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Abstract. We define a family of rules for dividing m indivisible
goods among agents, parameterized by a scoring vector and a social
welfare aggregation function. We assume that agents’ preferences
over sets of goods are additive, but that the input is ordinal: each agent
simply ranks single goods. Similarly to (positional) scoring rules in
voting, a scoring vector s = (s1, . . . ,sm) consists of m nonincreasing
nonnegative weights, where si is the score of a good assigned to an
agent who ranks it in position i. The global score of an allocation
for an agent is the sum of the scores of the goods assigned to her.
The social welfare of an allocation is the aggregation of the scores of
all agents, for some aggregation function � such as, typically, + or
min. The rule associated with s and � maps a profile to (one of) the
allocation(s) maximizing social welfare. After defining this family of
rules, and focusing on some key examples, we investigate some of
the social-choice-theoretic properties of this family of rules, such as
various kinds of monotonicity, separability, envy-freeness, and Pareto
efficiency.

1 INTRODUCTION

Fair division of a divisible good has put forth an important literature
about specific procedures, either centralized [14] or decentralized [8].
Fair division of a set of indivisible goods has, perhaps surprisingly,
been mainly addressed by looking for allocations that satisfy a series
of properties (such as equity or envy-freeness) and less often by
defining specific allocation rules. A notable exception is a series of
papers that assume that each agent values each good by a positive
number, the utility of an agent is the sum of the values of the goods
assigned to her, and the resulting allocation maximizes social welfare;
in particular, the Santa Claus problem [2] considers egalitarian social
welfare, which maximizes the utility of the least happy agent. A
problem with these rules is that they strongly rely on the assumption
that the input is numerical. Now, as widely discussed in social choice,
numerical inputs have the strong disadvantage that they suppose that
interpersonal preferences are comparable. Moreover, from a practical
designer point of view, eliciting numerical preferences is not easy: in
contexts where money does not play any role, agents often feel more
at ease expressing rankings than numerical utilities.

These are the main reasons why social choice – at least its subfield
focusing on voting – usually assumes that preferences are expressed
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ordinally. Surprisingly, while voting rules defined from ordinal prefer-
ences have been addressed in hundreds of research articles, we can
find only a few such papers in fair division (with the notable exception
of matching, discussed below). Brams, Edelman, and Fishburn [5]
assume that agents rank single goods and have additively separable
preferences; they define a Borda-optimal allocation to be one that
maximizes egalitarian social welfare, where the utility of an agent is
the sum of the Borda scores of the objects assigned to her, and where
the Borda score of object gi for agent j ranges from 1 (when gi is
j’s least preferred object) to m (when gi is j’s most preferred object).
Unlike Brams et al. [5], Herreiner and Puppe [13] assume that agents
should express rankings over subsets of goods, which, in the worst
case, requires agents to express an exponentially large input, which
should be avoided for obvious reasons.

One setting where it is common to use ordinal inputs is two-sided
matching. But there, only one item is assigned to each agent, making
this a rather different problem. This remark allows us to see fair
division rules defined from ordinal inputs as a one-to-many extension
of matching mechanisms. Examples of practical situations when one
has to assign not a single, but several (sometimes many) items to
each agent are common, and expressing quantitative utilities is not
always feasible in such cases: composition of sport teams, divorce
settlement, exploitation of Earth observation satellites (see [8] for
more examples).

We start by generalizing Borda-optimal allocations [5] to arbitrary
scoring vectors and aggregation functions. Beyond Borda, the scoring
vectors we consider are k-approval (the first k objects get score 1
and all others get 0), lexicographicity (an item ranked in position
k counts more than the sum of all objects ranked in positions k+ 1
to n), and quasi-indifference (for short, QI: all objects have roughly
the same score, up to small differences). As for aggregation functions,
we focus on utilitarianism (� = +) and egalitarianism (� = min, as
well as � = leximin, which in a strict sense is not an aggregation
function). In Section 2, we define these allocation rules (we consider
both resolute rules and irresolute rules), and focus on a few particular
cases. Each of the following sections is devoted to a property or a
class of properties. While the properties of voting rules have been
studied extensively, this is much less the case for fair allocation of
indivisible goods. Perhaps the most closely related research is [11]
who study the axiomatic property of multiwinner voting rules, with
a focus on positional scoring rules, while the relationship between
multiwinner rules and resource allocation is addressed in [16].

In Section 3, we consider separability, which, roughly, says that
if we partition the set of agents into two subsets, A1 and A2, where
Ai collectively gets the set Gi of goods under an optimal allocation
π , and if we then consider the allocation problem restricted to Ai and
Gi, then the agents in Ai will get the same set Gi of goods as in π .
Section 4 considers monotonicity: if agent i gets good g under the

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-75

75



optimal allocation π , and if the rank of g is raised in i’s ranking with
everything else being unchanged, will i still get g? In Section 5, we
look at two other forms of monotonicity, named object monotonicity
(if some good is added, will the new allocation make all agents at
least as happy as before?) and duplication monotonicity (which is also
related to “cloning” agents). Finally, in Section 6, we consider various
consistency and compatibility properties.

