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{bonzon,lagasq,lang}@irit.fr

Abstract. Boolean games are a logical setting for representing static games in a
succinct way, taking advantage of the expressive power and conciseness of propo-
sitional logic. A Boolean game consists of a set of players, each of them controls
a set of propositional variables and has a specific goal expressed by a proposi-
tional formula. There is a lot of graphical structures hidden in a Boolean game:
the satisfaction of each player’s goal depends on players whose actions have an
influence on these goals. Even if these dependencies are not specific to Boolean
games, in this particular setting they give a way of finding simple characteriza-
tions of Nash equilibria and computing them.

1 Introduction

The framework of Boolean games [1–4] allows for expressing compactly static games
with binary preferences: each player of a Boolean game controls a set of propositional
variables, and a player’s preferences is expressed by a plain propositional formula.1

Thus, a player in a Boolean game has a dichotomous preference relation: either her
goal is satisfied or it is not. This restriction may appear at first glance unreasonable.
However, many concrete situations can be modelled as games where agents have di-
chotomous preferences. Furthermore, Boolean games can easily be extended to allow
for non-dichotomous preferences, represented in some compact language for preference
representation (see [5]).
Using the syntactical nature of goals, we can represent graphically the dependencies
between players: if the goal (and hence the satisfaction) of a player i depends on some
variables controlled by a player j, then i may need some action of j to see her goal
satisfied. This dependency betweeen players is a central notion in graphical games
[6, 7] as well as in [8] – see Section 6. Representing these dependencies on a graph
will allow us to compute pure-strategy Nash equilibria in a much simpler way, without
enumerating all combinations of strategies.
After recalling some background on Boolean games in Section 2, we introduce in Sec-
tion 3 the notion of dependency graph between players in Boolean games. In Sec-
tion 4 we show how this graph can be exploited so as to find simple characterizations
Nash equilibria in Boolean games, and we generalize some of these results for non-
dichotomous preferences in Section 5. Related work and further issues are discussed in
Section 6.

1 We refer here to the version of Boolean games defined in [4], which generalizes the initial
proposal [1].



2 n-players Boolean games

For any finite set V = {a,b, . . .} of propositional variables, LV denotes the propositional
language built up from V , the Boolean constants > and ⊥, and the usual connectives.
Formulas of LV are denoted by ϕ,ψ etc. A literal is a variable x of V or the negation
of a variable. A term is a consistent conjunction of literals. A clause is a disjunction of
literals. If α is a term, then Lit(α) is the set of literals appearing in α. If ϕ ∈ LV , then
Var(ϕ) denotes the set of propositional variables appearing in ϕ.
2V is the set of the interpretations for V , with the usual convention that for M ∈ 2V

and x ∈ V , M gives the value true to x if x ∈ M and false otherwise. |= denotes the
consequence relation of classical propositional logic.
Let V ′ ⊆V . A V ′-interpretation2, also said partial interpretation, is a truth assignement
to each variable of V ′, that is, an element of 2V ′ . V ′- interpretations are denoted by
listing all variables of V ′, with a ¯ symbol when the variable is set to false: for instance,
let V ′ = {a,b,d}, then the V ′-interpretation M = {a,d} assigning a and d to true and b
to false is denoted by abd. ⊆ X , then
If {V1, . . . ,Vp} is a partition of V and {M1, . . . ,Mp} are partial interpretations, where
Mi ∈ 2Vi , (M1, . . . ,Mp) denotes the interpretation M1∪ . . .∪Mp.
Finally, we denote the partial instantiation of a formula ϕ by an X-interpretation MX by:
(ϕ)MX = ϕv∈MX←>,v∈X\MX←⊥.

Given a set of propositional variables V , a Boolean game on V is a n-players game3,
where the actions available to each player consist in assigning a truth value to each
variable in a given subset of V . The preferences of each player i are represented by a
propositional formula ϕi formed upon the variables in V .

Definition 1 A n-player Boolean game is a 4-tuple (N,V,π,Φ), where N = {1,2, . . . ,n}
is a finite set of players (also called agents); V is a finite set of propositional variables;
π : N 7→ 2V is a control assignment function; Φ = {ϕ1, . . . ,ϕn} is a set of goals, where
each ϕi is a satisfiable formula of LV .

