
Campaigns for Lazy Voters: Truncated Ballots

Dorothea Baumeister
Institut für Informatik

Universität Düsseldorf
Düsseldorf, Germany

baumeister@cs.uni-duesseldorf.de

Piotr Faliszewski
AGH University of

Science and Technology
Krakow, Poland
faliszew@agh.edu.pl

Jérôme Lang
LAMSADE

Université Paris-Dauphine
Paris, France

lang@lamsade.dauphine.fr

Jörg Rothe
Institut für Informatik

Universität Düsseldorf
Düsseldorf, Germany
rothe@cs.uni-duesseldorf.de

ABSTRACT

We study elections in which voters may submit partial ballots con-

sisting of truncated lists: each voter ranks some of her top can-

didates (and possibly some of her bottom candidates) and is in-

different among the remaining ones. Holding elections with such

votes requires adapting classical voting rules (which expect com-

plete rankings as input) and these adaptations create various oppor-

tunities for candidates who want to increase their chances of win-

ning. We provide complexity results regarding planning various

kinds of campaigns in such settings, and we study the complexity

of the possible winner problem for the case of truncated votes.

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algorithms and Prob-

lem Complexity; I.2.11 [DistributedArtificial Intelligence]: Mul-

tiagent Systems

General Terms

Theory

Keywords

elections, manipulation, possible winner, bribery

1. INTRODUCTION
Elections and voting constitute an important mechanism for ag-

gregating preferences of independent agents (be it nations choos-

ing their leaders, people recommending movies, or software agents

planning their joint actions). In the standard model of voting, we

are given some set of candidates C and each agent (that is, each

voter) ranks all the candidates in C from the most preferred one

to the most despised one. Then, a voting rule is used to find the

winner(s). Unfortunately, ranking all candidates is feasible only if

there are very few candidates, and even then the voters might be un-

willing to provide full rankings. Indeed, most political elections are

held using the plurality rule, which asks each voter to name the fa-

vorite candidate only, and elects whoever gets the most votes. Also,

elections over large combinatorial domains (such as those encoun-

tered, for example, in multiagent planning settings) require the use

of nontrivial representation languages to express preference orders.

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

One of the most natural solutions to the problem of overburden-

ing the voters with ranking too many candidates is to allow them

to cast truncated preference orders. Indeed, each voter is likely to

know who are her most favorite candidates and if she is unwilling

to put the effort into ranking the remaining ones, it is safe to assume

that she likes them less than the ranked ones but is otherwise indif-

ferent among them. We will call such preferences “top-truncated.”

On the other hand, it is possible that a voter is indifferent among

a large set of acceptable candidates, but truly hates some remaining

ones (compare this with the idea of destructive manipulation and

control [10, 23]). Then, we would say that this voter has “bottom-

truncated” preferences. Finally, it is also possible that a voter would

have strong preferences regarding a small number of her top candi-

dates and regarding a small number of her bottom candidates, but

would be indifferent regarding the large group of “middle-ranking”

candidates. We refer to such votes as “doubly-truncated.”

Although allowing truncated votes does not solve all problems

with ranking large candidate sets (for example, it seems completely

inappropriate for voting in large combinatorial domains), it cer-

tainly is a very good solution for some settings, both in political

elections (for example, top-truncated ballots are allowed in polit-

ical elections in Slovenia) and for software agents (for example,

if one builds a meta-search engine using voting techniques [12],

where the votes—search engine results for a given query—are nec-

essarily top-truncated).

Unfortunately, typical voting rules, such as, e.g., Borda (defined

formally in Section 2) inherently depend on voters providing com-

plete rankings and have to be adapted for the case of truncated

votes. For example, for Borda, we could assume that each un-

ranked candidate receives 0 points from a given vote (a method

used in Slovenia, which we will call the pessimistic scoring model).

Or, if there are m candidates but a vote ranks only k of them, then

the ranked candidates get m− 1, . . . ,m− k points (depending on

their position in the ranking) and each unranked candidate gets

m− k−1 points. This method is sometimes called modified Borda

(see, e.g., [15]) and is used, e.g., by the Irish Green Party to choose

its leader. We will call this method the optimistic scoring model;

optimistic scoring has the advantage that it provides an incentive

for voters to rank more candidates.

Given the two above variants of Borda, it is immediately clear

that a candidate can benefit from convincing some of the agents to

extend their votes. Under pessimistic scoring a candidate should

try to get as many voters as possible to add him or her to the rank-

ing; under optimistic scoring the situation is more complicated (see

Theorems 3.4 and 3.5).

Campaigns aimed at extending truncated ballots are particularly

attractive because they can be presented as “enhancing voters’

awareness” and as “providing voters with an incentive to cast their

votes.” Also, they are less “invasive” than manipulation or bribery

actions (see, e.g., [19, 21, 18]), as they do not aim at changing vot-

ers’ preferences but only at extending them. Thus, such campaigns

are viewed as inherently positive. We study the computational com-

plexity of such campaigns in Section 3.

The fact that standard voting rules have to be modified for the

case of truncated votes can sometimes be viewed as too demand-

ing. In such situations election rules force the voters to provide

complete rankings. However, even then the reasons why truncated

preferences arise still apply. As a result, it is likely that voters still

have truncated preferences and simply complete them arbitrarily at

the time of voting. From the point of view of candidates, it is in-

teresting to know, given truncated votes, for which candidates are

there completions of the votes that ensure their victory. We study

such scenarios in Section 4, where we consider the possible winner

problem for the case of truncated votes.

We conclude the paper by describing related work and by pre-

senting future research directions in Sections 5 and 6.

2. PRELIMINARIES
Elections with truncated ballots. An election is a pair E =
(C,V), where C = {c1, . . . ,cm} is a set of candidates and V =
(v1, . . . ,vn) is a collection of voters. Each voter is represented via

her preferences over the set C. There are many ways in which a

voter’s preferences can be modeled. Throughout this paper we use

a variant of the ordinal model, where each voter’s preferences are

represented via a (possibly partial) order over the set of candidates.

We will refer to this order either as a preference order, a ballot, or,

slightly abusing notation, a vote; we use these terms essentially in-

terchangeably. For example, ifC= {c1,c2,c3}, a voter who prefers
c1 to c2 and c2 to c3 (and, thus, has complete preferences) would

have preference order c1 ≻ c2 ≻ c3. We also allow the voters to

have partial preference orders. In particular, we focus on the fol-

lowing three classes of such votes. Let t and b be two nonnegative

integers such that t+b ≤ ‖C‖:

Doubly-truncated votes. A partial preference order ≻ on C is

(t,b)-doubly-truncated if there is a permutation π over

{1, . . . ,‖C‖} such that ≻ is of the form cπ(1) ≻ ·· · ≻ cπ(t) ≻

{cπ(t+1), . . . ,cπ(m−b)} ≻ cπ(m−b+1) ≻ ·· · ≻ cπ(m) (i.e., each

candidate in the set {cπ(t+1), . . . ,cπ(m−b)} is strictly be-

low cπ(t), strictly above cπ(m−b+1), but the voter is indif-

ferent among the members of the set; we refer to candi-

dates cπ(1), . . . ,cπ(t),cπ(m−b+1), . . . ,cπ(m) as the ranked can-

didates, and to the remaining ones as unranked). For a (t,b)-
doubly-truncated preference order ≻ we define top(≻) = t

and bottom(≻) = b.

