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Abstract

Boolean games are a logical setting for representing staticgames in a succinct way, tak-
ing advantage of the expressive power and succinctness of propositional logic. A Boolean
game consists of a set of players, each of them controlling a set of propositional variables
and having a specific goal expressed by a propositional formula, or more generally a speci-
fication of the player’s preference relation in some logicallanguage for compact preference
representation, such as prioritized goals. There is a lot ofgraphical structure hidden in a
Boolean game: the satisfaction of each player’s goal depends on players whose actions
have an influence on her goals. Exploiting this dependency structure facilitates the compu-
tation of pure Nash equilibria, by partly decomposing a gameinto several sub-games that
are only loosely related.
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1 Introduction

Computing solution concepts for games is a challenging problem, and has been
addressed in various places under various assumptions. In particular, as soon as the
number of players is not small, or as soon as the strategy set of some players is
combinatorial (which is typically the case when players control several variables),
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not only the computation of solution concepts is hard, but the representation(or
specification) of the game itself is problematic, since the explicit representation
of the utility matrix would be exponentially large. Booleangames [1–4] precisely
address this issue. In their basic version, they allow for expressing in a compact
way static games with binary preferences: each player of a Boolean game controls
a set of propositional variables, and each player’s preferences are expressed by a
propositional formula.1

Bonzon et al. [4,5] give a semantical characterization of Nash equilibria in Boolean
games, and identify the computational complexity of several issues, such as the ex-
istence of pure-strategy Nash equilibria in a Boolean game (both in the case of di-
chotomous preferences and in the case of non-dichotomous preferences expressed
by means of CP-nets or prioritized goals). The conclusions are rather pessimistic:
in the case of dichotomous preferences expressed by plain propositional formulas,
the existence of a pure-strategy Nash equilibrium isΣp

2-complete.

However, these pessimistic results have to be tempered by the fact that in practical
situations, there is a limited degree of interactions between players. This assump-
tion that the dependencies between players are limited is atthe heart of several
frameworks, includinglocal-effect games[6,7], where players may share some ac-
tions, and where the utility of a player depends only on the number of players who
chose each action; andgraphical games[10,9,11], where the representation of the
players’ utilities is based on a dependency relation between variables and players:
the utility of playeri is described by a table specifying a numerical value for each
combination of values to each of the set of variables that arerelevant toi (see the
concluding Section for more details).

In this paper we address a similar issue for Boolean games: using the syntactical
nature of goals, we can express the dependencies between players under the form
of a graph: if the satisfaction of a playeri depends on some variables controlled by
a player j, then i may need some action ofj to see her goal satisfied. This intu-
itive notion of dependency between players and its graphical representation allow
us to exploit the structure of such graphs so as to decompose Boolean games, and
make the computation of pure-strategy Nash equilibria all the easier that the depen-
dency graph is sparse. On the other hand, our results are still somehow preliminary,
because they only pave the way towards designing and implementing efficient algo-
rithms for computing pure-strategy Nash equilibria in Boolean games. Moreover,
we do not consider mixed strategies at all.

For the sake of simplicity and presentation, we focus first onthe dichotomous pref-
erences, although, as we show in Section 5, our notions and results apply much

1 We refer here to the version of Boolean games defined in [4], which generalizes the initial
proposal [1]. Boolean games can easily be extended to allow for non-dichotomous prefer-
ences, represented in some compact language for preferencerepresentation (see Chapter 8
of [2] and [5,4]).
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more generally. We give the necessary background on Booleangames in Section 2.
In Section 3 we define the dependency graph between players induced by a Boolean
game, and study a few of its properties. In Section 4 we show how using this de-
pendency graph may make the computation of pure Nash equilibria easier. In Sec-
tion 5, we show how our notions and results can be reformulated and stated much
more generally for Boolean games with non-dichotomous preferences represented
in some language for compact preference representation. Related work and further
issues are discussed in Section 6. Proofs are given in Appendix.

2 n-player Boolean games

For any finite setV = {a,b, . . .} of propositional variables,LV denotes the propo-
sitional language built up fromV, the Boolean constants⊤ and⊥, and the usual
connectives. Formulas ofLV are denoted byϕ,ψ etc. A literal is a variablex of
V (positive literal) or the negation of a variable (negative literal). If ϕ ∈ LV , then
Var(ϕ) denotes the set of propositional variables appearing inϕ.

2V is the set of the interpretations forV, with the usual convention that forM ∈ 2V

andx∈V, M gives the valuetruetox if x∈M andfalseotherwise. LetV ′⊆V. A V ′-
interpretation, also known as a partial interpretation, isa truth assignment to each
variable ofV ′. V ′- interpretations are denoted by listing all variables ofV ′, with a
¯ symbol when the variable is set to false: for instance, letV ′ = {a,b,d}, then the
V ′-interpretationM = {a,d} assigninga andd to true andb to false is denoted by
abd. If {V1, . . . ,Vp} is a partition ofV and{M1, . . . ,Mp} are partial interpretations,
whereMi ∈ 2Vi , (M1, . . . ,Mp) denotes the interpretationM1∪ . . .∪Mp.
The partial instantiation of a formulaϕ by anX-interpretationMX is the formula
(ϕ)MX obtained fromϕ by instantiating all positively (resp. negatively) instantiated
atoms inMX by ⊤ (resp.⊥). For instance, ifϕ = (a∧¬b) ↔ (c∨d)), X = {a,d}
andMX = ad̄, then(ϕ)MX is equivalent to¬b↔ c.

As usual,|= denotes both satisfaction of a formula by an interpretation(M |= ϕ)
and the classical consequence relation (ϕ |= ψ). If M is a partial interpretation of
Var(ϕ), we writeM |= ϕ if ϕ is satisfied by every interpretation forVar(ϕ) which
agrees withM; equivalently,M |= ϕ if the conjunction of all literals assigned true
by M logically entailsϕ. Due to this equivalence, we use the same notation for
entailment and satisfaction, as it is standard in propositional logic.

Finally, givenM ∈ 2V , switch(M,x) denotes the interpretation obtained by switch-
ing the value ofx in M, and leaving the values of other variables unchanged.

Given a set of propositional variablesV, a Boolean game onV is ann-player game2

where the actions available to each player consist in assigning a truth value to each

2 We refer here to the definition of Boolean games as in [4]. See this paper for the rela-
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variable in a given subset ofV. The preferences, or goals, of each playeri are rep-
resented by a propositional formulaϕi formed upon the variables inV. Thus, a
player in a Boolean game has a dichotomous preference relation: either her goal is
satisfied or it is not. This restriction is of course an important loss of generality, and
may appear at first glance unreasonable. However, first note that many concrete sit-
uations can be modelled as games where agents have dichotomous preferences: see
for instance the kidney exchange problem in [8]. Second (andmore importantly),
the results and notions we give in the paper hold for more general Boolean games
where preferences are non-dichotomous (see Section 5). We choose to focus first
on the case of dichotomous preferences for the sake of the exposition.

Definition 1 An n-player Boolean gameis a 4-uple(N,V,π,Φ), where

• N = {1,2, . . . ,n} is a finite set of players (also called agents);
• V is a finite set of propositional variables;
• π : N 7→ 2V is a control assignment function mapping each player to the vari-

ables she controls. For the ease of notation, the set of all the variables controlled
by i is writtenπi instead ofπ(i). Each variable is controlled by one and only one
agent, that is,{π1, . . . ,πn} forms a partition of V ;

• Φ = {ϕ1, . . . ,ϕn} is a set of goals, where eachϕi is a satisfiable formula of LV .

Definition 2 Let G= (N,V,π,Φ) be a Boolean game.
A strategy for player i in G is aπi-interpretation . The set of strategies for player i
in G is Si = 2πi .
A strategy profile s for G is a n-uple s= (s1,s2, . . . ,sn) where for all i∈ N, si ∈ Si .
S= S1× . . .×Sn is the set of all strategy profiles.

