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Abstract. Given the knowledge of the preferences of a set of voters
over a set of candidates, and assuming that voters cast sincere approval
ballots, what can we say about the possible (co-)winners? The outcome
depends on the number of candidates each voter will approve. Whereas
it is easy to know who can be a unique winner, we show that deciding
whether a set of at least two candidates can be the set of co-winners is
computationally hard. If, in addition, we have a probability distribution
over the number of candidates approved by each voter, we obtain a prob-
ability distribution over winners; we study the shape of this probability
distribution empirically, for the impartial culture assumption. We study
variants of the problem where the number of candidates approved by
each voter is upper and/or lower bounded. We generalize some of our
results to multiwinner approval voting.

Keywords: Computational social choice, Approval voting, Voting
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1 Introduction

While most voting rules take as input a collection of rankings over candidates,
approval voting stands as an exception and takes as input a collection of subsets
of candidates [7]. It is well-known that there is no single sincere approval ballot
given a voter’s preferences over a set of candidates: for any candidate c, approving
the set of all candidates that are preferred to c is a sincere ballot [8]. If the voter’s
preference relation over a set of m candidates is a linear order, this makes m
sincere ballots1.

Assume that we2 know the preference relation of every voter (each assumed
to be a linear order) but that we cannot predict the threshold they will fix,
that is, the number of candidates they will approve. For each vector of such
thresholds (one for each voter), there will be a winner, or, in case of a tie, a set
of co-winners, called a co-winning set. We say that a subset of candidates is a

1 Sometimes, voting for all candidates is excluded, which makes only m − 1 sincere
ballots. See for instance [9].

2 ‘We’ is generic, and represents anyone who may reason about the outcome of the
vote; the chair, for instance.
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possible co-winning set if it is the set of co-winners for some vector of thresholds,
and candidate x is a possible unique winner if {x} is a possible co-winning set.
The properties of the set of possible approval winners has been addressed first
in [9], with the restriction that voters cannot approve all candidates (nor none).
They show that the set of possible approval winners contains the Condorcet
winner (if any) and also the winner(s) of many voting rules. Another related
work is [28], who gives a geometric interpretation of the set of possible approval
winners. None of both works characterizes possible winning sets, nor addresses
the computational difficulties of identifying them.

We go further in several respects. First, we consider a more general setting
where the number of approved candidates can be anything between a fixed lower
bound and a fixed upper bound. In the case where voters are totally free of
the number of approvals, that is, when these bounds are respectively 1 and m
candidates3, characterizing the set of candidates that can be a unique winner
(without a tie) turns out to be straightforward: x is a possible unique winner if it
is Pareto-undominated in the original profile. We give a similar characterization
when the bounds are different. Then we consider the problem of recognizing co-
winning sets, and show that it is NP-complete, even for sets of size two. Next,
we consider a probabilistic version of the problem, starting with a probability
distribution over approval vectors; we focus on the uniform distribution, and
in this case we first observe that the probability that a candidate is in the co-
winning set is proportional to its Borda score; then, assuming impartial culture,
we study experimentally the shape of the probability distribution over winners.

This work is related to (at least) four research streams. The first of these is a
series of works in social choice theory that relate approval voting to the classical
Arrovian model, which considers social choice functions mapping a collection of
weak orders into a nonempty subset of candidates (whereas approval voting gen-
erates the social outcome by aggregating collections of subsets of candidates).
For this, the key notion is that of sincere ballot, already evoked above. Most
works in this research stream (with the exception of [9] and [28] cited above)
study the conditions under which approval voting can, or cannot, be consid-
ered strategyproof, and the extent to which strategic behaviour may lead to an
undesirable outcome; see [29,30,23,15,26,24,14].