Top-truncated votes. A partial preference order is t-top-truncated

if it is (t,0)-doubly-truncated.
Bottom-truncated votes. A partial preference order is b-bottom-

truncated if it is (0,b)-doubly-truncated.

We say that a preference order is doubly-truncated (top-

truncated, bottom-truncated) if there are values t and b for which

it is (t,b)-doubly-truncated (t-top-truncated, b-bottom-truncated).

Similarly, we say that an election E = (C,V) is doubly-truncated
(top-truncated, bottom-truncated) if each vote in V is doubly-

truncated (top-truncated, bottom-truncated). We say that an elec-

tion is (at-most-t)-top-truncated if for each vote v in E, there is an

integer tv ≤ v such that v is tv-top-truncated.

We use the following, somewhat subtle, notation to describe

truncated votes. Let C be a set of candidates. If in a preference

order we write
←−
S , where S is a subset of C, then we mean listing

all members of S in some fixed (easily computable) order. If we

write
−→
S , then we mean listing all members of S in the reverse of

this order. If we write S (without any arrows on top), we mean

that S are the unranked candidates. For example, if T and B are

two disjoint subsets of C, then by
←−
T ≻C \ (T ∪B)≻

←−
B we mean

a (‖T‖,‖B‖)-doubly-truncated preference order where candidates

from T are ranked at the top of the vote (in some order), candidates

in B are ranked at the bottom of the vote (in some order), and the

remaining candidates in the middle are unranked.

Voting Rules for Top-Truncated Votes. A voting rule R maps

an election E = (C,V) to a set R(E)⊆C of candidates. We allow a

voting rule to output more than one winner or no winner at all. Un-

fortunately, standard definitions of many voting rules assume that

the voters have complete preferences and it may not be completely

obvious how to adapt them to the case of truncated rules (see, e.g.,

how Brams and Sanver [7] obtained fallback voting, which accepts

top-truncated orders, from Bucklin voting, which requires complete

orders). We now describe how we adapt several well-known (fam-

ilies of) voting rules to top-truncated ballots.

Let E =(C,V) be an election with candidate setC= {c1, . . . ,cm}
and voter collection V = (v1, . . . ,vn), where each vote is top-

truncated. A scoring vector α = (α1, . . . ,αm) is a vector of non-

negative integers such that α1 ≥ α2 ≥ ·· · ≥ αm. If all votes are

complete, then under scoring rule Rα , each candidate c j ∈ C re-

ceives αi points for each vote where c j is ranked on the i’th po-

sition. The winners of the election are the candidates with most

points. Typically, we consider families of scoring rules, with one

scoring vector for each possible number of candidates.

For example, for each positive integer k, k-approval uses vectors

of the form (1, . . . ,1,0, . . . ,0) with k ones; plurality voting is 1-

approval; and Borda uses vectors of the form (m−1,m−2, . . . ,0),
where m is the number of candidates.

If (some of) the votes are top-truncated then we modify this

point-assignment procedure as follows. For a t-top-truncated

vote cπ(1) ≻ ·· · ≻ cπ(t) ≻ {cπ(t+1), . . . ,cπ(m)}, each ranked can-

didate cπ(i), 1 ≤ i ≤ t, receives αi points, and each unranked can-

didate receives s points, where s = αm in the pessimistic scoring

model and s = αt+1 in the optimistic scoring model. Note that the

optimistic scoring model, when applied to Borda, is equivalent to

what is known as modified Borda; see, e.g., [15].

The pessimistic model is the most popular one in practice. It is

used, for example, in Slovenia and in Kiribati for truncated ballots

under Borda’s rule. One of the downsides of the pessimistic model

is that it gives incentives for voters to rank only a single candidate

(so the impact of the vote on the score of this candidate, relative to

the scores of other candidates, is greatest). On the other hand, the

optimistic model rewards the voters who rank more candidates: the

more candidates one ranks, the more points (in relative terms) these

candidates receive.

Compared to the case of scoring rules, voting rules based on

head-to-head comparisons of candidates are much easier to adapt.

Let E = (C,V) be an election with candidate set C = {c1, . . . ,cm}
and voter collection V = (v1, . . . ,vn), where the voters may have

truncated votes. For each two candidates ci, c j , we define

NE(ci,c j) = ‖{k | vk prefers ci to c j}‖. Note that if all votes are

complete, then for each distinct ci,c j ∈C it holds that NE(ci,c j)+
NE(c j,ci) = n. However, when some votes are truncated then for

some ci,c j ∈ C it is the case that NE(ci,c j)+NE(c j,ci) < n (be-

cause some voters are, effectively, indifferent between ci and c j).

Under the Copeland rule, the score of a candidate ci ∈C is de-

fined as ‖{c j ∈ C \ {ci}|NE(ci,c j) > NE(c j,ci)}‖+ (1/2)‖{c j ∈
C\{ci}|NE(c j,ci) =NE(ci,c j)}‖. However, we will focus on a re-

lated rule, called Copeland0 , where the score of a candidate ci ∈C
is defined to be ‖{c j ∈C \{ci}|NE(ci,c j)> NE(c j,ci)}‖ (i.e., de-
feating a candidate in a head-to-head contest gives one point, but

losing and tieing both have no effect on the score). Under maximin,

the score of a candidate ci ∈C is minc j∈C\{ci}NE(ci,c j). For both
rules, the winners are the candidates with the highest score. Given

an election E = (C,V), a candidate c ∈C, and a voting rule R that

assigns scores to candidates, we write score(c) to denote the score

of candidate c. The election and the voting rule will always be clear

from context.

Computational Complexity and Algorithms. We assume fa-

miliarity with standard notions of complexity theory such as the

classes P and NP, and the notions of many-one polynomial-time

reducibility, NP-completeness, and NP-hardness. We also assume

familiarity with parameterized complexity theory and classes FPT

and W[1]. We point the reader to the textbook [28] for references.

We will need the following NP-complete problems.

PARTIAL-SET-MULTICOVER

Given: A base set B = {b1, . . . ,bm}, each element bi of B

paired with a positive integer req(bi) (the covering re-
quirement of bi), a family S = {S1, . . . ,Sn} of sub-
sets of B, each set S j paired with a positive integer
cost(S j), a nonnegative integer K (the budget), and a
nonnegative integer k (the covering request).