Note that since{π1, . . . ,πn} forms a partition ofV, a strategy profiles is an interpre-
tation forV, i.e., s∈ 2V . The following notations are usual in game theory. Acoali-
tion is a subset ofN. Let s= (s1, . . . ,sn) be a strategy profile. For any non-empty
coalition I ⊆ N, the projection ofs on I is defined bysI = (si)i∈I ands−I = sN\I .
If I = {i}, we denote the projection ofs on {i} by si instead ofs{i}; similarly, we
notes−i instead ofs−{i}. πI denotes the set of the variables controlled byI , and
π−I = πN\I . The set of strategies forI ⊆ N is SI = ×i∈I Si . If s ands′ are two strat-
egy profiles,(s−I ,s′I ) denotes the strategy profile obtained froms by replacingsi

with s′i for all i ∈ I .

The goalϕi of player i is a compact representation of a dichotomous preference
relation, or equivalently, of a binary utility functionui : S→ {0,1} defined by
ui(s) = 0 if s |= ¬ϕi andui(s) = 1 if s |= ϕi . s is at least as good ass′ for i, de-
noted bys�i s′, if ui(s) ≥ ui(s′), or equivalently, ifs |= ¬ϕi implies s′ |= ¬ϕi ; s
is strictly better thans′ for i, denoted bys≻i s′, if ui(s) > ui(s′), or, equivalently,
s |= ϕi ands′ |= ¬ϕi .

tionship to [1] and [2].
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3 Dependencies between players

The syntactical expression of goals suggests to associate with each player the set of
propositional variables that may have an influence on the satisfaction of her goal,
which in turn allows for defining the set of players her goal depends on. Obviously,
if the goalϕi of playeri does not mention any variable controlled by playerj, then
the satisfaction ofi does not depend directly onj. This is only a sufficient condi-
tion: it may be the case that the syntactical expression ofϕi mentions a variable
controlled byj, but that this variable plays no role whatsoever in the satisfaction of
ϕi , as variabley in ϕi = x∧(y∨¬y). We therefore use the notion of formula-variable
independency from [12]:

Definition 3 [12] A propositional formulaϕ is independent froma propositional
variable x if there exists a formulaψ logically equivalent toϕ and in which x does
not appear.3 The set of all variables on whichϕ depends is denoted by DepVar(ϕ).
A normalization of a propositional formulaϕ is a a propositional formulaψ which
does not contain any redundant variable, that is, such that (a) ϕ andψ are logically
equivalent and (b) Var(ψ) = DepVar(ϕ).

Definition 4 Let G= (N,V,π,Φ) be a Boolean game. The set ofrelevant variables
for a player i, denoted by RVG(i), is the set of all variables v∈V such thatϕi is not
independent from v.

For the sake of notation, the set of relevant variables for a playeri in a given Boolean
gameG will be denoted byRVi instead ofRVG(i). We are now in position to define
therelevant playersfor a given playeri as the set of players controlling at least one
variable ofRVi .

Definition 5 Let G= (N,V,π,Φ) be a Boolean game. The set ofrelevant players
for a player i, denoted by RPi , 4 is the set of agents j∈ N such that j controls at
least one relevant variable of i: RPi =

S

v∈RVi
π−1(v).

Example 1 Three friends (1, 2 and3) are invited at a party.1 wants to go to this
party. 2 wants to go to the party if and only if1 does, whereas3 wants to go
there, wants2 to goes and1 not to. This situation can be modelled by the following
Boolean game G= (N,V,π,Φ), defined as follows:

• V = {a,b,c}, with a (resp. b, c) meaning “1 (resp.2, 3) goes to the party”;
• N = {1,2,3},

3 We have this equivalent semantical characterization of formula-variable independency
[12]: ϕ is dependent fromx if there exists an interpretations such thats |= ϕ and
switch(s,x) |= ¬ϕ.
4 Again, the set of relevant players for a Boolean gameG should be denoted byRPG(i):
for the ease of notation we simply writeRPi.
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• π1 = {a}, π2 = {b}, π3 = {c},
• ϕ1 = a, ϕ2 = a↔ b andϕ3 = ¬a∧b∧c.

We can see that1’s satisfaction depends only on herself, 2’s depends on 1 and
herself, whereas 3’s depends on 1, 2 and herself. So, we have:RV1 = {a}, RV2 =
{a,b}, RV3 = {a,b,c}, RP1 = {1}, RP2 = {1,2}, RP3 = {1,2,3}.

This relation between players can be seen as a directed graphcontaining a vertex
for each player, and an edge fromi to j wheneverj ∈ RPi, i.e. if j is a relevant
player ofi.

Definition 6 Let G= (N,V,π,Φ) be a Boolean game. Thedependency graph of
a Boolean gameG is the directed graphP = 〈N,R〉, with ∀i, j ∈ N, (i, j) ∈ R
(denoted by R(i, j)) if j ∈ RPi .

Note thatP is not necessarily acyclic.

R(i) is the set of players who may, by performing some action, influence the sat-
isfaction ofi’s goal: j ∈ R(i) if and only if j ∈ RPi . Remark however that this is a
weak notion of dependency: there are some cases wherej ∈ R(i) and yeti does not
need any action byj to see to it that her goal satisfied. For instance, letπ1 = {a},
π2 = {b} andϕ1 = a∨b. We have 2∈ R(1), yet 1 has a strategy to see her goal
satisfied (namely, settinga to true) and therefore does not need an action by 2. Our
notion of independency is too weak to take this into account:1 depends on 2 just
because there is no equivalent formula ofϕ1 in which b does not appear, and in
spite of that 1 does notneed2.5

We denote byR∗ the transitive closure ofR. R∗(i, j) means that there exists a path
from i to j in R. Then,R∗(i) can be interpreted as the set of all players who have a
direct or indirect influence oni, andR∗−1(i) as the set of all players on whichi has
a direct or indirect influence.

Example 1, continued: The dependency graphP induced by G is depicted as
follows:

1 2

3

• R(1) = {1}, R(2) = {1,2}, R(3) = {1,2,3}.
• R−1(1) = {1,2,3}, R−1(2) = {2,3}, R−1(3) = {3}.
• R∗(1) = {1}, R∗(2) = {1,2} and R∗(3) = {1,2,3}.
• R∗−1(1) = {1,2,3}, R∗−1(2) = {2,3} and R∗−1(3) = {3}.

5 We could work out a stronger notion of dependency, which would be closer to a notion
of “ i needsj”, in which 1 would not depend on 2 in our current example. Notethat this
stronger notion of dependency, which has an abductive flavour, is much harder to compute
than the one developed in this paper. This is a very interesting topic for further research.
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We remark that every directed graph on set of playersN is the graph induced by
some Boolean game. Indeed, for every dependency graphP = 〈N,R〉, we can con-
struct the Boolean gameG= (N,V,π,Φ), whereV = {v1, . . . ,vn}, ∀i ∈N, πi = {vi},
and∀i ∈ N, ∀ j such thatj ∈ R(i), ϕi =

V

j v j . If 6 ∃ j such thatj ∈ R(i), thenϕi =⊤.

We now introduce the notion of stable set. A stable set is a subsetB of players
whose goal does not depend on players outside it.6

Definition 7 Let G= (N,V,π,Φ) be a Boolean game. B⊆ N is stablefor R if and
only if R(B) ⊆ B, i.e.∀ j ∈ B, ∀i such that i∈ R( j), then i∈ B.

Clearly,∅ andN are stable, and the set of stable sets for a Boolean game is closed
under union and intersection. These four properties actually fully characterize the
set of coalitions that correspond to the set of stable sets for a Boolean game. This
result is not crucial for the rest of the paper but it sheds some light on the meaning
of stable sets.

