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ABSTRACT

In many settings, a group of voters must come to a joint decision
on multiple issues. In practice, this is often done by voting on the
issues in sequence. We model sequential voting in multi-issue do-
mains as a complete-information extensive-form game, in which
the voters are perfectly rational and their preferences are common
knowledge. In each step, the voters simultaneously vote on one
issue, and the order of the issues is given exogenously before the
process. We call this model strategic sequential voting.

We focus on domains characterized by multiple binary issues, so
that strategic sequential voting leads to a unique outcome under a
natural solution concept. We show that under some conditions on
the preferences, this leads to the same outcome as truthful sequen-
tial voting, but in general it can result in very different outcomes. In
particular, sometimes the order of the issues has a strong influence
on the winner. We also analyze the communication complexity of
the corresponding social choice rule.

Most significantly, we illustrate several multiple-election para-

doxes in strategic sequential voting: there exists a profile for which
the winner under strategic sequential voting is ranked nearly at the
bottom in all voters’ true preferences, and the winner is Pareto-
dominated by almost every other alternative. We show that chang-
ing the order of the issues cannot completely prevent such para-
doxes. We also study the possibility of avoiding the paradoxes for
strategic sequential voting by imposing some constraints on the pro-
file, such as separability, lexicographicity or O-legality.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems;
J.4 [Computer Applications]: Social and Behavioral Sciences—
Economics

General Terms
Economics, Theory
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1. INTRODUCTION
In a traditional voting system, each voter is asked to report a lin-

ear order over the alternatives to represent her preferences. Then,
a voting rule is applied to the resulting profile of reported prefer-
ences to select a winning alternative. In practice, the set of alter-
natives often has a multi-issue structure. That is, there are p issues
I = {x1, . . . ,xp}, and each issue can take a value in a local do-

main. In other words, the set of alternatives is the Cartesian product
of the local domains. For example, in multiple referenda, the inhab-
itants of a local district are asked to vote on multiple inter-related
issues [5]. Another example is voting by committees, in which the
voters select a subset of objects [1], where each object can be seen
as a binary issue.

Voting in multi-issue domains has been extensively studied by
economists, and more recently has attracted the attention of com-
puter scientists. Previous work has focused on proposing a natural
and compact voting language for the voters to represent their prefer-
ences, as well as designing a sensible voting rule to make decisions
based on the reported preferences using such a language. A natural
approach is to let voters vote on the issues separately, in the fol-
lowing way. For each issue (simultaneously, not sequentially), each
voter reports her preferences for that issue, and then, a local rule is
used to select the winning value that the issue will take. This voting
process is called issue-by-issue or seat-by-seat voting.

Computing the winner for issue-by-issue voting rules is easy,
and it only requires a modest amount of communication from the
voters to the mechanism. Nevertheless, issue-by-issue voting has
some drawbacks. First, a voter may feel uncomfortable express-
ing her preferences over one issue independently of the values that
the other issues take [15]. It has been pointed out that issue-by-
issue voting avoids this problem if the voters’ preferences are sep-

arable (that is, for any issue i, regardless of the values for the
other issues, the voter’s preferences over issue i are always the
same) [14]. Second, multiple-election paradoxes arise in issue-by-
issue voting [5, 14, 21, 23]. In models that do not consider strategic
(game-theoretic) voting, previous works have shown several types
of paradoxes: sometimes the winner is a Condorcet loser; some-
times the winner is Pareto-dominated by another alternative (that
is, that alternative is preferred to the winner in all votes); and some-
times the winner is ranked in a very low position by all voters.

One way to partly escape these paradoxes consists in organizing
the multiple elections sequentially: given an order O over all issues
(without loss of generality, we take O to be x1 > · · · > xn), the
voters first vote on issue x1; then, the value collectively chosen for
x1 is determined using some voting rule and broadcast to the vot-
ers, who then vote on issue x2, and so on. When the issues are all
binary, it is natural to choose the majority rule at each stage (plus,
in the case of an even number of voters, some tie-breaking mech-



anism). Such processes are conducted in many real-life situations.
For instance, suppose there is a full professor position and an assis-
tant professor position to be filled. Then, it is realistic to expect that
the committee will first decide who gets the full professor position.
Another example is that at the executive meeting of the co-owners
of a building, important decisions like whether a lift should be in-
stalled or not, how much money should be spent to repair the roof
are usually taken before minor decisions. In each of these cases, it
is clear that the decision made on one issue influences the votes on
later issues, thus the order in which the issues are decided poten-
tially has a strong influence on the final outcome.

Now, if voters are assumed to know the preferences of other vot-
ers well enough, then we can expect them to vote strategically at
each step, forecasting the outcome at later steps conditional on the
outcomes at earlier steps. Let us consider the following motivating
example.

Example 1 Three residents want to vote to decide whether they
should build a swimming pool and/or a tennis court. There are two
issue S and T. S can take the value of s (meaning “to build the
swimming pool”) or s̄ (meaning “not to build the swimming pool”).
Similarly, T takes a value in {t, t̄}. Suppose the preferences of the
three voters are, respectively, st ≻ s̄t ≻ st̄ ≻ s̄t̄, st̄ ≻ st ≻
s̄t ≻ s̄t̄ and s̄t ≻ s̄t̄ ≻ st̄ ≻ st. Voter 2 and 3 took the budget
constraint into consideration so that they do not rank st as their
first choices. Suppose the voters first vote on issue S then on T.
Moreover, since both issues are binary, the local rule used at each
step is majority (there will be no ties, because the number of voters
is odd). Voter 1 is likely to reason in the following way: if the

outcome of the first step is s, then voters 2 and 3 will vote for t̄,
since they both prefer st̄ to st, and the final outcome will be st̄;
but if the outcome of the first step is s̄, then voters 2 and 3 will

vote for t, and the final outcome will be s̄t; because I prefer s̄t to

st̄, I am better off voting for s̄, since either it will not make any

difference, or it will lead to a final outcome of s̄t instead of st̄.
If voters 2 and 3 reason in the same way, then 2 will vote for s
and 3 for s̄; hence, the result of the first step is s̄, and then, since
two voters out of three prefer s̄t to s̄t̄, the final outcome will be
s̄t. Note that the result is fully determined, provided that (1) it
is common knowledge that voters behave strategically according
to the principle we have stated informally, (2) the order in which
the issues are decided, as well as the local voting rules used in all
steps, are also common knowledge, and (3) voters’ preferences are
common knowledge. Therefore, these three assumptions allow the
voters and the modeler (provided he knows as much as the voters)
to predict the final outcome.

Let us take a closer look at voter 1 in Example 1. Her preferences
are separable: she prefers s to s̄ whatever the value of T is, and t
to t̄ whatever the value of S is. And yet she strategically votes for

s̄, because the outcome for S affects the outcome for T. Moreover,
while voters 2 and 3 have nonseparable preferences, still, all three
voters’ preferences enjoy the following property: their preferences
over the value of S are independent of the value of T. Such a profile
is called a legal profile with respect to the order S > T, meaning
that the voters vote on S first, then on T. Lang and Xia [15] de-
fined a family of sequential voting rules on multi-issue domains, re-
stricted to O-legal profiles for some order O over the issues, where
at each step, each voter is expected to vote for her preferred value
for the issue xi under consideration given the values of all issues
decided so far 1; then, the value of xi is chosen according to a local
voting rule, and this local outcome is broadcast to the voters. For

1The O-legality condition ensures that this notion of “preferred
value of xi” is meaningful.

example, suppose the local rule used to decide an issue is always
majority. For the profile given in Example 1, the outcome of the
first step under the sequential voting rule will be s (since two voters
out of three prefer s to s̄, unconditionally), and the final outcome
will be st̄. This outcome is different from the outcome we obtain if
voters behave strategically. The reason for this discrepancy is that
in [15], voters are not assumed to know the others’ preferences and
are assumed to vote truthfully.