Question: Is there a set A⊆ {1, . . . ,n} and a set C ⊆ B such that:
(a) for each bi ∈C, ‖{ j ∈ A |bi ∈ S j}‖ ≥ req(bi) (that
is, for each element of C the sets S j , j ∈ A, jointly sat-
isfy its covering requirement), (b) ‖C‖ ≥ k (that is, C
satisfies the covering request), and (c) ∑ j∈A cost(S j)≤
K (that is, we do not exceed the budget)?

PARTIAL-SET-MULTICOVER is the most general of a family of

related problems. In PARTIAL-SET-COVER, each covering require-

ment is set to 1. In SET-MULTICOVER, we have to cover all ele-

ments in the base set (i.e., k= ‖B‖). In SET-COVER, each covering

requirement is set to 1 and k = ‖B‖. Finally, in X3C we have the

same setting as for SET-COVER, but ‖B‖ is a multiple of 3, each set

in S has exactly 3 elements and unit cost, and K = ‖B‖/3. Except
for X3C, each of these problems has a natural minimization variant

where we seek to minimize the total cost of the selected sets.

We will also use the following standard minimization problem.

KNAPSACK

Input: Nonnegative integers w1, . . . ,wn (the weights) and
v1, . . . ,vn (the values) and a nonnegative integer T (the
target value).

Output: A set A⊆ {1, . . . ,n} such that (a) ∑i∈A vi ≥ T and (b)

∑i∈Awi is minimal (or indication that such a set does
not exist).

A minimization problem A is a problem that asks us to compute

some solution s that minimizes a certain cost function cost(s). For
a given instance I, we write OPT(I) to denote the value of a so-

lution with minimal cost. For a given number α ≥ 1, we say that

an algorithm A is an α-approximation algorithm for a given min-

imization problem if for each input instance I, A outputs a valid

solution s such that cost(s) ≤ α ·OPT(I). A fully polynomial-time

approximation scheme (FPTAS) for a minimization problem is an

algorithm that, given an instance I and a positive rational value ε ,

runs in time polynomial in |I| and 1/ε (i.e., in time polynomial with

respect to the length of the encoding of I and the value of 1/ε), and

outputs a solution s such that cost(s) ≤ (1+ ε)OPT(I). It is well-
known that there is an FPTAS for KNAPSACK and that the decision

variant of KNAPSACK is NP-complete.

We will also study the possible (co-)winner problem, introduced

by Konczak and Lang [25]. For a given voting rule R, define:

R-POSSIBLE-WINNER (R-PW)

Given: An election E = (C,V), where the ballots in V are
partial orders over the set of candidates, and a distin-
guished candidate p ∈C.

Question: Is it possible to complete the votes in E so that p is an
R winner?

An important special case of the possible winner problem is

the unweighted coalitional manipulation problem, R-UCM, where

some voters (so-called honest voters) have complete preference or-

ders, and some voters (so-called manipulators) have empty pref-

erence orders. Intuitively, in R-UCM the manipulators are seek-

ing possibly dishonest votes that would ensure their favorite candi-

date’s victory; see [19, 21] for more details on R-UCM.

3. CAMPAIGNING PROBLEMS
Let us now focus on campaign management problems that arise

in the context of top-truncated votes. As we have noticed, a can-

didate may benefit from convincing some voters to extend their

top-truncated preference orders. Naturally, some voters might be

harder to affect than others. Thus, we should assume that each

voter v has some function δ that describes the cost of extending v’s

top-truncated vote. However, since the voter is originally indiffer-

ent among the unranked candidates, it is reasonable to assume that

the cost of extending the vote depends only on the number of added

candidates and not on their names.

The task of the campaign manager is to figure out how (and to

what extent) to extend the votes in order to ensure her candidate’s

victory, while spending as little as possible. Following the nam-

ing convention from two papers on campaign management in elec-

tions [13, 31], we call our problem EXTENSION-BRIBERY.

3.1 Formal Definition
We now give a more formal description of extension bribery. Let

E = (C,V) be a top-truncated election whereC= {p,c1, . . . ,cm−1}
and V = (v1, . . . ,vn). Let ∆ = (δ1, . . . ,δn) be a collection of func-

tions from nonnegative integers to nonnegative integers, such that

for each i, 1≤ i≤ n, it holds that δi(0) = 0 and δi is nondecreasing.

We will refer to the functions in ∆ as extension bribery cost func-

tions. Let E ′ = (C,V ′),V ′= (v′1, . . . ,v
′
n) be a top-truncated election

obtained from E by extending the votes inV . We define the cost of

extending E to E ′ to be ∑
n
i=1 δi(top(v

′
i)− top(vi)). The goal is to

find a minimal-cost extension of E that ensures p’s victory. Note

that in each vote that we extend by some k candidates, we are free

to rank these k candidates in any way, provided that they all follow

the originally ranked candidates.

For a given voting rule R, define:

R-EXTENSION-BRIBERY

Given: An election E = (C,V), where the ballots inV are pos-
sibly top-truncated, a collection ∆ of extension-bribery
cost functions (one per voter), a distinguished candi-
date p ∈C, and a nonnegative integer B (the budget).

Question: Is there an extension of cost at most B of election E

where p is an R winner?

Each cost function δ in ∆ is represented by providing at most

‖C‖ integer values, δ (0),δ (1), . . . ,δ (‖C‖). Unless specified oth-

erwise, all integers are encoded in binary. In particular, we study

two special cases of extension bribery cost functions δ (inspired

by cost functions from [14]). In the zero-cost model we take each

cost function δ to be such that δ (k) = 0 for each nonnegative inte-

ger k. In the unit-cost model, we take each function δ to be such

that δ (k) = k for each nonnegative integer k (that is, there is a unit

cost for extending each vote with a single candidate).

In the minimization variant of the problem the budget is not part

of the input, and we simply ask if it is possible to ensure p’s victory,

and if so, what is the lowest cost at which this can be achieved.

Different families of cost functions correspond to different cam-

paign settings. If we allow general cost functions, our problem

models a campaign management scenario where affecting each

voter may require a different amount of effort. The unit-cost model

corresponds to settings where we have no knowledge of the dif-

ficulty of affecting particular voters and we simply minimize the

number of additionally ranked candidates. The zero-cost model

corresponds to settings where we want to find out if extension-

bribery type campaign can succeed at all.

3.2 Checking the Possibility of Success
We consider the zero-cost model first. It turns out that in this

case EXTENSION-BRIBERY is easy for maximin and scoring rules

under the pessimistic scoring model.

THEOREM 3.1. EXTENSION-BRIBERY under the zero-cost

model is in P for maximin, and—under the pessimistic scoring

model—for each efficiently computable family of scoring rules.

PROOF. LetR be one of the voting rules from the theorem state-

ment. Set E = (C,V) to be our input top-truncated election and let

p be the candidate whose victory we want to ensure. Irrespective of

our choice of R, the best we can do is to extend each top-truncated

vote that does not yet rank p to include p.