The control assignment function π maps each player to the variables she controls. For
the ease of notation, the set of all the variables controlled by i is written πi instead of
π(i). Each variable is controlled by one and only one agent, that is, {π1, . . . ,πn} forms
a partition of V .

Definition 2 Let G = (N,V,π,Φ) be a Boolean game. A strategy for player i in G is a
πi-interpretation . The set of strategies for player i in G is Si = 2πi A strategy profile s
for G is a n-uple s = (s1,s2, . . . ,sn) where for all i, si ∈ Si. S = S1× . . .×Sn is the set of
all strategy profiles.

Note that since {π1, . . . ,πn} forms a partition of V , a strategy profile s is an inter-
pretation for V , i.e., s ∈ 2V . The following notations are usual in game theory. Let

2 Note that a V -interpretation is an interpretation.
3 In the original proposal [1], Boolean games are two-players zero-sum games. However the

model can easily be generalized to n players and non necessarily zero-sum games [4].



s = (s1, . . . ,sn) be a strategy profile. For any non empty set of players I ⊆ N, the pro-
jection of s on I is defined by sI = (si)i∈I and s−I = sN\I . If I = {i}, we denote the
projection of s on {i} by si instead of s{i}; similarly, we note s−i instead of s−{i}. πI
denotes the set of the variables controlled by I, and π−I = πN\I . The set of strategies for
I ⊆ N is SI =×i∈ISi. If s and s′ are two strategy profiles, (s−I ,s′I) denotes the strategy
profile obtained from s by replacing si with s′i for all i ∈ I.
The goal ϕi of player i is a compact representation of a dichotomous preference relation,
or equivalently, of a binary utility function ui : S→{0,1} defined by ui(s) = 0 if s |=¬ϕi
and ui(s) = 1 if s |= ϕi. s is at least as good as s′ for i, denoted by s�i s′, if ui(s)≥ ui(s′),
or equivalently, if s |= ¬ϕi implies s′ |= ¬ϕi; s is strictly better than s′ for i, denoted by
s�i s′, if ui(s) > ui(s′), or, equivalently, s |= ϕi and s′ |= ¬ϕi.
This choice of binary utilities implies a loss of generality, even if some interesting
problems have naturally dichotomous preferences. We relax this assumption in Section
5, where we consider generalized Boolean games with nondichotomous preferences
expressed in some logical language for compact preference representation, as in [5].

3 Dependencies between players

We now focus on the syntactical nature of goals, which may help us identifying some
game-theoretical notions, as pure-strategy Nash equilibria. Intuitively, if the goal ϕi of
player i does not involve any variable controlled by player j, then the satisfaction of i
does not depend directly on j. This is only a sufficient condition: it may be the case that
the syntactical expression of ϕi mentions a variable controlled by j, but that this variable
plays no role whatsoever in the satisfaction of ϕi, as variable y in ϕi = x∧ (y∨¬y). We
therefore use a stronger notion of formula-variable independence [9].

Definition 3 A propositional formula ϕ is independent from a propositional variable
x if there exists a formula ψ logically equivalent to ϕ and in which x does not appear.4

Definition 4 Let G = (N,V,π,Φ) be a Boolean game. The set of relevant variables
for a player i, denoted by RVG(i), is the set of all variables v ∈ V such that ϕi is not
independent from v.

For the sake of notation, the set of relevant variables for a given Boolean game G will
be denoted by RVi instead of RVG(i). We now easily define the relevant players for a
given player i as the set of players controlling at least one variable of RVi.

Definition 5 Let G = (N,V,π,Φ) be a Boolean game. The set of relevant players for
a player i, denoted by RPi, is the set of agents j ∈ N such that j controls at least one
relevant variable of i: RPi =

S

v∈RVi π−1(v)5.
4 We have this equivalent semantical characterization of formula-variable independence [9]: ϕ

is independent from x if there exists an interpretation s such that s |= ϕ and switch(s,x) |= ϕ,
where switch(s,x) is obtained by switching the value of x in s, and leaving the values of other
variables unchanged.

5 Again, the set of relevant players for a Boolean game G should be denoted by RPG(i): for the
ease of notation we simply write RPi.



