indeed, Skowron
et al. [53] used this observation to give a PTAS for the Chamberlin–Courant rule. Here
we give a strong generalization of their result that applies to non-finicky utilities and OWA
families that include, for each fixedk, k-median, k-best, and geometric progression OWAs.

We focus on the case of OWA vectors where only some constant number ℓ of top positions
are nonzero, and on (β, γ)-non-finicky utilities (β, γ ∈ [0, 1]). In this case, Algorithm 2 (a
generalization of an algorithm of Skowron et al. [53]) achieves a good approximation ratio.
The idea behind the algorithm is as follows: To pick K items, it proceeds in K iterations
and in each iteration it introduces one new item into the winner set. For each agent it
considers the top x = γm items with the highest utilities and in a given iteration it picks an
item a that maximizes the number of agents that (1) rank a among items with the highest x
utilities, and (2) still have “free slots” (an agent has a free slot if among the so-far-selected
winners, fewer than ℓ have utilities among the x highest ones for this agent). Before we
prove that our algorithm works well, let us consider the following example.

Example 6. Let the items and agents be the same as in Example 3 (just as in Example 4
for Algorithm 1). Let K = 3 and let the OWA vector be α = (2, 1, 0). We have ℓ = 2
nonzero entries in α. We treat the agents utilities as (0.8, 0.5)-non-finicky ones. Before we
execute the algorithm, it is convenient to compute the rank function:4

a1 a2 a3 a4 a5 a6
rank(1, ·) 0 0 2 3 4 5
rank(2, ·) 3 4 5 0 2 0
rank(3, ·) 2 5 0 4 0 3

4Note that here the best rank is 0 and not 1 (using rank 1 for the top item is the more common approach).
This simplifies our technical discussion.
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Now we can start to execute the algorithm. We have x = γm = 3 and initially each agent
has two free slots. In the first iteration, the algorithm can pick either a1, a3, or a5, because
for each of them there are two agents for whom their rank is below 3, while for each other
item there is only one agent that ranks it below 3. Let us assume that the algorithm picks
a1 (see the table below for information regarding the slots of the agents after each iteration).
In the second iteration all the agents still have free slots so the algorithm can pick either a3
or a5. Let us assume it picks a3. In effect, Agents 1 and 3 no longer have free slots and in
the final iteration the algorithm picks one of the items to which Agent 2 assigns rank lower
than 3, i.e., one of a4, a5, and a6. Let us assume it picks a4. Below we show the contents
of agents’ slots after executing each iteration.

Agent 1 Agent 2 Agent 3

Slot 1 Slot 2 Slot 1 Slot 2 Slot 1 Slot 2

After iteration 1 a1 − − − a1 −
After iteration 2 a1 a3 − − a1 a3
After iteration 3 a1 a3 a4 − a1 a3

The algorithm outputs set S = {a1, a3, a4}. It is interesting that this is a different set than
the one returned by Algorithm 1 (see Example 4), which returned set W = {a1, a4, a5}.
This latter set is slightly better than the one output by Algorithm 2; it achieves aggregated
utility 84 as opposed to 83.

Theorem 25. Fix a positive integer ℓ and let α be a nonincreasing OWA where at most
first ℓ entries are nonzero. If the agents have (β, γ)-non-finicky utilities, with γm ≥ ℓ, then
Algorithm 2 is a polynomial-time β(1 − exp(−γK

ℓ ))-approximation algorithm for α-OWA-

Winner.

Proof. Consider an instance I of α-OWA-Winner, with n agents, m items, and where we
seek a winner set of size K. Let x = γm. We use an OWA where an agent’s total utility
from a winner set W depends on this agent’s utilities for his or her top ℓ items from W .
We introduce the notion of each agent’s free slots as follows. Initially, each agent has ℓ free
slots. Whenever an agent j has a free slot and the algorithm selects an item a such that for
agent j item a is among x items with highest utilities, we say that a starts occupying one
free slot of j. After such an item is selected, j has one free slot less.

Let ni denote the total number of free slots of all the agents after the i-th iteration of
the algorithm. Naturally, we have n0 = ℓn. We show by induction that ni ≤ ℓn

(

1− x
ℓm

)i
.