2 SCORING ALLOCATION RULES

Let N = {1, . . . ,n} be a set of agents and G = {g1, . . . ,gm} a set of
indivisible goods (we will use the terms good, item, and object as
synonyms). An allocation is a partition π = (π1, . . . ,πn), where πi ⊆
G is the bundle of goods assigned to agent i. We say that allocation π
gives gi to j if gi ∈ π j .

In the general case, to compute an optimal allocation (for some
notion of optimality) we would need, for every agent, her ranking
over all subsets of G. As listing all (or a significant part of) the subsets
of G would be infeasible in practice, we now make a crucial assump-
tion: agents rank only single objects. This assumption is not without
loss of generality, and has important consequences; in particular, it
will not be possible for agents to express preferential dependencies
between objects. Under this assumption, a singleton-based profile
P = (>1, . . . ,>n) is a collection of n rankings (i.e. linear orders)
over G, and a (singleton-based) allocation rule (respectively, an allo-
cation correspondence) maps any profile to an allocation (respectively,
a nonempty subset of allocations). For any ranking > (respectively,
profile P) over G, and any subset G′ ⊂ G, we will write >|G′ (re-
spectively, P|G′ ) to denote the restriction of > (respectively, P) to G′.
Similarly, we denote the restriction of P to any subset N′ ⊂ N by P|N ′ .

We now define a family of allocation rules that more or less corre-
sponds to the family of scoring rules in voting (see, e.g., [6]).

Definition 1 A scoring vector is a vector s = (s1, . . . ,sm) of real
numbers such that s1 ≥ ·· · ≥ sm ≥ 0 and s1 > 0. Given a preference
ranking > over G and g ∈ G, let rank(g,>) ∈ {1, . . . ,m} denote the
rank of g under >. The utility function over 2G induced by the ranking
> on G and the scoring vector s is for each bundle X ⊆ G defined by
u>,s(X) = ∑g∈X srank(g,>).

A strictly decreasing scoring vector s satisfies si > si+1 for each
i < m. A scoring vector is only defined for a fixed number of objects.
To deal with a variable number of objects, we introduce the notion of
extended scoring vector, as a function mapping each integer m to a
scoring vector s(m) of m elements. We consider the following specific
extended scoring vectors:

• Borda scoring: borda = m �→ (m,m−1, . . . ,1),6

• lexicographic scoring: lex = m �→ (2m−1,2m−2, . . . ,1),
• quasi-indifference for some extended scoring vector s:

s-qi = m �→ (1+ s1(m)/M, . . . ,1+ sm(m)/M), with
M 	 m ·max{s1(m), . . . ,sm(m)}= m · s1(m), where M is an arbi-
trary and large integer.

• k-approval: k-app = m �→ (1, . . . ,1,0, . . . ,0), where the first k en-
tries are ones and all remaining entries are zero.

6 Note that the usual definition of the Borda scoring vector in voting is (m−
1,m−2, . . . ,1,0). Here, together with [5] we fix the score of the bottom-rank
object to 1, meaning that getting it is better than nothing. For scoring voting
rules, a translation of the scoring vector has obviously no impact on the
winner(s); for allocation rules, however, it does. See Example 2.

In the following, we will often abuse notation and use scoring vectors
and extended scoring vectors interchangeably, and omit the parameter
m when the context is clear.

Note that quasi-indifference makes sense for settings where all
agents should get the same number of objects (plus/minus one). An
example of quasi-indifference scoring vector would be the one pro-
posed by Bouveret and Lang [4], namely borda-qi = (1+m/M,1+
(m−1)/M, . . . ,1+ 1/M).

For example, let G = {a,b,c} be a set of three goods and let two
agents have the following preference profile: (a >1 b >1 c, b >2
c >2 a). Let π = ({a},{b,c}). Then, for the Borda scoring vector,
agent 1’s bundle {a} has value 3 and agent 2’s bundle {b,c} has value
3+2 = 5.

It is important to note that we do not claim that these numbers
actually coincide, or are even close to, the agents’ actual utilities
(although, in some specific domains, scoring vectors could be learned
from experimental data). But this is the price to pay for defining
rules from an ordinal input (see the Introduction for the benefits of
ordinal inputs). This tradeoff is very common in voting theory: the
well-studied family of scoring rules in voting theory (including the
Borda rule) proceeds exactly the same way; voters rank alternatives,
and the ranks are then mapped to scores; the winning alternatives
are those that maximize the sum of scores. If we aim at maximizing
actual social welfare, then we have to elicit the voters’ (numerical)
utilities rather than just asking them to rank objects. Caragiannis and
Procaccia [9] analyze this ordinal-cardinal tradeoff in voting and show
that the induced distortion is generally quite low. A reviewer pointed
out that this approach also can be seen as optimizing the external
perception of fairness or welfare.