The second related research stream is the characterization and computation
of possible and necessary winners given some incomplete information about the
votes. The main difference with our setting is that in all these works (up to one
exception, discussed below), the voting rule used takes a classical profile, that is,
a collection of rankings, as input, and the incomplete information consists of a
collection of partial orders: a possible (resp. necessary) winner is then a candidate
that wins in some completion (respectively, all completions) of this collection of
partial orders [21,32,4,3,33,10,5,1,22,18]. An exception is [33], which, in Section
4, states a characterization of possible winners in approval voting, given an

3 Approving no candidate and approving all of them are equivalent, in the sense that
whatever the remaining votes, the outcome will be the same. Therefore, without loss
of generality, we exclude the possibility for a voter to approve 0 candidate.
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initial approval ballot over an initial set of candidates, and given a number of
new candidates to be added; the nature of the incomplete information about
approval ballots in their setting and ours (an approval profile over a subset
of candidates vs. a ranking profile over all candidates) is totally different, and
results cannot easily be compared.

The third related research stream is a series of works that focuses on the com-
putational aspects of strategic behaviour in approval voting; see in particular
[16,2]. The reason why it relates to our work is that we also find computation-
ally hard problems in approval voting; but, once again, our problems do not
come from any form of strategic behaviour. Lastly, the computational aspect of
strategic behaviour in multiwinner versions of approval voting was considered in
[25].

Lastly, our Section 4, where we study the complexity of identifying possible
outcomes in multiwinner approval voting, relates to the computational study of
multiwinner election schemes, such as full proportional representation [27,6,31],
Condorcet winning sets [13] or other approaches to committee selection [11,12,20]
(we discuss [11] in more detail in Section 4).

The paper is organized as follows. In Section 2 we introduce the necessary
background. In Section 3 we define possible and necessary (co)winners and give
some characterizations as well as some hardness results about the identification
of possible winning sets. In Section 4 we consider multiwinner elections, and
generalize some of our results of Section 3. In Section 5 we present further
research issues.

2 Preliminaries

We are given n voters N = {1, . . . , n} and m candidates (or alternatives) X =
{x1, . . . , xm}. A ranking profile P = (Pi)i∈N is a collection of linear orders (also
called rankings) over X . Pi is also denoted by �i.

An approval ballot is a nonempty subset of X . An approval profile is a col-
lection A = 〈A1, . . . , An〉 where Ai ⊆ X is the set of candidates approved by
voter i. Such an approval ballot is called sincere, if for every voter i and every
candidate xj approved by i there exists no candiate x not approved by i such
that x �i xj . We denote by ki, for i = 1, . . . , n and 1 ≤ ki ≤ m, the number of
candidates approved by voter i. Hence, in a sincere approval ballot, each voter i
approves its ki best candidates according to the ranking given by Pi.

Given an approval profile A, the approval score of candidate xj , denoted by
appA(xj), or, when there is no ambiguity, app(xj), is the number of voters i such
that xj ∈ Ai, for i = 1, . . . , n and j = 1, . . . ,m. The set of approval co-winners
for A, denoted by App(A), is the set of candidates with maximal approval score.
If App(A) is a singleton {a} then a is said to be a single winner for A4.

For a ranking profile P , voter i ∈ N and candidate x ∈ X , rkP (i, x) ∈
{1, . . . ,m} denotes the rank of x in the ranking Pi. For X

′ ⊂ X , let PX′ be the

4 Approval voting is here considered an irresolute voting rule; a resolute version of
approval voting can be defined by applying a tie-breaking priority mechanism.
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restriction of P to candidates in X ′. We denote by pl(x,X ′) the plurality score
approval score of candidate x ∈ X ′ in profile PX′ , that is, the number of voters
in PX′ who rank x on top. For X ′ ⊂ X and x ∈ X \ X ′, we write X ′ �i x if
∀x′ ∈ X ′, x′ �i x and candidates among X ′ are ranked arbitrarily. Finally, we
say that candidate x dominates candidate x′ according to profile P if ∀i ∈ N ,
x �i x

′.
Approval voting can also be used for multiwinner elections. Here the goal is to

elect a set of alternatives, or a committee, of fixed size K. There are several pro-
cedures for determining a committee using approval voting, which are reviewed
in [19]. The most obvious way consist in choosing the candidates with the K
highest approval scores (using some tie-breaking mechanism if necessary).

Sometimes, a further constraint on the number of approvals is added: each
voter is only allowed to approve at least d and most k candidates, where k ≥ d ≥
1; a typical choice, often implemented in real-world elections, consists in fixing
d to 1 and k to an arbitrary constant (such as, in multi-winner elections, the
number of positions to be filled). The corresponding voting rule, mapping any
collection of n subsets ofX of cardinality between d and k, is called [d, k]-approval
voting. Notice that approval voting is equivalent to [1,m]-approval voting.