Indeed, the inequality is true for i = 0. Let us assume that it is true for some i: ni ≤
ℓn
(

1− x
ℓm

)i
. Let Fi denote the set of agents that have free slots after iteration i. There

are at least ni
ℓ such agents. For j ∈ Fi, let S(j) be the number of j’s top-x items that were

not included in the solution yet. If j ∈ Fi has s free slots, then S(j) = (x− ℓ+ s). Thus we
have that

∑

j∈Fi
S(j) ≥ ni + (x− ℓ)ni

ℓ = nix
ℓ . By the pigeonhole principle, there exists an

item that is among top-x items for at least nix
ℓm agents from Fi. Thus, after the (i + 1)-th

iteration of the algorithm, the total number of free slots is at most:

ni+1 ≤ ni −
nix

ℓm
= ni

(

1−
x

ℓm

)

≤ ℓn
(

1−
x

ℓm

)(i+1)
.
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The number of free slots after the last iteration is at most:

nK ≤ ℓn
(

1− x
ℓm

)K
= ℓn

(

1− γ
ℓ

)K
≤ ℓn exp

(

−γK
ℓ

)

.

Thus the number of occupied slots is at least ℓn− ℓn exp(−γK
ℓ ). Every item that occupies

an agent’s slot has utility for this agent at least βumax, where umax is the maximal utility
that any of the agents assigns to an item.

It remains to assess the OWA coefficients for the utilities of the items in the solution. If
for some agent i the utility of an item a, ui,a, is taken with coefficient αp (p > 1), then in the
solution there must be an item a′ such that ui,a′ ≥ ui,a and ui,a′ is taken with coefficient αp−1.

So there must exist at least 1
ℓ (ℓn−ℓn exp(−γK

ℓ )) occurrences of the items whose utilities are
taken with coefficient α1. By repeating this reasoning for the remaining occurrences of the
items from the solution, since α is nonincreasing, we get that the total utility of the agents
is at least βumax(ℓn− ℓn exp(−γK

ℓ ))1ℓ
∑ℓ

i=1 αi = βumaxn(1− exp(−γK
ℓ ))

∑ℓ
i=1 αi. Since no

solution has utility higher than numax
∑ℓ

i=1 αi, we get our approximation ratio.

As a consequence, we get very good approximation guarantees for the case of Borda-
based utilities. Recall that W(·) is Lambert’s W function, that is, a function that for x ∈ R+

satisfies the equation x = W(x)eW(x) (and, thus, W(x) is O(log(x))).

Corollary 26. Fix a positive integer ℓ and let α be a nonincreasing OWA where at most first
ℓ entries are nonzero. Assume that agents have Borda-based utilities. With x = mW

(

K
ℓ

)

ℓ
K ,

Algorithm 2 is a
(

1− 2W(K/ℓ)
K/ℓ

)

-approximation algorithm for α-OWA-Winner.

Proof. Let us note that the Borda utilities are
(

1− W(K/ℓ)
K/ℓ , W(K/ℓ)

K/ℓ

)

–non-finicky. By ap-

plying Theorem 25, we get the following approximation ratio (the last equality follows by
the definition of W(x)):

approx. ratio =

(

1−
W(K/ℓ)

K/ℓ

)



1− exp



−

(

W(K/ℓ)
K/ℓ

)

K

ℓ









=

(

1−
W(K/ℓ)

K/ℓ

)

(1− exp (−W(K/ℓ)))

=

(

1−
W(K/ℓ)

K/ℓ

)(

1−
W(K/ℓ)

K/ℓ

)

≥

(

1−
2W(K/ℓ)

K/ℓ

)

.

This completes the proof.

The next corollary follows directly from Theorem 25 by noting that in the case of m
items and k-approval utilities (i.e., for the case where each agent approves of exactly k
items) we have (1, k

m)-non-finicky utilities.

Corollary 27. Fix a positive integer ℓ and let α be a nonincreasing OWA where at most
first ℓ entries are nonzero. Assume the k-approval utilities of the agents. Algorithm 2 is a
(

1− exp
(

−kK
ℓm

))

-approximation algorithm for α-OWA-Winner.
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Figure 1: The approximation ratios of Algorithm 2 for a nonincreasing OWA with at most
ℓ top coefficients greater than zero, for (β, γ)-non-finicky utilities. The lines in Figures (a)
and (b) depict the relations between the parameters β and γ that, for a given fixed ratio K

ℓ ,
lead to the same approximation bound. The lines in Figures (c) and (d) depict the relations
between the parameter γ and the ratio K/ℓ that, for a given fixed value of the parameter
β lead to the same approximation bound.

Approximation ratio of Algorithm 2 is particularly good when K is large compared to ℓ.
This, indeed, is the most interesting case because for small K we can find optimal solutions
by brute-force search (combining these two approaches leads to a PTAS; see Theorem 30
below). Nevertheless, Algorithm 2 often gives a satisfactory approximation guarantees by
itself. Figure 1 depicts the classes of non-finicky utilities for which, for a fixed ratio K/ℓ,
Algorithm 2 guarantees appropriate approximation ratios: Parts (a) and (b) of the figure
show the relation that β and γ have to satisfy to obtain a particular approximation ratio,
for a given value K

ℓ . Part (c) shows the relation between the value of γ and the ratio K
ℓ that

has to be satisfied for Algorithm 2 to achieve a particular approximation ratio under (1, γ)-
non-finicky utilities, and part (d) shows the same relation for (0.8, γ)-non-finicky utilities.