The individual utilities are then aggregated using a monotonic,
symmetric aggregation function that is to be maximized. The three
we will use here are among the most obvious ones: utilitarianism
(sum) and two versions of egalitarianism (min and leximin). Leximin
refers to the (strict) lexicographic preorder over utility vectors whose
components have been preordered nondecreasingly. Formally, for
x = (x1, . . . ,xn), let x′ = (x′1, . . . ,x

′
n) denote some vector that results

from x by rearranging the components of x nondecreasingly, and
define x <leximin y if and only if there is some i, 0≤ i < n, such that
x′j = y′j for all j, 1 ≤ j ≤ i, and x′i+1 < y′i+1, and x ≤leximin y means
x <leximin y or x = y. Let leximin denote the maximum on a set of
utility vectors according to ≤leximin. For each scoring vector s, define
three allocation correspondences:

• Fs,+(P) = argmaxπ ∑1≤i≤n u>i,s(πi),
• Fs,min(P) = argmaxπ min1≤i≤n{u>i,s(πi)}, and
• Fs,leximin(P) = argleximinπ (u>1,s(π1), . . . ,u>n,s(πn)),

where P = (>1, . . . ,>n) is a profile and π = (π1, . . . ,πn) an alloca-
tion. Whenever we write Fs,�, we mean any one of Fs,+, Fs,min, and
Fs,leximin.

Example 2 For n = 3 agents and m = 4 goods, G = {a,b,c,d},
let P = (c >1 b >1 a >1 d, c >2 a >2 b >2 d, b >3 d >3 c >3
a) = (cbad, cabd, bdca). Then, F(4,3,2,1),leximin(P) = {(c,ad,b)}
and F(3,2,1,0),leximin(P) = {(c,a,bd)}. (We omit stating “>i” explic-
itly in the preferences, and parentheses and commas in allocations.)

Tie-breaking: Similarly as in voting theory, an allocation rule is
defined as the composition of an allocation correspondence and a
tie-breaking mechanism, which breaks ties between allocations. One
particular type of deterministic tie-breaking mechanism consists in
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defining it from a linear order >T over all allocations,7 or, when N
and G are not both fixed, a collection of linear orders >N,G

T (which
we still denote by >T ) for all possible sets of agents and goods, N
and G. We write π ≥T π ′ for (π >T π ′ or π = π ′). As in voting,
if the output of a correspondence F(P) is not a singleton, then the
most prioritary allocation in F(P) is selected: FT (P) = (T ◦F)(P) =
max(>T ,F(P)).

We do not make any assumption as to how this tie-breaking relation
is defined; our results hold independently of that.

One may also wonder whether it is possible to define an anony-
mous tie-breaking mechanism, as is common in voting. Formally,
a tie-breaking mechanism >T is anonymous if and only if for any
permutation σ over N and any pair of allocations (π,π ′), we have
π >T π ′ ⇔ σ(π) >T σ(π ′), where σ(π) denotes the version of π
where all shares have been permuted according to σ . In fact, the an-
swer is negative (we omit the easy proof): There is no deterministic
anonymous tie-breaking mechanism.

The properties we study in the paper are primarily defined for
deterministic rules. Some of them will be immediately generalizable
for correspondences, and in that case we’ll also discuss whether or
not they hold for correspondences. However, others do not generalize
in a straightforward way to correspondences.8 For these properties,
we will leave the study of whether they hold for scoring resource
allocation correspondences for further research.

3 SEPARABILITY

Slightly reformulating Thomson [17], an allocation rule is consistent
(we prefer to choose the terminology “separable”) if for any alloca-
tion problem and any allocation π selected by the rule, the allocation
rule chooses the same allocation regardless of whether π is restricted
to a subgroup of agents or when reapplying the rule to a “reduced
problem” obtained by imagining the departure of any subgroup of
the agents with their share. As the definition generalizes easily to
allocation correspondences, we define it for both.

Definition 3 Let P = (>1, . . . ,>n) be a profile over a set G of
goods and consider any partition of the set N of agents into two
sets, N1 and N2, i.e., N1 ∪N2 = {1, . . . ,n} and N1 ∩N2 = /0. Let
π = (π1, . . . ,πn) and for j ∈ {1,2}, let G j =

⋃
i∈N j πi. An allocation

rule F satisfies separability if for each P and π , F(P|N1,G1) = π1 and
F(P|N2,G2) = π2, where π i denotes the restriction of π to Ni and Gi.
An allocation correspondence F satisfies separability if for each P
and π , π ∈ F(P) if and only if π1 ∈ F(P|N1,G1) and π2 ∈ F(P|N2,G2).
Also, we say that a tie-breaking priority T is separable if π1 ≥T π ′1
and π2 ≥T π ′2 implies π ≥T π ′.

Unfortunately, it looks like almost all our rules violate separability.
We give a counterexample that works for many choices of (s,�).