On the other hand, under scoring rules and the optimistic scor-

ing model already this very simplified variant of EXTENSION-

BRIBERY can be NP-complete. The reason for this is that under

optimistic scoring we have very strong side effects—adding a can-

didate to a vote decreases the score of the remaining unranked can-

didates. This means that under optimistic scoring with zero-costs

the best action a campaign manager can take is to fully extend all

votes. This, effectively, reduces the problem to the UCM problem.

THEOREM 3.2. For each voting rule R that can be represented

as a family of scoring rules, it holds that R-UCM reduces to R-

EXTENSION-BRIBERY under optimistic scoring with zero-costs.

PROOF. Let I = (C,V,W, p) be an instance of R-UCM, where

C is a set of candidates, V is a collection of honest voters, W is a

collection of manipulators, and p ∈ C is our preferred candidate.

We construct an instance I′ = (C,V ′,∆, p,0) of R-EXTENSION-

BRIBERY as follows: We set V ′ to be the concatenation of the lists

V andW ′, where each manipulator inW is replaced inW ′ by a voter

with 1-top-truncated vote p≻C \{p}, and we let ∆ be a collection

of zero-cost functions. The reader can verify that there is a solution

for I if and only if there is a solution of zero cost for I′.

Since it is now known that Borda-UCM is NP-complete [11,

5], we immediately have that Borda-EXTENSION-BRIBERY under

optimistic scoring is NP-complete as well, even in the zero-cost

model. For Copeland0 we also obtain NP-completeness in the zero-

cost model via a reduction from Copeland0-UCM (which is NP-

complete [20]), but this time the reduction is more involved.

THEOREM 3.3. Copeland0-EXTENSION-BRIBERY isNP-com-

plete, even in the zero-cost model.

However, in a way, Theorems 3.2 and 3.3 are not satisfying; in

either case our proofs use the fact that (almost) all voters rank (al-

most) all candidates. In realistic settings we would rather expect

that almost all voters would have very short top-truncated votes.

Thus, it is interesting to ask what happens for, say, Borda and

Copeland0 if our input election is restricted to contain (at-most-

k)-top-truncated votes, for some small value of k. Answering this

question seems nontrivial under the zero-cost model (with opti-

mistic scoring, for Borda). In particular, for the case of Borda, this

problem appears to be related to manipulation by more than two

manipulators (even though there is a proof of Borda-UCM NP-

completeness for the case of two manipulators, generalizing it to

the case of more manipulators is not trivial [11, 5]). However, we

can answer it for the case of the unit-cost model (see Theorem 3.4).

3.3 Minimizing the Campaign’s Cost
After the campaign manager verifies that indeed it is possible to

run a successful campaign, the next step is to find a campaign strat-

egy that requires smallest effort. In particular, if the manager has

little knowledge about the difficulty of affecting particular voters,

her most reasonable approach is to simply minimize the degree to

which she extends the votes. Formally, this is captured by the unit-

cost model. Unfortunately, it turns out that even in this very simple

model we reach broad hardness results.

THEOREM 3.4. EXTENSION-BRIBERY under the unit-cost

model is NP-complete for Borda (with optimistic scoring), maxi-

min, and Copeland0 , even if each vote is (at-most-6)-top-truncated.

PROOF. Let us consider the case of Borda first. We give a re-

duction from X3C. Let I = (B,S) be our input instance where

B = {b1, . . . ,b3k} and S = (S1, . . . ,Sn). Without loss of general-

ity, we assume that k is odd.

We build an instance I′ = (C,V,∆, p,k) of Borda-EXTENSION-

BRIBERY (note that in our instance the budget it set to k). We set

C= B∪{p,x,y} and construct the voter collection as follows. First,

for each Si, 1≤ i≤ n, we introduce a voter vi with vote p≻
←−
Si ≻C\

Si. Then, we add enough (but at most polynomially many) 6-top-

truncated votes that ensure that for each j, 1≤ j ≤ 3k, score(b j) =
score(p)+k−1, and score(x)≤ score(p) and score(y)≤ score(p).
We do so by using the following construction.

Fix some candidate c ∈ C. We define a collection V (c) of vot-
ers to contain the following (3k+3)/6 pairs of voters. (To define

this collection of voters, we rename the candidates so that C =
{c,y,c3, . . . ,c3k+3}.) The first pair contains 6-top-truncated votes

c ≻ y ≻ c3 ≻ c4 ≻ c5 ≻ c6 ≻C \{c,y,c3,c4,c5,c6} and c6 ≻ c5 ≻
c4 ≻ c3 ≻ c ≻ y ≻ C \ {c,y,c3,c4,c5,c6}. The following pairs of

votes are constructed as follows. For each i, 1≤ i≤ ((3k+3)/2)−1,

letCi = {c6i+1,c6i+2,c6i+3,c6i+4,c6i+5,c6i+6} and add a pair of 6-

top-truncated votes
←−
Ci ≻ C \Ci and

−→
Ci ≻ C \Ci. It is easy to see

that withinV (c), it holds that for each candidate ci, 3≤ i≤ 3k+3,

we have score(ci) = score(c)−1, and that score(y) = score(c)−2.

(This is so because each candidate appears in the preference orders

of the voters in exactly one pair; in the first pair c gets one point

more than each of c3, . . . ,c6, and y gets one point less than each

of c3, . . . ,c6. In the further pairs each candidate ci gets as many

points as each of the candidates c3, . . . ,c6 in the first pair.) Thus, by
grouping together sufficiently many (but not more than polynomi-

ally many) collections of voters of the formV (c), for c∈B∪{p,x},
we can satisfy the score requirements from the paragraph above.

We complete the construction of I′ by setting ∆ to be a collection

of unit-cost functions.

We claim that if I is a yes-instance of X3C then there is an ex-

tension bribery of costs at most k that ensures p’s victory. Let

A⊆{1, . . . ,3k} be a solution for I, that is, a set such that (a) ‖A‖≤ k

and (b)
⋃

i∈A Si =B. If we extend the votes vi with i∈A so that each

of them also ranks x, then it will cost ‖A‖, the scores of x and p will

not change, and the score of each bi ∈ B will decrease by k−1 (be-

cause A corresponds to an exact cover of B). As a result, p will be

a winner of the election.

For the other direction, we claim that if there is a solution to I′

of cost at most k then I is a yes-instance of X3C. To see this, note

that, by construction of (C,V), a successful extension bribery has to
ensure that each bi ∈ B loses at least k−1 points. That is, we have

to ensure that at least 3k(k− 1) points are lost by the candidates

in B. On the other hand, we can extend the votes by adding at most

k candidates. Thus, on the average, each act of extending a vote has

to, effectively, decrease the scores of 3k(k−1)/k = 3k−3 candidates.

However, by an easy argument, this is possible only if we extend

some k votes of voters v1, . . . ,vn, each by adding either candidate x

or candidate y (but not both). Further, to decrease the score of each

candidate bi ∈ B by k− 1, these k voters have to correspond to an

exact cover of B.