Theorem 25 can be generalized to the case of OWAs that are not nonincreasing (achiev-
ing a slightly weaker approximation ratio).
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Lemma 28. Consider a set N of n agents and a set A of m items, where the agents
rank the items from the most preferred ones to the least preferred ones. Let K, p, and t
be some positive integers such that K ≤ m, p ≤ K, and t ≤ p. Let x = γ

pm. There is
a polynomial-time algorithm that finds a collection C of up to K/p items such that there

are at least n
(

1− exp
(

−γK
p2

))

agents that each rank at least one member of C between

positions (t− 1)x+ 1 and tx.

Proof. To see that this lemma holds, it suffices to analyze the proof of Theorem 25 for 1-
best-OWA, with (1, γp )-non-finicky utilities, seeking winner set of size K

p . We note that the
proof works equally well irrespectively of whether we consider the positions 1 through x, or
x+ 1 through 2x, or any other segment of x positions in the agents’ preference orders.

Theorem 29. Fix a positive integer ℓ and let α be a family of OWAs that have

nonzero entries on top ℓ positions only. There is a polynomial-time β
(

1− ℓ exp
(

−γK
ℓ2

))

–

approximation algorithm for α-OWA-Winner for the case of (β, γ)–non-finicky utilities.

Proof. Consider an input instance I of α-OWA-Winner with the set N = [n] of
agents, with the set A of m items, and where we seek winner set of size K. Let
α = 〈α1, . . . , αℓ, 0, . . . , 0〉 be the OWA used in this instance. We set x = γ

ℓm.

Our algorithm proceeds in ℓ iterations. We set N (0) = N and n(0) = n. In the i-th
iteration, 1 ≤ i ≤ ℓ, the algorithm operates as follows: Using the algorithm from Lemma 28,

for p = ℓ, we find a set A(i) of up to K/ℓ items such that at least n(i−1)
(

1− exp
(

−γK
ℓ2

))

of the agents from the set N (i−1) each rank at least one of these items among positions
(i−1)x+1, . . . , ix of their preference orders. (Strictly speaking, in this setting agents do not
have preference orders but utility values. For each agent, we form his or her preference order
by sorting the items in the decreasing order of the utlities, breaking the ties arbitrarily.) We
let N (i) be the set of these agents and we set n(i) = ‖N (i)‖. Finally, we set W =

⋃ℓ
i=1 A

(i)

and return W as the set of winners (it is easy to see that W contains at most K items; if K
contains fewer than K items then we supplement it with K−‖W‖ arbitrarily chosen ones).

By the construction of our algorithm, each of the agents from the set N (ℓ) ranks at least
ℓ items from the set W on positions no worse than ℓx = γm. Thus each such an agent
assigns to each such an item utility at least equal to βumax. Consequently, the total utility
that the agents from the set N derive from the solution W is at least:

n(ℓ)

(

ℓ
∑

i=1

αi

)

βumax.

This is so, because for each i, 1 ≤ i ≤ ℓ, each of the agents in the set N (ℓ) derives utility
αiβumax from the item that she ranks as i’th best among the items from W .

By construction of our algorithm, we have:

n(ℓ) ≥ n

(

1− exp

(

−
γK

ℓ2

))ℓ

≥ n

(

1− ℓ exp

(

−
γK

ℓ2

))

.
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Thus, the total utility obtained by the agents is at least:

uαut(W ) ≥ n

(

1− ℓ exp

(

−
γK

ℓ2

))

(

ℓ
∑

i=1

αi

)

βumax.

Now, since the maximum possible total utility of all the agents is upper-bounded by

n(
∑ℓ

i=1 αi)umax, we have that our algorithm has approximation ratio β
(

1− ℓ exp
(

−γK
ℓ2

))

.

It is clear that it runs in polynomial time, and so the proof is complete.

Based on this result, we can obtain a PTAS for the analogous setting.

Theorem 30. Fix a value ℓ and let α be a family of OWAs that have nonzero values on
top ℓ positions only. There is a PTAS for α-OWA-Winner for the case of (i) Borda-based
utilities, and (ii) (1, γ)–non-finicky utilities (assuming γ is a constant).