Example 1 3 friends (1, 2 and 3) are invited at a party. 1 wants to go at this party. 2
wants to go at the party if and only if 1 goes, whereas 3 wants to go there, and prefers
that 2 goes to, and 1 doesn’t. This situation can be modelled by the following Boolean
game G = (N,V,π,Φ), defined by V = {a,b,c}, with a means “1 goes at the party”,
the same for b and 2; and for c and 3; N = {1,2,3}, π1 = {a}, π2 = {b}, π3 = {c},
ϕ1 = a, ϕ2 = a↔ b and ϕ3 = ¬a∧b∧ c.
We can see that 1’s satisfaction depends only on herself, 2’s depends on 1 and herself,
whereas 3’s depends on 1, 2 and herself. So, we have: RV1 = {a}, RV2 = {a,b}, RV3 =
{a,b,c}, RP1 = {1}, RP2 = {1,2}, RP3 = {1,2,3}.

This relation between players can be seen as a directed graph containing a vertex for
each player, and an edge from i to j whenever j ∈ RPi, i.e. if j is a relevant player of i.

Definition 6 Let G = (N,V,π,Φ) be a Boolean game. The dependency graph of a
Boolean game G is the directed graph (but not necessariyly acyclic) P = 〈N,R〉, with
∀i, j ∈ N, (i, j) ∈ R (denoted by R(i, j)) if j ∈ RPi.

Thus, R(i) is the set of players from which i may need some action in order to be
satisfied: j ∈ R(i) if and only if j ∈ RPi. Remark however that j ∈ R(i) does not imply
that i needs some action by j to see her goal satisfied. For instance, if π1 = {a}, π2 = {b}
and ϕ1 = a∨b, then 1 ∈ R(2); however, 1 has a strategy for satisfying her goal (setting
a to true) and therefore does not have to rely on 2.
We denote by R∗ the transitive closure of R. R∗(i, j) means that there exists a path from
i to j in R. Then, R∗(i) represents all players who have a direct or indirect influence on
i. R∗−1(i) represents all players on which i has a direct or indirect influence.

Example 1, continued: The dependence graph P induced by G is depicted as follows:

1 2

3

We have R−1(1) = {1,2,3}, R−1(2) = {2,3}, R−1(3) = {3}.
R∗(1) = {1}, R∗(2) = {1,2} and R∗(3) = {1,2,3}.
R∗−1(1) = {1,2,3}, R∗−1(2) = {2,3} and R∗−1(3) = {3}.

We easily obtain the following:

Proposition 1 Every dependency graph represents at least one Boolean game.

We now introduce the notion of stable set. A stable set is a set B of nodes such that all
the edges from nodes in B get to another node in B. The set of relevant players of a
stable set B are the players in B.

Definition 7 Let G = (N,V,π,Φ) be a Boolean game. B⊆N is stable for R if and only
if R(B)⊆ B, i.e. ∀ j ∈ B, ∀i such that i ∈ R( j), then i ∈ B.

Clearly, ∅ and N are stable, and the set of stable sets for a Boolean game is closed
under union and intersection. These four properties actually fully characterize the set of
coalitions that correspond to the set of stable coalitions for a Boolean game (recall that
a coalition is a subset of N).



Proposition 2 Let C ⊂ 2N . There exists a Boolean game G such that C is the set of
stable sets for G if and only if C satisfies the following four properties: 1. ∅ ∈ C ; 2.
N ∈ C ; 3. If B, B′ ∈ C then B∪B′ ∈ C ; 4. If B, B′ ∈ C then B∩B′ ∈ C .

We now define the projection of a Boolean game G on the set of players B⊆ N:

Definition 8 Let G = (N,V,π,Φ) be a Boolean game, and B⊆N a stable set for R. The
projection of G on B is defined by GB =(B,VB,πB,ΦB), where VB =∪i∈Bπi, πB : B→VB
such that πB(i) = {v|v ∈ πi}, and ΦB = {ϕi|i ∈ B}.

Proposition 3 If B is a stable set, GB = (B,VB,πB,ΦB) is a Boolean game.