We have seen that even if the voters’ preferences are O-legal, vot-
ers may in fact have no incentive to vote truthfully. Consequently,
existing results on multiple-election paradoxes are not directly ap-
plicable to situations where voters vote strategically.

Our contributions

In this paper, we analyze the complete-information game-theoretic
model of sequential voting that we illustrated in Example 1. This
model applies to any preferences that the voters may have (not just
O-legal ones), though they must be strict orders on the set of all
alternatives.

We focus on voting in multi-binary-issue domains, that is, for any
i ≤ p, xi must take a value in {0i, 1i}. This has the advantage that
for each issue, we can use the majority rule as the local rule for that
issue. We use a game-theoretic model to analyze outcomes that re-
sult from sequential voting. Specifically, we model the sequential
voting process as a p-stage complete-information game as follows.
There is an order O over all issues (without loss of generality, let
O = x1 > x2 > · · · > xp), which indicates the order in which
these issues will be voted on. For any 1 ≤ i ≤ p, in stage i, the
voters vote on issue xi simultaneously, and the majority rule is used
to choose the winning value for xi. We make the following game-
theoretic assumptions: it is common knowledge that all voters are
perfectly rational; the order O and the fact that in each step, the ma-
jority rule is used to determine the winner are common knowledge;
all voters’ preferences are common knowledge.

We can solve this game by a type of backward induction already
illustrated in Example 1: in the last (pth) stage, only two alternatives
remain (corresponding to the two possible settings of the last issue),
so at this point it is a weakly dominant strategy for each voter to vote
for her more preferred alternative of the two. Then, in the second-
to-last ((p − 1)th) stage, there are two possible local outcomes for
the (p − 1)th issue; for each of them, the voters can predict which
alternative will finally be chosen, because they can predict what will
happen in the pth stage. Thus, the (p − 1)th stage is effectively a
majority election between two alternatives, and each voter will vote
for her more preferred alternative; etc. We call such a procedure the
strategic sequential voting procedure (SSP).

Given exogenously the order O over the issues, this game-theoretic
analysis maps every profile of strict ordinal preferences to a unique
outcome. Since any function from profiles of preferences to al-
ternatives can be interpreted as a voting rule, the voting rule that
corresponds to SSP is denoted by SSPO.

After the introduction of SSP, we show that, unfortunately, multiple-
election paradoxes also arise under SSP. To better present our re-
sults, we introduce a parameter which we call the minimax satisfac-

tion index (MSI). For an election with m alternatives and n voters, it
is defined in the following way. For each profile, consider the high-
est position that the winner obtains across all input rankings of the
alternatives (the ranking where this position is obtained corresponds
to the most-satisfied voter); this is the maximum satisfaction index

for this profile. Then, the minimax satisfaction index is obtained by
taking the minimum over all profiles of the maximum satisfaction
index. A low minimax satisfaction index means that there exists a
profile in which the winner is ranked in low positions in all votes,



thus indicating a multiple-election paradox. Our main theorem is
the following.

Theorem 2 For any p ∈ N and any n ≥ 2p2 + 1, the minimax

satisfaction index of SSP when there are m = 2p alternatives and

n voters is ⌊p/2 + 2⌋. Moreover, in the profile P that we use to

prove the upper bound, the winner SSPO(P ) is Pareto-dominated

by 2p − (p + 1)p/2 alternatives.

We note that an alternative c Pareto-dominates another alterna-
tive c′ implies that c beats c′ in their pairwise election. Therefore,
Theorem 2 implies that the winner for SSP is an almost Condorcet
loser. It follows from this theorem that SSP exhibits all three types
of multiple-election paradoxes: the winner is ranked almost in the
bottom in every vote, the winner is an almost Condorcet loser, and
the winner is Pareto-dominated by almost every other alternative.
We further show a paradox (Theorem 3) that states that there ex-
ists a profile such that for any order O over the issues, for every
voter, the SSP winner w.r.t. O is ranked almost in the bottom posi-
tion. We also show that even when the voters’ preferences can be
represented by CP-nets that are compatible with a common order,
multiple-election paradoxes still arise.

Related work and discussion

Our setting is closely related to the multi-stage sophisticated voting,
studied by McKelvey and Niemi [17], Moulin [18], and Gretlein [13].
They investigated the model where the backward induction out-
comes correspond to the truthful outcomes of voting trees. There-
fore, our SSP is a special case of multi-stage sophisticated voting.
However, their work focused on the characterization of the out-
comes as the outcomes in the sophisticated voting [10], and there-
fore did not shed much light on the quality of the equilibrium out-
come. We, on the other hand, are primarily interested in the strate-
gic outcome of the natural procedure of voting sequentially over
multiple issues. Also, the relationship between sequential voting
and voting trees takes a particularly natural form in the context of
domains with multiple binary issues, as we will show. More im-
portantly, we illustrate several multiple-election paradoxes for SSP,
indicating that the equilibrium outcome could be extremely unde-
sirable.

Another paper that is closely related to part of this work was writ-
ten by Dutta and Sen [9]. They showed that social choice rules
corresponding to binary voting trees can be implemented via back-
ward induction via a sequential voting mechanism. This is closely
related to the relationship revealed for multi-stage sophisticated vot-
ing and will also be mentioned later in this paper, that is, an equiv-
alence between the outcome of strategic behavior in sequential vot-
ing over multiple binary issues, and a particular type of voting tree.
It should be pointed out that the sequential mechanism that Dutta
and Sen consider is somewhat different from sequential voting as
we consider it—in particular, in the Dutta-Sen mechanism, one
voter moves at a time, and a move consists not of a vote, but rather
of choosing the next player to move (or in some states, choosing the
winner).

Nevertheless, the approach by Dutta and Sen and our approach
are related at a high level, though they are motivated quite differ-
ently: Dutta and Sen are interested in social choice rules corre-
sponding to voting trees, and are trying to create sequential mech-
anisms that implement them via backward induction. We, on the
other hand again, are primarily interested in the strategic outcome
of the natural mechanism for voting sequentially over multiple is-
sues, and use voting trees merely as a useful tool for analyzing the
outcome of this process.

Less closely related, implementation by voting trees has previ-
ously been studied at EC: Fischer et al. [11] consider the known

result that the Copeland rule cannot be implemented by a voting
tree [20], and set out to approximate the the Copeland score using
voting trees.

It has been pointed out that typical multiple-election paradoxes
partly come from the incompleteness of information about the pref-
erences of the voters [14]. However, the paradoxes in this paper
show that assuming that voters’ preferences are common knowl-
edge does not allow to get rid of multiple election paradoxes. An-
other interpretation of these results is that we may need to move
beyond sequential voting to properly address voting in multi-issue
domains. However, note that other approaches than sequential vot-
ing may be extremely costly in terms of communication and com-
putation, which comes down to saying, one more time, that voting
on multiple related issues is an extremely challenging problem for
which probably no perfect solution exists.

Lastly, in a recent paper [25], Xia and Conitzer studied a vot-
ing game with a different type of sequential nature: in it, the voters
cast their votes one after another (strategically), and after all the
voters have cast their votes, a common voting rule (not necessarily
the plurality rule) is used to select the winner. This type of vot-
ing games has been studied in the literature [24, 7, 2, 8]. In [25], a
strong general paradox was shown for these voting games, implying
that for most common voting rules, there exists a profile such that
the unique winner in subgame-perfect equilibrium is ranked within
the bottom two positions in almost all the voters’ true preferences.
Desmedt and Elkind [8] showed similar paradoxes for such voting
games with the plurality rule, where random tie-breaking is used
and the voters seek to maximize their expected utility. We note that
the voting games studied in [25] are quite different from the voting
games studied in this paper: there, the voters move in sequence,
the set of alternatives does not need to have a combinatorial struc-
ture, and a voter casts her complete vote all at once; here in this
paper, the voters move simultaneously, the set of alternatives has a
combinatorial structure, and the voters vote on one issue at a time.