Proof. For every ǫ we show a polynomial-time algorithm with approximation ratio (1− ǫ).
Consider some ǫ, 0 ≤ ǫ ≤ 1. There exists a value Kǫ such that for each K > Kǫ it holds

that ℓ exp
(

−γK
ℓ2

)

< ǫ. For each instance I of α-OWA-Winner where we seek winner set

of size at least Kǫ, we run the algorithm from Theorem 29. For the remaining cases, where
the winner-set size is bounded by a constant, we use a brute-force algorithm.

We can also obtain a PTAS for OWA-Winner for geometric progression OWAs for
these classes of utilities. In essence, for geometric progression it suffices to focus on a small
number of top entries in the OWA vector. This is quite a useful result: Some of our scenarios
from Section 3 yield OWAs of this form.

Corollary 31. Fix a value p > 1. There is a PTAS for gprog[p]-OWA-Winner for the case
of (i) Borda-based utilities, and (ii) (1, γ)–non-finicky utilities (assuming γ is a constant).

Proof. Our goal is to show an algorithm that for a given value ǫ, ǫ > 0, in polynomial time
outputs a (1− ǫ)-approximate solution for gprog[p]-OWA-Winner. Let us fix the value of
such ǫ. The idea of our proof is to truncate the vector describing gprog[p] OWA to consider
only some ℓ nonzero items on the top, where ℓ depends on ǫ only, and to run the algorithm
from Theorem 30.

For a given number t, let St be the sum of the first t coefficients of gprog[p]. We have:

St = gprog[p]t + gprog[p]t−1 + · · ·+ gprog[p]1

= pK−t + pK−(t−1) + · · · + pK−1 = pK−tp
t − 1

p− 1
.

We fix ℓ = ⌈logp(
2
ǫ )⌉. Now, consider the ratio r = Sℓ/SK :

r =
Sℓ

SK
= pK−ℓ p

ℓ − 1

pK − 1
> pK−ℓp

ℓ − 1

pK
= 1−

1

pℓ
≥ 1−

1

plogp(
2
ǫ
)
= 1−

ǫ

2
.
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Intuitively, the above inequality says that 1− ǫ
2 fraction of the total weight of gprog[p] OWA

is concentrated in its first ℓ coefficients.
Let gprog[p]|ℓ denote the OWA obtained from gprog[p] by replacing all coefficients with

indices greater than ℓ with 0. Let A be a (1 − ǫ
2)-approximation algorithm for gprog[p]|ℓ-

OWA-Winner. From Theorem 30 we know that such an algorithm exists. It is easy to
see that A is a (1 − ǫ)-approximation algorithm for gprog[p]-OWA-Winner. Indeed, the
utility under gprog[p]|ℓ for every K-element set W is close to the utility of W under gprog[p]

(recall the ~x↓ notation for sorted sequences; the inequality in the second line holds because

for each i we have
∑ℓ

g=1 gprog[p]gu
↓
i,wh
≤
∑ℓ

j=1 gprog[p]ju
↓
i,wj

):

u
gprog[p]
ut (W ) =

n
∑

i=1

K
∑

j=1

gprog[p]ju
↓
i,wj

≤

n
∑

i=1

(

ℓ
∑

j=1

gprog[p]ju
↓
i,wj

+
K
∑

h=ℓ+1

gprog[p]h

∑ℓ
j=1 gprog[p]ju

↓
i,wj

∑ℓ
g=1 gprog[p]g

)

=
n
∑

i=1

ℓ
∑

j=1

gprog[p]ju
↓
i,wj

(

1 +

∑K
h=ℓ+1 gprog[p]h
∑ℓ

g=1 gprog[p]g

)

≤

n
∑

i=1

ℓ
∑

j=1

gprog[p]ju
↓
i,wj

(

1 +
ǫ

2

)

=
(

1 +
ǫ

2

)

u
gprog[p]|ℓ
ut (W ).

From which we get that for every W :

u
gprog[p]|ℓ
ut (W ) ≥ (1−

ǫ

2
)u

gprog[p]
ut (W ).

This completes the proof because algorithm A returns a (1 − ǫ
2)-approximate solution for

gprog[p]|ℓ-OWA-Winner and (1− ǫ
2)(1 −

ǫ
2) ≥ 1− ǫ.

To summarize, in this section we have shown that in spite of the intrinsic hardness of
the OWA-Winner problem, there are very natural classes of utilities and OWA vectors for
which the problem can be solved quite accurately and very efficiently.

8 Related Work

In this section we give a more detailed overview of various research lines that are related to
our work.