Proof: Let GB = (B,VB,πB,ΦB). We have to check that every goal ϕi for i ∈ B is a formula of
LVB , or can be rewritted equivalently as a formula of LVB . Suppose than ∃i∈ B, ∃v∈Var(ϕi) such
that v 6∈ VB. So, ∀ j ∈ B, v 6∈ π j. Let k ∈ N \B such that v ∈ πk. We know that v ∈ Var(ϕi), so
either ϕi is independent from v, and then is logically equivalent to a formula in which v does not
appear; or ϕi is not independent from v, and in this case v ∈ RVi and by definition k ∈ RPi. So,
k ∈ R(i), but k 6∈ B: this is in contradiction with the fact that B is stable. �

Example 2 Let G = (N,V,π,Φ) be the Boolean game defined by V = {a,b,c}, N =
{1,2,3}, π1 = {a}, π2 = {b}, π3 = {c}, ϕ1 = a↔ b, ϕ2 = a↔¬b and ϕ3 = ¬c.
We have: RV1 = {a,b}, RV2 = {a,b}, RV3 = {c}, RP1 = {1,2}, RP2 = {1,2}, RP3 = {3}.
The dependency graph P of G follows. The sets of players B = {1,2} and C = {3} are
stable. We can decompose G in 2 Boolean games:

1 2

3

– GB = (B,VB,πB,ΦB), with B = {1,2},VB = {a,b}, π1 = a, π2 =
b, ϕ1 = a↔ b, ϕ2 = a↔¬b.

– GC = (C,VC,πC,ΦC), with C = {3}, VC = {c}, π3 = c, ϕ3 =¬c.

4 Nash equilibria

Pure-strategy Nash equilibria (PNE) for n-players Boolean games are defined exactly
as usual in game theory (see for instance [10]), having in mind that utility functions
are induced from players’ goals ϕ1, . . . ,ϕn. A PNE is a strategy profile such that each
player’s strategy is an optimal response to the other players’ strategies.

Definition 9 Let G = (N,V,π,Φ) be a Boolean game with N = {1, . . . ,n}.
s = {s1, . . . ,sn} is a pure-strategy Nash equilibrium (PNE) if and only if ∀i∈{1, . . . ,n},
∀s′i ∈ Si, ui(s)≥ ui(s−i,s′i).

The following simple characterization of PNEs is straightforward from this definition
([4]): a strategy profile s is a pure-strategy Nash equilibrium for G iff for all i∈N, either
s |= ϕi or s−i |= ¬ϕi holds.

These definitions lead to some obvious properties of pure-strategy Nash equilibria:



Proposition 4 Let G be a Boolean game. If ∀i ∈ N, i 6∈ RPi then every s ∈ S is a PNE.

If the irreflexive part of the players’ dependency graph P of a game G is acyclic, (i.e. if
there is no cycle of length ≥ 2), then we can use a procedure inspired by the “forward
sweep procedure” [11] to find the pure-strategy Nash equilibria. Let us see this on an
example.

Example 1, continued: The irreflexive part of the dependency graph P of G is acyclic.
RP1 = {1}, so a strategy profile s = (s1,s2,s3) is a PNE only if 1’s goal is satisfied, i.e.,
s1 = a. Then, 2 can choose her strategy, because her goal depends only on her and on
1. Thus, s is a PNE only if (s1,s2) |= (ϕ2)s1 , i.e., s2 = b. Finally, 3 knows the strategies
of 1 and 2, and therefore she knows her goal will never be satisfied whatever she does.
Therefore, G has 2 PNEs: {abc,abc}.

Proposition 5 Let G be a Boolean game such that the irreflexive part of the dependency
graph P of G is acyclic. Then, G has a PNE. Moreover, s is a PNE of G if and only if
for every i ∈ N, either (sR∗(i)\{i},si) |= ϕi or sR∗(i)\{i} |= ¬ϕi.

Obviously, when the irreflexive part of the dependency graph is not acyclic, the exis-
tence of PNE is no longer guaranteed (still, a game with a cyclic dependency graph may
have a PNE, as shown in Example 3).

Proposition 5 leads to the following corollary:

Corollary 1 If G is a Boolean game such that ∀i ∈ N, RPi = {i}, then s is a PNE if
and only if ∀i, s |= ϕi.
If G is a Boolean game such that ∀i ∈ N, ∃ j ∈ N such that RPi = { j}, then s is a PNE
if and only if s |= ϕ j.