3 Single-Winner Approval Voting

3.1 Restriction-Free Approval Voting

We start by defining the set of approval ballots that are compatible with a
ranking profile.

Definition 1

– A threshold vector (for N and X) is a vector k = 〈k1, . . . , kn〉 ∈ {1, . . . ,m}n.
– Let P = 〈P1, . . . , Pn〉 be a ranking profile over X, and k a threshold vector.

For all i ≤ n, let (Pi)
1→ki be the subset of X defined by

(Pi)
1→ki = {x ∈ X | rk(x, Pi) ≤ ki}

The approval profile induced by P and k, denoted by AP,k, is defined as

AP,k = 〈(P1)
1→k1 , . . . , (Pn)

1→kn〉
– The set of all approval profiles compatible with P is defined as

CAP (P ) = {AP,k | k ∈ {1, . . . ,m}n}
Example 1. Let m = n = 3, P = 〈x1 � x2 � x3, x1 � x2 � x3, x3 � x1 � x2〉
and k = 〈2, 1, 2〉; then AP,k = 〈{x1, x2}, {x1}, {x1, x3}〉.
Definition 2. Let P be a ranking profile P over X. A subset X ′ ⊆ X is called
a possible co-winner set for P if there exists a threshold vector k such that X ′ =
App(AP,k). The set of all possible co-winner sets for P is denoted by PCS(P ).
x ∈ X is a possible single winner for P if {x} ∈ PCS(P ), a possible co-winner
if it belongs to some possible co-winner set, a necessary co-winner if it belongs
to all co-winner sets for P , and a necessary single winner if PCS(P ) = {x}.
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Example 1, continued. {x1} is a possible co-winner set (and hence x1 a possible
single winner) for P , obtained for instance for k = 〈1, 3, 3〉, for k = 〈1, 2, 2〉, and
for many other threshold vector; and

PCS(P ) = {{x1, x2, x3}, {x1, x2}, {x1, x3}, {x1}, {x3}}
whereas the possible single winners for P are x1 and x3.

Without any restriction on the allowed thresholds, the notions of possible co-
winner, necessary co-winner and necessary single winner turn out to trivialize:
all candidates are possible co-winners, no candidate is a necessary single winner,
and a x is a necessary co-winner if and only if it is ranked on top of all votes.

We now consider the following question: given a ranking profile P and a subset
of X ′ of candidates, is X ′ a possible winner set for P? We call this problem the
possible co-winner set problem for approval voting5. This problem
turns out to be easy in the case where X ′ is a singleton:

Theorem 1. x is a possible single winner for P if and only if no candidate in
X \ {x} dominates x in P .

Proof. Assume no y dominates x in P . Define k by ki = rkP (i, x) for any i ∈ N .
x is approved n times in AP,k; if y �= x is also approved n times AP,k, then for
all i, rkP (i, y) ≤ ki, i.e., y would dominates x in P ; therefore, App(AP,k) = {x}.
Conversely, if y dominates x in P , then for all k, y will be approved at least as
many times as x in AP,k, therefore x cannot be a posssible single winner.

As a consequence, the restriction of the possible co-winner set problem to sin-
gletons can be solved in polynomial time. This property does not generalize to
subsets of arbitrary size. Indeed, the possible co-winner set problem is computa-
tionally hard, even under the restriction to sets of candidates of fixed size � ≥ 2.
We first prove the following lemma.

Lemma 1. If X ′ ∈ PCS(P ), then there exists a solution (ki)i∈N satisfying the
following properties:

(a) For any i ∈ N , ki ∈ {rkP (i, x) : x ∈ X ′}.
(b) The score of any co-winner is at least maxx∈X′ pl(x,X ′).