2. PRELIMINARIES

2.1 Basics of voting
Let X be the set of alternatives, |X | = m. A vote is a linear

order (that is, a transitive, antisymmetric, and total relation) over
X . The set of all linear orders over X is denoted by L(X ). For any
c ∈ X and V ∈ L(X ), we let rankV (c) denote the position of c
in V from the top. For any n ∈ N, an n-profile P is a collection
of n votes, that is, P ∈ L(X )n. For any c, d ∈ X and any profile
P , we say c Pareto-dominates d, if for every V ∈ P , c is ranked
higher than d in V , that is, c ≻V d. A voting rule r is a mapping
that assigns to each profile a unique winning alternative. That is,
r : L(X ) ∪ L(X )2 ∪ . . . → X . For example, when there are two
alternatives, the majority rule selects the alternative that is preferred
by the majority of voters.

2.2 Multi-issue domains
In this paper, the set of all alternatives X is a multi-binary-issue

domain. That is, let I = {x1, . . . ,xp} (p ≥ 2) be a set of issues,
where each issue xi takes a value in a binary local domain Di =
{0i, 1i}. The set of alternatives is X = D1 × · · · × Dp, that is, an
alternative is uniquely identified by its values on all issues. For any
Y ⊆ I we denote DY =

Q

xi∈Y Di.

Given a preference relation ≻ in L(X ), an issue xi, and a subset
of issues W ⊆ I, let U = I\(W ∪{xi}); then, xi is preferentially

independent of W given U (with respect to ≻) if for any ~u ∈ DU ,
any ai, bi ∈ Di, and any ~w, ~w′ ∈ DW , (~u, ai, ~w) ≻ (~u, bi, ~w) if
and only if (~u, ai, ~w′) ≻ (~u, bi, ~w′). Informally, if we wish to find



out whether changing the value of xi from ai to bi (while keeping
everything else fixed) will make the voter better or worse off, we
only need to know the values of the issues in U .

Let O = x1 > · · · > xp. A preference relation ≻ is O-legal if
for any i ≤ p, xi is preferentially independent of {xi+1, . . . ,xp}
given {x1, . . . ,xi−1}. In words, to find out whether a particular
change in the value of an issue will make the voter better or worse
off, we only need to know the values of earlier issues. A preference
relation ≻ is separable if for any i ≤ p, xi is preferentially inde-
pendent of X \ {xi}. That is, we do not need to know the value
of any other issue to find out whether a particular change in the
value of an issue will make the voter better or worse off. It follows
directly that a separable preference relation is O-legal for any O.

A preference relation ≻ is O-lexicographic if for any i ≤ p, any

~u ∈ D1 × · · · × Di−1, any ai, bi ∈ Di, and any ~d1, ~d2, ~e1, ~e2 ∈
Di+1×· · ·×Dp, (~u, ai, ~d1) ≻ (~u, bi, ~e1) if and only if she prefers

(~u, ai, ~d2) ≻ (~u, bi, ~e2). In words, if a profile is O-lexicographic,
then it isO-legal, and moreover, earlier issues are more important—
that is, to compare two alternatives, it suffices to know the values
of the issues up to and including the first issue xi on which they
differ. (While the values of x1, . . . ,xi−1 will be the same, they
still matter in that they affect the voter’s preferences on xi.) We note
that O-lexicographicity and separability are incomparable notions.
For example, 0102 ≻ 1102 ≻ 0112 ≻ 1112 is separable (flipping
11 or 12 always makes the alternative rank higher) but not (x1 >
x2)-lexicographic (0102 ≻ 1112 but 1102 ≻ 0112). On the other
hand, 0102 ≻ 0112 ≻ 1112 ≻ 1102 is (x1 > x2)-lexicographic
but not separable. A profile is separable/O-lexicographic/O-legal
if it is composed of preference relations that are all separable/O-
lexicographic/O-legal.

We can now define sequential composition of local voting rules.
Given a vector of local rules (r1, . . . , rp) (where for any i ≤ p, ri is
a voting rule for preferences over Di), the sequential composition

of r1, . . . , rp with respect to O, denoted by SeqO(r1, . . . , rp), is
defined for all O-legal profiles as follows: SeqO(r1, . . . , rp)(P ) =
(d1, . . . , dp) ∈ X , where for any i ≤ p, di = ri(P |xi:d1···di−1

),
where P |xi:d1···di−1

is composed of the voters’ local preferences
over xi, given that the issues preceding it take values d1, . . . , di−1.
Thus, the winner is selected in p steps, one for each issue, in the
following way: in step i, di is selected by applying the local rule
ri to the preferences of voters over Di, conditioned on the values
d1, . . . , di−1 that have already been determined for the issues that
precede xi. In this paper, we focus on the case where every ri is
the majority rule, because it is the most natural voting rule for two
alternatives.

3. STRATEGIC SEQUENTIAL VOTING

3.1 Formal definition
Sequential voting on multi-issue domains can be seen as a game

where in each step, the voters decide whether to vote for or against
the issue under consideration after reasoning about what will hap-
pen next. We make the following assumptions.

1. All voters act strategically (in an optimal manner that will be
explained later), and this is common knowledge.

2. The order in which the issues will be voted upon, as well
as the local voting rules used at the different steps (namely,
majority rules), are common knowledge.

3. All voters’ preferences on the set of alternatives are common
knowledge.

Assumption 1 is standard in game theory. Assumption 2 merely
means that the rule has been announced. Assumption 3 (complete
information) is the most significant assumption. It may be interest-
ing to consider more general settings with incomplete information,
resulting in a Bayesian game. Nevertheless, because the complete-
information setting is a special case of the incomplete-information
setting (where the prior distribution is degenerate), in that sense,
all negative results obtained for the complete-information setting

also apply to the incomplete-information setting. That is, the re-
striction to complete information only strengthens negative results.
Of course, for incomplete information setting in general, we need a
more elaborate model to reason about voters’ strategic behavior.

Given these assumptions, the voting process can be modeled as a
game that is composed of p stages where in each stage, the voters
vote simultaneously on one issue. Let O be the order over the set
of issues, which without loss of generality we assume to be x1 >
· · · > xp. Let P be the profile of preferences over X . The game
is defined as follows: for each i ≤ p, in stage i the voters vote
simultaneously on issue i; then, the value of xi is determined by
the majority rule (plus, in the case of an even number of voters,
some tie-breaking mechanism), and this local outcome is broadcast
to all voters.

We now show how to solve the game. Because of assumptions 1
to 3, at step i the voters vote strategically, by recursively figuring out
what the final outcome will be if the local outcome for xi is 0i, and
what it will be if it is 1i. More concretely, suppose that steps 1 to
i−1 resulted in issues x1, . . . ,xi−1 taking the values d1, . . . , di−1,

and let ~d = (d1, . . . , di−1). Suppose also that if xi takes the value
0i (respectively, 1i), then, recursively, the remaining issues will take

the tuple of values ~a (respectively, ~b). Then, xi is determined by a

pairwise comparison between (~d, 0i,~a) and (~d, 1i,~b) in the follow-

ing way: if the majority of voters prefer (~d, 0i,~a) over (~d, 1i,~b),
then xi takes the value 0i; in the opposite case, xi takes the value
1i. This process, which corresponds to the strategic behavior in
the sequential election, is what we call the strategic sequential vot-

ing (SSP) procedure, and for any profile P , the winner with respect
to the order O is denoted by SSPO(P ).