Proposition 6 Let G = (N,V,π,Φ) be a Boolean game, B ⊆ N a stable set for R, and
GB the projection of G on B. If s is a PNE for G, then sB is a PNE for GB.

Example 3 Let G = (N,V,π,Φ) be the Boolean game defined by V = {a,b,c,d}, N =
{1,2,3,4}, π1 = {a}, π2 = {b}, π3 = {c}, π4 = {d}, ϕ1 = a↔ b, ϕ2 = b↔ c, ϕ3 =¬d,
and ϕ4 = d↔ (b∧c). We have: RP1 = {1,2}, RP2 = {2,3}, RP3 = {4}, RP4 = {2,3,4}.
The dependency graph P of G is the following:

1 2

3 4

The set of players B = {2,3,4} is stable. GB = (B,VB,πB,ΦB)
is a Boolean game, with VB = {b,c,d}, π2 = b, π3 = c, π4 = d,
ϕ2 = b↔ c, ϕ3 = ¬d, and ϕ4 = d↔ (b∧ c).
G has 2 PNEs : {abcd,abcd}, and {bcd,bcd} are 2 PNEs of GB
(and in this case, GB has no other PNEs).

As we can see on Example 2, the converse is not always true: C = {3} is stable, and the
Boolean game GC = (C,VC,πC,ΦC) has a PNE : {c}, but the game G has no PNE.
However, there exist simple cases for which the converse is true.



Proposition 7 Let B and B′ be two stable sets of players, and let GB and GB′ be the two
Boolean games associated. Suppose than sB is a PNE for GB and sB′ is a PNE for GB′
such that ∀i ∈ B∩B′, sB,i = sB′,i, where sB,i represents the strategy of player i for the
game GB. Then, sB∪B′ is a PNE for GB∪B′ .

Example 4 Let G = (N,V,π,Φ) be the Boolean game defined by V = {a,b,c}, N =
{1,2,3}, π1 = {a}, π2 = {b}, π3 = {c}, ϕ1 = a↔ c, ϕ2 = b↔ ¬c, and ϕ3 = c. We
have: RP1 = {1,3}, RP2 = {2,3}, RP3 = {3}. The dependency graph P of G is drawn
below. The sets of players B = {1,3} and C = {2,3} are stable. We have two new
Boolean games.

1

2 3

– GB = (B,VB,πB,ΦB), with B = {1,3}, VB = {a,c}, π1 = a, π3 = c, ϕ1 =
a↔ c and ϕ3 = c. GB has one PNE : {ac} (denoted by sB = (sB,1,sB,3)).

– GC = (C,VC,πC,ΦC), with C = {2,3}, VC = {b,c}, π2 = b, π3 = c, ϕ2 =
b↔¬c, ϕ3 = c. GC has one PNE : {bc} (denoted by sC = (sC,2,sC,3)).

B∩C = {3}. But we have sB,3 = sC,3 = c: GB∪C has one PNE: {abc}.

We can easily generalize Proposition 7, with p stable sets covering the set of players:

Proposition 8 Let G = (N,V,π,Φ) be a Boolean game, and let B1 . . .Bp be p stable
sets of players, such that B1∪ . . .∪Bp = N. Let GB1 , . . . ,GBp be the p Boolean games
associated. If ∃sB1 . . . sBp PNEs of GB1 , . . . ,GBp such that ∀i, j ∈ {1, . . . p}, ∀k ∈ Bi∩B j,
sBi,k = sB j,k, then s = (sB1 , . . . ,sBp) is a PNE of G.

As shown in Example 4, splitting a Boolean game makes the computation of Nash
equilibria easier. If we try to compute Nash equilibria in the original game, we have to
check if either s |= ϕi or s−i |= ¬ϕi for each of the 8 strategy profiles s and for each of
the 3 players i. So, we have to make 12 verifications for each player (8 for each strategy
profile in order to verify s |= ϕi, and 4 for each s−i to verify s−i |= ¬ϕi), then 36 for the
game in the worst case. Meanwhile, the computation of PNEs once the game is split is
much easier: for GB, from Proposition 5, we have to make 6 verifications for player 1 (4
to compute (s1,s3) |= ϕ1, and 2 to compute s3 |=¬ϕ1); and only 2 for player 3 (because
R∗(3) \ {3}= ∅). So, we only have to do 8 verifications in the worst case to find the
PNEs of GB, and the same for GC, which has an equivalent configuration. As we have to
check if the instanciation of player 3’s variables are the same for PNEs of the 2 games,
we have to make 17 verifications to compute PNEs of the game G.