Weighing intrinsic values by coefficients that are a function of their rank in a list is
of course not new. Ordered Weighted Average operators have been used extensively in
multicriteria decision making and, to a lesser extent, in social choice [32]; the vector of
values then corresponds to criteria (in MCDM) or to agents (in social choice). Also, rank-
dependent expected utility (RDEU) [49] is a well-known research stream in decision theory,
whose starting point is the construction of models that explain Allais’ paradox: given a set
of possible consequences of an act, the contribution of a possible consequence on the agent’s
RDEU is a function of its probability and of its rank in the list of consequences ordered
by decreasing probability. While these three research streams use ranks to modify the
contribution of a criterion, an agent, or a possible consequence, in our setting they modify
the contribution of items, our final aim being to select an optimal set of items. Since we
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do not select criteria, agents or possible consequences, it is not obvious how our results can
apply to these three aforementioned research fields.

There are three recent pieces of research that use OWA operators in the context of
voting and that call for detailed discussion. We describe them in the chronological order.

Goldsmith et al. [29] define rank-dependent scoring rules. Under standard positional
scoring rules, the score of a candidate is the sum of the scores it obtains from all the voters,
where the score that a candidate obtains from a given voter depends only on his or her
rank in this voter’s preference order. Rank-dependent scoring rules generalize this idea as
follows. Instead of simply summing up the scores of a given candidate, they apply an OWA
operator to the list of the scores that he or she got from the voters. Thus a rank-dependent
scoring rule is defined by a scoring vector (a function mapping ranks to scores) and an OWA
operator. Here, OWAs replace the sum operator for aggregating the scores coming from
different agents, while in our setting they aggregate the scores of different object for a fixed
agent.

Amanatidis et al. [3] define a family of committee election rules (which can also be used
for multiple referenda) based on the following principle. Each voter specifies his or her
preferred committee and each voter’s disutility for a committee is given by the Hamming
distance between the committee and the voter’s preferred one. Then the disutilities of the
voters are aggregated using an OWA operator. The committee with the lowest aggregated
disutility wins. (In the particular case of the sum operator, the obtained rule is the Bloc
committee election rule, while in the case of the minimum, the obtained rule is the Minimax
Approval Voting rule; see the work of Brams et al. [12] for the definition and other works
for computational discussions [15,37,43].) They obtain a number of hardness and approx-
imability results, which cannot be compared to ours because in their work, again, OWAs
are used for aggregating scores coming from different agents.

Finally, the work of Elkind and Ismäıli [23] is probably the closest one to ours. They
study multiwinner elections and they use OWAs to define generalizations of the Chamberlin–
Courant rule but, once again, they use OWAs to aggregate the utilities for a committee
coming from different agents. The standard utilitarian Chamberlin–Courant rule sums
up the scores that a committee gets from different voters, whereas the egalitarian variant
considers the minimum score a committee receives. They generalize this idea by using
an OWA operator, in effect obtaining a spectrum of rules between the utilitarian and the
egalitarian variants. They obtain a number of complexity results, both in the general case
and in specific cases corresponding to domain restrictions. For the same reason as in the
preceding paragraphs, their results are incomparable to ours.

In the three pieces of research discussed above, OWA operators aggregate scores or util-
ities given to candidates or committees by different agents, which is very different from
our use of OWAs. Nonetheless, there exists a high-level common point between the four
approaches. In all cases the rules corresponding to the sum of scores, and to either the
minimum or the maximum of scores, were already known and seen as interesting, but some-
what extreme. In all cases, OWAs give rise to an interpolation between these extremities,
leading to rules and approaches that are likely to be interesting in practice.
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Let us now move on to other related works and other related streams of research. Several
known settings are recovered as particular cases of our general model. In particular, this
applies to the case of the Chamberlin–Courant proportional representation rule [18], to the
case of Proportional Approval Voting [35], and to (variants of) the budgeted social choice
model [39,40,47]. Computational complexity of the Chamberlin–Courant rule was first stud-
ied by Procaccia et al. [48], its parameterized complexity was analyzed by Betzler et al. [7],
and the complexity under restricted domains was studied by Betzler et al. [7], Skowron
et al. [54], Yu et al. [56], and Clearwater et al. [20]. The first approximation algorithm
was proposed by Lu and Boutilier [39]. The results on approximability were then extended
in several directions by Skowron et al. [52,53]. Proportional Approval Voting was studied
computationally and axiomatically by Aziz et al. [4,5] and by Elkind and Lackner [24].

Group recommender systems (see, e.g., the work of O’Connor et al. [45] for one of the
first approaches, and the surveys of Jameson and Smyth [31] and of Masthoff [41]) aim at
recommending sets or sequences of items (such as a set of television programs or a sequence
of songs) to a group of users, based on preferences of all group members. Two mainstream
approaches have been developed (see the survey of Jameson and Smyth [31]): those based
on the construction of an ‘average user’ whose preferences are built by aggregating the
preferences of the individuals in the group, and those based on producing individual recom-
mendations and aggregating them. Unlike these, our approach (which recommends sets, but
not yet sequences) proceeds in a single step, and enables a fine-tuning of the contribution
of an item to each user’s utility depending on the number of better items (for that user) in
the list.