Proposition 1 LetC ⊂ 2N. There exists a Boolean game G such thatC is the set of
stable sets for G if and only ifC satisfies the following four properties:
(1) ∅ ∈ C ;
(2) N∈ C ;
(3) If B, B′ ∈ C then B∪B′ ∈ C ;
(4) If B, B′ ∈ C then B∩B′ ∈ C .

We now define the projection of a Boolean gameG on the set of playersB⊆ N in
order to decompose a Boolean game into several sub-games:

Definition 8 Let G= (N,V,π,Φ) be a Boolean game, and let B⊆ N be a stable
set for R. Theprojection of G on B is defined by GB = (B,VB,πB,ΦB), where VB =
∪i∈Bπi, πB : B→VB such thatπB(i) = {v|v∈ πi}, andΦB = {ψi | i ∈ B}, where for
every i∈ B, ψi is a normalization ofϕi .

The projection of a Boolean game on a stable set of players is aBoolean game:

Proposition 2 If B is a stable set, then GB = (B,VB,πB,ΦB) is a Boolean game.

As shown on the following example, this proposition allows us to decompose a
Boolean game into several smaller Boolean games.

Example 2 Let G= (N,V,π,Φ) be the Boolean game defined by
• V = {a,b,c},
• N = {1,2,3},
• π1 = {a}, π2 = {b}, π3 = {c},

6 Note that the notion of stable set defined here is different from the usual notion of stable
set in graph theory.
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• ϕ1 = a↔ b, ϕ2 = a↔¬b andϕ3 = ¬c.

We have: RV1 = {a,b}, RV2 = {a,b}, RV3 = {c}, RP1 = {1,2}, RP2 = {1,2}, RP3 =
{3}. The dependency graphP of G follows. The sets of players B= {1,2} and
C = {3} are stable. We can decompose G in2 independent Boolean sub-games:

1 2

3

• GB = (B,VB,πB,ΦB), with B = {1,2}, VB = {a,b},
π1 = a, π2 = b, ϕ1 = a↔ b, ϕ2 = a↔¬b.

• GC = (C,VC,πC,ΦC), with C= {3}, VC = {c}, π3 = c,
ϕ3 = ¬c.

Note that Proposition 2 no longer holds whenB is not stable. In Example 2, takeB=
{1,3}, thenG{1,3} = 〈{1,3},{a,c},(π1,π3),(a↔ b,¬c)〉 is not a Boolean game,
becauseϕ3 uses a variable (b) which is not inV{1,3} = {a,c}.

4 Computing Nash equilibria

Pure-strategy Nash equilibria (PNE) forn-player Boolean games are defined ex-
actly as usual in game theory (see for instance [13]), havingin mind that utility
functions are induced from players’ goalsϕ1, . . . ,ϕn. A PNE is a strategy profile
such that each player’s strategy is an optimal response to the other players’ strate-
gies.

Definition 9 Let G= (N,V,π,Φ) be a Boolean game with N= {1, . . . ,n}.
s = {s1, . . . ,sn} is a pure-strategy Nash equilibrium (PNE) if and only if∀i ∈
{1, . . . ,n}, ∀s′i ∈ Si , (si,s−i) �i (s′i,s−i).

The following simple characterization of PNEs is straightforward from this defini-
tion

Proposition 3 ([4], Prop. 2) A strategy profile s is a pure-strategy Nash equilib-
rium for G iff for all i ∈ N, either s|= ϕi or s−i |= ¬ϕi holds.

These definitions lead to some obvious properties of pure-strategy Nash equilibria.
If a player does not control any of her relevant variables, she has no influence on
her own goal, and thus has no preference over her strategies.And if all players are
in the same case, all strategy profiles are PNEs.

Proposition 4 Let G be a Boolean game. If i6∈RPi holds for every i∈N, then every
s∈ S is a PNE.

If each player of a Boolean game depends only on a single player, then players
such thatRPi = {i} will be the only ones having an influence on their own goals.
A strategy profiles will be a PNE if and only if it satisfies the preferences of these
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players.

Proposition 5 Let G be a Boolean game such that∀i ∈ N, |RPi| = 1.
s is a PNE if and only if∀i ∈ N such that RPi = {i}, s |= ϕi .

If the irreflexive part of the players’ dependency graphP of a gameG is acyclic,
(i.e. if there is no cycle of length≥ 2), then we can use a procedure inspired by the
“forward sweep procedure” [14] to find the pure-strategy Nash equilibria. Let us
see this on an example.

Example 1, continued: The irreflexive part of the dependency graphP of G is
acyclic.
RP1 = {1}, so a strategy profile s= (s1,s2,s3) is a PNE only if1’s goal is satisfied,
i.e., s1 = a.
Given 1’s strategy s1 = a, 2 has a best response (namely, s2 = b), because her
goal depends only on the variables controlled by 1 and herself. Finally, given the
strategies of1 and 2, 3’s goal will not be satisfied whatever she does, therefore
3 has two best responses, namely s3 = c and s3 = ¬c. Therefore, G has2 PNEs:
{abc,abc}.

Proposition 6 Let G be a Boolean game such that the irreflexive part of the depen-
dency graphP of G is acyclic.
Then, G has at least one PNE. Moreover, s is a PNE of G if and onlyif for every
i ∈ N, either(si,sR∗(i)\{i}) |= ϕi or sR∗(i)\{i} |= ¬ϕi .

The computation of the set of PNEs of a Boolean gameG such that the irreflexive
part of its dependency graph is acyclic is done by Algorithms1, 2 and 3.

Algorithm 1 : COMPPNEACYCL: Computation of PNEs of a Boolean game such
that the irreflexive part of the dependency graph is acyclic

begin
/* INPUT: G = (N,V,π,Φ) a Boolean game,P = 〈N,R〉 the dependency
graph associated (the irreflexive part ofP is acyclic)*/
/* OUTPUTS: a set of PNEsS*/
/* LOCAL VARIABLES: I = set of players controlling variables already
instantiated,T = set of players controlling variables remaining to be
instantiated */

/* Initialization */
I = ∅, T = N, S= {⊤}
return COMPPNEACYCLREC(G,P , I ,T,S)

end
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Algorithm 2 : COMPPNEACYCLREC: Recursive computation of PNEs of a
Boolean game such that the irreflexive part of the dependencygraph is acyclic

begin
/* INPUT: G = (N,V,π,Φ) a Boolean game,P = 〈N,R〉 the dependency
graph associated (the irreflexive part ofP is acyclic),I the set of players set of
players controlling variables already instantiated,T the set of players
controlling variables remaining to be instantiated,S the set of partial PNEs
already computed*/
/* OUTPUTS: a set of PNEsS*/
/* LOCAL VARIABLES: PI = set of players we can satisfied,i = current
player*/

/* Initialization */
PI = ∅

for i ∈ T do
if R(i) ⊆ I ∪{i} then PI = PI∪{i}

/* Variables controlled by players inRPi are already instantiated */

for i ∈ PI do
/* Instantiation of variables controlled byi */

S= COMPSTRATPLAY (G, i,S)
I = I ∪{i}
T = T \{i}

if T = ∅ then
return S /* All variables are instantiated */
else return COMPPNEACYCLREC(G,P , I ,T,S)

end

Example 1, continued: In this example, G has2 PNEs:{abc,abc}, and we have
R∗(1) = {1}, R∗(2) = {1,2}, R∗(3) = {1,2,3}. For s= abc, we have

• (sR∗(1)\{1},s1) = s1 |= ϕ1 = a
• (sR∗(2)\{2},s2) = (s1,s2) |= ϕ2 = a↔ b
• sR∗(3)\{3} = (s1,s2) |= ¬ϕ3 = a∨¬b∨¬c

A similar line of reasoning holds fors= abc.

However, when the irreflexive part of the dependency graph isnot acyclic, the ex-
istence of PNE is no longer guaranteed, as we can see on the following example.