Example 4 Let m = 9, n = 3, � ∈ {+,min, leximin}, and s be
a strictly decreasing vector. Consider the preference profile P =
(g1g4g3g6g8g7g2g5g9, g2g5g1g8g7g3g4g6g9, g3g6g1g2g9g4g5g7g8).
Fs,�(P) consists of the unique allocation π =

7 This choice comes with a loss of generality, as there are tie-breaking mecha-
nisms that are not defined this way (we thank a reviewer for this remark).
Also, we rule out the possibility of randomly breaking ties.

8 This is the case for all properties expressing that an agent prefers a set
of allocations to another set of allocations (and applies, e.g., to object
monotonicity); for these properties there is not a unique way of generalizing
the property, unlike in voting where this is well-known, e.g., for strategy-
proofness.

(g1g4g8, g2g5g7, g3g6g9) for � ∈ {min, leximin}, and Fs,+(P)
consists of the unique allocation π ′ = (g1g4,g2g5g7g8,g3g6g9). The
restriction of P to agents {1,2} and goods {g1,g2,g4,g5,g7,g8}
is P′ = (g1g4g8g7g2g5, g2g5g1g8g7g4). For � ∈ {min, leximin},
Fs,�(P′) consists of the unique allocation (g1g4g7, g2g5g8) �=
(g1g4g8, g2g5g7), and Fs,+(P′) consists of the unique allocation
(g1g4g7g8,g2g5) �= (g1g4,g2g5g7g8).

We conjecture that (perhaps under mild conditions on s and �), no
positional scoring allocation rule is separable.

4 MONOTONICITY

The monotonicity properties below state that if an agent ranks a
received good higher, all else being equal, then this agent does not
lose this good (monotonicity) or still receives the same bundle (global
monotonicity).

Definition 5 An allocation rule F is monotonic if for every profile
P, agent i, and good g, if F(P) gives g to i, then for every profile
P′ resulting from P by agent i ranking g higher, leaving everything
else (i.e., the relative ranks of all other objects in i’s ranking and the
rankings of all other agents) unchanged, it holds that F(P′) gives g to
i. F is globally monotonic if for every profile P, agent i, and good g,
if F(P) gives g to i, then for every profile P′ resulting from P by agent
i ranking g higher, all else being equal, we have F(P′)i = F(P)i.

Clearly, global monotonicity implies monotonicity. These defini-
tions extend to correspondences, but not in a unique way; therefore,
we do not consider these extensions in the paper.

Theorem 6 FT
s,� is monotonic for every scoring vector s and aggre-

gation function � (and tie-breaking priority T ).

Proof. For notational convenience, we give the proof only for
� = +, but it extends in a straightforward way to any aggregation
function. Let P = (>1, . . . ,>n) be a profile over a set G of goods
with g ∈G and let P′ = (>′1,>2, . . . ,>n) be a modified profile, where
w.l.o.g. the first agent modifies her preferences such that g is ranked
higher in >′1 than in >1, leaving everything else unchanged.

Let FT
s,+(P) = π = (π1, . . . ,πn) and let g∈ π1. Let FT

s,+(P
′) = π ′ =

(π ′1, . . . ,π
′
n). For a contradiction, suppose that g �∈ π ′1. For every good

g′ �= g, the rank of g′ in >′1 is either the same as or below the rank
of g′ in >1, and since g �∈ π ′1, we have u>′1,s(π

′
1) ≤ u>1,s(π ′1). By

monotonicity of utilitarian aggregation, this implies

u′(π ′) = u>′1,s(π
′
1)+

n

∑
i=2

u>i,s(π
′
i )≤

n

∑
i=1

u>i,s(π
′
i ) = u(π ′), (1)

where u′ is the social welfare with respect to the modified profile
P′. Now, because >′1 has been obtained by moving g upwards in >1,
we have u>1,s(π1)≤ u>′1,s(π1). Again by monotonicity of utilitarian
aggregation, this implies

u′(π) = u>′1,s(π1)+
n

∑
i=2

u>i,s(πi)≥
n

∑
i=1

u>i,s(πi) = u(π). (2)

Since π ∈ FT
s,+(P) and π ′ ∈ FT

s,+(P
′), we have u(π) ≥ u(π ′) and

u′(π ′) ≥ u′(π), which together with (1) and (2) implies u′(π) =
u(π) = u(π ′) = u′(π ′). Now, u(π) = u(π ′) and FT

s,+(P) = π imply
that π >T π ′. This, together with u′(π) = u′(π ′), is in contradiction
with FT

s,+(P
′) = π ′. �
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This proof does not establish global monotonicity of FT
s,�; indeed,

π = FT
s,�(P) does not imply π = FT

s,�(P
′) in general. We have the

following result (the proof of which is omitted due to lack of space).

Proposition 7 Let T be a separable tie-breaking priority. For each
m≥ 3 and for each strictly decreasing scoring vector s = (s1, . . . ,sm),
allocation rule FT

s,+ is not globally monotonic.

In order to show that FT
s,min and FT

s,leximin do not satisfy global
monotonicity, the approach of computing a winning allocation and
showing that this allocation is not optimal for the modified profile
seems to fail. Instead, we apply a utility-bounding approach. Let
OPT(P) denote the maximum egalitarian social welfare of a given
preference profile P.

