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Abstract

Boolean games are a logical setting for representing gjatices in a succinct way, tak-
ing advantage of the expressive power and succinctnes®pbsgitional logic. A Boolean
game consists of a set of players, each of them controlliref afgpropositional variables
and having a specific goal expressed by a propositional flarroumore generally a speci-
fication of the player’s preference relation in some logiaabuage for compact preference
representation, such as prioritized goals. There is a lgraphical structure hidden in a
Boolean game: the satisfaction of each player’'s goal dependplayers whose actions
have an influence on her goals. Exploiting this dependemagtste facilitates the compu-
tation of pure Nash equilibria, by partly decomposing a game several sub-games that
are only loosely related.
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1 Introduction

Computing solution concepts for games is a challenginglpmpband has been
addressed in various places under various assumptionartioydar, as soon as the
number of players is not small, or as soon as the strategyf seinoe players is
combinatorial (which is typically the case when playerstoarseveral variables),
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not only the computation of solution concepts is hard, betrépresentatiorn(or
specification) of the game itself is problematic, since thplieit representation
of the utility matrix would be exponentially large. Boolegames [1-4] precisely
address this issue. In their basic version, they allow f@ressing in a compact
way static games with binary preferences: each player of@dedo game controls
a set of propositional variables, and each player’'s pratee are expressed by a
propositional formulat

Bonzon et al. [4,5] give a semantical characterization aftiNequilibria in Boolean
games, and identify the computational complexity of sevssaies, such as the ex-
istence of pure-strategy Nash equilibria in a Boolean gdm#h(in the case of di-
chotomous preferences and in the case of non-dichotometierences expressed
by means of CP-nets or prioritized goals). The conclusiosasather pessimistic:
in the case of dichotomous preferences expressed by plapogitional formulas,
the existence of a pure-strategy Nash equilibriurﬁ@s:omplete.

However, these pessimistic results have to be temperedelfaththat in practical
situations, there is a limited degree of interactions betwglayers. This assump-
tion that the dependencies between players are limited tiseaheart of several
frameworks, includindocal-effect gamefs,7], where players may share some ac-
tions, and where the utility of a player depends only on thalmer of players who
chose each action; amptaphical game$10,9,11], where the representation of the
players’ utilities is based on a dependency relation betweeiables and players:
the utility of playeri is described by a table specifying a numerical value for each
combination of values to each of the set of variables thatelevant to (see the
concluding Section for more details).

In this paper we address a similar issue for Boolean gamesgj tise syntactical
nature of goals, we can express the dependencies betws@ansplander the form
of a graph: if the satisfaction of a playetlepends on some variables controlled by
a playerj, theni may need some action gfto see her goal satisfied. This intu-
itive notion of dependency between players and its graphegaiesentation allow
us to exploit the structure of such graphs so as to decomposied games, and
make the computation of pure-strategy Nash equilibridhalgasier that the depen-
dency graph is sparse. On the other hand, our results disostiehow preliminary,
because they only pave the way towards designing and impli@mgesfficient algo-
rithms for computing pure-strategy Nash equilibria in B=ol games. Moreover,
we do not consider mixed strategies at all.

For the sake of simplicity and presentation, we focus firgh@dichotomous pref-
erences, although, as we show in Section 5, our notions audktseapply much

1 We refer here to the version of Boolean games defined in [45mdeneralizes the initial
proposal [1]. Boolean games can easily be extended to atiowdn-dichotomous prefer-
ences, represented in some compact language for prefaepresentation (see Chapter 8
of [2] and [5,4]).



more generally. We give the necessary background on Boglaaes in Section 2.
In Section 3 we define the dependency graph between playkread by a Boolean
game, and study a few of its properties. In Section 4 we shawusing this de-
pendency graph may make the computation of pure Nash egaiébsier. In Sec-
tion 5, we show how our notions and results can be reformailate stated much
more generally for Boolean games with non-dichotomousepesices represented
in some language for compact preference representatidate@evork and further
issues are discussed in Section 6. Proofs are given in Append

2 n-player Boolean games

For any finite seV = {a,b,...} of propositional variabled,;; denotes the propo-
sitional language built up fror¥, the Boolean constanis and L, and the usual
connectives. Formulas &fy are denoted by, etc. Aliteral is a variablex of
V (positive literal) or the negation of a variable (negatixerhl). If € Ly, then
Var(¢) denotes the set of propositional variables appearirg in

2V is the set of the interpretations fgr, with the usual convention that fo < 2V
andx €V, M gives the valuérueto xif x e M andfalseotherwise. LeV’' CV.AV’-
interpretation, also known as a partial interpretatiorg teuth assignment to each
variable ofV’. V'~ interpretations are denoted by listing all variable®/gfwith a
~ symbol when the variable is set to false: for instanc&/’let {a,b,d}, then the
V’-interpretatiorM = {a,d} assigninga andd to true and to false is denoted by
abd. If {\4,...,V,} is a partition oV and{Mj,...,Mp} are partial interpretations,
whereM; € 24, (Mg,...,Mp) denotes the interpretatidy U. .. UMp.

The partial instantiation of a formulfy by anX-interpretationMy is the formula
(¢)my Obtained fromp by instantiating all positively (resp. negatively) instiated
atoms inMx by T (resp.L). For instance, ifp = (aA —b) < (cvd)), X = {a,d}
andMyx = ad, then(¢)wm, is equivalent to-b < c.

As usual,= denotes both satisfaction of a formula by an interpretatidr= ¢)

and the classical consequence relatipn=( ). If M is a partial interpretation of
Var(¢), we writeM = ¢ if ¢ is satisfied by every interpretation fdar(¢) which
agrees withM; equivalentlyM = ¢ if the conjunction of all literals assigned true
by M logically entails¢. Due to this equivalence, we use the same notation for
entailment and satisfaction, as it is standard in propmsatilogic.

Finally, givenM € 2V, switch(M,x) denotes the interpretation obtained by switch-
ing the value ok in M, and leaving the values of other variables unchanged.

Given a set of propositional variablésa Boolean game ovi is ann-player gamé
where the actions available to each player consist in asgjgntruth value to each

2 We refer here to the definition of Boolean games as in [4]. 8isepiaper for the rela-



variable in a given subset ®f. The preferences, or goals, of each playare rep-
resented by a propositional formu¢a formed upon the variables M. Thus, a
player in a Boolean game has a dichotomous preferencearlaither her goal is
satisfied or it is not. This restriction is of course an impattoss of generality, and
may appear at first glance unreasonable. However, first hat@tany concrete sit-
uations can be modelled as games where agents have dichet@nederences: see
for instance the kidney exchange problem in [8]. Second (anck importantly),
the results and notions we give in the paper hold for more igéB®olean games
where preferences are non-dichotomous (see Section 5)hddese to focus first
on the case of dichotomous preferences for the sake of thesixqm.