Proof. Let X ′ ∈ PCS(P ). (a): Let (ki)i∈N be any solution such that the can-
didates in X ′ = {x1, . . . , x�} are exactly the co-winners for profile P . Con-
sider a voter i and, without loss of generality, assume that x1 �i · · · �i x�.
Moreover, assume ki /∈ {rkP (i, x) : x ∈ X ′}. If rkP (i, xj) < ki < rkP (i, xj+1)
with j ∈ {1, . . . , � − 1}, then we replace ki by rkP (i, xj). If ki < rkP (i, x1) or
ki > rkP (i, x�), we replace ki by rkP (i, x�). It is not difficult to see that X ′

remains exactly the co-winner set. By repeating this procedure for each voter,
we obtain the expected result. (b): Using (a), we know that there is a solution
(ki)i∈N such that the global score of candidate xj ∈ X ′ is at least pl(xj , X

′).
Since the candidates in X ′ are the co-winners, we must have that each candidate
of X ′ is approved at least maxx∈X′ pl(x,X ′) times.

5 From now on we will generally omit “for approval voting”.
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Theorem 2. Let � ≥ 2. Given a profile P and a subset of candidates X ′ such
that |X ′| = �, determining whether X ′ is a possible co-winner set for P is NP-
complete.

Proof. The problem is clearly in NP for all � ≥ 2. Let us give a proof for the case
when � = 2 and explain then how to generalize to all other cases. The proof of the
NP-completeness is based on a reduction from exact 3-set cover (X3C in
short). In an instance of X3C, we are given a family of m sets S = {S1, . . . , Sm}
over a ground set Y = {y1, . . . , y3n} such that ∪mi=1Si = Y and |Si| = 3, for
i = 1, . . . ,m. The question is whether there exists a subset J ⊆ {1, . . . ,m} of
size n such that

∑
j∈J Sj = Y ? This problem is known to be NP-complete [17].

Let I = (S, Y ), with S = {S1, . . . , Sm} and Y = {y1, . . . , y3n}, be an instance
of X3C. We build an instance of possible co-winner set for approval
voting, with � = 2, as follows. There are 2m − n voters N = {1, . . . ,m −
n} ∪ {1′, . . . ,m′} and m + 2n + 2 candidates X = E ∪ Y ∪ {a, b} where E =
{e1, . . . , em−n} and we set X ′ = {a, b} as the target candidates. The profile P is
given by:

• For 1 ≤ i ≤ m− n, E \ {ei} �i Y �i a �i ei �i b.

• For 1 ≤ j ≤ m, b �j′ Y \ Sj �j′ E �j′ a �j′ Sj.

This clearly gives us an instance I ′ of possible co-winner set. We claim that
there exists a subset J ⊆ {1, . . . ,m} with|J | = n such that

∑
j∈J Sj = Y if and

only if {a, b} is a possible co-winner set for P .
Suppose that I is a yes-instance of X3C, i.e., there exists J ⊆ {1, . . . ,m}

with|J | = n such that
∑

j∈J Sj = Y . We set kj′ = rkP (j
′, a) for j ∈ J . For the

remaining voters i ∈ N \{j′ : j ∈ J}, we set ki = min{rkP (i, a), rkP (i, b)}. a and
b are approved m times while candidates in E ∪ Y are approved at most m− 1
times. Thus X ′ = {a, b} is a possible co-winner set.

Conversely, assume that I ′ is a yes-instance of possible co-winner set.
Using (a) and (b) of Lemma 1, there exists k with ki ∈ {rkP (i, a); rkP (i, b)}
for any i ∈ N and a, b must be approved at least m times. Thus, there exists
J ⊆ {1, . . . ,m} such that kj′ = rkP (j

′, a) for j ∈ J and kj′ = rkP (j
′, b) for j /∈ J .

In particular, we deduce that
∑

j∈J Sj = X since otherwise any candidate of
X \ (∑j∈J Sj) necessarily dominates a; hence, |J | ≥ n. Moreover, if |J | ≥ n+1,
then a gets approved at least m+ 1 times. Thus, there exists at least one voter
i ∈ {1, . . . ,m − n} such that ki = rkP (i, b) (since a and b must get approved
the same number of times). But then app(ei) ≥ app(a), a contradiction. So we
conclude that |J | = n and

∑
j∈J Sj = Y : I is a yes-instance of X3C.