Theorem 8 For each m≥ 7 and for each strictly decreasing scoring
vector s = (s1, . . . ,sm) satisfying s1− s2 + s3− s4 > sm, allocation
rules FT

s,min and FT
s,leximin do not satisfy global monotonicity.

Proof. Consider the following two profiles of two agents: P =
(g1 >1 g2 >1 · · · >1 gm, g1 >2 g2 >2 · · · >2 gm) and P′ = (gm >′1
g1 >

′
1 · · ·>′1 gm−1, g1 >

′
2 g2 >

′
2 · · ·>′2 gm). Let π = Fs,min(P)T and,

without loss of generality, let agent 1 be the agent that receives object
gm, that is, gm ∈ π1. Thus, profile P′ is a valid change of P with respect
to global monotonicity. We show that FT

s,min(P
′) �= π . For the sake

of contradiction, suppose that π = FT
s,min(P

′). Then, for i ∈ {1,2},
we have u>′i,s(πi) ≥ maxπ̂ min1≤i≤2{u>′i,s(π̂i)} = OPT(P′), where
we maximize over all possible allocations π̂ . Note that agent 2’s
preference is the same in P and P′, i.e., >2=>′2. Hence, u>′2,s(π2) =
u>2,s(π2). We distinguish between an even and an odd number of
objects.

For even m: We give an allocation πu that implies a lower bound
for OPT(P′). Assign in P′ even-numbered objects to agent 1 and odd-
numbered objects to agent 2. It is clear that u>′1,s(π

u
1 ) = u>′2,s(π

u
2 ) =

∑i odd si. Thus, u>′2,s(π2) = u>2,s(π2) ≥ OPT(P′) ≥ ∑i odd si. Be-
cause P is a profile of identical preferences, we have the invariant
u>1,s(π ′1) + u>2,s(π ′2) = ∑i si for every allocation π ′. This implies
u>1,s(π1) ≤ (∑i si)− u>2,s(π2) = ∑i even si. Now we give a lower-
bounding allocation π� for OPT(P). Assign in P the 1st (top-ranked),
5th, 9th, etc. and the 4th, 8th, etc. object to agent 1. All remaining
objects go to agent 2. Then we have u>1,s(π�

1) = (s1 + s5 + s9 + · · ·+
sm−1−2I[4|m]+s4+s8+s12+ · · ·+sm−2(1−I[4|m]))>∑i even si because
s1 > s2 > · · ·> sm, where I[4 |m] is 1 if m is divisible by 4, and other-
wise 0. For u>2,s(π�

2) the argument is analogous if m≥ 4. Since both
agents realize more utility in π� than agent 1 in π , π is not optimal
for P (contradiction).

For odd m: Our lower-bounding allocation π̃u for OPT(P′) is
similar to the above except for assigning object m to agent 1.
We need to consider only agent 2 because this agent realizes less
utility: u>′2,s(π̃

u
2 ) = (∑i odd si)− sm. Assuming that π is optimal

for P′ as well, we have u>2,s(π2) ≥ (∑i odd si)− sm which gives
u>1,s(π1) ≤ (∑i even si) + sm. For a lower bound of OPT(P), we
specify π̃� as follows: Agent 1 always gets the 1st and 3rd object
and starting with the 6th object every even-numbered object that
follows. Agent 2 receives all remaining objects. Thus u>1,s(π̃�

1) =
s1 + s3 + s6 + s8 + s10 + · · ·+ sm−1 > (∑i even si)+ sm, which holds if
and only if s1 + s3 > s2 + s4 + sm. For agent 2, we have u>2,s(π̃�

2) =
s2 + s4 + s7 + · · ·+ sm > ∑i even si because of s1 > s2 > · · · > sm, if
m≥ 7. It follows that π cannot be optimal for P (contradiction).

These results hold for FT
s,leximin as well because we take, without

loss of generality, π = FT
s,leximin(P) with gm ∈ π1 and show that it is

not even optimal under egalitarian social welfare in P′, and hence
cannot be optimal under leximin. �

Corollary 9 For each scoring vector s ∈ {borda, lex} for m ≥ 7
goods, allocation rules FT

s,min and FT
s,leximin do not satisfy global

monotonicity. In addition, for each extended scoring vector s sat-
isfying s1(m)> s2(m)> · · ·> sm(m) for even m≥ 4, allocation rules
FT

s-qi,min and FT
s-qi,leximin do not satisfy global monotonicity either.

5 OBJECT AND DUPLICATION
MONOTONICITY AND CLONING

Object monotonicity is a dynamic property where additional goods
are to be distributed. This means that when new objects are added,
no agent is worse off afterwards. In order to define this notion, since
some properties need comparability of bundles of goods, we lift agent
i’s linear order >i to a strict partial order �i over 2G by requiring
monotonicity (A⊃ B =⇒ A�i B) and pairwise dominance (for all
A⊆ G�{x,y}, A∪{x} �i A∪{y} if x >i y). For strict partial orders
we then follow the approach taken by Brams and King [7], Brams,
Edelman, and Fishburn [5], and Bouveret, Endriss, and Lang [3]:
We distinguish between properties holding possibly (i.e., for some
completion of the partial preferences) and necessarily (i.e., for all
completions).