The proofs for Copeland0 and maximin proceed similarly.

On the other hand, for the case of scoring rules under the pes-

simistic scoring model, we can, for all practical purposes, handle

essentially all cost models. As in the case of unit cost, the reason

for this is that under pessimistic scoring the best one can do is to

simply rank p in the votes that do not rank p yet. The only, fairly

easily solvable, difficulty is that under general cost functions one

has to decide which votes to extend.

THEOREM 3.5. There is an algorithm that given a scoring vec-

tor α = (α1, . . . ,αm), an instance I of Rα -EXTENSION-BRIBERY

in the pessimistic scoring model, and positive rational value ε , out-

puts (in time polynomial in the encoding size of I and 1/ε) a solution

s for I such that cost(s)≤ (1+ ε)OPT(I).

PROOF. Let I = (C,V,∆, p), where C = {p,c1, . . . ,cm−1}, V =
(v1, . . . ,vn), and ∆ = (δ1, . . . ,δn). Our algorithm works as follows.

First, if p is already a winner then we output an empty solution

and terminate. Otherwise, let c j be one of the current winners. We

have score(c j) > score(p). It is easy to see that it suffices to find

a set A ⊆ {1, . . . ,n} such that (a) for each i ∈ A, vi does not rank

p, (b) ∑i∈A αtop(vi)+1 ≥ score(c j)− score(p), and (c) ∑i∈A δi(1) is
minimal among all subsets satisfying the previous two conditions.

Clearly, finding such a set A reduces to solving a knapsack problem

(where the values δi(1) take the role of the weights and the val-

ues αtop(vi)+1 take the role of the values). A standard FPTAS for

knapsack proceeds either by scaling the weights or by scaling the

values; in our case we use a version that scales the weights.

The above proof implies that Rα -EXTENSION-BRIBERY is in P

when the cost functions are encoded in unary. For binary encoding

we have the following result.

THEOREM 3.6. If the scoring vector α is part of the input then

Rα -EXTENSION-BRIBERY, under either of our two scoring mod-

els, isNP-complete. However, for each fixed scoring vector α , Rα -

EXTENSION-BRIBERY is in P.

The NP-completeness proof for the pessimistic scoring model

follows by a simple reduction from KNAPSACK. P-membership

follows by using the same techniques as in Theorem 4.15 in [18].

3.4 Dealing with the Hard Cases?
The above results show that in many practically important cases

effective campaign management requires solving NP-complete

problems. Are there ways in which we can deal with this prob-

lem? Depending on the voting rule and the particular setting we

have several options. In this section we will focus on cases where

the only legal vote extensions are those that add p to those votes

that do not rank p yet. This is the most natural type of campaign

to run and from a practical perspective it is most important to be

able to solve EXTENSION-BRIBERY instances for this case (in ad-

dition, this strategy is optimal for maximin). Further, it seems

that more general variants of EXTENSION-BRIBERYmight require

much more involved approaches than presented here.

The main source of hardness of EXTENSION-BRIBERY prob-

lems is their close relation to set-covering problems. We consider

Copeland0 first. Let I = (C,V,∆, p,B) be an instance of Copeland0-
EXTENSION-BRIBERY. Let us assume that there is some candi-

date c ∈C,c 6= p, who has the highest score among all candidates

and whose score cannot be decreased by adding p to the truncated

votes (at cost B). This means that, in order to win, p has to obtain

score(c)− score(p) additional points. That is, the task of the cam-

paign manager is to find a subcollection V ′ of voters that do not

rank p, such that (a) the total cost of adding p to each vote in V ′ is

at most B, and (b) there is a group of at least score(c)− score(p)
candidates against whom p was losing-or-tieing the head-to-head

contests prior to vote extension and against whom p is winning

these head-to-head contests after the extension.

However, this simply means that the campaign manager has to

solve PARTIAL-SET-MULTICOVER for an instance with the base

set B equal to the set of candidates against whom p is losing-

or-tieing the head-to-head contests, with the family of sets S =
{S(v) | voter v does not rank p} (where S(v) is the subset of candi-
dates in B that voter v does not rank; the cost of S(v) is the cost of
including p in v’s preference order), with the covering requirement

of each d ∈ B being exactly the number of voters that would have

to additionally rank p ahead of d for p to win the head-to-head con-

test, with the covering request k equal to score(c)− score(p), and
with the same budget as in the EXTENSION-BRIBERY instance.

Based on this observation, and with a simple construction (omit-

ted due to space restriction), we see that if there were any way to

efficiently solve Copeland0-EXTENSION-BRIBERY then there also

would be an analogous way to solve PARTIAL-SET-MULTICOVER.

Unfortunately, it seems that PARTIAL-SET-MULTICOVER is a par-

ticularly difficult NP-complete problem: No nontrivial approxi-

mation algorithm for it is known (even though SET-COVER and

SET-MULTICOVER [22] have natural O(logm)-approximation al-

gorithms, where m is the size of the base set). One might hope that

the problem would at least be fixed-parameter tractable for the pa-

rameter “number of base-set elements to cover” (corresponding to

cases where p has a score close to that of the current winner) as for

this case PARTIAL-SET-COVER is in FPT [6]. Unfortunately, we

have the following result, which implies Corollary 3.8.

THEOREM 3.7. The problem PARTIAL-SET-MULTICOVER is

W[1]-complete for the parameter (k,B), where k is the number of

base-set elements to cover and B is the budget.

PROOF SKETCH. The proof of hardness proceeds via a reduc-

tion from the problem CLIQUE: Given an undirected graph G =
(V,E) and an integer k, does G have a clique of size k? CLIQUE

is W[1]-complete for the parameter k. Let G = (V,E) and k be a

given CLIQUE instance. For each v ∈ V , we define S(v) to be a

set containing v and all its neighbors. We construct an instance of

PARTIAL-SET-MULTICOVER where B = V , S = {S(v) | v ∈ V},
each set in S has cost 1, the budget is k, the covering requirement

of each element of B is k, and the covering request is k. The reader

can verify that this reduction is indeed correct.

The W[1]-membership proof uses a careful reduction to the

SHORT-TURING-MACHINE-COMPUTATION problem [8].

COROLLARY 3.8. Copeland0-EXTENSION-BRIBERY is W[1]-
complete for the parameter (k,B), where k is the difference in score
between the preferred candidate and the current winner, and B is

the budget, and where the only allowed extensions are to add the

preferred candidate.

However, there is some hope for the case where each voter ranks

only few candidates (a situation corresponding to PARTIAL-SET-

MULTICOVER instances where each set contains almost all mem-

bers of the base set). The parametrized complexity of this variant

of Copeland0-EXTENSION-BRIBERY remains open (note that this

also justifies why it was worthwhile to prove Theorem 3.4).