Example 3 Let G= (N,V,π,Φ) be the Boolean game defined by V= {a,b}, N =
{1,2}, π1 = {a}, π2 = {b}, ϕ1 = a↔ b andϕ2 = (a↔¬b).

We have: RV1 = {a,b}, RV2 = {a,b}, RP1 = {1,2}, RP2 = {1,2}.

The dependency graphP of G is the following:
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Algorithm 3 : COMPSTRATPLAY : Computation of strategies of a player allowing
to satisfy her goal

begin
/* INPUT: G = (N,V,π,Φ) a Boolean game,i a player,S the set of partial
PNEs already computed*/
/* OUTPUTS: a set of partial PNEsSP*/
/* LOCAL VARIABLES: si = instantiation of variables controlled byi, s=
current partial PNE ofS*/

/* Initialization */
SP= ∅

for s∈ Sdo
if s |= ¬ϕi then

/* i cannot satisfy her goal, each one of her strategy belongs to a
PNE*/
for si ∈ 2πi do SP= SP∪{s∪si}

else
for si ∈ 2πi do

/* i can satisfy her goal, and each one of her strategy satisfyingit
belongs to a PNE*/
if si |= (ϕi)s then

SP= SP∪{s∪si}

return SP
end

1 2
This game has no PNE.

However, as shown in Example 4, a game with a cyclic dependency graph may have
a PNE.

Example 4 Let G= (N,V,π,Φ) be the Boolean game defined by V= {a,b,c,d},
N = {1,2,3,4}, π1 = {a}, π2 = {b}, π3 = {c}, π4 = {d}, ϕ1 = a↔ b, ϕ2 = b↔ c,
ϕ3 = ¬d, andϕ4 = d ↔ (b∧c). We have: RP1 = {1,2}, RP2 = {2,3}, RP3 = {4},
RP4 = {2,3,4}.

The dependency graphP of G is the following:

1 2

3 4

G has2 PNEs :{abcd,abcd}.

The following proposition shows that if a strategy profiles is a PNE of a Boolean
gameG, and ifB is a stable set, then the restriction ofs to the variables controlled
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by players inB is a PNE of the projection ofG on B.

Proposition 7 Let G= (N,V,π,Φ) be a Boolean game, let B⊆ N be a stable set
for R, and let GB be the projection of G on B. If s is a PNE for G, then sB is a PNE
for GB.

Example 4, continued: Let us recall the dependency graphP of G:

1 2

3 4

The set of players B= {2,3,4} is stable. GB =
(B,VB,πB,ΦB) is a Boolean game, with VB = {b,c,d},
π2 = b, π3 = c, π4 = d, ϕ2 = b ↔ c, ϕ3 = ¬d, and
ϕ4 = d ↔ (b∧c).
G has2 PNEs :{abcd,abcd}.
{bcd,bcd} are 2 PNEs of GB (and in this case, GB
has no other PNEs).

As we can see on Example 2, the converse is not always true:C = {3} is stable,
and the Boolean gameGC = (C,VC,πC,ΦC) has a PNE :{c}, but the gameG has
no PNE.

However, there exist simple cases for which the converse is true, and for which
it will be easier to compute pure strategy Nash equilibrium by decomposing the
initial Boolean game.

Proposition 8 Let G= (N,V,π,Φ) be a Boolean game. Let B and C be two stable
sets of players, and let GB and GC be the two associated Boolean games.
Suppose than sB is a PNE for GB and sC is a PNE for GC such that∀i ∈ B∩C,
sB,i = sC,i , where sB,i (resp, sC,i) represents the strategy of player i for the game GB

(resp. GC). Then, sB∪C is a PNE for GB∪C.

Example 5 Let G= (N,V,π,Φ) be the Boolean game defined by V= {a,b,c},
N = {1,2,3}, π1 = {a}, π2 = {b}, π3 = {c}, ϕ1 = a↔ c,ϕ2 = b↔¬c, andϕ3 = c.
We have: RP1 = {1,3}, RP2 = {2,3}, RP3 = {3}. The dependency graphP of G is
drawn below. The sets of players B= {1,3} and C= {2,3} are stable. We have two
new Boolean games.

1

2 3

• GB = (B,VB,πB,ΦB), with B = {1,3}, VB = {a,c}, π1 = a,
π3 = c, ϕ1 = a ↔ c andϕ3 = c. GB has one PNE :{ac} (de-
noted by sB = (sB,1,sB,3)).

• GC = (C,VC,πC,ΦC), with C = {2,3}, VC = {b,c}, π2 = b,
π3 = c, ϕ2 = b↔¬c, ϕ3 = c. GC has one PNE :{bc} (denoted
by sC = (sC,2,sC,3)).

B∩C = {3} and we have sB,3 = sC,3 = c, so GB∪C has one PNE:{abc}.

We can easily generalize Proposition 8, withp stable sets covering the set of play-
ers:

12



Proposition 9 Let G= (N,V,π,Φ) be a Boolean game, and let B1 . . .Bp be p stable
sets of players, such that B1 ∪ . . .∪Bp = N. Let GB1, . . . ,GBp be the p Boolean
games associated.
If ∃sB1 . . .sBp PNEs of GB1, . . . ,GBp such that∀i, j ∈ {1, . . . p}, ∀k∈ Bi ∩B j , sBi ,k =
sB j ,k, then s= (sB1, . . . ,sBp) is a PNE of G.

As shown in Example 5, splitting a Boolean game makes the computation of Nash
equilibria easier. If we try to compute Nash equilibria in the original game, we
have to check if eithers |= ϕi or s−i |= ¬ϕi for each of the 8 strategy profiless and
for each of the three players. So, we have to make 12 verifications for each player
(8 for each strategy profile in order to verifys |= ϕi , and 4 for eachs−i to verify
s−i |= ¬ϕi), then 36 for the game in the worst case. Meanwhile, the computation of
PNEs once the game is split is much easier: forGB, from Proposition 6, we have
to make 6 verifications for player 1 (4 to compute(s1,s3) |= ϕ1, and 2 to compute
s3 |= ¬ϕ1); and only 2 for player 3 (becauseR∗(3)\{3}= ∅). So, we only have to
do 8 verifications in the worst case to find the PNEs ofGB, and the same forGC,
which has an equivalent configuration. As we have to check if the instantiation of
player 3’s variables are the same for PNEs of the 2 games, we have to make 17
verifications to compute PNEs of the gameG.

5 Generalization to non-dichotomous preferences

The choice of dichotomous utilities (where agents can only express plain satisfac-
tion or plain dissatisfaction, with no intermediate levels) is an important loss of
generality. Fortunately, this restriction can easily be relaxed: generalizing the def-
inition of a Boolean game so as to allow non-dichotomous preferences is easy, as
it suffices to replace the preference component of a Boolean game by an input ex-
pressed in a (propositional) language forcompact preference representation(see
[5,4]). In the following, for the sake of the exposition, we focus on compact repre-
sentation languages forordinal preferences.

A preference relation� is a reflexive and transitive binary relation (not necessarily
complete) onS. The strict preference≻ associated with� is defined as usual by
s≻ s′ if and only if s� s′ and nots′ � s, and the indifference relation associated
with � by s∼ s′ if and only if s� s′ ands′ � s.

Let L be a propositional language for compact representation forordinal prefer-
ences, equipped with a functionInduceL that maps any input ofL to a prefer-
ence relation� on 2V . If Φ ∈ L, thenΦ is called apreference specificationand
InduceL(Φ), generally denoted�Φ, is the preference relation induced byΦ. If two
preference specificationsΦ andΨ of L induce the same preference relation,i.e.,
InduceL(Φ) = InduceL(Ψ), thenΦ andΨ are said to beL-equivalent. The set of
variablesVar(Φ) on which a preference specificationΦ depends is a straightfoward
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generalization of the set of variables on which a propositional formulaϕ depends.
We denote byVar(Φ) the set of propositional variables appearing inΦ.