This shows the NP-completeness of possible co-winner set for ap-
proval voting, restricted to co-winner sets of size 2. Now it is not difficult
to see that, if we proceed exactly the same way and replace everywhere in the
previous proof a by {a1, . . . , a�−1} and we set X ′ = {b} ∪ {a1, . . . , a�−1}, for
� ≥ 3, we can show the NP-completeness of possible co-winner set for
approval voting restricted to co-winner sets of size �.
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3.2 Approval Voting with Restriction on the Number of Approvals

We now consider, more generally, [d, k]-approval voting. The definitions are nat-
ural generalizations of those in Section 3.1, with the difference that each ki
should be such that d ≤ ki ≤ k. The set of all [d, k]-approval profiles compatible
with P is defined by CAPd,k(P ) = {AP,k | k ∈ [d, k]n}, and the set of possible
[d, k]-approval co-winner sets for P is denoted by PCSd,k(P ).

Example 1, continued.

– PCS1,2(P ) = {{x1}, {x1, x2}};
– PCS2,3(P ) = {{x1}, {x1, x2}, {x1, x3}, {x1, x2, x3}}

Again, in order to check whether x is a possible single winner, it is enough to
check it for a specific choice of k, namely, the best possible choice for x.

Theorem 3. {x} ∈ PCSd,k(P ) if App(AP,k) = {x} for k defined by ki =
rkP (i, x) when rkP (i, x) ∈ [d, k], and ki = d otherwise.

Proof. (⇐) is direct from the definition. For (⇒), suppose {x} ∈ PCSd,k(P ).
Then there is a vector (k′i)i∈N for which x is the single winner. If k′ = k then we
are done. Otherwise, take the voter i with minimum index that satisfies k′i �= ki.
If k′i < ki then doing k′i ← ki increases the score of a subset of candidates by one
unit, and this subset includes x. If k′i ≥ ki then by doing k′i ← ki the score of x
remains unchanged, while the score of some other candidates decreases. In all,
x remains the single winner by the operation k′i ← ki. Repeating the operation
until k′ = k leads to the result. ��
Theorem 3 generalizes Lemma 2 in [9]; for d = 1 and k = m − 1, we recover
their notion of critical strategy profile for x: every voter who ranks i as his
worst candidate approves only one candidate; the other voters vote for i and
all candidates above. Then x is a possible 1,m− 1- approval winner (called AV
outcome in [9]) if x wins at his critical strategy profile.

As a corollary, we get simple characterizations of possible and necessary co-
winners and single winners, which we state without proof: let D+

P (x, y) = {i |
rki(P, x) ≤ k, rki(P, y) > d andx �i y} and D−

P (x, y) = {i | rki(P, x) ≤
d and rki(P, y) > k}. Then x is a possible [d, k]-approval co-winner (respectively,
possible single winner, necessary co-winner, single winner) for P if and only if
for all y �= x, |D+

P (x, y)| ≥ |D−
P (y, x)| (respectively, |D+

P (x, y)| > |D−
P (y, x)|,

|D−
P (x, y)| ≥ |D+

P (y, x)|, |D−
P (x, y)| > |D+

P (y, x)|).
Theorem 2 immediately extends to [1, k]-approval for k = m − 2 because in

the proof of Theorem 2 we do not approve more m − 2 candidates for each
voter.

Theorem 4. For any integer � ≥ 2, the problem of checking whether X ′ is
a [1,m − 2]-approval possible co-winner set is NP-complete, even under the
restriction |X ′| = �.



64 N. Barrot et al.

Remark: The proof of Theorem 2 can be adapted in such a way that for any inte-
gers � ≥ 2 and d ≥ 2, checking whether X ′ is a [d, k]- approval possible co-winner
set, under the restriction |X ′| = �, is NP-complete for some k. Moreover, using
Algorithm 1 described in Subsection 3.3 we can prove that checking whether X ′

is a [d, k]- approval possible co-winner set is polynomial whenever k− d is upper
bounded by a constant.

3.3 The Probability of Possible Co-winner Sets

Definition 3. Let p be a probability distribution on all threshold vectors. Given
a profile P and a subset of candidates X ′ ⊆ X, the probability that X ′ is the
co-winner set (for approval) is equal to

∑
k|App(AP,k)=X′ pr(k).