Definition 10 Let � be a strict partial order over 2G. We say A is
possibly preferred to B, A �pos B, if there exists a linear order �∗
refining � such that A�∗ B. Analogously, A is necessarily preferred
to B, A�nec B, if for all linear orders �∗ refining � we have A�∗ B.
Allowing indifference, we extend �pos to �pos and �nec to �nec.

Now, we are ready to define possible and necessary object mono-
tonicity. These properties are defined for deterministic rules only.

Definition 11 Let P = (>1, . . . ,>n) be a profile over the set G of
goods and let P′= (>′1, . . . ,>

′
n) be a profile that is obtained by adding

one more good g to the set of goods, and such that the restriction
of P′ to G is P. An allocation rule F satisfies possible (respectively,
necessary) object monotonicity if for all P over G, P′ such that P
is the restriction of P′ over G, and all i, we have F(P′)i �pos

i F(P)i
(respectively, F(P′)i �nec

i F(P)i).

Proposition 12 For all tie-breaking priorities T , FT
s,+ satisfies possi-

ble object monotonicity for all scoring vectors s for n = 2 agents, yet
does not do so for all n≥ 3 and strictly decreasing scoring vectors s.

Proof. We first give a counterexample for n = 3; it extends eas-
ily to more agents. Let m = 5, G = {a,b,c,d,e, f ,g} and P =
(abcde, bcdea, abcde). As Fs,+(P) = {(a, bcde, /0),( /0, bcde, a)},
w.l.o.g., let FT

s,+(P) = (a, bcde, /0). Now, add two more goods, f
and g, to G and let P′ = (abcde f g, bcd f gea, f gabcde). We have
FT

s,+(P
′) = (ae, bcd, f g): we see that FT

s,+(P
′)2 ��pos

2 FT
s,+(P)2.

For n = 2, let P be a two-agent profile, and P′ a new one obtained
by adding one more good g. Let rankQ

>i
(g j) denote the rank of g j

under >i with respect to profile Q. Assume that FT
s,+(P) = (π1,π2)

and FT
s,+(P

′) = (π ′1,π
′
2). W.l.o.g., we can assume that rankP′

>1
(g) >

rankP′
>2
(g) = k. It is easy to see that g and every object in π2

that has rank less than k will be added to π ′2. This implies that
it does not matter if agent 2 gets more goods of ranking greater
than k or not, π ′2 �pos

2 π2. We now prove that π ′1 ⊇ π1. First, it is
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obvious that π ′1 contains objects belonging to π1 that are ranked
above g. Thus, it suffices to prove that, for every g∗ ∈ π1 such
that rankP′

>1
(g∗)> rankP′

>1
(g), it holds that rankP′

>1
(g∗)≤ rankP′

>2
(g∗),

and thus g∗ ∈ π ′1. Suppose that rankP′
>2
(g∗) < rankP′

>2
(g). It follows

rankP
>2
(g∗) = rankP′

>2
(g∗) < rankP′

>2
(g) < rankP′

>1
(g) < rankP′

>1
(g∗).

As rankP
>1
(g∗)+1= rankP′

>1
(g∗), it follows rankP

>1
(g∗)> rankP

>2
(g∗)

and this is a contradiction with the fact that g∗ ∈ π1. Therefore,
rankP′

>2
(g∗)> rankP′

>2
(g) and this implies rankP′

>2
(g∗) = rankP

>2
(g∗)+

1≥ rankP
>1
(g∗)+1 = rankP′

>1
(g∗). This completes the proof. �

Necessary object monotonicity might not be true even with only
two agents for FT

+,s for some tie-breaking mechanism T . This can be
shown by a counterexample (omitted due to lack of space).

Monotonicity in agents has a natural translation in terms of voting
power: to give more voting power to a voter, one can just allow her
to vote twice (or more). In other words: duplicating a voter will
give more weight to her ballot, and give her a higher chance to be
heard. This property has a natural translation to the resource allocation
context: informally, two agents having the same preferences will get
a better share together than if they were only one participating in the
allocation process. More formally:

Definition 13 Let P = (>1, . . . ,>n) be a profile over G and P′ =
(>1, . . . ,>n,>n+1) be its extension to n+1 agents, where >n+1=>n.
An allocation rule F satisfies possible duplication monotonicity if
F(P′)n∪F(P′)n+1 �pos

i F(P)n; and it satisfies necessary duplication
monotonicity if F(P′)n∪F(P′)n+1 �nec

i F(P)n.