Definition 10 An L-Boolean gameis defined to be a 4-uple G= (N,V,π,Φ), where
N = {1, . . . ,n}, V andπ are as before andΦ = 〈Φ1, . . . ,Φn〉, where for each i,
Φi is a compact representation in L of the preference relation�i of agent i on
S. Pre fG = 〈�1, . . . ,�n〉 denotes the collection of preference specifications of all
players.

Φi is the preference specification ofi. The preference relation of a playeri in G is
thusInduce(Φi), and will often be denoted�i .

Remark that ifLP is the purely propositional preference representation language,
where a (dichotomous) preference is represented by a propositional formula, then
LP-Boolean games are just standard Boolean games as defined in Section 2. See
[5,4] for several families ofL-Boolean games.

For the sake of illustration we give an example in which preferences are represented
with prioritized goals (see [5]); however, we insist that similar results would hold
for other languages for compact preference representation, including CP-nets and
other graphical languages.

Definition 11 A prioritized goal base Σ is a collection〈Σ1; . . . ; Σp〉 of sets of
propositional formulas.Σ j represents the set of goals of priority j, with the conven-
tion that the smaller j, the higher priority the formulas inΣ j .

In this context, several criteria can be used in order to generate a preference relation
� from Σ. We choose here to stick to the leximin criterion (see [16–18]). In the
following, if s is an interpretation of 2V then we letSat(s,Σ j) = {ϕ ∈ Σ j | s |= ϕ}.

Definition 12 Let Σ = 〈Σ1; . . . ;Σp〉, and let s and s′ be two interpretations of2V .
The leximin preference relation induced byΣ is defined by: s≻lex

Σ s′ if and only
if ∃k ∈ {1, . . . , p} such that:|Sat(s,Σk)| > |Sat(s′,Σk)| and∀ j < k, |Sat(s,Σ j)| =
|Sat(s′,Σ j)|. Finally, s�lex

Σ s′ if and only if not (s≺lex
Σ s′).

Note that�lex
Σ is a complete preference relation. Here is now an example within

this preference representation language:

Example 6 G = (N,V,π,Φ) where N= {1,2,3}, V = {a,b,c}, π1 = {a}, π2 =
{b}, π3 = {c}, Σ1 = 〈{a}〉, Σ2 = 〈{b∨¬a};{a}〉 andΣ3 = 〈{c∨¬a};{a}〉.
We draw below the preference relations7 Pre flex

G = 〈�lex
Σ1

,�lex
Σ2

,�lex
Σ3
〉.

7 Arrows are oriented from more preferred to less preferred strategy profiles (s1 is preferred
to s2 is denoted bys1 → s2). To make the figures clearer, we do not draw edges that are
obtained from others by transitivity. The dotted arrows indicate the links taken into account
in order to compute Nash equilibria. For example, player 2 prefersabc to abc because
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Player 1

abc

abc

abc

abc

abc

abc

abc

abc

Player 2

abc

abc

abc

abc

abc

abc

abc

abc

Player 3

abc

abc

abc

abc

abc

abc

abc

abc

We now have to generalize the dependency graph between players from Boolean
games toL-Boolean games, for an arbitrary languageL. We choose here to stick
with complete preorders for the sake of simplicity (our notions and results would
extend to partially ordered preference relations, but thiswould require quite a lot
of additional notations and definitions). Recall that, in Section 3, a playeri was de-
pendent on a playerj if her propositional goalϕi was dependent of one of the vari-
ables thatj controls. Therefore, what we have to start with is generalizing formula-
variable dependency to a dependency notion between a preference relation (or a
syntactical input in a compact representation language from which this preference
relation can be induced) and a variable. We stick here to thisvery natural, syntacti-
cal definition of dependency between a preference specification and a propositional
variable (see [15] for semantical definitions).

Definition 13 Let Φ be a preference specification of a preference relation in some
language L, and x∈ V. Φ is independentfrom x if and only if there exists a pref-
erence specificationΨ in L such that

(1) Φ andΨ are L-equivalent;
(2) x 6∈Var(Ψ).

A preference specificationΦ is irredundant if and only if for all x∈ Var(Φ), Φ
depends on x.8 Ψ is anormalization of Φ if and only ifΦ andΨ are L-equivalent
andΨ is irredundant.

Note that this definition depends on the languageL chosen for representing prefer-
ences.

For instance, consider the prioritized goal baseΣ = 〈Σ1〉, whereΣ1 = {p∧q, p∧
¬q}. Σ′ = 〈{p}〉 induces exactly the same preference relation, thusΣ andΣ′ are
L-equivalent. Sinceq 6∈Var(Σ′), Σ′ does not depend onq, soΣ is independent from

|Sat(ab,Σ1
2)| = 1, |Sat(ab,Σ2

2)| = 1 (both strata ofΣ2 are satisfied), and|Sat(ab,Σ1
2)| = 1,

|Sat(ab,Σ2
2)| = 0 (only the first stratum ofΣ2 is satisfied).

8 SayingΦ depends onx is the same than sayingΦ is not independent fromx
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q. Moreover, it is clearly not possible to find aΣ′′ L-equivalent toΣ′ in which p
does not occur, thereforeΣ′ is irredundant, andΣ′ is a normalization ofΣ.

We are now in position of defining the notions used for building the dependency
graph for aL-Boolean game:

Definition 14 Let G= (N,V,π,Φ) a L-Boolean game. The set ofrelevant vari-
ablesfor a player i, denoted by RVi, is the set of all variables v∈V such thatΦi is
not independent from v. The set ofrelevant playersfor a player i, denoted by RPi ,
is the set of agents j∈ N such that j controls at least one relevant variable of i:
RPi =

S

v∈RVi
π−1(v)

The dependency graph of aL-Boolean game is defined exactly as in Section 3.
As we consider only complete preference relations, the definition of pure Nash
equilibria is also the same as previously.

These definitions work for all languages. However, for the sake of illustration, in the
following we stick to the preference representation language based on prioritized
goals, from which the preference relation is induced by theleximincriterion.

Example 6, continued: The dependency graphP of G is the following: RV1 =
{a}, RV2 = {a,b}, RV3 = {a,c}, RP1 = {1}, RP2 = {1,2}, RP3 = {1,3}.

3 21

This game has one PNE:{abc}.

Definition 8 applies here, and allows us to introduce the notion of projection of a
L-Boolean gameG on a stable setB, defined exactly as in Section 3:

Definition 15 Let G= (N,V,π,Φ) be a L-Boolean game, and let B⊆ N be a stable
set for R. Theprojection of G on B is defined by GB = (B,VB,πB,ΦB), where VB =
∪i∈Bπi, πB : B→VB such thatπB(i) = {v|v∈ πi}, andΦB = {Ψi | i ∈ B}, where for
every i∈ B, Ψi is a normalization ofΦi .

We can now generalize some properties previously established for non-dichotomous
preferences. We start with the following, which is a generalization of Proposition 2.

Proposition 10 Let G= (N,V,π,Φ) be a L-Boolean game, and B a stable set for
G. Then GB is a L-Boolean game.

The first part of Proposition 6 can also be generalized in thisframework.

Proposition 11 Let G be a L-Boolean game such that the players’ dependency
graphP of G is acyclic. Then, G has at least one PNE.

We now give a generalization of Proposition 7.
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Proposition 12 Let G= (N,V,π,Φ) be a L-Boolean game, let B⊆ N be a stable
set for R, and let GB = (B,VB,πB,ΦB) be the projection of G on B.

If s is a PNE for G, then sB is a PNE for GB.

The following is a generalization of Proposition 8.