Definition 1 An n-player Boolean games a 4-uple(N,V, T, @), where

N =1{1,2,...,n} is afinite set of players (also called agents);

V is afinite set of propositional variables;

m: N — 2V is a control assignment function mapping each player to #é v
ables she controls. For the ease of notation, the set of alVriables controlled
by i is writtenTg instead ofrt(i). Each variable is controlled by one and only one
agent, thatis{m, ..., T} forms a partition of V;

o ®={01,...,0n} is a set of goals, where eadh s a satisfiable formula of\L

Definition 2 Let G= (N,V, 1, ®) be a Boolean game.

A strategy for playeriin G is arg-interpretation . The set of strategies for player i
inGisS§ =271,

A strategy profile s for G is a n-uple s= (s1,S,...,S1) where forallie N, 5 € S.
S=5 x...x §is the set of all strategy profiles.

Note that sincéy, ..., T, } forms a partition oV, a strategy profilsis an interpre-
tation forV, i.e, s€ 2. The following notations are usual in game theorycasli-
tion is a subset oN. Lets= (sy,...,S) be a strategy profile. For any non-empty
coalitionl C N, the projection ok on| is defined bys = (5)ic| ands_| = SN\l -

If I = {i}, we denote the projection afon {i} by s instead ofs;,; similarly, we
notes_; instead ofs,{i}. 1, denotes the set of the variables controlledl band
T = Thyy- The set of strategies forC N is § = x| S. If sands are two strat-
egy profiles,(s_,5) denotes the strategy profile obtained frary replacings
with § for alli 1.

The goal¢; of playeri is a compact representation of a dichotomous preference
relation, or equivalently, of a binary utility function, : S— {0,1} defined by
ui(s) =0 if sk —¢; andui(s) =1 if sk ¢;. sis at least as good & for i, de-
noted bys =i S, if uj(s) > ui(s), or equivalently, ifs = —¢; impliess = —¢;; s

is strictly better thars' for i, denoted bys =i S, if ui(s) > ui(s), or, equivalently,

sk ¢i ands = —¢;.

tionship to [1] and [2].



3 Dependencies between players

The syntactical expression of goals suggests to assodidteach player the set of
propositional variables that may have an influence on thsfaation of her goal,
which in turn allows for defining the set of players her gogleleds on. Obviously,

if the goal¢; of playeri does not mention any variable controlled by playethen
the satisfaction of does not depend directly gn This is only a sufficient condi-
tion: it may be the case that the syntactical expressiody; ahentions a variable
controlled byj, but that this variable plays no role whatsoever in the fati®n of

i, as variablg/in ¢; = xA (yV —y). We therefore use the notion of formula-variable
independency from [12]:

Definition 3 [12] A propositional formulap is independent from a propositional
variable x if there exists a formuld logically equivalent tap and in which x does
not appear’ The set of all variables on whighdepends is denoted by De pVéy.
A normalization of a propositional formula is a a propositional formul& which
does not contain any redundant variable, that is, such thap @ndy are logically
equivalent and (b) Varp) = DepVar(¢).

Definition 4 Let G= (N,V, 1, ®) be a Boolean game. The setelevant variables
for a player i, denoted by RY(i), is the set of all variables & V such that; is not
independent from v.

For the sake of notation, the set of relevant variables fdagpi in a given Boolean
gameG will be denoted byRV instead ofR\(i). We are now in position to define
therelevant playerdor a given player as the set of players controlling at least one
variable ofRV.

Definition 5 Let G= (N,V, 11,®) be a Boolean game. The setrefevant players
for a player i, denoted by RP is the set of agents§ N such that j controls at
least one relevant variable of i: RE: Uycry T (V).

Example 1 Three friends 1, 2 and 3) are invited at a partyl wants to go to this
party. 2 wants to go to the party if and only If does, wherea8 wants to go
there, want2 to goes and. not to. This situation can be modelled by the following
Boolean game G- (N,V, 11, @), defined as follows:

e V ={a,b,c}, with a (resp. b, ¢) meaningl‘(resp.2, 3) goes to the party”;
e N={123},

3 We have this equivalent semantical characterization ohéda-variable independency
[12]: ¢ is dependent fronx if there exists an interpretatios such thats = ¢ and
switch(s,X) = —¢.

4 Again, the set of relevant players for a Boolean ga@nghould be denoted bRRs(i):
for the ease of notation we simply wriRR.



e T = {a}, TO = {b}, T3 = {C},
e p1=a,pp=a<— bandpz=-anbAc.

We can see that’s satisfaction depends only on herself, 2's depends on 1 and
herself, whereas 3’s depends on 1, 2 and herself. So, we Raye: {a}, R\ =
{a,b}, R ={a,b,c}, RR = {1}, RR = {1,2}, R = {1,2,3}.

This relation between players can be seen as a directed goayphining a vertex
for each player, and an edge franto j wheneverj € RR, i.e.if j is a relevant
player ofi.

Definition 6 Let G= (N,V, T, ®) be a Boolean game. Thiependency graph of
a Boolean gameG is the directed grapi? = (N,R), with Vi, j € N, (i,j) € R
(denoted by R, j)) if j € RR.

Note that? is not necessarily acyclic.

R(i) is the set of players who may, by performing some action, énfte the sat-
isfaction ofi’s goal: j € R(i) if and only if j € RR. Remark however that this is a
weak notion of dependency: there are some cases wheR{i) and yet does not
need any action by to see to it that her goal satisfied. For instancerdet {a},

™ = {b} and¢1 = aVv b. We have 2= R(1), yet 1 has a strategy to see her goal
satisfied (namely, settingto true) and therefore does not need an action by 2. Our
notion of independency is too weak to take this into accolitepends on 2 just
because there is no equivalent formulapafin which b does not appear, and in
spite of that 1 does naoteed2.®

We denote byR* the transitive closure dR. R*(i, j) means that there exists a path
fromito j in R. Then,R*(i) can be interpreted as the set of all players who have a
direct or indirect influence oh andR*~1(i) as the set of all players on whictas

a direct or indirect influence.

Example 1, continued: The dependency graph induced by G is depicted as
follows:

R(1) = {1}, R(2) = {1,2}, R(3) = {1,2,3}.
R(1)={1,2,3}, R"Y(2) = {2,3}, R }(3) = {3}.

R (1) = {1}, R(2) = {1,2} and R(3) = {1,2,3}.
R(1)={1,2,3}, R%(2) = {2,3} and R"1(3) = {3}.

5 We could work out a stronger notion of dependency, which ddne closer to a notion
of “i needs;j”, in which 1 would not depend on 2 in our current example. Nib&g this
stronger notion of dependency, which has an abductive ftaimmuch harder to compute
than the one developed in this paper. This is a very intexgstipic for further research.



We remark that every directed graph on set of playe¢is the graph induced by
some Boolean game. Indeed, for every dependency gPaphiN, R), we can con-
struct the Boolean gan@= (N,V, 11, ®), whereV = {vy,...,vp}, Vi € N, 15 = {Vvi},
andvi € N, Vj such that € R(i), ¢i = A;v;j. If Aj suchthag € R(i), thend; = T.

We now introduce the notion of stable set. A stable set is setubof players
whose goal does not depend on players outside it.

Definition 7 Let G= (N,V, 1, ®) be a Boolean game. B N is stablefor R if and
only if R(B) C B,i.e.Vj € B, Vi such that ic R(j), then ic B.