As we shall see later, SSP can not only be thought of as the strate-
gic outcome of sequential voting, but also as a voting rule in its own
right. The following definition and two propositions merely serve
to make the game-theoretic solution concept that we use precise; a
reader who is not interested in this may safely skip them.

Definition 1 Consider a finite extensive-form game which transi-

tions among states. In each nonterminal state s, all players simul-

taneously take an action; this joint local action profile (as
1, . . . , a

s
n)

determines the next state s′.2 Terminal states t are associated with

payoffs for the players (alternatively, players have ordinal prefer-

ences over the terminal states). The current state is always common

knowledge among the players.3

Suppose that in every final nonterminal state s (that is, every

state that has only terminal states as successors), every player i has

a (weakly) dominant action as
i . At each final nonterminal state, its

local profile of dominant actions (as
1, . . . , a

s
n) results in a termi-

nal state t(s) and associated payoffs. We then replace each final

nonterminal state s with the terminal state t(s) that its dominant-

strategy profile leads to. Furthermore suppose that in the resulting

smaller tree, again, in every final nonterminal state, every player

2In the extensive-form representation of the game, each state is as-
sociated with multiple nodes, because in the extensive form only
one player can move at a node.
3Hence, the only imperfect information in the extensive form of the
game is due to simultaneous moves within states.



has a (weakly) dominant strategy. Then, we can repeat this proce-

dure, etc. If we can repeat this all the way to the root of the tree, then

we say that the game is solvable by within-state dominant-strategy
backward induction (WSDSBI).

We note that the backward induction in perfect-information extensive-
form games is just the special case of WSDSBI where in each state
only one player acts.

Proposition 1 If a game is solvable by WSDSBI, then the solution

is unique.

Proposition 2 The complete-information sequential voting game

with binary issues (with majority as the local rule everywhere) is

solvable by WSDSBI when voters have strict preferences over the

alternatives.

Proposition 1 is obviously true. Due to the space constraints,
most proofs are omitted.

We note that SSP corresponds to a particular balanced voting tree,
as illustrated in Figure 1 for the case p = 3. In this voting tree, in
the first round, each alternative is paired up against the alternative
that differs only on the pth issue; each alternative that wins the first
round is then paired up with the unique other remaining alterna-
tive that differs only on the (p − 1)th and possibly the pth issue;
etc. This bottom-up procedure corresponds exactly to the backward
induction (WSDSBI) process.

Of course, there are many voting trees that do not correspond to
an SSP election; this is easily seen by observing that there are only
p! different SSP elections (corresponding to the different orders of
the issues), but many more voting trees. The voting tree correspond-
ing to the order O = x1 > · · · > xp is defined by the property that
for any node v whose depth is i (where the root has depth 1), the
alternative associated with any leaf in the left (respectively, right)
subtree of v gives the value 0i (respectively, 1i) to xi.

000 001 010 011 110 111101100

Figure 1: A voting tree that is equivalent to the strategic se-

quential voting procedure (p = 3). 000 is the abbreviation for

010203, etc.

3.2 Strategic sequential voting vs. truthful se-
quential voting

We have seen on Example 1 that even when the profile P is O-
legal, SSPO(P ) can be different from SeqO(maj, . . . , maj)(P ).
This means that even if the profile is O-legal, voters may be bet-
ter off voting strategically than truthfully. However, SSPO(P )
and SeqO(maj, . . . , maj)(P ) are guaranteed to coincide under
the further restriction that P is O-lexicographic.

Proposition 3 For any O-lexicographic profile P , SSPO(P ) =
SeqO(maj, . . . , maj)(P ).

The intuition for Proposition 3 is as follows: if P isO-lexicographic,
then, as is shown in the proof of the proposition, when voters vote
strategically under sequential voting (the Seq process), they are best
off voting according to their true preferences in each round (their

preferences in each round are well-defined because voters have O-
legal preferences in this case). When voters with O-legal prefer-
ences vote truthfully in each round under sequential voting, the out-
come is SeqO(maj, . . . , maj)(P ); when they vote strategically,
the outcome is SSPO(P ); and so, these must be the same when
preferences are O-lexicographic.

Now, there is another interesting domain restriction under which
SSPO(P ) and Seq(maj, . . . , maj)(P ) coincide, namely when P
is inv(O)- legal, where inv(O) = (xp > . . . > x1).

Proposition 4 Let inv(O) = xp > . . . > x1. For any inv(O)-

legal profile P , SSPO(P ) = Seqinv(O)(maj, . . . , maj)(P ).

As a consequence, when P is separable, it is a fortiori inv(O)-
legal, and therefore, SSPO(P ) = Seqinv(O)(maj, . . . , maj)(P ),
which in turn is equal to SeqO(maj, . . . , maj)(P ) and coincides
with seat-by-seat voting [3].

Corollary 1

If P is separable, then SSPO(P ) = SeqO(maj, . . . , maj)(P ).

3.3 A second interpretation of SSP
The first interpretation of SSP (that we follow in this paper) is

the one we have discussed so far, namely, SSP consists in modeling
sequential voting as a complete-information game, which allows us
to analyze sequential voting on multi-issue domains from a game-
theoretic point of view. For this, assumptions 1, 2, and 3 above are
crucial. Under this interpretation, SSPO(P ) is a (specific kind of)
equilibrium for sequential voting.

However, there is a second interpretation of SSP. It consists in
seeing SSPO as a new voting rule on multi-issue domains (which is
implementable in complete-information contexts by using sequen-
tial voting).4 This defines a family of voting rules (one for each
order over issues), which can be applied to any profile. The family
of voting rules thus defined is a distinguished subset of the fam-
ily of voting trees. This interpretation does not say anything about
how preferences are to be elicited; unlike in the game-theoretic in-
terpretation, the p-step protocol does not apply here. The commu-
nication complexity of finding the outcome of SSPO (without any
complete-information assumption, of course)5 is given as follows.

Proposition 5 When the voters’ preferences over alternatives are

unrestricted, the communication complexity of SSPO is Θ(2p · n).
Proof of Proposition 5: This now follows immediately from a
result in [6], where it is established that the communication com-
plexity for balanced voting trees is Θ(m · n) for m alternatives and
n voters. Since we do not place any restrictions on the preferences
in the multi-issue domain in the statement of the proposition, the
communication complexity is identical, and m = 2p. 2

The upper bound in this proposition is obtained simply by elic-
iting the voters preferences for every pair of alternatives that face
each other in the voting tree.

Now, Propositions 3 and 4 immediately give us conditions un-
der which this communication complexity can be reduced. Indeed,
these Propositions say that when P is O-lexicographic or inv(O)-
legal, then the SSP winner coincides with the sequential election
winner in the sense of [15]. Now, the sequential election winner in
the sense of [15]. can be found with O(pn) communication, simply
by having each agent vote for a value for the issue at each round.
This leads immediately to the following two corollaries (to Propo-
sitions 3 and 4, respectively).
4Of course, by Gibbard-Satterthwaite [12, 22], SSP is not strategy-
proof.
5The communication complexity of a voting rule is the smallest
number of bits that must be transmitted to compute the winner of
that rule (i.e., taking the minimum across all correct protocols).
See [6].



Corollary 2 When the voters’ preferences over alternatives are O-

lexicographic, the communication complexity of SSPO is O(pn).

Corollary 3 When the voters’ preferences over alternatives are

inv(O)-legal, the communication complexity of SSPO is O(pn).