5 Generalization to non-dichotomous preferences

This choice of binary utilities (where agents can express only plain satisfaction or plain
dissatisfaction, with no intermediate levels) is a loss of generality. We would like now
to allow for associating an arbitrary preference relation on S with each player. A pref-
erence relation � is a reflexive, transitive and complete binary relation on S. The strict
preference� associated with � is defined as usual by s1 � s2 if and only if s1 � s2 and
not (s2 � s1). Given a propositional language L for compact preference representation,
a L-Boolean game is defined a 4-uple G = (N,V,π,Φ), where N = {1, . . . ,n}, V , and π



are as before and Φ = 〈Φ1, . . . ,Φn〉, where for each i, Φi is a compact representation,
in L, of the preference relation �i of agent i on S. We let Pre fG = 〈�1, . . . ,�n〉. Re-
mark that if LP is the purely propositional preference representation language, where a
(dichotomous) preference is represented by a propositional formula, then LP-Boolean
games are just standard Boolean games as defined in Section 2. See [5] for several
families of L-Boolean games.
We now have to generalize the dependency graph between players from Boolean games
to L-Boolean games, for an arbitrary language L. Recall that, in Section 3, a player i
was dependent on a player j if her propositional goal ϕi was dependent of one of the
variables that j controls. Therefore, what we have to start with is generalizing formula-
variable dependence to a dependency notion between a preference relation (or a syn-
tactical input in a compact representation language from which this preference relation
can be induced) and a variable. Several definitions have been considered in [12], in the
more general case where preference relations are partial preorders. In the specific case
where preference relations are complete preorders, however, there seems to be only one
suitable definition: a preference relation� depends on a propositional variable x if there
exists at least one state where the agent is not indifferent between this state and the state
obtained by switching the value of x:

Definition 10 A preference relation� on 2V depends on a propositional variable x∈V
if there exists a s ∈ S such that switch(s,x)�i s or switch(s,x)≺i s.

This definition extends naturally to inputs of preference representation languages: an
input Φ of a preference representation language L depends on x if the preference relation
� induced by Φ depends on x.
We are now in position of defining the dependency graph for a L-Boolean game:

Definition 11 Let G = (N,V,π,Φ) a L-Boolean game. The set of relevant variables
for a player i, denoted by RVi, is the set of all variables v ∈V such that Φi is dependent
on v. The set of relevant players for a player i, denoted by RPi, is the set of agents
j ∈ N such that j controls at least one relevant variable of i: RPi =

S

v∈RVi π−1(v)

The dependency graph of a L-Boolean game is defined exactly as in Section 3.
These definitions do not depend on the language chosen for compact preference repre-
sentation. However, for the sake of illustration we give an example in which preferences
are represented with prioritized goals (see [5]):

Definition 12 A prioritized goal base Σ is a collection 〈Σ1; . . . ; Σp〉 of sets of propo-
sitional formulas. Σ j represents the set of goals of priority j, with the convention that
the smaller j, the more prioritary the formulas in Σ j .

In this context, several criteria can be used in order to generate a preference relation �
from Σ. We choose here to stick to the leximin criterion (see [13–15]). In the following,
if s is an interpretation of 2V then we let Sat(s,Σ j) = {ϕ ∈ Σ j | s |= ϕ}.

Definition 13 Let Σ = 〈Σ1; . . . ;Σp〉, and let s and s′ be two interpretations of 2V . The
leximin preference relation is defined by: s�lex s′ iff ∃k∈{1, . . . , p} such that: |Sat(s,Σk)|>
|Sat(s′,Σk)| and ∀ j < k, |Sat(s,Σ j)|= |Sat(s′,Σ j)|.



Note that �lex is a complete preference relation. Here is now an example within this
preference representation language:

Example 5 G = (N,V,π,Φ) where N = {1,2,3}, V = {a,b,c}, π1 = {a}, π2 = {b},
π3 = {c}, Σ1 = 〈a〉, Σ2 = 〈(b∨¬a);a〉 and Σ3 = 〈(c∨ ¬a);a〉. We draw below the
preference relations Pre f lex

G = 〈�lex
1 ,�lex

2 ,�lex
3 〉

6.