One can apply a similar analysis as for the case of Copeland0

to the cases of Borda and maximin. However, there it turns

out that EXTENSION-BRIBERY does not resemble PARTIAL-SET-

MULTICOVER but rather SET-MULTICOVER. Thus, using the stan-

dard approximation algorithm for SET-MULTICOVER [22] we get

the following result.

THEOREM 3.9. For the cases of Borda-EXTENSION-BRIBERY

(in the optimistic scoring model) and maximin-EXTENSION-

BRIBERY, where the only allowed extensions are to add the pre-

ferred candidate, there are O(logm)-approximation algorithms

(where m is the number of candidates).

The sizes of the base sets for the SET-MULTICOVER instances

that we construct in the proof of the above theorem depend on

(a) the number of candidates that have a higher score than the pre-

ferred candidate (for the case of Borda) or (b) the number of can-

didates “blocking” our preferred candidate’s way to becoming the

winner (for the case of maximin). If our preferred candidate is close

to winning (in the sense of these candidate sets being small), we

can try to solve the corresponding SET-MULTICOVER instance us-

ing a dynamic programming algorithm (whose running time would,

nonetheless, be exponential, but with the exponent depending on

the sizes of these candidate sets).

4. POSSIBLE WINNER PROBLEM
Given an election E = (C,V), with the list V of votes being par-

tial orders over the set of candidates C, the original POSSIBLE-

WINNER problem (PW, for short) asks whether there is an exten-

sion of the given partial votes into complete ones over C such that

a distinguished candidate wins the election. This problem was in-

troduced by Konczak and Lang [25] and has received significant

attention (see, e.g., [33, 3, 9, 35, 2]).

We consider the complexity of the possible winner problem if

the partial votes have the special form of truncated ballots. We for-

mulate these problems in the co-winner model, for a voting rule R.

R-POSSIBLE-WINNER-WITH-TOP-TRUNCATED-BALLOTS

Given: An election E = (C,V), with possibly top-truncated
ballots in V , and a distinguished candidate p ∈C.

Question: Can p be made an R winner of the election that results
from E by fully extending all truncated ballots?

We define the corresponding problems for bottom- and doubly-

truncated ballots analogously and abbreviate these three problems

by, respectively, PWTTB, PWBTB, and PWDTB, omitting the

voting rule R. They capture the constructive variants as the pos-

sible winner problem does. Of course, one may also define the

corresponding variants of the necessary winner problem.

PW

PWDTBU(k) PWDTBL(k)

PWDTB

UCM

PWBTB

PWBTBU(k) PWBTBL(k)

PWTTB

PWTTBU(k) PWTTBL(k)

Figure 1: A hierarchy of possible winner problems

PWTTB is closely related to, but different from, the decision

problem EXTENSION-BRIBERY for the zero-cost model. While

in PWTTB we have to extend all votes to linear orders, in

EXTENSION-BRIBERY we have the freedom to extend votes only

partially. Still, EXTENSION-BRIBERY reduces to PWTTB for

each scoring rule in the optimistic scoring, zero-cost model.

Let k be a fixed positive constant. We consider the following re-

striction of PWTTB to top-truncated ballots with upper-bounded

(lower-bounded) length k: For every top-truncated ballot B, the

number of candidates ranked in B is at most k (at least k). The

restriction of PWTTB to such ballots is denoted by PWTTBU(k)
(PWTTBL(k)). Analogous definitions can be made for bottom-

truncated and doubly-truncated ballots. Let the corresponding pos-

sible winner problems with truncated ballots of either upper- or

lower-bounded length be denoted by PWBTBU(k), PWBTBL(k),
PWDTBU(k), and PWDTBL(k). Truncated ballots with upper-

bounded length may be seen as being heavily truncated, whereas

truncated ballots with lower-bounded length may be seen as be-

ing only moderately truncated. Because UCM uses ballots that are

either full or empty, neither PWTTBU(k) nor PWTTBL(k) is a
more general problem than UCM. An analogous comment applies

to PWBTBU(k), PWBTBL(k), PWDTBU(k), PWDTBL(k).
On the other hand, we immediately have from the definitions

that UCM is a special case of both PWTTB and PWBTB, which

in turn are special cases of PWDTB, and PWDTB is a special case

of PW. This is stated in Proposition 4.1 and shown in Figure 1. In

this figure, an arrow between two problems, A→ B, means that A

(polynomial-time many-one) reduces to B.

PROPOSITION 4.1. Among the possible winner problems with

and without truncated ballots defined above, we have the reduc-

tions shown in Figure 1.

Now, since the problems PWTTB, PWBTB, and PWDTB are

sandwiched between PW and UCM (recall that UCM is a special

case of PW), they immediately inherit any membership in P re-

sult from PW and any NP-hardness result from UCM. Thus, from

known results about the PW and UCM problems for common vot-

ing rules [10, 25, 3, 33], we can classify these into three groups:

(1) PW is in P for, e.g., plurality, veto, Condorcet, and plurality

with runoff (in the co-winner case); (2) UCM is NP-hard for, e.g.,

Copeland, STV, maximin, ranked pairs, most scoring rules, plus

all rules for which winner determination is NP-hard; (3) PW is

NP-hard and UCM is in P for, e.g., Bucklin, voting trees, plurality

with runoff (in the unique-winner case), and k-approval. Therefore,

among the voting rules listed above, the complexity of PWTTB,

PWBTB, and PWDTB is not yet known for Bucklin, voting trees,

plurality with runoff (in the unique-winner case), and k-approval.

THEOREM 4.2. For k-approval, the problems PWDTB and, a

fortiori, PWTTB and PWBTB are in P.

PROOF. Let V = (v1, . . . ,vn) be a given list of doubly-truncated

ballots over a set C of m candidates, with the given values top(vi)

and bottom(vi) for each voter vi inV . Let p∈C be the distinguished

candidate. To decide whether p is a winner, we transform the given

instance into the following network flow problem:

1. For each i, 1 ≤ i ≤ n, if top(vi) < k, and the position of p

is not revealed in vi (i.e., p is among the unranked candi-

dates in vi), then add p at position top(vi) + 1 in vi. Let

V ′ = (v′1, . . . ,v
′
n) be the corresponding modified profile with

adjusted values top(v′i), 1≤ i≤ n.

2. For each i, 1≤ i≤ n: (a) if top(v′i)≥ k, then let Zi be the set

containing the first k candidates of v′i; (b) if top(v
′
i) < k and

bottom(v′i)≤ m− k, then let Zi be the set containing the first

top(v′i) candidates of v
′
i; (c) if top(v

′
i) < k and bottom(v′i) >

m− k, then let Zi be the set cotaining the first top(v′i) candi-
dates plus the first bottom(v′i)−m+ k candidates which are

ranked at the bottom of v′i.

3. For each c ∈C, let S(c) = ‖{i | c ∈ Zi}‖.

4. The flow network contains n+m+ 1 nodes: (a) one node c

for each candidate c ∈C\{p}, (b) one node v′i for each voter
v′i ∈V

′, (c) a source s, and (d) a sink t.