Proposition 13 Let G= (N,V,π,Φ) be a L-Boolean game. Let B and C be two
stable sets of players, and let GB and GC be the two associated L-Boolean games.
Suppose than sB is a PNE for GB and sC is a PNE for GC such that∀i ∈ B∩C,
sB,i = sC,i. Then, sB∪C is a PNE for GB∪C.

We can then generalize Proposition 9 exactly in the same way than in Section 4.

Proposition 14 Let G= (N,V,π,Φ) be a L-Boolean game, and let B1 . . .Bp be
p stable sets of players, such that B1 ∪ . . .∪Bp = N. Let GB1, . . . ,GBp be the p
associated L-Boolean games. If there exist sB1 . . .sBp PNEs of GB1, . . . ,GBp such
that for all i, j ∈ {1, . . . p} and k∈ Bi ∩B j , sBi ,k = sB j ,k, then s= (sB1, . . . ,sBp) is a
PNE of G.

Example 6, continued: The sets of players B= {1,2} and C= {1,3} are stable.
We have two new Boolean games:

GB = (B,VB,πB,ΦB), with B= {1,2},
VB = {a,b}, π1 = a, π2 = b, Σ1 =
〈a〉, andΣ2 = 〈(b∨¬a);a〉. The pref-
erence relations Pre flex

G = 〈�lex
1 ,�lex

2 〉
are drawn on the right.

Player 1

ab

ab

ab

ab

Player 2

ab

ab

ab

ab

GB has one PNE :{ab} (denoted by sB = (sB,1,sB,2)).

GC = (C,VC,πC,ΦC), with C= {1,3},
VC = {a,c}, π1 = a, π3 = c, Σ1 =
〈a〉 and Σ3 = 〈(c∨¬a);a〉. The pref-
erence relations Pre flex

G = 〈�lex
1 ,�lex

3 〉
are drawn on the right.

Player 1

ab

ab

ab

ab

Player 3

ac

ac

ac

ac

GC has one PNE :{ac} (denoted by sC = (sC,1,sC,3)).

B∩C = {1}. But we have sB,1 = sC,1 = a, so Proposition 14 can be applied: GB∪C

has one PNE:{abc}.
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6 Discussion

We have shown how the intuitive notion of dependency betweenplayers in a Boolean
game can be exploited so as to facilitate the computation of pure-strategy Nash
equilibria. Moreover, our properties not only hold for the standard version of Boolean
game (with propositional goals and dichotomous preferences) but also for general-
ized Boolean games, where players’ preferences are expressed in a compact repre-
sentation language (prioritized goals bases, CP-nets, etc. cf. [5,4]).

Another class of games with dichotomous preferences sharesa lot with Boolean
games: Qualitative Coalitional Games (QCG), introduced by[19]. In a QCG, each
agent has a set of goals, and is satisfied if one of her goals is achieved, but is
indifferent on which goal is, and on the number of goals achieved.9 Thus agents
have dichotomous preferences (as in the standard version ofBoolean games - cf.
Sections 2–4). A characteristic function associates with each agent, or set of agents,
the set of goals they can achieve. See [4] for more details.

Boolean games take place in a larger stream of work, that we may gather under
the generic name ofcompactly represented games. All frameworks for compactly
represented games make use of notions of dependencies between players and/or
actions that have a lot in common with ours. Most of these frameworks, includ-
ing [9,10,21], share the following mode of representation of players’ utilities: the
utility of a player i is described by a table specifying a numerical value for each
combination of values to each of the set of variables that arerelevant toi. 10 The
representation of games with such utility tables is calledgraphical normal form
(GNF) in [11]. Dependencies between players and variables in such games natu-
rally induces a dependency relation between players, in thesame way as we do (i
depends onj if i’s utility table refers to a variable that is controlled byj).

Boolean games are very similar to these graphical games, except that the form
chosen for expressing compactly players’ preferences islogical. The logical form
is sometimes exponentially more compact than the graphicalform: consider for
instance the dichotomous preference relation corresponding to the goalϕ = x1⊕
. . .⊕xp, where⊕ is exclusive or. While the logical representation ofuϕ is linear in
p, its representation by utility tables would be exponentialin p, since each of the
p variables is relevant to player’s utility. In the general case of non-dichotomous
utility functions or preference relations, the Boolean game framework, by allowing
some flexibility on the choice of the language for preferencerepresentation, is more
general than the one of graphical games, where the format forexpressing prefer-
ences is fixed. Moreover, solving games in logical form may benefit from the huge
literature on SAT and related algorithms for propositionallogic (see Section 6.3 of

9 In [20], QCGs are extended by allowing agents to have preferences over goals.
10 In multi-agent influence diagrams [9], a player’s utility isactually expressed in a more
compact way as the sum of local utilities, each corresponding to a smaller set of variables.
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[4] for more details).

The notion of dependency between players and variables in graphical games is
used for the very same purpose as our dependency graph, namely, to split up a
game into a set of interacting smaller games, which can be solved more or less
independently. In [11], specific restrictions on graphicalgames are studied, either
by bounding the size of players’ neighbourhoods (the neighbourhood of a player
i in a graphical game is the set of players who potentially influence the utility of
i), or by imposing that the dependency relation between players should be acyclic.
Then [11] studies the impact of such restrictions on the complexity of checking the
existence of a Nash equilibrium (or their computation). Clearly, similar structural
restrictions on Boolean games would probably allow for a complexity fall with
respect to the complexity results for the general case in [4]. This is left for further
study.

The work reported here is still preliminary and can be pursued in many other direc-
tions.

First, apart of thestructural restrictions mentioned just above, we may study the
impact ofsyntacticalrestrictions on propositional goals on the computation of Nash
equilibria and on the construction of the dependency graph.In [22], Sichman and
Conte introduced dependency graphs which can represent and/or dependencies11

on actions needed to achieve an agent’s goal and on the agentswho control these
actions. In the first case, this is similar to our set of relevant variables, and in the
second case this corresponds to our set of relevant players.Sichman and Conte’s
ideas can be used for introducing and/or dependencies in ourframework, but using
the syntactical form of the goals. In [23], three notions of dependency are defined:
the weak one is the same than our (an agenti is dependent from a set of agents
C if C can achievei’s goal). The second one, called normal dependency, adds to
weak dependency the condition thati cannot achieve her goal by herself. Finally,
the third one adds the fact that agents inC are the only ones able to achievei’s
goal. Following [22], [23] use an and-graph to represent weak/strong dependency:
for every coalitionC, there is an and-edge from agenti, i ∈C, to agentj ∈ N if the
agents inC can achieve the goal desired by the agentj. This notion of dependency is
the basis of their computation of admissible coalition under the do-ut-des criterion
(see [24]).

Second, while our Section 5 does not focus on particular language (prioritized goals
are used in an example just for the sake of illustration), we may want to study in
further detail the computation of Nash equilibria (using the structural properties
of the game) for some specific languages for preference representation (see [5,4]

11 The or-dependency means that several actions allow an agentto achieve a goal in several
ways, and the and-dependency means that this agent needs allthese actions to achieve her
goal.

19



for the case of CP-nets and prioritized goals). A particularly appealing language
consists in specifying preferences byweighted goals, where a player’s utility func-
tion is represented using several propositional formulas,each being attached with
a numerical value (see [25]). This is especially interesting because this language
generalizes the representation by utility tables in graphical games.

So far, Boolean games allow only for expressingstaticgames (with simultaneous
moves by the players) and withcomplete information. Enriching Boolean games
with dynamicity and nature-driven uncertainty, as in multi-agent influence dia-
grams, is not as simple as it looks at first glance, and is a challenging issue.

In this paper we focused only on pure-strategy Nash equilibria (as does more gen-
erally the literature on succinctly represented games), which is a strong limitation.
Computingmixed strategyNash equilibria in Boolean games is a challenging issue.
Finding a mixed equilibrium in a succinctly represented game would probably re-
quire to solve a linear program with an exponential number ofvariables. However,
our decomposition techniques could work as well, to a certain extent. This is a very
interesting (and difficult) topic for further research.