3.4 The winner is sensitive to the order over
the issues

In the definition of SSP, we simply fixed the order O to be x1 >
x2 > · · · > xp. A question worth addressing is, to what extent
is the outcome of SSP sensitive to the variation of the order O?
More precisely, given a profile P , let PW(P ) = |{~d ∈ X | ~d =
SSPO′(P ) for some order O′}|. PW(P ) is the number of different
alternatives that can be made SSP winners by choosing a particular
order O′. Then, for a given number of binary issues p, we look for
the maximal value of PW(P ), for all profiles P on X = D1× . . .×
Dp; we denote this number by MW(p).

A first observation is that there are p! different choices for O′.
Therefore, a trivial upper bound on MW(p) is p!. Since there are 2p

alternatives, the p! upper bound is only interesting when p! < 2p,
that is, p ≤ 3. Example 2 shows that when p = 2 or p = 3,
this trivial upper bound is actually tight, i.e. MW(2) = 2! and
MW(3) = 3!: there exists a profile such that by changing the order
over the issues, all p! different alternatives can be made winners.
Due to McGarvey’s theorem [16], any complete and asymmetric
directed graph G over the alternatives corresponds to the majority
graph of some profile (we recall that the majority graph of a pro-
file P is the directed graph whose vertices are the alternatives and
containing an edge from c to c′ if and only if a majority of voters
in P prefer c to c′). Therefore, in the example, we only show the
majority graph instead of explicitly constructing the whole profile.

Example 2 The majority graphs for p = 2 and p = 3 are shown

in Figure 2. Let P (respectively, P ′) denote an arbitrary profile

whose majority graph is the same as Figure 2(a) (respectively, Fig-

ure 2(b)). It is not hard to verify that SSPx1>x2
(P ) = 00 and

SSPx2>x1
(P ) = 01. For P ′, the value of SSPO′(P ′) for the six

possible orders is shown on Table 1. Note that 2! = 2 and 3! = 6.

It follows that when p = 2 or p = 3, there exists a profile for

which the SSP winners w.r.t. different orders over the issues are all

different from each other.

The order x1 > x2 > x3 x1 > x3 > x2 x2 > x1 > x3

SSP winner 010 011 001

The order x2 > x3 > x1 x3 > x1 > x2 x3 > x2 > x1

SSP winner 100 110 101

Table 1: The SSP winners for P
′ w.r.t. different orders over the issues.

When p ≥ 4, p! > 2p. However, it is not immediately clear
whether MW(p) = 2p or not, i.e, whether each of the 2p alter-
natives can be made a winner by changing the order over the is-
sues. The next theorem shows that this can actually be done, that is,
MW(p) = 2p.

Theorem 1 For any p ≥ 4 and any n ≥ 142 + 4p, there exists an

n-profile P such that for every alternative ~d, there exists an order

O′ over I such that SSPO′(P ) = ~d.

The proof of the theorem is by induction on p. Surprisingly, the
hardest part in the inductive proof is the base case: when p = 4,
we need to construct a profile P such that each of the 16 alterna-
tives can be made a SSPO′ winner for at least one O′ out of the
24 orders over four issues. We prove directly that it satisfies the de-
sired property, and we also wrote a computer program to verify its

00 01

10 11

000 001

010 011100 101

110 111

(a) (b)

Figure 2: (a) The majority graph for p = 2. (b) The majority

graph for p = 3, where four edges are not shown in the graph:

100 → 000, 101 → 001, 110 → 010, and 111 → 011. The

directions of the other edges are defined arbitrarily. 000 is the

abbreviation for 010203, etc.

correctness. The code (implemented in Java) can be found via the
following link.
http://www.cs.duke.edu/~lxia/Files/SSP.zip

4. MINIMAX SATISFACTION INDEX
In the rest of this paper, we will show that strategic sequential

voting on multi-issue domains is prone to paradoxes that are almost
as severe as previously studied multiple-election paradoxes under
models that are not game-theoretic [5, 14]. To facilitate the pre-
sentation of these results, we define an index that is intended to
measure one aspect of the quality of a voting rule, called minimax

satisfaction index.

Definition 2 For any voting rule r, the minimax satisfaction index
(MSI) of r is defined by

MSIr(m,n) = min
P∈L(X)n

max
V ∈P

`
m + 1 − rankV (r(P ))

´

where m is the number of alternatives, n is the number of voters,

and rankV (r(P )) is the position of r(P ) in vote V .

We note that in this paper m = 2p, where p is the number of
issues. The MSI of a voting rule is not the final word on it. For
example, the MSI for dictatorships is m, the maximum possible
value, which is not to say that dictatorships are desirable. However,
if the MSI of a voting rule is low, then this implies the existence of
a paradox for it, namely, a profile that results in a winner that makes
all voters unhappy.

Many of the multiple-election paradoxes known so far implicitly
refer to such an index. For example, Lacy and Niou [14] and Benoit
and Kornhauser [3] showed that for multiple referenda, if voters
vote on issues separately (under some assumptions on how voters
vote), then there exists a profile such that in each vote, the winner
is ranked near the bottom–therefore the rule has a very low MSI.

5. MULTIPLE-ELECTION PARADOXES FOR

STRATEGIC SEQUENTIAL VOTING
In this section, we show that over multi-binary-issue domains,

for any natural number n that is sufficiently large (we will specify
the number in our theorems), there exists an n-profile P such that
SSPO(P ) is ranked almost in the bottom position in each vote in
P . That is, the minimax satisfaction index is extremely low for the
strategic sequential voting procedure.

We first calculate the MSI for SSPO when the winner does not
depend on the tie-breaking mechanism. That is, either n is odd, or
n is even and there is never a tie in any stage of running the election
sequentially. This is our main multiple-election paradox result.



Theorem 2 For any p ∈ N (p ≥ 2) and any n ≥ 2p2 + 1,

MSISSPO
(m,n) = ⌊p/2 + 2⌋.6 Moreover, in the profile P that

we use to prove the upper bound, the winner SSPO(P ) is Pareto-

dominated by 2p − (p + 1)p/2 alternatives.

Proof of Theorem 2: The upper bound on MSISSPO
(m, n) is

constructive, that is, we explicitly construct a paradox.
For any n-profile P = (V1, . . . , Vn), we define the mapping

fP : X → N
n as follows: for any c ∈ X , fP (c) = (h1, . . . , hn)

such that for any i ≤ n, hi is the number of alternatives that are
ranked below c in Vi. For any l ≤ p, we denote Xl = Dl ×
· · · × Dp and Ol = xl > xl+1 > · · · > xp. For any vector
~h = (h1, . . . , hn) and any l ≤ p, we say that ~h is realizable over
Xl (through a balanced binary tree) if there exists a profile Pl =

(V1, . . . , Vn) over Xl such that fPl
(SSPOl

(Pl)) = ~h. We first
prove the following lemma.

Lemma 1 For any l such that 1 ≤ l < p,

~h∗ = ( 0, . . . , 0
| {z }

⌊n/2⌋−p+l

, 1, . . . , 1
| {z }

p−l+1

, 2p−l+1 − 1, . . . , 2p−l+1 − 1
| {z }

⌈n/2⌉−1

)

is realizable over Xl.

Proof of Lemma 1: We prove that there exists an n-profile Pl over

Xl such that SSPOl
(Pl) = 1l · · · 1p and ~h∗ is realized by Pl. For

any 1 ≤ i ≤ p− l+1, we let~bi = 1l · · · 1p−i0p+1−i1p+2−i · · · 1p.

That is,~bi is obtained from 1l · · · 1p by flipping the value of xp+1−i.
We obtain Pl = (V1, . . . , Vn) in the following steps.

1. Let W1, . . . , Wn be null partial orders over Xl. That is, for
any i ≤ n, the preference relation Wi is empty.

2. For any j ≤ ⌊n/2⌋ − p + l, we put 1l · · · 1p in the bottom

position in Wj ; we put {~b1, . . . ,~bp−l+1} in the top positions in Wj .
3. For any j with ⌊n/2⌋ + 2 ≤ j ≤ n, we put 1l · · · 1p in the

top position of Wj , and we put {~b1, . . . ,~bp−l+1} in the positions
directly below the top.