The facility location problem (fl) is closely related to 1-best-OWA-Winner. In fl,
however, the goal is to minimize the dissatisfaction of the agents instead of maximizing their
utility (satisfaction). Although, as far as exact solutions are concerned both formulations
are equivalent, there is a significant difference in the quality of approximation (the difference
between approximation guarantees for the maximization and minimization formulations of
1-best-OWA-Winner for Borda utilities is described by Skowron et al. [53]). Some works
focus on general dissatisfaction functions [27], but most of the results were established for
dissatisfactions corresponding to the distances, and thus satisfying the triangle inequal-
ity [30,51]. Also, in fl the goal is to minimize the dissatisfaction of the worst-off agent
(the egalitarian view). The utilitarian version of the problem is called k-median [30]. The
parameterized complexity of the problem was analyzed by Fellows and Fernau [27]. The
approximation algorithms include those of Chukad and Williamson [19], those of Jain and
Vazirani [30], and those of Shmoys et al. [51]. Interestingly, a local-search algorithm (which,
to the best of our knowledge, is the best known approximation algorithm for the capacitated
version of fl [19]) is also a 1

2 -approximation algorithm for maximizing nondecreasing sub-
modular functions [44], and thus for OWA-Winner with non-decreasing utility functions.
We conclude that it would be interesting to compare the algorithms for fl and k-median

with different algorithms for OWA-Winner on real preference data (e.g., on the data from
PrefLib, collected by Mattei and Walsh [42]).
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9 Summary

Our contribution is threefold. First, we have proposed a new model for the selection of a
collective sets of items. This model appears to be very general, encompasses several known
frameworks, and can be applied to various domains such as committee elections, group
recommendation, and beyond. Second, we have investigated the computational feasibility
of the model, depending on the various assumptions that we can make about the agents’
utilities and the choice of the OWA vector. Table 1 in Section 4 gives a summary of our
results. We note that many of these results directly related to the OWA families that appear
in the settings from Section 3 that were our motivating force. Third, we have defined non-
finicky utilities that model settings where agents are relatively “easy to please.” We believe
that non-finicky utilities may find applications far beyond our framework.

Some of our results look negative, while some others (especially in the case of non-
finicky utilities) are on the positive side. However, the way the results should be interpreted
depends on the application domain. In political elections and other high-stake domains, it is
appealing to view an approximation algorithm as a new, full-fledged voting rule, which may
enjoy many desirable properties (on this point see the works of Caragiannis et al. [16,17],
Skowron et al. [53], and Elkind et al. [22]). In particular, we have shown that the election
system Sequential Proportional Approval Voting, SPAV, (which has been known long before
the computational complexity theory was developed) is actually a greedy approximation
algorithm for the Proportional Approval Voting (PAV) election rule, which is an interesting
result per se. (The reader may also wish to consult the paper of Aziz et al. [5] regarding the
complexity of approval-based multiwinner rules.) Yet, it is arguably not reasonable to use an
approximation algorithm (even with a good performance guarantee) if it is viewed as nothing
more than an approximation algorithm of another rule, and it is even less reasonable to use
a heuristic search algorithm (when there is no good approximation algorithm); this implies
that using this model for political elections is feasible when the number of candidates is
small enough, but can become problematic beyond that (unless we define the approximation
algorithm to be the new voting rule, as said above). On the other hand, in low-stake
application domains (which can include some committee elections, and of course group
recommender systems), it may become perfectly reasonable, and in that case even NP-
hardness and inapproximability results should not discourage us from using the model. For
these domains, our negative results only tell us that we may have to resort to heuristic
search algorithms. Developing such algorithm is one of the interesting directions for further
research.

Our work leads to many other open problems. In particular, one might want to
strengthen our approximation algorithms, provide algorithms for more general cases, pro-
vide more inapproximability results. Among these problems, a particularly interesting one
regards the approximability of OWA-Winner for the arithmetic progression family of
OWAs. For this case, our set of results is very limited. In particular, can one provide a
PTAS for arithmetic-progression OWAs under non-finicky (in particular Borda-based) util-
ities? Can one do so for K

2 -best OWAs/K-median OWAs? Can one do so for the harmonic
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OWA, used in Proportional Approval Voting?
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A Proofs of Theorem 7

Theorem 7. (K − 1)-best-OWA-Winner is NP-hard even for Borda-based utilities.