Clearly,» andN are stable, and the set of stable sets for a Boolean gamesetclo
under union and intersection. These four properties dgttidly characterize the
set of coalitions that correspond to the set of stable seta Boolean game. This
result is not crucial for the rest of the paper but it shedsesbght on the meaning
of stable sets.

Proposition 1 Let ¢ ¢ 2N. There exists a Boolean game G such ifias the set of
stable sets for G if and only @ satisfies the following four properties:

Q) g€

(2) Ne ¢;

(3) IfB,B € CthenBUB' € (;

(4) IfB,B € CthenBNB € C.

We now define the projection of a Boolean ga@en the set of playerB C N in
order to decompose a Boolean game into several sub-games:

Definition 8 Let G= (N,V, 11 ®) be a Boolean game, and letBN be a stable
set for R. Therojection of G on B is defined by = (B, Vg, s, Pg), where \§ =
UieTs, T : B — Vg such thatrig(i) = {v|ve 15}, and®g = {); | i € B}, where for
every i€ B, Y is a normalization of;.

The projection of a Boolean game on a stable set of playerBao&ean game:
Proposition 2 If B is a stable set, theng= (B, Vg, s, Pg) is a Boolean game.

As shown on the following example, this proposition allovesta decompose a
Boolean game into several smaller Boolean games.

Example 2 Let G= (N,V, 1, ®) be the Boolean game defined by
e V ={ab,c},

e N={1,23},

e Ty = {a}, O = {b}, T3 = {C},

6 Note that the notion of stable set defined here is differarhfthe usual notion of stable
set in graph theory.



e p1=a—b,po=a«< —-bandpz=—c.

We have: RvV= {a,b}, RV, = {a,b},R\y={c}, RR ={1,2}, R ={1,2}, RR =
{3}. The dependency graph of G follows. The sets of players-B{1,2} and
C = {3} are stable. We can decompose @imdependent Boolean sub-games:

@::@ o Gg = (B,V, T, ®g), with B= {1,2}, Vg = {a,b},
T[1=a,T[2=b,(|)1=a<—> b,¢2=a<—>—|b.
@ o Gc= (C,Vc,Tk;,¢c),With C={3},VC:{C},T[3=C,
¢3: —C.

Note that Proposition 2 no longer holds wiis not stable. In Example 2, talBe=
{1,3}, thenGyy 3y = ({1,3},{a,c}, (Ty, T3), (@ <> b,—c)) is not a Boolean game,
becauses uses a variabledj which is not inVyy 3, = {a,c}.

4 Computing Nash equilibria

Pure-strategy Nash equilibria (PNE) foiplayer Boolean games are defined ex-
actly as usual in game theory (see for instance [13]), hawingind that utility
functions are induced from players’ godls,...,$,. A PNE is a strategy profile
such that each player’s strategy is an optimal responsestottier players’ strate-
gies.

Definition 9 Let G= (N,V, T, ®) be a Boolean game with N {1,...,n}.
s={si1,...,5} is a pure-strategy Nash equilibrium (PNE) if and only ifvi €
{1,...,n}, VS €S, (s,s.i) =i (S,5-i).

The following simple characterization of PNEs is straightfard from this defini-
tion

Proposition 3 ([4], Prop. 2) A strategy profile s is a pure-strategy Nash equilib-
rium for G iff for all i € N, either s= ¢; or s_j = —¢; holds.

These definitions lead to some obvious properties of puegesty Nash equilibria.
If a player does not control any of her relevant variables, Iséis no influence on
her own goal, and thus has no preference over her stratégidsf all players are

in the same case, all strategy profiles are PNEs.

Proposition 4 Let G be a Boolean game. I#ziRR holds for every £ N, then every
se SisaPNE.

If each player of a Boolean game depends only on a single pldyen players
such thalRR = {i} will be the only ones having an influence on their own goals.
A strategy profiles will be a PNE if and only if it satisfies the preferences of thes



players.

Proposition 5 Let G be a Boolean game such théte N, |RR| = 1.
sisaPNE if and only i¥/i € N such that RP= {i}, sF= ¢i.

If the irreflexive part of the players’ dependency graplof a gameG is acyclic,
(i.e.if there is no cycle of lengtk 2), then we can use a procedure inspired by the
“forward sweep procedure” [14] to find the pure-strategy INaquilibria. Let us
see this on an example.

Example 1, continued: The irreflexive part of the dependency graplof G is
acyclic.

RR = {1}, so a strategy profile s (s1,5,S3) is a PNE only ifl's goal is satisfied,
i.e,sp=a.

Given 1's strategy $ = a, 2 has a best response (namely,=s b), because her
goal depends only on the variables controlled by 1 and h&rBelally, given the
strategies ofl and 2, 3's goal will not be satisfied whatever she does, therefore
3 has two best responses, namejy=sc and g = —c. Therefore, G hag PNEs:
{abc alxc}.

Proposition 6 Let G be a Boolean game such that the irreflexive part of themlep
dency graphP of G is acyclic.
Then, G has at least one PNE. Moreover, s is a PNE of G if andibiy every

i €N, either(s,, sz« {iy) = 9i OF Sregiy iy F i

The computation of the set of PNEs of a Boolean g&rsich that the irreflexive
part of its dependency graph is acyclic is done by Algoritdm® and 3.

Algorithm 1: CoMmPPNEAcYcL: Computation of PNEs of a Boolean game such
that the irreflexive part of the dependency graph is acyclic

begin

[* INPUT: G= (N,V,1,®) a Boolean game? = (N, R) the dependency

graph associated (the irreflexive part®fs acyclic)*/

[* OUTPUTS: a set of PNES*/

/* LOCAL VARIABLES: | = set of players controlling variables already
instantiatedT = set of players controlling variables remaining to be
instantiated */

[* Initialization */

=2, T=N,S={T}

return COMPPNEACYCLREC(G,P,1,T,9)
end




Algorithm 2: CoMmPPNEACYCLREC: Recursive computation of PNEs of a
Boolean game such that the irreflexive part of the dependgraph is acyclic
begin

[*INPUT: G= (N,V,1,®) a Boolean game? = (N, R) the dependency
graph associated (the irreflexive part®is acyclic),l the set of players set of
players controlling variables already instantiatédhe set of players
controlling variables remaining to be instantiat&dhe set of partial PNEs
already computed*/

[* OUTPUTS: a set of PNES*/

/* LOCAL VARIABLES: PI = set of players we can satisfiads current
player*/

* Initialization */
Pl=9o
forieTdo
if R(i) Cl1u{i} thenPl =PIlU({i}
B [* Variables controlled by players IRR are already instantiated */
for i € Pl do
[* Instantiation of variables controlled by+/
S= COMPSTRATPLAY (G,i,S)

| =1U{i}
L T=T\{i}
if T=o then
return S /* All variables are instantiated */
else return COMPPNEACYCLREC(G,?,1,T,S)

end

Example 1, continued: In this example, G ha8PNEs:{abc abc}, and we have
R*(1) = {1}, R (2) = {1,2}, R*(3) = {1,2,3}. For s= abc, we have

* (S-S =S1F¢1=a
o (SR(2)\{2):%2) = (S1.%2) Fd2=a«D
* Sr@\(3 = (S1,%) F ~$3=av-bv-c

A similar line of reasoning holds far= alc.