P1
abc

abc

abc

abc

abc

abc

abc

abc

P2

abc

abc

abc

abc

abc

abc

abc

abc

P3

abc

abc

abc

abc

abc

abc

abc

abc
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We have: RV1 = {a}, RV2 = {a,b}, RV3 = {a,c},
RP1 = {1}, RP2 = {1,2}, RP3 = {1,3}.

Definition 14 Let G = (N,V,π,Φ) be a L-Boolean game, and B ⊆ N a stable set for
R. The projection of G on B is defined by GB = (B,VB,πB,ΦB), where VB = ∪i∈Bπi,
πB(i) = {v|v ∈ πi}, and ΦB are the goals of players in B.

We can now generalize some properties found previously to these non-dichotomous
preferences. For example, Propositions 3, 5, 6, 7 and 8 can be easily generalized in this
framework.

Example 5, continued: The sets of players B = {1,2} and C = {1,3} are stable. We
have two new Boolean games:

GB = (B,VB,πB,ΦB), with B = {1,2}, VB =
{a,b}, π1 = a, π2 = b, Σ1 = 〈a〉, and
Σ2 = 〈(b ∨ ¬a);a〉. The preference relations
Pre f lex

G = 〈�lex
1 ,�lex

2 〉 are drawn on the right.

P1
ab

ab

ab

ab

P2

ab

ab

ab

ab

GB has one PNE : {ab} (denoted by sB = (sB,1,sB,2)).

GC = (C,VC,πC,ΦC), with C = {1,3}, VC =
{a,c}, π1 = a, π3 = c, Σ1 = 〈a〉 and Σ3 = 〈(c∨
¬a);a〉. The preference relations Pre f lex

G =
〈�lex

1 ,�lex
3 〉 are drawn on the right.

P1
ab

ab

ab

ab

P3

ac

ac

ac

ac

GC has one PNE : {ac} (denoted by sC = (sC,1,sC,3)).
B∩C = {1}. But we have sB,1 = sC,1 = a: GB∪C has one PNE: {abc}.

6 Arrows are oriented from more preferred to less preferred strategy profiles (s1 is preferred to
s2 is denoted by s1→ s2). To make the figures clearer, we do not draw edges that are obtained
from others by transitivity. The dotted arrows indicate the links taken into account in order to
compute Nash equilibria. For example, player 2 prefers abc to abc because |Sat(ab,Σ1

2)|= 1,
|Sat(ab,Σ2

2)| = 1 (both stratas of Σ2 are satisfied), and |Sat(ab,Σ1
2)| = 1, |Sat(ab,Σ2

2)| = 0
(only the first strata of Σ2 is satisfied).



6 Conclusion

We have shown how the intuitive notion of dependency between players in a Boolean
game can be exploited so as to give simpler characterizations of pure-strategy Nash
equilibria. Moreover, our properties not only hold for the standard version of Boolean
game (with propositional goals and dichotomous preferences) but also for generalized
Boolean games, where players’ preferences are expressed in a compact representa-
tion language. Another class of games with dichotomous preferences shares a lot with
Boolean games: Qualitative Coalitional Games (QCG), introduced by [16]. In a QCG,
each agent has a set of goals, and is satisfied if one of her goals is achieved, but is
indifferent on which goal is, and on the number of goals achieved7. Thus agents have
dichotomous preferences (as in the standard version of Boolean games - cf. Sections 2–
4). A characteristic function associates with each agent, or set of agents, the set of goals
they can achieve. The main difference between QCGs and BG is that characteristic
functions in QCGs are not monotonic, whereas utility functions are in Boolean games.
However, we can represent a QCG with monotonic characteristic function by a Boolean
games.
Boolean games take place in a larger stream of work, that we may gather under the
generic name of compactly represented games. All frameworks for compactly repre-
sented games make use of notions of dependencies between players and/or actions that
have a lot in common with ours. Most of these frameworks, including [6, 7, 18], share
the following mode of representation of players’ utilities: the utility of a player i is de-
scribed by a table specifying a numerical value for each combination of values to each
of the set of variables that are relevant to i8. The representation of games with such util-
ity tables is called graphical normal form (GNF) in [8]. Dependency between players
and variables in such games naturally induce a dependency relation between players,
in the same way as we do (i depends on j if i’s utility table refers to a variable that is
controlled by j).
Boolean games are very similar to these graphical games, except that the form chosen
for expressing compactly players’ preferences is logical. The logical form is some-
times exponentialy more compact than the graphical form: consider for instance the
dichotomous preference relation corresponding to the goal ϕ = x1⊕ . . .⊕ xp, where ⊕
is exclusive or. While the logical representation of uϕ is linear in p, its representation
by utility tables would be exponential in p, since each of the p variables is relevant
to the utility of the player. In the general case of non-dichotomous utility functions
or preference relations, the Boolean game framework, by allowing some flexibility on
the choice of the language for preference representation, is more general than that of
graphical games, where the format for expressing preferences is fixed. Moreover, solv-
ing games in logical form may benefit from the huge literature on SAT and related
algorithms for propositional logic.
The notion of dependency between players and variables in graphical games is used for
the very same purpose as our dependency graph, namely, to split up a game into a set