Proof. As before, it is clear that the problem is in an NP and we only show NP-hardness.
We give a reduction from VertexCover (see the previous proof for an exact definition).
Let I be an instance of the VertexCover problem that consists of undirected graph
G = (V,E), where V = {v1, . . . , vm} and E = {e1, . . . , en}, and positive integer K (without
loss of generality, we assume that K ≥ 3).

From I, we construct an instance I ′ of (K − 1)-best-OWA-Winner with Borda-based
utilities as follows. We set

x = 4n(m+ 2)(K + 4)

and we let the set of items be A = V ∪ {d1, d2} ∪H, where H = {h1, . . . , hx} and {d1, d2}
are sets of dummy items that we need to build appropriate structure of the utility profile.
To build the set of agents N , we set

y = (n(x+m+ 2)2 + 1)

and we set N = NE ∪N1∪ . . .∪Ny, where NE = {e11, e
2
1, . . . , e

1
n, e

2
n} contains pairs of agents

that correspond to the edges of G, and N1, . . . , Ny contain pairs of agents needed for the
construction. Specifically, every set Ni, 1 ≤ i ≤ y, consists of two agents, f1

i and f2
i . We

refer to the agents in the set N1 ∪ · · · ∪Ny as the “dummy agents.”
We describe agents’ utilities through their preference orders. The agents in the set NE

have the following preference orders. Let ei ∈ E be an edge of the graph that connects
vertices vi,1 and vi,2. Agents e

1
i and e2i have preference orders:

e1i : d1 ≻ d2 ≻ V − {vi,1, vi,2} ≻ H ≻ {vi,1, vi,2},

e2i : d1 ≻ d2 ≻ {vi,1, vi,2} ≻ H ≻ V − {vi,1, vi,2}.

(When we put a set of items in a preference order, this means that this set can be replaced
by these items in an arbitrary, easily computable, way.) Each agent f1

i , 1 ≤ i ≤ y, has the
same, fixed, preference order:

f1
i : d1 ≻ v1 ≻ v2 · · · ≻ vm ≻ d2 ≻ h1 · · · ≻ hx.

Similarly, each agent f2
i , 1 ≤ i ≤ y, has preference order:

f2
i : d2 ≻ vm ≻ vm−1 · · · ≻ v1 ≻ d1 ≻ h1 · · · ≻ hx.

Finally, in the instance I ′ we seek a set of winners of size K + 2. This means that we
use (K + 1)-best-OWA to compute the aggregated utility than an agent derives from a set
of winners.
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This concludes the description of the reduction and it is clear that it is polynomial-time
computable. Before we prove that it is correct, let us make several observations. Let W be
some optimal solution for I ′. We claim that W does not contain any of the items from H.
For the sake of contradiction, assume that some h ∈ H belongs to W . Since d1 and d2 are
ranked ahead of h in every preference order (and in some preference orders d1 is first and
d2 is second, so their utility cannot be ignored by the (K +1)-best-OWA), we infer that d1
and d2 must belong to W as well (otherwise we would obtain higher utility by replacing h
with one of d1 and d2 in W ). Let v be some item from V that does not belong to W . If we
replace h with v in W then the total utility of the dummy agents increases by at least 2y.
Why is this so? Consider some pair Ni, 1 ≤ i ≤ y of dummy agents. item h is either the
lowest ranked member of W for both f1

i and f2
i or for neither. We consider these cases:

• h is the lowest-ranked winner for both the agents in Ni. Replacing h with v
means that either some other member h′ of H ∩W becomes the lowest ranked winner
for both f1

i and f2
i , or d2 becomes the lowest ranked winner for f1

i and d1 becomes
the lowest ranked winner for f2

i . In either case, both f1
i and f2

i obtain utility higher
by at least one from v than from the item that became the new lowest-ranked winner.
Thus, the total utility yielded by these two agents increases by at least two.

• h is not the lowest-ranked winner for either agent in Ni. In this case, since
both agents rank v higher thank h and replacing h with v does not change the lowest-
ranked winner for either of the agents, their total utility also increases at least by
two.

Since there are y pairs of agents, the total utility increases by at least 2y. Since the total
utility of the agents from NE is lower than 2n(x+m+2)2 < 2y, we see that after the change
the total utility of all the agents increases. Thus, we get a contradiction and we conclude
that W does not contain any of the agents from H.

Next, we claim that both d1 and d2 belong to W . We give a detailed argument for d1
only; the case of d2 is analogous. For the sake of contradiction, assume that d1 does not
belong to W . Let vk be an item from W such for each vj , j < k, vj does not belong to
W . By our assumptions, for each agent f2

i , 1 ≤ i ≤ y, vk is the lowest-ranked winner from
W . Thus, if we replace vk with d1 in W , then the utility of each agent f2

i will not change,
whereas the utility of each agent f1

i will increase. Further, the utility of each agent from
NE will increase. Thus, by replacing vk with d1, we can increase the total utility of the
agents. We reach a contradiction and we conclude that d1 must have been a member of W .
An analogous argument shows that d2 belongs to W as well.