5. The flow network contains the following edges: (a) there is

an edge from s to every c∈C\{p}with capacity S(p)−S(c);
(b) there is an edge from c ∈C\{p} to v′i ∈V

′ with capacity

1 if and only if the position of c is not revealed in v′i; (c) there

is an edge from every v′i ∈V
′ to t with capacity



















0 if top(v′i)≥ k;

k− top(v′i) if top(v′i)< k and bottom(v′i)≤ m−k;

m− top(v′i)

−bottom(v′i) if top(v′i)< k and bottom(v′i)> m−k.

We claim that p is a possible winner in the k-approval election

(C,V) if and only if there is a flow of value ∑
n
i=1 ai in the network

constructed above, where (1) ai = 0 if top(v′i) ≥ k, (2) ai = k−
top(v′i) if top(v′i) < k and bottom(v′i) ≤ m− k, and (3) ai = m−
top(v′i)−bottom(v′i) if top(v

′
i)< k and bottom(v′i)> m−k.

Assume that p is a possible k-approval winner for (C,V). That
means that there is an extension of the list of truncated ballots V

into a list W of complete ones such that p is a k-approval winner

of election (C,W). Without loss of generality, we can assume that

p is placed at the first possible position in each vote vi where its

position is unrevealed. Let (C,V ′) be the profile thus modified.

The points every candidate gets in the profile (C,V ′) correspond to

the values S(c) of the above construction. We now show that there

is a flow of value ∑
n
i=1 ai in the network. First note that ∑

n
i=1 ai is

the sum of the unranked candidates among the first k positions in

all votes. Since no candidate gets more points than p in (C,W),
there is a flow of value at most S(p)− S(c) from s to every node

c for each candidate c ∈ C \ {p}. If in the list of complete ballots

candidate c takes a position in a vote vi that was unrevealed in V ′,

there is a flow of value one from c to vi. Further, from each node vi,

1 ≤ i ≤ n, there is a flow to the sink t whose value corresponds to

the unrevealed candidates among the first k positions. Hence there

is a flow of the desired value in this network.

Now assume that there is a flow of value ∑
n
i=1 ai in the network.

For the given election (C,V), we again first place candidate p at the

first possible position in the votes where its position was unrevealed

before, and we refer to the modified profile by V ′. If there is a flow

of value one from node c to vi, candidate c is placed among the first

k positions in vote vi. The sum of all ai ensures that all first k posi-

tions are taken in all votes, and the capacity of S(p)−S(c) from the

source s to the nodes corresponding to the candidates c ∈C \ {p}

ensures that no candidate can get more points than p. Hence, com-

pleting the profile V ′ as described results in a k-approval election

in which p is a winner.

5. RELATED WORK
Although most of the literature in voting theory assumes that

votes are full linear orders, truncated ballots have been considered

in a few papers. Brams and Sanver [7] consider ballots that consist

of ranked lists of approved candidates (i.e., of possibly truncated

ballots), and they propose two specific ways of aggregating them,

namely preference approval voting and fallback voting. Aggregat-

ing truncated ballots also appears in a stream of work in database

theory, where aggregating ordered lists of results to queries (pro-

vided by web search engines, for example) corresponds to aggre-

gating several ordered lists in which, typically, every element ap-

pears only in some lists, not in all (see, e.g., [12, 17, 1]). Assuming

that the elements that are not ranked in a list are considered less

relevant than the elements that appear in it, it is clear that the prob-

lem consists in aggregating a set of top-truncated rankings into a

complete ranking. The aggregation rules used in this community

are median rankings, which minimize some distance to the ballots,

such as, typically, the Kemeny rule. One reason why these median

ranking rules are used by this community is that their definition ex-

tends in a straightforward way to truncated rankings. Here we focus

on other rules, and we also show that any other possible rule can be

extended in a systematic way to truncated ballots, by considering

all possible extensions of the truncated ballots. Rank aggregation

with partial information is also important in peer-reviewing [30],

and it received considerable attention from the machine learning

community. For example, doubly-truncated votes are a special case

of a similar notion studied by Lebanon and Mao [26]. Finally, En-

driss et al. [16] provide a general approach to voting with many

kinds of ballots, including truncated ballots.

Section 3 deals with the issue of campaign management for the

case of truncated votes. Campaign management as a computa-

tional problem appeared, e.g., in [13, 31]. In particular, the latter

work considered the problem SUPPORT-BRIBERY where the cam-

paign manager can extend votes. However, there the voters already

have fixed preference orders, whereas in EXTENSION-BRIBERY

the manager has the freedom to ask the voters to additionally rank

any subset of candidates in any order. In this sense EXTENSION-

BRIBERY is similar to the BRIBERY problem [18], except that in

BRIBERY if we buy a given vote, we can rewrite it completely.

Section 4 relates to computing possible winners. This notion has

been introduced by Konczak and Lang [25] and has been studied

from a computational point of view (see, e.g., [33, 3, 29]). The

relation to preference elicitation is further explored by Walsh [32].

Parameterized complexity results for the possible winner problem

are given by Betzler et al. [4]. Kalech et al. [24] design voting pro-

tocols in which agents submit their preferences incrementally, in

rounds, and study experimentally the probability that there exists a

necessary winner given the amount of information known. Lu and

Boutilier [27] use minimax regret to output a robust winner given

incomplete preferences, which is a way of coping with the possi-

bly high number of possible winners. Xia and Conitzer [34] use

the maximum likelihood approach to define voting rules form in-

complete votes. Finally, a restricted variant of the possible winner

problem, where the incompleteness of the profile comes from the

fact that some alternatives were not known initially, is the possi-

ble winner problem with respect to the addition of new alternatives

(PWNA) [9, 35, 2]. In PWNA, each voter has a full linear order

over the setC of “known” candidates, but there is also a set A of ad-

ditional candidates. The question is whether it is possible to extend

the linear orders of the voters to rank all the candidates inC∪A, so
that some given candidate is a winner. At first sight it may look as if

PWNA were a subproblem of PWTTB, PWBTB, and PWDTB.

However, in the PWNA problem the remaining alternatives can be

ranked anywhere, whereas in the case of truncated ballots they have

to come between the ranked top and ranked bottom candidates.

6. CONCLUSIONS AND FUTUREWORK
We have studied various aspects of elections when the input

votes are truncated rankings consisting of a ranked list of top can-

didates and/or a ranked list of bottom candidates. We proposed

ways of extending some voting rules to truncated ballots, and have

addressed the complexity of the problem of persuading voters to

extend their votes so as to ensure that a given candidate wins. Con-

sidering truncated ballots as incompletely specified rankings, we

showed that determining possible winners makes sense in this set-

ting. While the complexity of the possible winner problem for trun-

cated ballots follows from known results for many voting rules, we

provided an efficient algorithm in one of the few other cases.