A simple assumption consists in assuming that π(i, r) approves his r most pre-
ferred candidates with a given probability π(i, r), and that voters’ choices are
probabilistically independent. Under this assumption, we show how to compute
efficiently the probability of each co-winner subset.

We first show how to enumerate all possible scores and their probabilities.
Given a voter i and a threshold ki ∈ [d..k], we define trace(i, ki) as the m-
dimensional 0-1 vector whose coordinate j is equal to 1 if candidate xj belongs
to the ki most preferred candidates of i, and 0 otherwise. For example, there are
4 candidates and voter i’s preference profile is x2 �i x3 �i x1 �i x4; we have
trace(i, 1) = (0, 1, 0, 0), trace(i, 2) = (0, 1, 1, 0), trace(i, 3) = (1, 1, 1, 0) and
trace(i, 4) = (1, 1, 1, 1).

We suppose wlog. that the voters provide their ballots sequentially, by ascend-
ing index, and a list Li contains all possible scores after voter i’s turn. Therefore
Li is defined as Li−1 to which one adds the possible ballots of voter i.

An element of a list is a couple composed of an m-dimensional vector (a score
for each candidate) and a probability. We suppose that a list never contains
two elements with the same vector. In addition, a list is sorted by its elements’
vectors which are sorted in lexicographic order (e.g. (1, 3, 4) <lex (1, 4, 0)). A
possible list can be 〈((1, 3, 4), 0.24), ((1, 4, 0), 0.36), ((2, 0, 1), 0.15)〉.

We use a subroutine merge-lists(L,L′) that merges the lists L and L′. If sev-
eral elements have the same vector then they are combined in a unique element
whose probability is the sum of all condensed elements’ probabilities. For example,
merge-lists(〈((1, 4, 0), 0.36), ((2, 0, 1), 0.15)〉, 〈((1, 2, 6), 0.41), ((1, 4, 0), 0.06)〉)
is equal to 〈((1, 2, 6), 0.41), ((1, 4, 0), 0.42), ((2, 0, 1), 0.15)〉. merge-lists(L,L′)
needs |L|+ |L′| operations.

Given a list L, a vector vec and its probability π, L⊕ (vec, π) means that we
add vec to every vector of L (component by component) and we multiply every
probability by π. For example, 〈((1, 4, 0), 0.3), ((2, 0, 1), 0.1)〉⊕((1, 0, 1), 0.3) gives
〈((2, 4, 1), 0.09), ((3, 0, 2), 0.03)〉. L⊕ (vec, π) requires |L| operations.

Algorithm 1 gives the exhaustive list of outcomes with their probabilities,
where 0 denotes the m-dimensional vector whose coordinates are all equal to 0.

Then we can retrieve from Ln the winner sets and their probabilities. The
size of Li is at most (k− d+1)|Li−1|, and |L0| = 1 so |Ln| ≤ (k− d+1)n ≤ mn.
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Algorithm 1. All possible scores with probabilities

1: L0 ← 〈(0, 1)〉
2: for i = 1 to n do
3: L′ ← 〈〉
4: for r = d to k do
5: L′ ← merge-lists(L′, Li−1 ⊕ (trace(i, r), π(i, r)))
6: end for
7: Li ← L′

8: end for
9: return Ln

Meanwhile the final score of any candidate belongs to [0..n] so there are at most
(n + 1)m distinct vectors of scores and |Ln| ≤ (n + 1)m. Thus Algorithm 1 is
exponential in the input size but it is polynomial when n orm is a fixed constant.

As a short example, consider an instance with m = n = 3, d = 1 and k = 3.
The profiles are x1 �1 x2 �1 x3, x3 �2 x1 �2 x2 and x2 �3 x3 �3 x1. We
suppose that for every voter i, the probabilities that the ki first candidates are
approved are 0.3, 0.5 and 0.2 when ki is equal to 1, 2 and 3 respectively. These
probabilities are independent. Hence voter 1 approves {x1, x2} with probability
0.5. And voter 2 approves {x1, x2} with probability 0 since it is not a sincere
vote. Running Algorithm 1 yields the values given in Table 1.

Table 1. Output of Algorithm 1 on the example

detailed scores & winner(s) &
corresponding prob. total prob.