4. For j with ⌊n/2⌋ − p + l + 1 ≤ j ≤ ⌊n/2⌋ + 1, we define
preferences as follows. For any i ≤ p− l+1, in W⌊n/2⌋−p+l+i, we

put ~bi in the bottom position, 1l · · · 1p in the second position from
the bottom, and all the remaining bj (with j 6= i) at the very top.

5. Finally, we complete the profile arbitrarily: for any j ≤ n, we
let Vj be an arbitrary extension of Wj .

Let Pl = (V1, . . . , Vn). We note that for any i ≤ p − l + 1,
~bi beats any alternative in Xl \ {1l · · · 1p,~b1, . . . ,~bp−l+1} in pair-
wise elections. Therefore, for any i ≤ p − l + 1, the ith alterna-

tive that meets 1l · · · 1p is ~bi, which loses to 1l · · · 1p (just barely).
It follows that 1l · · · 1p is the winner, and it is easy to check that

fPl
(1l · · · 1p) = ~h∗. This completes the proof of the lemma. 2

Because the majority rule is anonymous, for any permutation π
over 1, . . . , n and any l < p, if (h1, . . . , hn) is realizable over Xl,
then (hπ(1), . . . , hπ(n)) is also realizable over Xl. For any k ∈ N,

we define Hk = {~h ∈ {0, 1}n :
P

j≤n hj ≥ k}. That is, Hk

is composed of all n-dimensional binary vectors in each of which
at least k components are 1. We next show a lemma to derive a
realizable vector over Xl−1 from two realizable vectors over Xl.

Lemma 2 Let l < p, and let ~h1, ~h2 be vectors that are realizable

over Xl. For any ~h ∈ H⌊n/2⌋+1, ~h1 + (~h2 + ~1) · ~h is realizable

over Xl−1, where ~1 = (1, . . . , 1), and for any ~a = (a1, . . . , an)

and any~b = (b1, . . . , bn), we have ~a ·~b = (a1b1, . . . , anbn).

6If n is even, then to prove MSISSPO
(m, n) ≥ ⌊p/2 + 2⌋, we

restrict attention to profiles without ties.

Proof of Lemma 2: Without loss of generality, we prove the

lemma for ~h = (0, . . . , 0
| {z }

⌈n/2⌉−1

, 1, . . . , 1
| {z }

⌊n/2⌋+1

). Let P1, P2 be two pro-

files over Xl, each of which is composed of n votes, such that

f(P1) = ~h1 and f(P2) = ~h2. Let P1 = (V 1
1 , . . . , V 1

n ), P2 =

(V 2
1 , . . . , V 2

n ), ~a = SSPOl
(P1), ~b = SSPOl

(P2). We define a
profile P = (V1, . . . , Vn) over Xl−1 as follows.

1. Let W1, . . . , Wn be n null partial orders over Xl−1.
2. For any j ≤ n and any ~e1, ~e2 ∈ Xl, we let (1l−1, ~e1) ≻Wj

(1l−1, ~e2) if ~e1 ≻V 1

j
~e2; and we let (0l−1, ~e1) ≻Wj

(0l−1, ~e2) if

~e1 ≻V 2

j
~e2.

3. For any ⌈n/2⌉ ≤ j ≤ n, we let (1l−1,~a) ≻Wj
(0l−1,~b).

4. Finally, we complete the profile arbitrarily: for any j ≤ n,
we let Vj be an (arbitrary) extension of Wj such that (1l−1,~a) is
ranked as low as possible.

We note that (1l−1,~a) is the winner of the subtree in which

xl−1 = 1l−1, (0l−1,~b) is the winner of the subtree in which xl−1 =

0l1 , and (1l−1,~a) beats (0l−1,~b) in their pairwise election (because

the votes from ⌈n/2⌉ to n rank (1l−1,~a) above (0l−1,~b)). There-
fore, SSPOl−1

(P ) = (1l−1,~a).

Finally, we have that fP ((1l−1,~a)) = ~h1 + (~h2 + ~1) · ~h. This
is because (1l−1,~a) is ranked just as low as in the profile P1 for
voters 1 through ⌈n/2⌉ − 1; for any voter j with ⌈n/2⌉ ≤ j ≤ n,

additionally, (0l−1,~b) needs to be placed below (1l−1,~a), which

implies that also, all the alternatives (0l−1,~b
′) for which j ranked

~b′ below~b in P2 must be below (1l−1,~a) in j’s new vote in P . This
completes the proof of the lemma. 2

Now we are ready to prove the main part of the theorem. It
suffices to prove that for any n ≥ 2p2 + 1, there exists a vector
~hp ∈ N

n such that each component of~hp is no more than ⌊p/2+1⌋,

and ~hp is realizable over X . We first prove the theorem for the case
in which n is odd. We show the construction by induction in the
proof of the following lemma.

Lemma 3 Let n be odd. For any l′ < p (such that l′ is odd),
~hl′ = (⌊l′/2⌋, . . . , ⌊l′/2⌋

| {z }

⌈n/2⌉−(l′2+1)/2

, ⌈l′/2⌉, . . . , ⌈l′/2⌉
| {z }

⌊n/2⌋+(l′2+1)/2

)

is realizable over Xp−l′+1, and if l′ < p, then

~hl′+1 =(⌊l′/2⌋, . . . , ⌊l′/2⌋
| {z }

l′+1

, ⌈l′/2⌉, . . . , ⌈l′/2⌉
| {z }

n−(l′+5)(l′+1)/2

,

⌈l′/2⌉ + 1, . . . , ⌈l′/2⌉ + 1
| {z }

(l′+3)(l′+1)/2

)

is realizable over Xp−l′ .

Proof of Lemma 3: The base case in which l′ = 1 corresponds to a
single-issue majority election over two alternatives, where ⌈n/2⌉−
1 voters vote for one alternative, and ⌊n/2⌋ + 1 vote for the other,
so that only the latter get their preferred alternative.

Now, suppose the claim holds for some l′ ≤ p−2; we next show
that the claim also holds for l′ + 2. To this end, we apply Lemma 2
twice. Let l = p − l′ + 1.

First, let ~h∗ = (1, . . . , 1
| {z }

l′

, 2l′ − 1, . . . , 2l′ − 1
| {z }

l′+1

,

0, . . . , 0
| {z }

⌊n/2⌋−l′+1

, 2l′ − 1, . . . , 2l′ − 1
| {z }

⌈n/2⌉−l′−2

)



By Lemma 1, ~h∗ is realizable over Xl (via a permutation of the

voters). Let ~h = (1, . . . , 1
| {z }

l′

, 0, . . . , 0
| {z }

l′+1

, 1, . . . , 1
| {z }

⌊n/2⌋−l′+1

, 0, . . . , 0
| {z }

⌈n/2⌉−l′−2

).

Then, by Lemma 2, ~hl′ + (~h∗ + ~1) · ~h is realizable over Xl−1.
We have the following calculation.