The generalization of voting rules to truncated ballots, and the

study of such generalizations, deserves more attention. One goal is

to extend common social-choice-theoretic properties to truncated

ballots and to see if the properties fulfilled by a voting rule are

still fulfilled in this generalization. Introducing new properties ap-

plicable only to (properly) truncated ballots may also make sense.

Considering truncated ballots as incomplete ballots, how likely is it

that the result is determined (i.e., that there exists a necessary win-

ner) when all voters have specified ballots of a given size? (Kalech

et al. [24] address a similar question in a different setting.) It is ob-

vious how to prove that for the Bucklin rule: If top lists are of size

⌈m/2⌉ then there exists a necessary winner. It may also be interest-

ing to build elicitation protocols so as to ask voters to expand their

truncated ballots in a minimal way, in terms of the number of bits

exchanged, so that the outcome of the vote is determined. Finally,

we still have to address the complexity of PWDTB for plurality

with runoff (in the unique-winner case), voting trees, and Bucklin.

Acknowledgements. We thank the referees for their many useful

comments. This work was supported in part by DFG grant RO-

1202/15-1, SFF grant “Cooperative Normsetting” of HHU Düssel-

dorf, a DAAD/MAEE/MESR grant for a project in the PROCOPE

programme, AGH Univ. of Technology grant 11.11.120.865, the

Foundation for Polish Science’s Homing/Powroty program, and the

ANR project ComSoc (ANR-09-BLAN-0305).

7. REFERENCES
[1] N. Ailon. Aggregation of partial rankings, p-ratings and top-m lists.

Algorithmica, 57(2):284–300, 2010.

[2] D. Baumeister, M. Roos, and J. Rothe. Computational complexity of
two variants of the possible winner problem. In Proc. AAMAS-11,
pages 853–860, May 2011.

[3] N. Betzler and B. Dorn. Towards a dichotomy of finding possible
winners in elections based on scoring rules. Journal of Computer and
System Sciences, 76(8):812–836, 2010.

[4] N. Betzler, S. Hemmann, and R. Niedermeier. A multivariate
complexity analysis of determining possible winners given
incomplete votes. In Proc. IJCAI-09, pages 53–58, July 2009.

[5] N. Betzler, R. Niedermeier, and G. Woeginger. Unweighted
coalitional manipulation under the Borda rule is NP-hard. In Proc.

IJCAI-11, pages 55–60, July 2011.

[6] M. Bläser. Computing small partial coverings. Information
Processing Letters, 85(6):327–331, 2003.

[7] S. Brams and R. Sanver. Voting systems that combine approval and
preference. In S. Brams, W. Gehrlein, and F. Roberts, editors, The
Mathematics of Preference, Choice, and Order: Essays in Honor of

Peter C. Fishburn, pages 215–237. Springer, 2009.

[8] M. Cesati. The Turing way to parameterized complexity. Journal of
Computer and System Sciences, 67(4):654–685, 2003.

[9] Y. Chevaleyre, J. Lang, N. Maudet, and J. Monnot. Possible winners
when new candidates are added: The case of scoring rules. In Proc.

AAAI-10, pages 762–767, July 2010.

[10] V. Conitzer, T. Sandholm, and J. Lang. When are elections with few
candidates hard to manipulate? J.ACM, 54(3):Article 14, 2007.

[11] J. Davies, G. Katsirelos, N. Narodytska, and T. Walsh. Complexity of
and algorithms for Borda manipulation. In Proc. AAAI-11, pages
657–662, Aug. 2011.

[12] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation
methods for the web. In Proc. WWW-01, pages 613–622, Mar. 2001.

[13] E. Elkind and P. Faliszewski. Approximation algorithms for
campaign management. In Proc. WINE-10, pages 473–482, 2010.

[14] E. Elkind, P. Faliszewski, and A. Slinko. Cloning in elections:
Finding the possible winners. JAIR, 42:529–573, 2011.

[15] P. Emerson. The original Borda count and partial voting. Social
Choice and Welfare. To appear.

[16] U. Endriss, M. Pini, F. Rossi, and K. Venable. Preference aggregation
over restricted ballot languages: Sincerity and strategy-proofness. In
Proc. IJCAI-09, pages 122–127, July 2009.

[17] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. SIAM
Journal on Discrete Mathematics, 17(1):134–160, 2003.

[18] P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. How hard is
bribery in elections? JAIR, 35:485–532, 2009.

[19] P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. Using
complexity to protect elections. C.ACM, 53(11):74–82, 2010.

[20] P. Faliszewski, E. Hemaspaandra, and H. Schnoor. Manipulation of
Copeland elections. In Proc. AAMAS-10, pages 367–374, 2010.

[21] P. Faliszewski and A. Procaccia. AI’s war on manipulation: Are we
winning? AI Magazine, 31(4):52–64, 2010.

[22] U. Feige. A threshold of lnn for approximating set cover. J.ACM,
45(4):634–652, 1998.

[23] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Anyone but him:
The complexity of precluding an alternative. Artificial Intelligence,
171(5–6):255–285, 2007.

[24] M. Kalech, S. Kraus, G. Kaminka, and C. Goldman. Practical voting
rules with partial information. JAAMAS, 22(1):151–182, 2011.

[25] K. Konczak and J. Lang. Voting procedures with incomplete
preferences. In Proc. Multidisciplinary IJCAI-05 Workshop on

Advances in Preference Handling, pages 124–129, July/Aug. 2005.

[26] G. Lebanon and Y. Mao. Non-parametric modeling of partially
ranked data. J. Machine Learning Research, 9:2401–2429, 2008.

[27] T. Lu and C. Boutilier. Robust approximation and incremental
elicitation in voting protocols. In Proc. IJCAI-11, pages 287–293,
July 2011.

[28] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford
University Press, 2006.

[29] M. Pini, F. Rossi, K. Venable, and T. Walsh. Possible and necessary
winners in voting trees: Majority graphs vs. profiles. In Proc.

AAMAS-11, pages 1–9, May 2011.

[30] M. Roos, J. Rothe, and B. Scheuermann. How to calibrate the scores
of biased reviewers by quadratic programming. In Proc. AAAI-11,
pages 255–260, Aug. 2011.

[31] I. Schlotter, P. Faliszewski, and E. Elkind. Campaign management
under approval-driven voting rules. In Proc. AAAI-11, pages
726–731, Aug. 2011.

[32] T. Walsh. Uncertainty in preference elicitation and aggregation. In
Proc. AAAI-07, pages 3–8, July 2007.

[33] L. Xia and V. Conitzer. Determining possible and necessary winners
given partial orders. JAIR, 41:25–67, 2011.

[34] L. Xia and V. Conitzer. A maximum likelihood approach towards
aggregating partial orders. In Proc. IJCAI-11, pages 446–451, July
2011.

[35] L. Xia, J. Lang, and J. Monnot. Possible winners when new
alternatives join: New results coming up! In Proc. AAMAS-11, pages
829–836, May 2011.