However, when the irreflexive part of the dependency grapioisacyclic, the ex-
istence of PNE is no longer guaranteed, as we can see on kbwifag example.

Example 3 Let G= (N,V, 11, ®) be the Boolean game defined byA\f{a, b}, N =
{1,2}, y ={a}, o= {b}, 1 =a— bandp, = (a«— —b).

We have: RV= {a,b}, R\, = {a,b}, RR = {1,2}, RR = {1, 2}.

The dependency graphof G is the following:
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Algorithm 3: CoMPSTRATPLAY: Computation of strategies of a player allowing
to satisfy her goal

begin

*INPUT: G= (N,V,,®) a Boolean game,a player,Sthe set of partial
PNEs already computed*/

[* OUTPUTS: a set of partial PNESP?*/

/* LOCAL VARIABLES: s = instantiation of variables controlled bys=
current partial PNE o8*/

/* Initialization */

SP=go

for se Sdo

if s|=—; then

[* i cannot satisfy her goal, each one of her strategy belongs to a
PNE*/

| for s € 2™ do SP=SPU{sUs}

else
for 5 € 2™ do
/* 1 can satisfy her goal, and each one of her strategy satisitying
belongs to a PNE*/
if 5 = (¢i)sthen
| SP=SPU{suUs}

re_turn SP

end
@C@ This game has no PNE.

However, as shown in Example 4, a game with a cyclic deperydgnaph may have
a PNE.

Example 4 Let G= (N,V, 1, ®) be the Boolean game defined by24a,b,c,d},
N={1,234},m={a}, ,={b},3={c},u={d},p1=a<b,po=b-c,
$¢3=—d, andps =d < (bAc). We have: RP={1,2}, RB = {2,3}, R = {4},
RR = {2,3,4}.

The dependency graph of G is the following:

G has2 PNEs :{abcd abcd}.
A | y
The following proposition shows that if a strategy pro8ls a PNE of a Boolean
gameG, and ifB is a stable set, then the restrictionsab the variables controlled

11



by players inB is a PNE of the projection d& onB.

Proposition 7 Let G= (N,V, 11, ®) be a Boolean game, let 8 N be a stable set
for R, and let G be the projection of G on B. If sis a PNE for G, thenisa PNE
for Gg.

Example 4, continued: Let us recall the dependency gragtof G:

The set of players B= {2,3,4} is stable. G =

SE& (B,Vg, g, Pp) is a Boolean game, withg= {b, c,d},
Mm=Db,m=c,m=d, ¢o=Db<c, ¢3=~d, and
d4=d < (bAc).

(GI_¥a) G has2 PNEs :{abcd abcd}.
- {bcd,bcd} are 2 PNEs of G (and in this case, &

has no other PNES).

As we can see on Example 2, the converse is not always@ue{3} is stable,
and the Boolean gantec = (C,\¢, T, Pc) has a PNE {t}, but the gamés has
no PNE.

However, there exist simple cases for which the conversaies and for which
it will be easier to compute pure strategy Nash equilibriyndecomposing the
initial Boolean game.

Proposition 8 Let G= (N,V, 11, ®) be a Boolean game. Let B and C be two stable
sets of players, and letgzand G be the two associated Boolean games.
Suppose thangsis a PNE for g and ¢ is a PNE for G such thatvi € BNC,

Ssi = S,i, Where g (resp, g ) represents the strategy of player i for the game G
(resp. &). Then, g ¢ is a PNE for Gg c.

Example 5 Let G= (N,V,1,®) be the Boolean game defined by=V{a, b, c},
N={1,2,3}, u ={a}, o= {b}, 3= {c},p1 =a«C,d2=b« —c, andpz =c.
We have: RP={1,3}, RB = {2,3}, RR = {3}. The dependency grapghof G is
drawn below. The sets of playersB{1,3} and C= {2,3} are stable. We have two
new Boolean games.
e Gg = (B,Vg, T8, Pp), with B= {1,3}, Vg = {a,c}, 4 = a,
Ty =C,$; =a« candds = c. Gg has one PNE {ac} (de-
noted by § = (S,1,58.3))-
e Gc = (C,\ Ve, T, ®c), with C={2,3}, \c = {b,c}, T = b,
@-@ T =C, 2 =b < —c, $3 = c. Gc has one PNE {bc} (denoted
by % = (Sc2,5¢3))-
BNC = {3} and we havegs = sc.3 = ¢, S0 Gg_c has one PNE{abc}.
We can easily generalize Proposition 8, witlstable sets covering the set of play-
ers:
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Proposition 9 Let G= (N,V, 1, ®) be a Boolean game, and lei{ B. B, be p stable
sets of players, such thayB/...UBp = N. Let Gg;,...,Gp, be the p Boolean
games associated.

If 3, ...55, PNEs of G,,...,Gg, such thatvi, j € {1,...p}, VK€ BiNBj, g k =
Sg; .k then s= (sg;,...,sg,) isa PNE of G.

As shown in Example 5, splitting a Boolean game makes the otatipn of Nash
equilibria easier. If we try to compute Nash equilibria ire tbriginal game, we
have to check if eithes = ¢; or s_; = —¢; for each of the 8 strategy profilssand
for each of the three players. So, we have to make 12 verticafior each player
(8 for each strategy profile in order to veri§/= ¢;, and 4 for eacts_; to verify
s_i = i), then 36 for the game in the worst case. Meanwhile, the coatipa of
PNEs once the game is split is much easier:Ggr from Proposition 6, we have
to make 6 verifications for player 1 (4 to compugg, s3) = ¢1, and 2 to compute
s3 = —¢1); and only 2 for player 3 (becaus¥(3) \ {3} = ). So, we only have to
do 8 verifications in the worst case to find the PNE$gf and the same faGc,
which has an equivalent configuration. As we have to chedkeifinstantiation of
player 3's variables are the same for PNEs of the 2 games, wetbamake 17
verifications to compute PNEs of the gae

5 Generalization to non-dichotomous preferences

The choice of dichotomous utilities (where agents can orpress plain satisfac-
tion or plain dissatisfaction, with no intermediate leyat an important loss of
generality. Fortunately, this restriction can easily Hexed: generalizing the def-
inition of a Boolean game so as to allow non-dichotomousequegices is easy, as
it suffices to replace the preference component of a Boolearedyy an input ex-
pressed in a (propositional) language émmpact preference representati(see
[5,4]). In the following, for the sake of the exposition, wactis on compact repre-
sentation languages fordinal preferences.

A preference relatiorr is a reflexive and transitive binary relation (not necegari
complete) orS. The strict preference- associated with+ is defined as usual by
s> g if and only if s = § and nots' = s, and the indifference relation associated
with = by s~ g if and only if s = § ands = s.