(322) (312) (211) {x1}
0.082 0.03 0.045 0.157

(121) (231) (232) {x2}
0.045 0.03 0.062 0.137

(112) (123) (223) {x3}
0.045 0.03 0.012 0.087

(221) (332) {x1, x2}
0.123 0.02 0.143

detailed scores & winner(s) &
corresponding prob. total prob.

(212) {x1, x3}
0.093 0.093

(122) (233) {x2, x3}
0.093 0.02 0.113

(111) (222) (333) {x1, x2, x3}
0.027 0.235 0.008 0.27

3.4 Experimental Analysis

Finally, we provide an experimental analysis of the sensitivity of the winner to
the choice of the thresholds. We generate 5 ∗ 104 ranking profiles with an uni-
form distribution (impartial culture assumption). For each profile we generate
5 ∗ 104 threshold vectors with a uniform distribution, for each of these vectors
we compute the winner (ties being broken randomly), and we obtain the winning
probability of each candidate. We reorder these winning probabilities decreas-
ingly. Then we compute the average, over all generated profiles, of the largest
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winning probability. The results of these experiments are summarized in Table
2. We observe that the largest winning probability is above 50% with a low num-
ber of candidates and any number of voters. This probability decreases when the
number of candidates increases.

Table 2. Largest winning probability with uniformly drawn profiles and thresholds

n = 5 n = 20 n = 50 n = 100

m = 5 55.9 58.5 55.4 54.7
m = 20 32.8 35.0 34.6 35.1
m = 50 23.9 27.1 27.3 27.3
m = 100 18.3 22.4 22.7 22.8

We also compute the average of the second and third largest winning proba-
bilities. Figure 1 shows us the evolution of the largest, second and third largest
winning probabilities as a function of the number of candidates, with n = 5.
Finally, in Figure 2 we represent the largest winning probability as a function of
the number of voters. The largest winning probability appears to be independent
from the number of voters.

0 20 40 60 80 100

0.2

0.5

Third
Second
First

Fig. 1. Largest, second and third largest winning probabilities as a function of the
number of candidates, with n = 5

0 20 40 60 80 100

0.2

0.5

m = 50
m = 20
m = 5

Fig. 2. Largest winning probability as a function of the number of voters
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4 Multiwinner Approval Voting

We now briefly reconsider some of the questions addressed in Section 3 in the
context of multiwinner approval voting. We are now given an integer K ≤ m,
and look for a committee of size K.

Definition 4. For any approval profile A, AppK(A) is the set of all committees
X ′ ⊆ X of size K such that for any x ∈ X and z /∈ X ′, appA(x) ≥ appA(z).
Let P a ranking profile over X. X ′ ⊆ X is a possible winning K-committee
for P if X ′ ∈ AppK(AP,k) for some threshold vector k. The set of all possible
winning K-committees for P is denoted by PCSK(P ). x ∈ X is possibly (resp.
necessarily) elected w.r.t. K and P if it belongs to some (resp. all) possible win-
ning K-committee(s) for P . Let PossK(P ) and NecK(P ) be the set of possibly
(resp. necessarily) elected candidates w.r.t. K and P . These definitions naturally
generalize to [d, k]-approval voting.

The following result generalizes Theorem 1.

Theorem 5. x ∈ PossK(P ) if and only if x is not Pareto-dominated by K
candidates or more.

Proof. Suppose that x is member of a possible winning K-committee, then the
candidates that dominate x are also in this winning K-committee, therefore at
most K − 1 candidates dominate x. Conversely, assume that x is dominated
by K − 1 candidates or less. For all i ∈ N , let ki = rkP (i, x). Only x and
the candidates that dominates x have an approval score equal to n, therefore x
belongs to a winning K-committee.

Theorem 6. x ∈ NecK(P ) if and only if x dominates at least n−K candidates.

The proof is similar to the proof of Theorem 5.
We now consider the following problem: given a ranking profile P over X and

a subset X ′ ⊂ X of size K, is K a possible winning K-committee for P? We
first establish the following lemma, for K = 2.