It turns out that several scoring allocation rules satisfy at least
possible duplication, provided that we use “duplication-compatible”
tie-breaking rules, namely, rules T that satisfy the following property:
let π and π ′ be two allocations on (>1, . . . ,>n,>n+1) (n and n+ 1
being a duplicated agent as above); then π >n+1

T π ′ ⇒ (π1, . . . ,πn∪
πn+1)>

n
T (π ′1, . . . ,π

′
n∪π ′n+1). For such tie-breaking rules we have:

Theorem 14 For each scoring vector s, Fs,+ satisfies possible and
necessary duplication monotonicity, and Fs-qi,leximin and Flex,leximin
both satisfy possible duplication monotonicity.

Proof. For Fs,+, each object goes to who ranks it best. Every object
that goes to agent n in the first profile will go to either n or n+1 in the
second one (this is also guaranteed by the duplication-compatible tie-
breking rule in case of ties with other agents). n and its two duplicated
versions will thus get exactly the same objects, hence the result.

For Fs-qi,leximin, each agent will get at least between �m/n� and
�m/n�+1 objects. Since 2 · �m/(n+1)�> �m/n�+1, the two duplicated
agents n and n+ 1 will receive strictly more objects than original
agent n, hence proving the possible duplication monotonicity.

For Flex,leximin, every optimal allocation is such that the minimum
among every agent i of the rank f (i) of the first object received by
i is maximal. Moreover, if i is not among the agents whose f (i) is
minimal, then agent i only receives one object (and is satisfied with
it). If original agent n is in this case, the duplicated agents n and n+1
will together be possibly better off with their new share, since they
will either receive at least one object each if there are enough objects,
or only one of them will receive the same object as original agent n if
this is not the case. If original agent n is among the agents whose f (i)
is minimal, then either it is possible to give a better object than f (i) to
one of the duplicate agents n and n+1 (in this case we are done), or it
is not possible, in which case one of the duplicate agents will receive
f (i), and the other, whose first object cannot be as high as f (i), will

receive all the remaining objects (including the former ones of agent
n), so both of them will be at least as satisfied as before. �

False-name manipulation has been studied in voting [10, 19], coop-
erative game theory [1, 15], pseudonymous bidding in combinatorial
auctions [20], and, somewhat relatedly, cloning has been studied in
voting [18, 12]. Applying this setting to resource allocation, we now
assume that agents can participate with multiple identities at the same
time. Each of an agent’s clones will have the same preferences as this
agent. As they are from the point of view of the agents, we assume
that each agent knows its own linear order over 2G.

Definition 15 Let P = (>1, . . . ,>n) be a profile of linear orders
over G and �i agent i’s linear order over 2G extending >i. An al-
location rule F is susceptible to cloning of agents at P by agent
i with �i if there exists a nonempty set Ci of clones of i (each
with the same linear order >i) such that

⋃
j∈Ci∪{i} π ′j �i πi, where

π = (π1, . . . ,πn) = F(P), P′ is the extension of P to the clones in Ci,
and π ′ = (π ′1, . . . ,π

′
n+‖Ci‖) = F(P′).

Proposition 16 If m≥ 4 and m > n, then for each strictly decreasing
scoring vector s = (s1, . . . ,sm), allocation rules FT

s,min and FT
s,leximin

are susceptible to cloning.

We omit the proof due to lack of space.

6 CONSISTENCY AND COMPATIBILITY

Our scoring allocation rules are based on the maximization of a
collective utility defined as the aggregation of individual utilities. An
orthogonal classical approach is to find an allocation that satisfies a
given (Boolean) criterion. Among the classical criteria, envy-freeness
states that no agent would be better off with the share of another agent
than it is with its own share, and a Pareto-efficient allocation cannot
be strictly improved for at least one agent without making another
agent worse-off. A natural question is to determine to which extent
the scoring allocation rules are compatible with these criteria. More
formally:

Definition 17 Let P be a profile and let X be a property on alloca-
tions. An allocation correspondence F is X-consistent (respectively,
X-compatible) if it holds that if there exists an allocation satisfying X
for P, then all allocations in F(P) satisfy X (respectively, there is an
allocation in F(P) that satisfies X).

The interpretation is as follows: if F is X-consistent, then no matter
which tie-breaking rule is used, an allocation satisfying X will always
be found by the allocation rule if such an allocation exists. If F is
X-compatible, it means that a tie-breaking rule which is consistent
with X (that is: if π � X and π ′ �� X then π >T π ′) is needed to find
for sure an allocation satisfying X when there is one. Obviously, any
X-consistent rule is also X-compatible.