Let L be a propositional language for compact representatioordinal prefer-
ences, equipped with a functidnduce that maps any input of to a prefer-
ence relatior- on 2/, If ® € L, then® is called apreference specificatioand
Induce (P), generally denoted o, is the preference relation induced @y If two
preference specificatior®® andW of L induce the same preference relation,
Induce (®) = Induce (¥), then® andW¥ are said to be&-equivalent The set of
variablesv/ar(®) on which a preference specificatidrdepends is a straightfoward
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generalization of the set of variables on which a propasaidormulad¢ depends.
We denote byar(®) the set of propositional variables appearingpin

Definition 10 An L-Boolean gamas defined to be a 4-uple & (N,V, 1, ®), where

N ={1,...,n}, V andm are as before andd = (®4,...,Py), where for each i,

®@; is a compact representation in L of the preference relatignof agent i on

S. Preg = (=1,...,=n) denotes the collection of preference specifications of all
players.

®@; is the preference specification iofThe preference relation of a playien G is
thusinducg @;), and will often be denotek;.

Remark that ifLp is the purely propositional preference representatioguage,
where a (dichotomous) preference is represented by a ptigmas formula, then
Lp-Boolean games are just standard Boolean games as definedtior52. See
[5,4] for several families oEL-Boolean games.

For the sake of illustration we give an example in which prefiees are represented
with prioritized goals (see [5]); however, we insist thahsar results would hold
for other languages for compact preference representaticliding CP-nets and
other graphical languages.

Definition 11 A prioritized goal base Z is a collection(z!; ...; =P) of sets of
propositional formulasZ! represents the set of goals of priority j, with the conven-
tion that the smaller j, the higher priority the formulasin.

In this context, several criteria can be used in order to ggaa preference relation
= from 2. We choose here to stick to the leximin criterion (see [16)-18 the
following, if sis an interpretation of 2then we letSat(s,>)) = {¢p € I | s|= ¢}.

Definition 12 LetZ = (3%;...;2P), and let s and’sbe two interpretations a2V
The leximin preference relation induced Byis defined by: s-'* ¢ if and only
if Ik € {1,...,p} such that:|Sat(s,=)| > |Sats,Z*)| andV| < k, |Sat(s,Z1)| =
ISat(s,2})|. Finally, s>-'¥*¢ if and only if not (s<¥*s).

Note thatt'zex is a complete preference relation. Here is now an examplarwit
this preference representation language:

Example 6 G = (N,V, 1, ®) where N= {1,2,3}, V = {a,b,c}, = {a}, T =

{b}, 5 = {c}, 21 = ({a}), Zo = ({bVv -a};{a}) andZz = ({cVv —a}; {a}).
We draw below the preference relation®re fi§X = (=1, =X -1e),

" Arrows are oriented from more preferred to less prefernadesyy profilesg; is preferred

to s, is denoted bys; — ). To make the figures clearer, we do not draw edges that are
obtained from others by transitivity. The dotted arrowddate the links taken into account

in order to compute Nash equilibria. For example, player &gys abc to abc because
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Player 1

abc——abc abc abc
Player 2 Player 3
abg abt abg abg
abg abc- abc= gbc abG——gkc abg abc
N\ N\ N .
abc abc a abc

We now have to generalize the dependency graph betweenrplaigen Boolean
games td_-Boolean games, for an arbitrary langudgeNe choose here to stick
with complete preorders for the sake of simplicity (our nos and results would
extend to partially ordered preference relations, butwasld require quite a lot
of additional notations and definitions). Recall that, ict®a 3, a player was de-
pendent on a playgrif her propositional goap; was dependent of one of the vari-
ables thaf controls. Therefore, what we have to start with is gendrajiformula-
variable dependency to a dependency notion between a @neterelation (or a
syntactical input in a compact representation languague fubich this preference
relation can be induced) and a variable. We stick here tos#rgnatural, syntacti-
cal definition of dependency between a preference speaircand a propositional
variable (see [15] for semantical definitions).

Definition 13 Let ® be a preference specification of a preference relation inesom
language L, and x V. @ is independentfrom x if and only if there exists a pref-
erence specificatio® in L such that

(1) ® andW¥ are L-equivalent;
(2) x¢gVar(W).

A preference specificatio® is irredundant if and only if for all xe Var(®), ®
depends on ®. ¥ is anormalization of ® if and only if® and¥ are L-equivalent
andW is irredundant.

Note that this definition depends on the languagéosen for representing prefer-
ences.

For instance, consider the prioritized goal base (23), whereX; = {pAQ,pA
—-q}. ¥ = ({p}) induces exactly the same preference relation, thasdZ’ are
L-equivalent. Since ¢ Var(Z'), ' does not depend ay soZ is independent from

|Satab, 71)| = 1, |Sat(ab,53)| = 1 (both strata of? are satisfied), an{Satab,>3)| = 1,
|Sat(ab, 52)| = 0 (only the first stratum oE? is satisfied).
8 Saying® depends o is the same than saying is not independent from
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g. Moreover, it is clearly not possible to find% L-equivalent toX’ in which p
does not occur, therefo is irredundant, and’ is a normalization oE.

We are now in position of defining the notions used for buddihe dependency
graph for aL-Boolean game:

Definition 14 Let G= (N,V, 1, ®) a L-Boolean game. The set iflevant vari-
ablesfor a player i, denoted by RMs the set of all variables  V such thatd; is
not independent from v. The setrefevant playersfor a player i, denoted by RP
is the set of agentsg N such that j controls at least one relevant variable of i:

RR = Uyery T (V)

The dependency graph olLaBoolean game is defined exactly as in Section 3.
As we consider only complete preference relations, the itiefinof pure Nash
equilibria is also the same as previously.

These definitions work for all languages. However, for tHeesd illustration, in the
following we stick to the preference representation laggulaased on prioritized
goals, from which the preference relation is induced byléxenincriterion.

Example 6, continued: The dependency graph of G is the following: Ry=
{a}, RV ={a,b}, R ={a,c}, RR = {1}, R = {1,2}, R = {1,3}.

This game has one PNEabc}.

Definition 8 applies here, and allows us to introduce theamotif projection of a
L-Boolean gamé& on a stable sé8, defined exactly as in Section 3:

Definition 15 Let G= (N,V, ,®) be a L-Boolean game, and letBN be a stable
set for R. Therojection of G on B is defined by = (B,Vg, T3, Pg), where \§ =
UiesTt, Tig : B— Vg such thatr(i) = {v|ve 13}, and®g = {W¥; | i € B}, where for
every i€ B, W¥; is a normalization ofb;.

We can now generalize some properties previously estaulifgin non-dichotomous
preferences. We start with the following, which is a geneadilon of Proposition 2.

Proposition 10 Let G= (N,V, 1t ®) be a L-Boolean game, and B a stable set for
G. Then G is a L-Boolean game.

The first part of Proposition 6 can also be generalized infthimework.

Proposition 11 Let G be a L-Boolean game such that the players’ dependency
graph? of G is acyclic. Then, G has at least one PNE.

We now give a generalization of Proposition 7.
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Proposition 12 Let G= (N,V, 1, ®) be a L-Boolean game, let 8 N be a stable
set for R, and let @ = (B, VB, Tis, Pg) be the projection of G on B.