Lemma 2. Let X ′ = {x′
1, x

′
2}. If X ′ ∈ PCS2(P ), then X ′ ∈ App2(A

P,k) for
some k satisfying |{i ∈ N : rkP (i, x

′
1) ≤ ki}| = |{i ∈ N : rkP (i, x

′
2) ≤ ki}|.

Proof. Let X ′ ∈ PCS2(P ) and let k such that X ′ ∈ App2(A
P,k). If

appAP,k(x′
1) = appAP,k(x′

2), we are done. Otherwise, assume without loss of
generality that appAP,k(x′

1) > appAP,k(x′
2). There exists a subset N ′ ⊂ N of

size appAP,k(x′
1) > appAP,k(x′

2) such that for voters i ∈ N ′, rkP (i, x′
1) ≤ ki <

rkP (i, x
′
2). We build a new vector k as follows: (i) for i ∈ N ′, k′i = 0; (ii) for i ∈

N\N ′, k′i = ki. We have appAP,k′ (x′
1) = appAP,k(x′

1)−(appAP,k(x′
1)−appAP,k(x′

2)
and appAP,k′ (x′

2) = appAP,k(x′
2), therefore appAP,k′ (x′

2) = appAP,k′ (x′
1).

Theorem 7. Determining whether X ′ is a possible winning 2-committee is NP-
complete.
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Proof. Hardness is shown by a reduction from the problem of determining
whether a set of 2 candidates is a possible winning set in single-winner ap-
proval (NP-complete, cf. Theorem 2). Let I = (P,N,X,X ′) be an instance
of this problem, with X ′ = {x′

1, x
′
2}. From I, we build an instance I ′ of the

possible winning 2-committee problem, with the same N , X , P , and X ′. We
claim that X ′ is a possible winning set in I if X ′ is a possible winning 2-
committee in I ′. Clearly, if X ′ = App(AP,k), then X ′ = App2(A

P,k). Con-
versely, assume that X ′ = App2(A

P,k). By lemma 2, we know that there
exists k′ such that X ′ = App2(A

P,k) and appAP,k′ (x′
1) = appAP,k′ (x′

2), therefore,

X ′ = App2(A
P,k′

).

Unsurprisingly, this difficulty carries on to committees of larger size (the proof,
by reduction from the possible winning 2-committee, is easy and omitted):

Theorem 8. For any integer K ≥ 2, determining whether X ′ is a possible
winning K-committee is NP-complete.

This complexity result extends to [1, k]-approval:

Theorem 9. For any integer K ≥ 2, and k ≥ 3, determining whether X ′ is a
possible winning K-committee for [1, k]-approval is NP-complete.

A related series of results on the complexity of multiwinner elections with ap-
proval ballots is in [11] (Theorems 3.4 to Corollary 3.9). There the setting is
different from ours: each voter approves exactly t candidates; if voter i approves
Ai ⊆ X (with |Ai| = t), then given two k-committees X and Y , i is assumed to
prefer X over Y (X �i Y ) if |X ∩Ai| > |Y ∩Ai|. A k-committee X is a popular
k-committee if it majority-wise defeats all other k-committees (that is, if it a
Condorcet winner in the set of all k-committees for the profile 〈�1, . . . ,�n〉).
Darmann shows that deciding whether a k-committee is a popular committee is
NP-hard as soon as 2 ≤ t ≤ m − 2 (finding such a committee is probably even
harder). Unlike ours, the hardness results in [11] are not due to the uncertainty
about the number of approvals and they do not imply, nor are implied by, any
of our results.

5 Further Issues

When thresholds vectors are generated with a uniform probability, the winning
probability of a candidate for a given profile is proportional to its Borda score;
more generally, if the probabilities on the number of approvals for voters are
i.i.d., the winning probability of a candidate for a profile is proportional to its
score for some positional scoring rule. This connection is worth exploring further.

Another interesting topic that we did not explore is the control of an election
by a chair who has the power to fix the lower and upper bounds d and k on the
number of approvals. Assume that the chair moreover knows the voters’ rankings
and has some subjective probability distribution on the number of candidates
the voters will approve (to be conditioned by the bounds d and k). Clearly, the
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choice of d and k has an influence on the winning probability of a candidate;
this election control is computationally hard if computing winning probabilities
is computationally hard — a question that we have not addressed yet.
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