We will now investigate the compatibility and consistency of the
scoring rules for Pareto efficiency and envy-freeness. However, these
two criteria, which are initially defined for complete preorders on 2G,
need to be adapted to deal with incomplete preferences.9 For that, we
borrow the following adaptation from [3]. First, given a linear order�
on G, we say that a mapping w : G→ R+ is compatible with � if for
all g,g′ ∈ G, we have g� g′ if and only of w(g)> w(g′); next, given

9 Recall that we only know the preferences on singletons of objects, which
have to be lifted to 2G for the raw criteria to be directly applicable.
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A,B⊆ G, we say that A�pos B if ∑g∈A w(g)≥ ∑g∈B w(g) for some
w compatible with �, and that A �nec B if ∑g∈A w(g) ≥ ∑g∈B w(g)
for all w compatible with �. Then:

Definition 18 Let (�1, . . . ,�n) be a profile of strict partial orders
over 2G and let π,π ′ be two allocations. We say (1) π ′ possibly
Pareto-dominates π if π ′i �pos

i πi for all i and π ′j �pos
j π j for some

j; (2) π ′ necessarily Pareto-dominates π if for all π ′i �nec
i πi for all i

and π ′j �nec
j π j for some j; (3) π is possibly Pareto-efficient (PPE) if

there is no allocation π ′ that necessarily Pareto-dominates π; (4) π
is necessarily Pareto-efficient (NPE) if there is no allocation π ′ that
possibly Pareto-dominates π; (5) π is possibly envy-free (PEF) if for
every i and j, πi �pos

i π j; (6) π is necessarily envy-free (NEF) if for
every i and j, πi �nec

i π j .10

An important question is, given a profile P, whether or not there
exist a scoring vector s and an aggregation function � such that the al-
location correspondence Fs,� is X-consistent or X-compatible, where
X ∈ {NEF, NPE}. While this question is not answered yet in general,
we can first observe that Fs,+ is not NEF-consistent for strictly decreas-
ing scoring vectors. We can also prove that these properties cannot be
guaranteed for some of the specific scoring vectors considered here
with min or leximin aggregation. Note that if Fs,� is not X-compatible
then it is not X-consistent, but the converse is not always true.

Proposition 19 Let � ∈ {min, leximin}. (1) Flex,� is neither NEF-
compatible nor NPE-compatible. (2) Fs,� is neither NEF-consistent
nor NPE-compatible for s ∈ {borda,borda-qi}. (3) Fk-app,� is neither
NEF-consistent nor NPE-consistent.

Proof. We prove the claim for the case �= min only, since the case
�= leximin is similar.

(1) Let P = (g1g2g3g4g6g5, g5g2g4g3g1g6). An NEF allocation is
(g1g3g6, g2g4g5). Flex,min(P) outputs (g1g3g4g6, g2g5) as the unique
optimal allocation, which is neither NEF nor NPE.

(2) Let P = (g1g2g3g4g5g6g7g8, g5g1g6g2g7g3g8g4). There is an
NEF allocation in which agent 1 receives the four most preferred ob-
jects and agent 2 receives the remaining ones. Obviously, there is also
an NPE allocation (e.g., giving everything to agent 1). Fborda,min(P)
outputs π1 = (g2g3g4g6, g1g5g7g8), π2 = (g1g2g4g8, g3g5g6g7),
π3 = (g1g2g3, g4g5g6g7g8), π4 = (g2g3g4g7g8, g1g5g6), and π5 =
(g1g3g4g7, g2g5g6g8), whose social welfare is 21 each, but only the
last one is NEF. Furthermore, one can easily check that none of these
allocations is NPE. Similar arguments work for Fborda-qi,min(P).

(3) It is easy to see that allocation π1 above is among the optimal
ones for F7-app,min(P), and hence that Fk-app,min(P) is neither NEF-
consistent nor NPE-consistent. �

Proposition 20 If n = m, for each scoring vector s, Fs,min and
Fs,leximin are NEF-compatible (and even NEF-consistent for strictly
decreasing s) and NPE-compatible.

Proof. If n = m, then the only NEF allocations are such that all the
agents receive their most preferred item. This allocation is obviously
also among the optimal ones (or exactly the optimal one for strictly
decreasing s). Moreover, there is at least one allocation π giving one
object to each agent among the Fs,leximin (and hence Fs,min) optimal
ones. Either π is NPE, or there is an NPE allocation π ′ possibly
Pareto-dominating π (hence also giving one object to each agent).
π ′ is obviously also among the Fs,leximin optimal allocations, hence
proving that Fs,leximin and Fs,min are NPE-compatible. �

10 For i �= j, πi �pos
i π j and πi �pos

i π j (πi �nec
i π j and πi �nec

i π j) are equiva-
lent, as the bundles to be compared are always disjoint.

7 CONCLUDING REMARKS

Generalizing earlier work [7, 5], we have defined a family of rules for
the allocation of indivisible goods to agents that are parameterized by
a scoring vector and an aggregation function. We have discussed a
few key properties, and for each of them we have given some positive
as well as some negative results about their satisfaction by scoring
allocation rules. The relatively high number of negative results should
be balanced against the satisfaction of several important properties
(including monotonicity) together with the simplicity of these rules.
And anyway, defining allocation rules of indivisible goods from ordi-
nal inputs on other principles does not look easy at all. Our results are
far from being complete: for many properties we do not have an exact
characterization of the scoring allocation rules that satisfy them, and
obtaining such exact characterizations is left for further research.
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