Finally, let us mention an informal relationship to social network analysis.12 A so-
cial network is a graph whose nodes are individuals and edgesrepresent some type
of interdependency. Our dependency graph between players (and more generally,
similar dependency graph in graphical games such as in [10,9,11]), can therefore
be viewed as a specific case of social network, where the dependency relation be-
tweeni and j expresses that the satisfaction ofi may rely on the action taken by
j. Technically, of course, both lines of work significantly diverge: social network
analysis studies the properties of large graphs found in thereal world (friendship
or trading relations, co-authorship etc.). Our paper does not study the properties
of such graphs but uses their structure to make the computation of Nash equilib-
ria easier. Some of the properties we use are relevant in social network analysis.
For instance, the decomposition techniques at work in Propositions 7 and 8 will
be more efficient if the dependency graph is composed of weakly interconnected
(but possibly strongly intra-connected) clusters of agents, which may correspond
(to some extent) to the notion of small world well-known in social networks.
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A Proofs

Proposition 1 LetC ⊂ 2N. There exists a Boolean game G such thatC is the set of
stable sets for G if and only ifC satisfies the following four properties:
(1) ∅ ∈ C ;
(2) N∈ C ;
(3) If B, B′ ∈ C then B∪B′ ∈ C ;
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(4) If B, B′ ∈ C then B∩B′ ∈ C .

Proof: Since every dependency graph corresponds to some Boolean game, it is suf-
ficient to show that there exists a relationRonN such thatC is the set of stable sets
for R if and only if C satisfies (1)-(4).
⇒ ∅ andN are obviously stable forR.

If BandB′ are stable sets forR, thenR(B)⊆BandR(B′)⊆B′. So,R(B)∪R(B′)⊆
B∪B′. Now,R(B) = { j|∃i ∈B : j ∈ RPi} andR(B′) = { j|∃i ∈B′ : j ∈RPi}. Thus,
R(B)∪R(B′) = { j|∃i ∈ B∪B′ : j ∈ RPi} = R(B∪B′). Then,R(B∪B′) ⊆ B∪B′,
andB∪B′ is a stable set.
If B andB′ are stable, thenR(B) ⊆ B andR(B′) ⊆ B′. So,R(B)∩R(B′) ⊆ B∩B′.
We know than,R(B) = { j|∃i ∈ B : j ∈ RPi} andR(B′) = { j|∃i ∈ B′ : j ∈ RPi}.
Thus,R(B)∩R(B′) = { j|∃i ∈ B∩B′ : j ∈ RPi} = R(B∩B′). Then,R(B∩B′) ⊆
B∩B′, andB∩B′ is a stable set.

⇐ Let C be a set of coalitions satisfying (1) to (4). For everyi ∈ N, there exists a
smallest setXi in C containingi: Xi =

T

{B∈ C |i ∈ B} (sinceC is closed for∩,
we haveXi ∈ C ). Now, we constructR such that for alli, j ∈ N, (i, j) ∈ R if and
only if j ∈ Xi .
For everyB∈ C and everyi ∈ B, if (i, j) ∈ R, then by construction ofR, j ∈ B,
thereforeB is stable forR.
It remains to be shown that every subsetB stable forR is in C . Assume that
R(B)⊆ B. Then for everyi ∈ B, R(i)⊆ B. Now, by construction ofR, R(B) = Xi.
Sincei ∈ Xi, we haveB⊆∪i∈BXi. Now, for everyi ∈ B, R(i) ⊆ B by hypothesis,
therefore∪i∈BXi = B. Now, everyXi is in C , therefore, using (3), we haveB∈ C .

�

Proposition 3 If B is a stable set, then GB = (B,VB,πB,ΦB) is a Boolean game.

Proof: Let GB = (B,VB,πB,ΦB). We have to check that every goalϕi for i ∈ B is a
formula ofLVB, or can be rewritten equivalently as a formula ofLVB.
Suppose than∃i ∈B, ∃v∈Var(ϕi) such thatv 6∈VB. So,∀ j ∈B, v 6∈ π j . Letk∈N\B
such thatv∈ πk. We know thatv∈Var(ϕi), so eitherϕi is independent fromv, and
then is logically equivalent to a formula in whichv does not appear; orϕi is not
independent fromv, and in this casev∈ RVi and by definitionk∈ RPi . So,k∈ R(i),
butk 6∈ B: this is in contradiction with the fact thatB is stable. �

Proposition 4 Let G be a Boolean game. If∀i ∈ N, i 6∈ RPi then every s∈ S is a
PNE.

Proof: Since∀i ∈ N, i 6∈ RPi , i has no influence on her own goal:∀i ∈ N, either
s−i |= ϕi or s−i |= ¬ϕi . So, we have∀si ∈ Si , (si,s−i) |= ϕi or s−i |= ¬ϕi . s is thus
always a PNE. �
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Proposition 5 Let G be a Boolean game such that∀i ∈ N, |RPi| = 1.
s is a PNE if and only if∀i ∈ N such that RPi = {i}, s |= ϕi .

Proof:
⇒ Let sbe a PNE and leti such thatRPi = {i}. Suppose thats|=¬ϕi (1).RPi = {i}

impliesDepVar(ϕi) ⊆ πi, therefore (1) impliessi |= ¬ϕi (2). Now,s is a PNE,
therefore by Proposition 3, either (a)s |= ϕi or (b) s−i |= ¬ϕi . (a) is excluded
because (2) holds, therefore we haves−i |= ¬ϕi (3). Now, because¬ϕi does not
depend on the variables controlled by players other thani, ¬ϕi must be a tautol-
ogy, that is,ϕi ≡ ⊥, which is excluded by definition (all goals are satisfiable).
Thus we have a contradiction.

⇐ Suppose now that (1)s |= ϕi holds for everyi such thatRPi = {i}.Let i ∈ N.
By Proposition 3,s is a PNE if and only if either (a)s |= ϕi or (b) s−i |= ¬ϕi . If
RPi = {i} thens |= ϕi , and (a) is satisfied. IfRPi = { j} with j 6= i, thens |= ¬ϕi

if and only if s−i |= ¬ϕi , therefore either (a) or (b) is satisfied. We conclude that
s is a PNE. �

Proposition 6 Let G be a Boolean game such that the irreflexive part of the depen-
dency graphP of G is acyclic.
Then, G has at least one PNE. Moreover, s is a PNE of G if and onlyif for every
i ∈ N, either(si,sR∗(i)\{i}) |= ϕi or sR∗(i)\{i} |= ¬ϕi .

Proof:
• Assume without loss of generality that the players are numbered in such a way

that for everyi ∈ N, if i depends onj then j < i. Let s= (s1, . . . ,sn) be defined
inductively as follows: fori = 1, . . . ,n, if (ϕi)s1,...,si−1 is satisfiable then takesi

such that(s1, . . . ,si) |= ϕi . Such ansi exists becausei does not depend onk for
all k > i. If (ϕi)s1,...,si−1 is unsatisfiable then take anysi . It is easily checked that
s is a PNE.

• s is a PNE ofG if and only if for every i ∈ N, either (si,sR∗(i)\{i}) |= ϕi or
sR∗(i)\{i} |= ¬ϕi .

⇒ Assume thats is a PNE and that exists a playeri ∈ N such that(si,sR∗(i)\{i}) 6|=
ϕi andsR∗(i)\{i} 6|= ¬ϕi .
Then, we haves |= ¬ϕi , and, as∀k 6∈ R∗(i), (ϕi)sk = ϕi , s−i 6|= ¬ϕi . Thus,s is
not a PNE.