As the result of the above reasoning, we infer that each set of winners consists of d1,
d2, and K items from V . Whenever both d1 and d2 are included in the set of winners and
neither item from H is, the total utility of the dummy agents is the same, irrespective which
items from V are selected. With these observations, we now show that the answer for the
input VertexCover instance is “yes” if and only if there is a size-(K + 2) winner set for
I ′ that for agents in the set NE yields total utility at least nx(K + 4).
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(⇒) Let us assume that there exists a cover C for I, that is, a set C of K vertices
such that each edge is incident to at least one vertex from C. We show that winner set
W = C ∪ {d1, d2} gives total utility of every two agents e1i and e2i , 1 ≤ i ≤ n, equal to at
least x(K + 4). Pick some arbitrary i, 1 ≤ i ≤ n, and let vi,1 and vi,2 be the two vertices
connected by edge ei. If both vi,1 and vi,2 belong to C, then e2i obtains utility at least
x for each item in {vi,1, vi,2, d1, d2} (at least utility 4x in total). On the other hand, e1i
obtains utility at least x for each item in W − {vi,1, vi,2}. This gives utility at least Kx.
Altogether, both agents get utility at least x(K + 4). If only one of the items vi,1 and vi,2,
say vi,1, belongs to C, then e2i obtains utility at least 3x (at least x for every item from
{vi,1, d1, d2}), and e1i obtains utility at least (K + 1)x (at least 2x from items d1 and d2,
and at least (K − 1)x from the K − 1 members of C that e1i ranks on the top positions).
Again, both agents get utility at least x(K + 4). Thus the total utility of the agents in NE

in the optimal solution must be at least nx(K + 4).
(⇐) Assume that W is some optimal solution for I ′ and that for the agents in NE it

yields utility at least nx(K + 4). By previous discussion, we know that W contains d1, d2,
and K members of V . We set C = W \ {d1, d2}. Let us fix some arbitrary i, 1 ≤ i ≤ n.
Let vi,1 and vi,2 be the two vertices connected by edge ei. We observe that under W , the
total utility of agents e1i and e2i is at most (x+m+ 2)(K + 4) +mK. To see this, let z be
the number of items from {vi,1, vi,2} that are included in C and note that (1) for the upper
bound we can disregard the OWA that we use, (2) there are x + m + 2 items and so we
can upper-bound the utility derived from each item by x+m+2, (3) altogether, the items
from W are ranked on at most K+2− z top-(m+2) positions by e1i (we upper-bound their
total utility by (K + 2− z)(x+m+ 2)) and at most 2 + z top-(m+ 2) positions by e2i (we
upper-bound their total utility by (2+ z)(x+m+2)), and (4) the items from W are ranked
on at most z bottom-m positions by e1i (we upper-bound their total utility by zm) and on
K − z bottom-m positions by e2i (we upper-bound their total utility by (K − z)m). When
we sum up these upper bounds, we get (x+m+2)(K+4)+mK. However, for our argument
we also need an upper bound on the total utility of e1i and e2i under the assumption that
neither vi,1 nor vi,2 belongs to C. In this case, the upper bound is (x+m+2)(K+3)+mK.
We obtain it in the same way as the previous bound, except that we note that due to our
(K + 1)-best-OWA, the utility derived by e1i can take into account at most K + 1 agents
from the top-(m+ 2) positions of the preference order of e1i .

Based on these upper bounds, we will now show that if the total utility derived from
W by the agents in NE is nx(K + 4), then C must correspond to a cover of all the edges
of G. To this end, consider a situation where there is at least one edge ei such that neither
of the vertices that it connects belongs to C. By using our upper bounds, in this case the
total utility of the agents from NE can be at most:

(K + 3)(x+m+ 2) + (n− 1)(K + 4)(x+m+ 2) + nmK

= (x+m+ 2)(K + 3 + (n− 1)(K + 4)) + nmK

= (x+m+ 2)(n(K + 4)− 1) + nmK

= xn(K + 4) + n(m+ 2)(K + 4)− (x+m+ 2) + nmK
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= xn(K + 4) + 0.25x− (x+m+ 2) + nmK

< xn(K + 4)

(The last two lines follow directly by the definition of x.) So, from the assumption that C
is not a solution for I, we obtain that the total utility of the agents in NE must be lower
than nx(K +4), which contradicts our assumption. Thus C is a correct solution for I and,
so, I is a yes-instance of VertexCover. This completes the proof.
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