If sis a PNE for G, thengis a PNE for Gg.
The following is a generalization of Proposition 8.

Proposition 13 Let G= (N,V, T, ®) be a L-Boolean game. Let B and C be two
stable sets of players, and leg@nd G be the two associated L-Boolean games.
Suppose thangsis a PNE for G and ¢ is a PNE for G such thatvi € BNC,

Sgi = Sc,i- Then, g c is a PNE for (g c.

We can then generalize Proposition 9 exactly in the same nayih Section 4.

Proposition 14 Let G= (N,V, 1, ®) be a L-Boolean game, and let B.By be
p stable sets of players, such thai B...UBp = N. Let Gg,,...,Gg, be the p
associated L-Boolean games. If there ex'git.ssBp PNEs of Ggl,...,GBp such
that for all i, j € {1,...p} and ke BiNBj, sg k = S, k, then s= (SBy;---,S8,) Is @
PNE of G.

Example 6, continued: The sets of players 8 {1,2} and C= {1, 3} are stable.
We have two new Boolean games:

Gg = (B, VB, T8, ®B), With B= {1,2}, Blaver 1
Vg ={ab}, m=a m=>b, 5 = y

_ a
(a), and3, = ((bV —a);a). The pref- a] aIb a /b\aﬁ
erence relations PrefX = (=X ~1ex) W r %

are drawn on the right. ab

Player 2

Gg has one PNE {ab} (denoted byg= (ss 1,58,2))-

Gc = (C, V¢, e, Pc), with C= {1,3}, Player 1 Player 3

Ve ={ac}, m=a m=c, I = _ a

(@) and 23 = ((cV —a);a). The pref- TE i)alb A /\ac
; X __ lex o lex : ; :

erence relations Prés? = (=75 =3%) o r C\éc/

are drawn on the right.

Gc has one PNE {ac} (denoted bys= (sc 1,5 3))-

BNC = {1}. But we haveg; = sc1 = a, so Proposition 14 can be appliedgG
has one PNE{abc}.
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6 Discussion

We have shown how the intuitive notion of dependency betvaéggrers in a Boolean
game can be exploited so as to facilitate the computatiorucé-ptrategy Nash
equilibria. Moreover, our properties not only hold for tharslard version of Boolean
game (with propositional goals and dichotomous prefer@noet also for general-
ized Boolean games, where players’ preferences are expresa compact repre-
sentation language (prioritized goals bases, CP-nets;fe{6,4]).

Another class of games with dichotomous preferences slaal@swith Boolean
games: Qualitative Coalitional Games (QCG), introduce{ll8y. In a QCG, each
agent has a set of goals, and is satisfied if one of her goalshis\eed, but is
indifferent on which goal is, and on the number of goals aade Thus agents
have dichotomous preferences (as in the standard versiBoaéan games - cf.
Sections 2—4). A characteristic function associates vétihegent, or set of agents,
the set of goals they can achieve. See [4] for more detalils.

Boolean games take place in a larger stream of work, that wegather under
the generic name afompactly represented gamesdl frameworks for compactly
represented games make use of notions of dependenciesebeplagers and/or
actions that have a lot in common with ours. Most of these &aorks, includ-
ing [9,10,21], share the following mode of representatibplayers’ utilities: the
utility of a playeri is described by a table specifying a numerical value for each
combination of values to each of the set of variables thatelevant toi.1° The
representation of games with such utility tables is caliemphical normal form
(GNF) in [11]. Dependencies between players and variablesich games natu-
rally induces a dependency relation between players, isdhge way as we do (
depends o if i’s utility table refers to a variable that is controlled Py

Boolean games are very similar to these graphical gamegpexicat the form
chosen for expressing compactly players’ preferencésgisal. The logical form
is sometimes exponentially more compact than the grapfocai: consider for
instance the dichotomous preference relation correspgridi the goalp = x; @
... @ Xp, Whered is exclusive or. While the logical representatiorugfis linear in
p, its representation by utility tables would be exponentigb, since each of the
p variables is relevant to player’s utility. In the generaseaf non-dichotomous
utility functions or preference relations, the Boolean ggramework, by allowing
some flexibility on the choice of the language for preferamgeesentation, is more
general than the one of graphical games, where the formabdmessing prefer-
ences is fixed. Moreover, solving games in logical form mayelfie from the huge
literature on SAT and related algorithms for propositidogic (see Section 6.3 of

9 In[20], QCGs are extended by allowing agents to have preées over goals.

1010 multi-agent influence diagrams [9], a player’s utilitydstually expressed in a more
compact way as the sum of local utilities, each correspanttira smaller set of variables.
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[4] for more details).

The notion of dependency between players and variablesaphgral games is
used for the very same purpose as our dependency graph,yhamsplit up a
game into a set of interacting smaller games, which can beesdohore or less
independently. In [11], specific restrictions on graphgaines are studied, either
by bounding the size of players’ neighbourhoods (the neaghtood of a player
i in a graphical game is the set of players who potentially exfae the utility of
i), or by imposing that the dependency relation between pdasteould be acyclic.
Then [11] studies the impact of such restrictions on the derify of checking the
existence of a Nash equilibrium (or their computation).a@le similar structural
restrictions on Boolean games would probably allow for a plexty fall with
respect to the complexity results for the general case inlHis is left for further
study.

The work reported here is still preliminary and can be puldsnenany other direc-
tions.

First, apart of thestructural restrictions mentioned just above, we may study the
impact ofsyntacticakestrictions on propositional goals on the computationasiN
equilibria and on the construction of the dependency grhp[22], Sichman and
Conte introduced dependency graphs which can represefuratependencie's

on actions needed to achieve an agent’s goal and on the ageatsontrol these
actions. In the first case, this is similar to our set of retéwariables, and in the
second case this corresponds to our set of relevant pleyetanan and Conte’s
ideas can be used for introducing and/or dependencies ifmauaework, but using
the syntactical form of the goals. In [23], three notions ependency are defined:
the weak one is the same than our (an agestdependent from a set of agents
C if C can achieve’s goal). The second one, called normal dependency, adds to
weak dependency the condition thatannot achieve her goal by herself. Finally,
the third one adds the fact that agent<irare the only ones able to achieve
goal. Following [22], [23] use an and-graph to representkisteong dependency:
for every coalitiorC, there is an and-edge from agente C, to agentj € N if the
agents irC can achieve the goal desired by the ageithis notion of dependency is
the basis of their computation of admissible coalition urttle do-ut-des criterion
(see [24])).

Second, while our Section 5 does not focus on particulardagg (prioritized goals
are used in an example just for the sake of illustration), veg mant to study in
further detail the computation of Nash equilibria (using structural properties
of the game) for some specific languages for preference septation (see [5,4]

1 The or-dependency means that several actions allow an tigacthieve a goal in several
ways, and the and-dependency means that this agent nedussallactions to achieve her
goal.
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for the case of CP-nets and prioritized goals). A partidulappealing language
consists in specifying preferences\wgighted goalswhere a player’s utility func-
tion is represented using several propositional formwdash being attached with
a numerical value (see [25]). This is especially intergsbecause this language
generalizes the representation by utility tables in gregdlgames.