7 In [17], QCGs are extended by allowing agents to have preferences over goals.
8 In multi-agent influence diagrams [6], a players’ utility is actually express in a more compact

way as the sum of local utilities, each corresponding to a smaller set of variables.



of interacting smaller games, which can solved more or less independently. [8] study
speficic restrictions on graphical games, either by bounding the size of players’ neigh-
bourhoods (the neighbourhood of a player i in a graphical game is the set of players
who potentially influence the utility of i), or by imposing that the dependency rela-
tion between players should be acyclic. They study the impact of such restrictions on
the complexity of checking the existence of a Nash equilibrium (or their computation).
Clearly, similar structural restrictions on Boolean games would probably allow for a
complexity fall with respect to the complexity results for the general case in [4]. This is
left for further study.

The work reported here is still preliminary and can be pursued in many other directions.
First, apart of the structural restrictions mentioned just above, we may study the impact
of syntactical restrictions on propositional goals on the computation of Nash equilibria
and on the construction of the dependency graph. In [19], Sichman and Conte intro-
duced dependence graphs which can represent and/or dependencies9 on actions needed
to achieve an agent’s goal and on the agents who control these actions. In the first case,
this is similar to our set of relevant variables, and in the second case this corresponds
to our set of relevant players. Sichman and Conte’s ideas can be used for introduc-
ing and/or dependencies in our framework, but using the syntactical form of the goals.
In [20], 3 notions of dependance are defined: the weak one is the same than our (an
agent i is dependent from a set of agents C if C can achieve i’s goal). The second one,
normal dependence, adds to weak dependence the condition that i cannot achieve her
goal by herself. Finally, the third one adds the fact that agents in C are the only ones
able to achive i’s goal. Following [19], [20] use an and-graph to reprensent weak/strong
dependence: for every coalition C, there is an and-edge from agent i, i ∈ C, to agent
j ∈ N if the agents in C can achieve the goal desired by the agent j. This notion of de-
pendence is the basis of their computation of admissible coalition under the do-ut-des
criterion (see [21]).
Second, while our Section 5 does not focus on particular language (prioritized goals we
used in an example just for the sake of illustration), we may want to study in further
detail the computation of Nash equilibria (using the structural properties of the game)
for some specific languages for preference representation (see [5] for the case of CP-
nets and prioritized goals). A particularly appealing language is that of weighted goals,
where a player’s utility function is represented using several propositional formulas,
each being attached with a numerical value (see [22]). This is especially interesting be-
cause this language generalizes the representation by utility tables in graphical games.
So far, Boolean games allow only for expressing static games (with simultaneous moves
by the players) and with complete information. Enriching Boolean games with dynam-
icity and nature-driven uncertainty, as in multi-agent influence diagrams, is not as sim-
ple as it looks at first glance, and is a challenging issue. Computing mixed strategy Nash
equilibria in Boolean games is another challenging issue.

9 The or-dependence means that several actions allow an agent to achieve a in several ways, and
the and-dependence means that this agent needs all these actions to achieve her goal.
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