⇐ Assume now that(si ,sR∗(i)\{i}) |= ϕi or sR∗(i)\{i} |= ¬ϕi .
If i is a player such that(si,sR∗(i)\{i}) |= ϕi , we obviously haves |= ϕi .
If sR∗(i)\{i} |=¬ϕi , then, as∀k 6∈RPi ,(ϕi)sk = ϕi , we haves−i |=¬ϕi . As∀i ∈N,
eithers |= ϕi , or s−i |= ¬ϕi , s is a PNE. �

Proposition 7 Let G= (N,V,π,Φ) be a Boolean game, let B⊆ N be a stable set
for R, and let GB be the projection of G on B. If s is a PNE for G, then sB is a PNE
for GB.

24



Proof: Let s = (sB,s−B) be a PNE ofG, which is equivalent to: for everyi ∈ N,
eithers |= ϕi or s−i |= ¬ϕi [4]. Let us show thatsB is a PNE ofGB. Let i ∈ B.
If s |= ϕi , then becausei ∈ B andB is stable,s−B has no influence onϕi and we
havesB |= ϕi .
If s−i |= ¬ϕi then only players inB have an influence onϕi . So, we haves(B\{i}) |=
¬ϕi , which corresponds tosB−i |= ¬ϕi . �

Proposition 8 Let G= (N,V,π,Φ) be a Boolean game. Let B and C be two stable
sets of players, and let GB and GC be the two associated Boolean games.
Suppose than sB is a PNE for GB and sC is a PNE for GC such that∀i ∈ B∩C,
sB,i = sC,i , where sB,i (resp, sC,i) represents the strategy of player i for the game GB

(resp. GC).
Then, sB∪C is a PNE for GB∪C.

Proof: B andC are stable, so from Proposition 1,B∪C is a stable set, and from
Proposition 2,GB∪C is a Boolean game. We know thatsB =(sB\B∩C,sB∩C) = (sB\C,sB∩C)
and thatsC = (sC\B,sB∩C). As ∀i ∈ B∩C, sB,i = sC,i, we havesB∩C = (sB,sC) =
(sB\C,sC\B,sB∩C). Let i ∈ B∪C.

• i ∈ B\C (or i ∈C\B). As B is stable, we know that∀ j ∈ R(i), j 6∈C\B. Thus,
sC\B has no influence on the satisfaction ofϕi , and so this satisfaction is only
determined bysB = (sB\C,sB∩C). In this case, ifsB |= ϕi , thensB∪C |= ϕi , and if
sB−i |= ¬ϕi , thensB∪C−i |= ¬ϕi .

• i ∈ B∩C. As B andC are stable, we know thatB∩C is stable, and then that
∀ j ∈ R(i), j ∈ R(B∩C) ⊆ B∩C. Thus, the satisfaction ofϕi is only determined
by sB∩C. AssB is a PNE forGB andsC is a PNE forGC, we have eithersB∩C |= ϕi ,
or sB∩C−i |= ¬ϕi . Then, we have eithersB∪C |= ϕi , or sB∪C−i |= ¬ϕi .

So, we have∀i ∈ N eithersB∪C |= ϕi , or sB∪C−i |= ¬ϕi . sB∪C is PNE ofG. �

Proposition 9 Let G= (N,V,π,Φ) be a Boolean game, and let B1 . . .Bp be p stable
sets of players, such that B1 ∪ . . .∪Bp = N. Let GB1, . . . ,GBp be the p Boolean
games associated.
If ∃sB1 . . .sBp PNEs of GB1, . . . ,GBp such that∀i, j ∈ {1, . . . p}, ∀k∈ Bi ∩B j , sBi ,k =
sB j ,k, then s= (sB1, . . . ,sBp) is a PNE of G.

Proof: Let B1 andB2 two stable sets, andGB1 andGB2 the two Boolean games as-
sociated. We can apply Proposition 8, and show thatB1∪B2 is a stable set, that
GB1∪B2 is a Boolean game and thatsB1∪B2 is a PNE ofGB1∪B2.
We can do the same forB1∪B2 andB3, and so on until the final result. �

Proposition 10 Let G= (N,V,π,Φ) be a L-Boolean game, and B a stable set for
G. Then GB is a L-Boolean game.
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Proof: Let GB = (B,VB,πB,ΦB). B is stable, therefore for everyi ∈ B, Φi depends
only on variables controlled by players ofB, that is, depends only onVB. There-
fore, if i ∈ B andΨi is a normalization ofΦi , thenVar(Ψi) ⊆VB. This entails that
GB = (B,VB,πB,ΦB) is a well-definedL-Boolean game. �

Proposition 11 Let G be a L-Boolean game such that the players’ dependency
graphP of G is acyclic. Then, G has at least one PNE.

Proof: Suppose without loss of generality that players are numbered on the follow-
ing way: for all i ∈ N, if i depends onj, then j < i. Let s = (s1, . . . ,sn) defined
inductively as follows: fori = 1, . . . ,n, we takesi such that for alls′i , (s1, . . . ,si) �i

(s1, . . . ,s′i). Such asi exists becausei does not depend onk for all k > i. We have
built a strategy profilessuch that for alli, for all s′i, (si ,s−i)�i (s′i ,s−i). s is a PNE.�

Proposition 12 Let G= (N,V,π,Φ) be a L-Boolean game, let B⊆ N be a stable
set for R, and let GB = (B,VB,πB,ΦB) be the projection of G on B. If s is a PNE for
G, then sB is a PNE for GB.

Proof: Let sbe a PNE forG: ∀i ∈ N, ∀s′i ∈ Si, (s′i ,s−i) �i (si ,s−i). Let s= (sB,s−B).
We want to check thatsB is a PNE forGB.
Let i ∈ B. Suppose thatsB is not a PNE forGB, then there is as′i ∈ Si such that
(s′i,sB−i)≻i(si ,sB−i). As i ∈ B andB is stable, we know that the only players having
an influence oni are inB. So,s−B has no influence oni’s preferences. Thus we have
(s′i,sB−i,s−B)≻is= (si,sB−i ,s−B), that contradicts the fact thans is a PNE forG. �

Proposition 13 Let G= (N,V,π,Φ) be a L-Boolean game. Let B and C be two
stable sets of players, and let GB and GC be the two associated L-Boolean games.
Suppose than sB is a PNE for GB and sC is a PNE for GC such that∀i ∈ B∩C,
sB,i = sC,i. Then, sB∪C is a PNE for GB∪C.

Proof: B andC are stable, so from Proposition 1,B∪C is a stable set and from
Proposition 10,GB∪C is a Boolean game. Leti ∈ B∪C.
• i ∈ B\C (or i ∈ C\B). sB is PNE forGB, so∀s′i ∈ Si ,(s′i,sB−i) �i (si,sB−i). As

i 6∈C, we can write∀s′i ∈ Si , (s′i,sB∪C−i) �i (si,sB∪C−i).
• i ∈B∩C. We have∀k∈B∩C, sB,k = sC,k. sB is PNE forGB, so∀s′i ∈Si,(s′i,sB−i)�i

(si,sB−i); sC is a PNE forGC, so∀s′i ∈ Si,(s′i,sC−i) �i (si ,sC−i). As ∀k ∈ B∩
C, sB,k = sC,k, we have∀s′i ∈ Si ,(s′i,sB−i,sC−i) �i (si,sB−i,sC−i), that is∀s′i ∈
Si,(s′i,sB∪C−i) �i (si ,sB∪C−i).

�

Proposition 14 Let G= (N,V,π,Φ) be a L-Boolean game, and let B1 . . .Bp be
p stable sets of players, such that B1 ∪ . . .∪Bp = N. Let GB1, . . . ,GBp be the p
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associated L-Boolean games. If there exist sB1 . . .sBp PNEs of GB1, . . . ,GBp such
that for all i, j ∈ {1, . . . p} and k∈ Bi ∩B j , sBi ,k = sB j ,k, then s= (sB1, . . . ,sBp) is a
PNE of G.

Proof: Similar to the proof of Proposition 9. �

27