~hl′ + (~h∗ +~1) · ~h
=(⌈l′/2⌉ + 1, . . . , ⌈l′/2⌉ + 1

| {z }

l′

,

⌊l′/2⌋, . . . , ⌊l′/2⌋
| {z }

l′+1

, ⌈l′/2⌉, . . . , ⌈l′/2⌉
| {z }

⌈n/2⌉−(l′+3)(l′+1)/2

,

⌈l′/2⌉ + 1, . . . , ⌈l′/2⌉ + 1
| {z }

(l′+1)2/2+1

, ⌈l′/2⌉, . . . , ⌈l′/2⌉
| {z }

⌊n/2⌋−l′−1

)

The partition of the set of voters into these five groups uses the
fact that n ≥ 2p2+1 implies ⌈n/2⌉−(l′+3)(l′+1)/2 ≥ 0. After
permuting the voters in this vector, we obtain the following vector
which is realizable over Xl−1:

~hl′+1 =(⌊l′/2⌋, . . . , ⌊l′/2⌋
| {z }

l′+1

, ⌈l′/2⌉, . . . , ⌈l′/2⌉
| {z }

n−(l′+5)(l′+1)/2

,

⌈l′/2⌉ + 1, . . . , ⌈l′/2⌉ + 1
| {z }

(l′+3)(l′+1)/2

)

We next let ~h′ = (1, . . . , 1
| {z }

⌊n/2⌋+1

, 0, . . . , 0
| {z }

⌈n/2⌉−1

) and

~h′
∗ = (1, . . . , 1

| {z }

l′+1

, 0, . . . , 0
| {z }

⌊n/2⌋−l′

, 2l′+1 − 1, . . . , 2l′+1 − 1
| {z }

⌈n/2⌉−1

)

By Lemma 1, the latter is realizable over Xl−1. Thus, by Lemma 2,
~hl′+1+(~h′

∗+~1)·~h′ is realizable over Xl−2. Through a permutation
over the voters, we obtain the desired vector:

~hl′+2 = (⌊l′/2⌋ + 1, . . . , ⌊l′/2⌋ + 1
| {z }

⌈n/2⌉−(l′+2)(l′+1)/2−1

, ⌈l′/2⌉ + 1, . . . , ⌈l′/2⌉ + 1
| {z }

⌊n/2⌋+(l′+2)(l′+1)/2+1

)

which is realizable over Xl−2. Therefore, the claim holds for l′ +2.
This completes the proof of the lemma. 2

If p is odd, from Lemma 3 we know that the theorem is true, by
setting l′ = p. If p is even, then we first set l′ = p − 1; then, the

maximum component of ~hl′+1 is ⌈l′/2⌉ + 1 = ⌈(p− 1)/2⌉ + 1 =
p/2+1. Thus we have proved the upper bound in the theorem when
n is odd.

When n is even, we have the following lemma (the proof is sim-
ilar to the proof of Lemma 3, so we omitted its proof).

Lemma 4 Let n be even. For any l′ < p (such that l′ is odd),

~hl′ = (⌊l′/2⌋, . . . , ⌊l′/2⌋
| {z }

n/2−(l′2−l′+1)/2

, ⌈l′/2⌉, . . . , ⌈l′/2⌉
| {z }

n/2+(l′2−l′+1)/2

)

is realizable over Xp−l′+1, and if l′ + 1 ≤ p, then

~hl′+1 =(⌊l′/2⌋, . . . , ⌊l′/2⌋
| {z }

l′+1

, ⌈l′/2⌉, . . . , ⌈l′/2⌉
| {z }

n−1−(l′+4)(l′+1)/2

,

⌈l′/2⌉ + 1, . . . , ⌈l′/2⌉ + 1
| {z }

(l′+2)(l′+1)/2+1

)

is realizable over Xp−l′ .

The upper bound in the theorem when n is even follows from
Lemma 4. Moreover, we note that in the step from l′ to l′ + 1 (re-
spectively, from l′ + 1 to l′ + 2), no more than l′ new alternatives

are ranked lower than the winner in the profile that realizes ~hl′+1

(respectively, ~hl′+2). It follows that in the profile that realizes ~hl′+1

(respectively, ~hl′+2) in Lemma 3 or Lemma 4, the number of alter-
natives that are ranked lower than the winner by at least one voter
is no more than (l′ + 1)l′/2 + l′ + 1 = (l′ + 1)(l′ + 2)/2 (respec-
tively, (l′ + 2)(l′ + 3)/2), which equals (p + 1)p/2 if l′ + 1 = p
(respectively, (p + 1)p/2 if l′ + 2 = p). Therefore, in the profile
that we use to obtain the upper bound, the winner under SSPO is
Pareto-dominated by 2p − (p + 1)p/2 alternatives.

Finally, we show that ⌊p/2+2⌋ is a lower bound on MSISSPO
(m,n).

Let P be an n-profile; let SSPO(P ) = ~a, and let~b1, . . . ,~bp be the
alternatives that ~a defeats in pairwise elections in rounds 1, . . . , p.
It follows that in round j, more than half of the voters prefer ~a to
~bj , because we assume that there are no ties in the election. There-
fore, summing over all votes, there are at least p × (⌊n/2⌋ + 1)

occasions where ~a is preferred to one of ~b1, . . . ,~bp. It follows that
there exists some V ∈ P in which ~a is ranked higher than at least

⌈p × (⌊n/2⌋ + 1)/n⌉ ≥ ⌊p/2 + 1⌋ of the alternatives ~b1, . . . ,~bp.
Thus MSISSPO

(m, n) ≥ ⌊p/2 + 2⌋.
(End of proof for Theorem 2.) 2

We note that the number of alternatives is m = 2p. Therefore,
⌊p/2 + 2⌋ is exponentially smaller than the number of alternatives,
which means that there exists a profile for which every voter ranks
the winner very close to the bottom. Moreover, (p+1)p/2 is still ex-
ponentially smaller than 2p, which means that the winner is Pareto-
dominated by almost every other alternative.

Naturally, we wish to avoid such paradoxes. One may wonder
whether the paradox occurs only if the ordering of the issues is par-
ticularly unfortunate with respect to the preferences of the voters.
If not, then, for example, perhaps a good approach is to randomly
choose the ordering of the issues.7 Unfortunately, our next result
shows that we can construct a single profile that results in a para-
dox for all orderings of the issues. While it works for all orders,
the result is otherwise somewhat weaker than Theorem 2: it does
not show a Pareto-dominance result, it requires a number of voters
that is at least twice the number of alternatives, the upper bound
shown on the MSI is slightly higher than in Theorem 2, and unlike
Theorem 2, no matching lower bound is shown.

Theorem 3 For any p, n ∈ N (with p ≥ 2 and n ≥ 2p+1), there

exists an n-profile P such that for any order O over {x1, . . . ,xp},

SSPO(P ) = 11 · · · 1p, and any V ∈ P ranks 11 · · · 1p somewhere

in the bottom p + 2 positions.

Proof of Theorem 3: We first prove a lemma.

Lemma 5 For any c ∈ X , C ⊂ X such that c 6∈ C, and any

n ∈ N (n ≥ 2m = 2p+1), there exists an n-profile that satisfies the

following conditions. Let F = X \ (C ∪ {c}).

• For any c′ ∈ C, c defeats c′ in their pairwise election.

• For any c′ ∈ C and d ∈ F , c′ defeats d in their pairwise

election.

• For any V ∈ P , c is ranked somewhere in the bottom |C| + 2
positions.

Proof of Lemma 5: We let P = (V1, . . . , Vn) be the profile de-
fined as follows. Let F1, . . . , F⌊n/2⌋+1 be a partition of F such

7Of course, for any ordering of the issues, there exists a profile that
results in the paradoxes in Theorem 2; but this does not directly
imply that there exists a single profile that works for all orderings
over the issues.



that for any j ≤ ⌊n/2⌋ + 1, |Fj | ≤ ⌈2m/n⌉ = 1. For any
j ≤ ⌊n/2⌋ + 1, we let Vj = [(F \ Fj) ≻ c ≻ C ≻ Fj ]. For
any ⌊n/2⌋ + 2 ≤ j ≤ n, we let Vj = [C ≻ F ≻ c]. It is easy to
check that P satisfies all conditions in the lemma. 2

Now, let c = 11 · · · 1p and C = {0112 · · · 1p, 110213 · · · 1p, . . . ,
11 · · · 1p−10p}. By Lemma 5, there exists a profile P such that c
beats any alternative in C in pairwise elections, any alternative in C
beats any alternative in X \ (C ∪{c}) in pairwise elections, and c is
ranked somewhere in the bottom p + 2 positions. This is the profile
that we will use to prove the paradox.