So far, Boolean games allow only for expresssatgticgames (with simultaneous
moves by the players) and witomplete informationEnriching Boolean games
with dynamicity and nature-driven uncertainty, as in mafjent influence dia-
grams, is not as simple as it looks at first glance, and is desfgahg issue.

In this paper we focused only on pure-strategy Nash eqial{las does more gen-
erally the literature on succinctly represented gamesiginils a strong limitation.
Computingmixed strategiNash equilibria in Boolean games is a challenging issue.
Finding a mixed equilibrium in a succinctly represented gamould probably re-
quire to solve a linear program with an exponential numbesaoiables. However,
our decomposition techniques could work as well, to a cedatent. This is a very
interesting (and difficult) topic for further research.

Finally, let us mention an informal relationship to sociatwork analysist? A so-
cial network is a graph whose nodes are individuals and esgessent some type
of interdependency. Our dependency graph between plagedsnjore generally,
similar dependency graph in graphical games such as in,[11])9 can therefore
be viewed as a specific case of social network, where the depew relation be-
tweeni and j expresses that the satisfactioni ghay rely on the action taken by
j. Technically, of course, both lines of work significantlyelige: social network
analysis studies the properties of large graphs found img&keworld (friendship
or trading relations, co-authorship etc.). Our paper dagsstudy the properties
of such graphs but uses their structure to make the compntatiNash equilib-
ria easier. Some of the properties we use are relevant imlsoeiwork analysis.
For instance, the decomposition techniques at work in Fitipas 7 and 8 will
be more efficient if the dependency graph is composed of weatérconnected
(but possibly strongly intra-connected) clusters of agewhich may correspond
(to some extent) to the notion of small world well-known irtsd networks.
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A Proofs

Proposition 1 Let ¢ ¢ 2N. There exists a Boolean game G such ifias the set of
stable sets for G if and only {f satisfies the following four properties:

1) @ e

(2) Ne ¢;

(3) IfB,B € CthenBUB' € (;
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(4) IfB,B € CthenBNB € C.

Proof: Since every dependency graph corresponds to some Boole@) gjas suf-

ficient to show that there exists a relatiBon N such thatC is the set of stable sets

for Rif and only if C satisfies (1)-(4).

= @ andN are obviously stable fdr.
If BandB' are stable sets fd®, thenR(B) C BandR(B') CB'. So,R(B)UR(B') C
BUB'. Now,R(B)={j|Ji€ B: j € RR} andR(B') = {j|3i € B': j e RR}. Thus,
R(B)UR(B') ={j|3ie BUB : j e RR} = R(BUB'). Then,R(BUB') C BUB/,
andBUB' is a stable set.
If BandB' are stable, theR(B) C BandR(B') C B". So,R(B)"R(B") C BNB.
We know thanR(B) = {j|3i € B: j € RR} andR(B') = {j|Ji € B': j € RR}.
Thus,R(B)NR(B') = {j|3i e BNB': j € RR} = R(BNB'). Then,R(BNB') C
BNB', andBNB'is a stable set.

< Let C be a set of coalitions satisfying (1) to (4). For evesyN, there exists a
smallest sek; in C containingi: Xi = (N{B € C|i € B} (since( is closed fom,
we haveX; € (). Now, we construcR such that for ali, j € N, (i, j) € Rif and
only if j € X;.
For everyB € C and everyi € B, if (i, j) € R, then by construction dr, j € B,
thereforeB is stable forR.
It remains to be shown that every subBestable forR is in C. Assume that
R(B) C B. Then for every € B, R(i) C B. Now, by construction oR, R(B) = X;.
Sincei € X;, we haveB C UicgX;. Now, for everyi € B, R(i) C B by hypothesis,
thereforeUicgX; = B. Now, everyX; is in C, therefore, using (3), we haBe< (.

Proposition 3 If B is a stable set, theng= (B, Vg, s, Pg) is a Boolean game.

Proof: Let Gg = (B, Vg, s, Pg). We have to check that every galfori € Bis a
formula ofLy;, or can be rewritten equivalently as a formula.Qf.

Suppose thafi € B, 3v e Var(¢;) such thav ¢ Vg. So,Vj € B,v¢Z 1. Letke N\ B
such thaw € 1. We know thaw € Var(¢;), so eitherp; is independent from, and
then is logically equivalent to a formula in whiehdoes not appear; a; is not
independent from, and in this case € RV and by definitiork € RR. So,k € R(i),
butk ¢ B: this is in contradiction with the fact th&is stable. ]

Proposition 4 Let G be a Boolean game.¥i € N, i ¢ RR then every &£ Sis a
PNE.
Proof: SinceVi € N, i € RR, i has no influence on her own goali: € N, either

S.i = ¢i ors_j = —¢i. So, we havers € S, (s,S-i) = ¢i ors_j = —¢;. sis thus
always a PNE. ]
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Proposition 5 Let G be a Boolean game such thvéte N, |RR| = 1.
sisaPNE ifand only i¥/i € N such that RP= {i}, si= ¢i.

Proof:

= Letsbe a PNE and létsuch thaRR = {i}. Suppose thag|= —¢; (1). RR =i}
implies DepVar¢;i) C T, therefore (1) implies = —¢i (2). Now,sis a PNE,
therefore by Proposition 3, either (8)= ¢; or (b) s_j = —¢;. (a) is excluded
because (2) holds, therefore we havel= —¢; (3). Now, because:d; does not
depend on the variables controlled by players other thath; must be a tautol-
ogy, that is,¢; = L, which is excluded by definition (all goals are satisfiable).
Thus we have a contradiction.

< Suppose now that (19 = ¢; holds for everyi such thatRR = {i}.Leti € N.
By Proposition 3sis a PNE if and only if either (a3 = ¢; or (b)s_i &= —¢;. If
RR = {i} thens|= ¢;, and (a) is satisfied. RR = {j} with j # i, thens = —¢;
if and only if s_; = —¢;, therefore either (a) or (b) is satisfied. We conclude that
sis a PNE. ]

Proposition 6 Let G be a Boolean game such that the irreflexive part of themlep
dency graphP of G is acyclic.
Then, G has at least one PNE. Moreover, s is a PNE of G if andibiy every

I €N, either(s;, Sziy\i}) = §i OF Srein iy = i

Proof:

e Assume without loss of generality that the players are nuatha such a way
that for everyi € N, if i depends orj thenj <i. Lets= (sy,...,S) be defined
inductively as follows: fori = 1,...,n, if (¢i)s,,..s_, iS satisfiable then take
such that(sy,...,s) = ¢i. Such ars exists becausiedoes not depend dafor
allk>i.If (¢i)s,,...s , IS unsatisfiable then take asy It is easily checked that
sis a PNE.

e sis a PNE ofG if and only if for everyi € N, either (s,Sz-i)\(iy) &= ¢i or
Sre(i)\{i} &= i

= Assume thasis a PNE and that exists a playie N such tha(s, Sz«(i)\fi}) #

bi andsge(iy\ (i) = i
Then, we have = —¢;, and, astk € R*(i), (¢i)s, = ¢i, s—i = ~¢i. Thus,sis
not a PNE.