Without loss of generality , we assume that O = x1 > x2 · · · >
xp. (This is without loss of generality because all issues have been
treated symmetrically so far.) c beats 11 · · · 1p−10p in the first
round; c will meet 11 · · · 1p−20p−11p in the next pairwise elec-
tion, because 11 · · · 1p−20p−11p beats every other alternative in
that branch (they are all in F ), and c will win; and so on. It fol-
lows that c = SSPO(P ). Moreover, all voters rank c in the bottom
p + 2 positions.
(End of proof for Theorem 3.) 2

6. MULTIPLE-ELECTION PARADOXES FOR

SSP WITH RESTRICTIONS ON PREFER-

ENCES
The paradoxes exhibited so far placed no restriction on the vot-

ers’ preferences. While SSP is perfectly well defined for any pref-
erences that the voters may have over the alternatives, we may yet
wonder what happens if the voters’ preferences over alternatives
are restricted in a way that is natural with respect to the multi-issue
structure of the setting. In particular, we may wonder if paradoxes
are avoided by such restrictions. It is well known that natural re-
strictions on preferences sometimes lead to much more positive re-
sults in social choice and mechanism design—for example, single-
peaked preferences allow for good strategy-proof mechanisms [4,
19].

In this section, we study the MSI for SSPO for the following
three cases: (1) voters’ preferences are separable; (2) voters’ prefer-
ences are O-lexicographic; and (3) voters’ preferences are O-legal.
For case (1), we show a mild paradox (and that this is effectively
the strongest paradox that can be obtained); for case (2), we show a
positive result; for case (3), we show a paradox that is nearly as bad
as the unrestricted case.

Theorem 4 For any n ≥ 2p, when the profile is separable, the MSI

for SSPO is between 2⌈p/2⌉ and 2⌊p/2⌋+1.

That is, the MSI of SSPO when votes are separable is Θ(
√

m).
We still have that limm→∞ Θ(

√
m)/m = 0, so in that sense this is

still a paradox. However, its convergence rate to 0 is much slower
than for Θ(log m)/m, which corresponds to the convergence rate
for the earlier paradoxes.

Theorem 5 For any p ∈ N (p ≥ 2) and any n ≥ 5, when the

profile is O-lexicographic, MSI(SSPO) = 3·2p−2+1. Moreover,

SSPO(P ) is ranked somewhere in the top 2p−1 positions in at least

n/2 votes.

Naturally limm→∞(3m/4+1)/m = 3/4, so in that sense there
is no paradox when votes are O-lexicographic.

Under the previous two restrictions (separability and
O-lexicographicity), SSPO coincides with Seq(maj, . . . , maj)
(by Corollary 1 and Proposition 3, respectively). Therefore, The-
orems 4 and 5 also apply to sequential voting rules as defined in
[15]; furthermore, Theorem 4 also applies to seat-by-seat voting
[3].

Finally, we study the MSI for SSPO when the profile is O-legal.
Theorem 6 shows that it is nearly as bad as the unrestricted case
(Theorem 2). The proof of Theorem 6 is the most involved proof
in the paper and is omitted due to the space constraint. The idea of
the proof is similar to that of the proof for Theorem 2, but now we
cannot apply Lemma 2, because O-legality must be preserved. We
start with a simpler result that shows the idea of the construction.

Claim 1 There exists a way to break ties in SSPO such that the

following is true. Let SSP ′
O be the rule corresponding to SSPO

plus the tiebreaking mechanism. For any p ∈ N, there exists an

O-legal profile that consists of two votes, such that in one of the

two votes, no more than ⌈p/2⌉ alternatives are ranked lower than

the winner SSP ′
O(P ); and in the other vote, no more than ⌊p/2⌋

alternatives are ranked lower than SSP ′
O(P ).

We emphasize that, unlike any of our other results, Claim 1 is
based on a specific tie-breaking mechanism. The next theorem stud-
ies the more general and complicated case in which n can be either
odd or even, and the winner does not depend on the tie-breaking
mechanism. That is, there are no ties in the election. The situation
is almost the same as in Theorem 2.

Theorem 6 For any p, n ∈ N with n ≥ 2p2 + 2p + 1, there exists

an O-legal profile such that in each vote, no more than ⌈p/2⌉+4 al-

ternatives are ranked lower than SSPO(P ). Moreover, SSPO(P )
is Pareto-dominated by at least 2p − 4p2 alternatives.

Of course, the lower bound on the MSI from Theorem 2 still
applies when the profile is O-legal, so together with Theorem 6
this proves that the MSI for SSPO when the profile is O-legal is
Θ(log m), just as in the unrestricted case.

7. CONCLUSION AND FUTURE WORK
Combinatorial voting settings, in which the space of all alterna-

tives is exponential in size, constitute an important area in which
techniques from computer science can be fruitfully applied. Per-
haps the simplest and most natural combinatorial voting setting is
that of multi-issue domains, where the space of alternatives is the
Cartesian product of the local domains. In practice, common deci-
sions on multiple issues are often reached by voting on the issues
sequentially. In this paper, we considered a complete-information
game-theoretic analysis of sequential voting on binary issues, which
we called strategic sequential voting. Specifically, given that voters
have complete information about each other’s preferences and their
preferences are strict, the game can be solved by a natural backward
induction process (WSDSBI), which leads to a unique solution. We
showed that under some conditions on the preferences, this process
leads to the same outcome as the truthful sequential voting, but in
general it can result in very different outcomes. We analyzed the
effect of changing the order over the issues that voters vote on and
showed that, in some elections, every alternative can be made a
winner by voting according to an appropriate order over the issues.

Most significantly, we showed that strategic sequential voting is
prone to multiple-election paradoxes; to do so, we introduced a con-
cept called minimax satisfaction index, which measures the degree
to which at least one voter is made happy by the outcome of the
election. We showed that the minimax satisfaction index for strate-
gic sequential voting is exponentially small, which means that there
exists a profile for which the winner is ranked almost in the bottom
positions in all votes; even worse, the winner is Pareto-dominated
by almost every other alternative. We showed that changing the
order of the issues in sequential voting cannot completely avoid
the paradoxes. These negative results indicate that the solution of



the sequential game can be extremely undesirable for every voter.
We also showed that multiple-election paradoxes can be avoided
to some extent by restricting voters’ preferences to be separable or
lexicographic, but the paradoxes still exist when the voters’ prefer-
ences are O-legal.

There are many topics for future research. For example, is there
any criterion on the selection of the order over the issues? Per-
haps more importantly, how can we get around the multiple-election
paradoxes in sequential voting games? For example, Theorem 5
shows that if the voters’ preferences are lexicographic, then we can
avoid the paradoxes. It is not clear if there are other ways to avoid
the paradoxes (paradoxes occur even if we restrict voters’ prefer-
ences to be separable or O-legal, as shown in Theorem 4 and The-
orem 6). Another approach is to consider other, non-sequential vot-
ing procedures for multi-issue domains. What are good examples of
such procedures? Will these avoid paradoxes? What is the effect of
strategic behavior for such procedures? How should we even define
“strategic behavior” for such procedures, or for sequential voting
with non-binary issues, or for voting rules in general?8 How can we
extend these results to incomplete-information settings?9 Also, be-
yond proving paradoxes for individual rules, is it possible to show
a general impossibility result that shows that under certain minimal
conditions, paradoxes cannot be avoided?10
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