< Assume now tha([s,sR*(,)\{,}) ): ¢; or SR*(I)\{I} ): —0;.

If i is a player such thdl, sz«(i)\i}) = 9i, we obviously have = ¢;.
If sz+iy\(iy E i, then, ask & RR, (¢i)s = ¢i, we haves_j = —¢i. AsVi €N,
eithers = ¢;, ors_j = —¢;, sis a PNE. (]

Proposition 7 Let G= (N,V, 11, ®) be a Boolean game, let 8 N be a stable set
for R, and let G be the projection of G on B. If sis a PNE for G, thenisa PNE
for Gg.
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Proof: Let s = (sg,s_g) be a PNE ofG, which is equivalent to: for everye N,
eithers = ¢j ors_; = —¢; [4]. Let us show thasg is a PNE ofGg. Leti € B.

If sk ¢, then becausec B andB is stable,s_g has no influence o; and we
havess = ¢;.

If s_i = —¢i then only players ifB have an influence ofi. So, we haveg, (1) =
—¢;, which corresponds tss_; = —¢;. [ ]

Proposition 8 Let G= (N,V, 1, ®) be a Boolean game. Let B and C be two stable
sets of players, and letgzand Gc be the two associated Boolean games.
Suppose thangsis a PNE for g and & is a PNE for G such thatvi € BNC,

S = Sc,i» Where g (resp, g i) represents the strategy of player i for the game G
(resp. G).

Then, g c is a PNE for G c.

Proof: B andC are stable, so from Proposition BJUC is a stable set, and from
Proposition 2(5g ¢ is a Boolean game. We know thet= (Sg\gc, Sec) = (Se\c> S8c)
and thatsc = (sc\g,Senc)- As Vi € BNC, sgj = ¢, We havesgc = (Sg,5c) =
(se\c,Sc\Bs Sec)- Leti € BUC,

e i € B\C (ori € C\B). AsBis stable, we know thatj € R(i), j £ C\ B. Thus,
sc\g has no influence on the satisfactiongaf and so this satisfaction is only
determined bysg = (sB\c,sBmc). In this case, iks = ¢i, thensg c = ¢i, and if
ss-i = —0i, thensg c_i = —¢i.

e i e BNC. As B andC are stable, we know th&NC is stable, and then that
VjeR(i), j € RBBNC) C BNC. Thus, the satisfaction df; is only determined
by sgnc- Assg is a PNE forGg ands: is a PNE forGc, we have eithesgc = ¢i,
or sgnc—i = —9i. Then, we have eithess ¢ = ¢i, or ssuc—i = —¢i.

So, we havé&/i € N eithersg c = ¢, or ssuc—i F —9i- Ssuc is PNE ofG. (]

Proposition 9 Let G= (N,V, 1, ®) be a Boolean game, and le{ B. B, be p stable
sets of players, such thatB/...UBp = N. Let Ggl,...,GBp be the p Boolean
games associated.

If 3sg, ...s8, PNEs of Gg,,...,Gg, such thatvi, j € {1,...p}, VK€ BiNBj, sg k =
S,k then s= (sg,,...,sg,) isa PNE of G.

Proof: Let By andB; two stable sets, an@g, andGg, the two Boolean games as-
sociated. We can apply Proposition 8, and show Byat B, is a stable set, that
Gg,uB, IS @ Boolean game and th&d, g, is a PNE ofGg, g,.

We can do the same f@&; UB, andB3, and so on until the final result. ]

Proposition 10 Let G= (N,V, 1t ®) be a L-Boolean game, and B a stable set for
G. Then G is a L-Boolean game.
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Proof: Let Gg = (B, VB, Tis, Pp). B is stable, therefore for everye B, ®; depends
only on variables controlled by players Bf that is, depends only ovg. There-
fore, ifi € B andW¥; is a normalization ofp;, thenVar(¥;) C Vg. This entails that
Gg = (B, VB, T, Pp) is a well-defined_-Boolean game. (]

Proposition 11 Let G be a L-Boolean game such that the players’ dependency
graph® of G is acyclic. Then, G has at least one PNE.

Proof: Suppose without loss of generality that players are nuncbanethe follow-
ing way: for alli € N, if i depends onj, thenj <i. Lets= (sy,...,S) defined
inductively as follows: foii = 1,...,n, we takes such that for al, (s1,...,S) =i
(s1,...,5). Such as exists becausedoes not depend dxfor all k > i. We have
built a strategy profilssuch that for all, for all |, (s,s-i) =i (§,S_i). SisaPNEm

Proposition 12 Let G= (N,V, 1, ®) be a L-Boolean game, let 8 N be a stable
setfor R, and let @= (B, Vg, Tz, Pg) be the projection of G on B. If s is a PNE for
G, then g is a PNE for G.

Proof: Letsbe a PNE foiG: Vi e N, Vs € S, (S,s-i) <i (S,S_i). Lets= (sg,S_B).
We want to check thagg is a PNE forGg.

Leti € B. Suppose thasg is not a PNE forGg, then there is & € S such that
(S,s8-i)=i(S,S8—i). Asi € BandBiis stable, we know that the only players having
an influence omare inB. So,s_g has no influence ors preferences. Thus we have
(S,s8-i,S-B)~iS= (S,S8-i,S_B), that contradicts the fact thans a PNE forG. m

Proposition 13 Let G= (N,V, 7, ®) be a L-Boolean game. Let B and C be two
stable sets of players, and leg@nd G be the two associated L-Boolean games.
Suppose thangsis a PNE for G and g is a PNE for G such thatvi € BNC,

Sgi = Sc,i- Then, g.c is a PNE for G c.

Proof: B andC are stable, so from Proposition B,UC is a stable set and from

Proposition 10Gg ¢ is a Boolean game. Letc BUC.

e i cB\C (ori € C\B). sgis PNE forGg, soVs € S, (s,S-i) =i (S,S-i). As
i ¢ C, we can writevs € S, (5,Ssuc—i) =i (S, SBuc—i)-

e i ¢ BNC. We haverk € BNC, sg k= Sc k- Sg is PNE forGg, sovs € §, (5, Sa—i) =i
(s,s8-i); c is @ PNE forGc, soVs € S, (5,sc-i) =i (S,5c—i)- AsVk e BN
C, Ssek = Sck We havevs € S, (S, ss-i,Sc-i) =i (S,S8-i,Sc-i), that isVs €
S, (5,s8uc—i) =i (S,SBuC—i)-

[

Proposition 14 Let G= (N,V, 1, ®) be a L-Boolean game, and let B.By be
p stable sets of players, such thai B... UBp = N. Let Gg,,...,Gg, be the p
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associated L-Boolean games. If there exigit s.sg, PNEs of G,...,Gg, such
thatforalli, j € {1,...p} and ke BiNBj, sg k= S, k, then s= (SBy;---,S8,) Is @
PNE of G.

Proof: Similar to the proof of Proposition 9. ]
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