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Abstract

Game theory is a widely used formal model for studying stjiatd in-
teractions between agent8oolean game$23, 22] yield a compact rep-
resentation of 2-player zero-sum static games with binaefepences: an
agent's strategy consists of a truth assignment of the gitippal variables
she controls, and a player’s preferences are expressedin @mpositional
formula. These restrictions (2-player, zero-sum, binaefgrences) strongly
limit the expressivity of the framework. We first generalitbe framework
to n-player games which are not necessarily zero-sum. We giwplsichar-
acterizations of Nash equilibria and dominated strategied investigate the
computational complexity of the associated problems. Thenrelax the
last restriction by coupling Boolean games with a repredent, namely,
CP-nets.

Keywords: game theory, propositional logic, preference representation, CP-nets

1 Introduction

Game theory attempts to formally analyze strategic interactions between agents.
Roughly speaking, a non-cooperative game consists of a set of dgeptayers),

and for each agent, a set of possible strategies and a utility function magy@ng
possible combination of strategies to a real value. In this paper we comsityer
one-shogames, where agents choose their strategies in parallel, without observing
the others’ choices.

*This article is a revised and extended version of the two conference sifd¢lend [3].
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While there are several different formats for formally specifying a games{
notably extended form and normal form, which coincide as far as staticggame
are concerned), utility functions are usually represented explicitly, by digtie
values for each combination of strategies (an exception being the reaer@viork

of graphical games, which we discuss later in the paper). Howeveruthber of
utility values which must be specified, that is, the number of possible combisation
of strategies, is exponential in the number of players, which rendelnsssuexplicit
way of representing the preferences of the players unreasonabtetiv number

of players is not very small. This becomes even more problematic when tbg set
strategies available to an agent consists in assigning a value from a finitthdoma
each of a given set of variables (which is the case in many real-worldidejnén

this case, representing utility functions explicitly leads to a description whpse s
is exponential both in the number of agents<(2" values forn agents each with
two available strategies) and in the number of variables controlled by thésagen
(2 x 2P x 2P values for two agents each controllipg3oolean variables). Thus, in

all these cases, specifying players’ preferences explicitly is clearlyasonable,
both because it would need exponential space, and because studgagdmees
(for instance by computing solution concepts such as pure-strategyelyasitoria)
would require accessing all of these utility values at least once and endd
take time exponential in the numbers of agents and variables in all cases.

How can this be dealt with? A way out consists in using a language for-repre
senting individual preferences (either preference relations or utilitgtions) on
combinatorial (multivariable) domains irstructuredandcompactvay. These lan-
guages have been actively studied recently, especially in the Al commuhigy. T
exploit to a large extent the structural properties of preferenceb égiconditional
independencies between variables). The relevance of compacemedeepresen-
tation on multivariable domains to the specification and the study of games looks
obvious (in the simple case where each agent has only two possible ssatlegie
there is exactly one binary variable per agent), and yet this connectsorarely
been exploited (up to a few exceptions, which we discuss in Section 6).

In this paper, we focus without much loss of generality on the case in which e
agent has control over a set Bbolean(binary) variables. Not only does this
simplify the presentation, but it allows us to exploit logical languages fdiepre
ence representation. It is also consistent with previous worBawean games
[23, 22, 14]. In Section 7 we discuss in more details to which extent thisrassu
tion induces a loss of generality.

The simplest possible way to represent preferences in Boolean gamsistsan
assuming that each player has a specific propositional formula that st tewde
satisfied. Under this assumption, each player hdisfotomougpreference (either



she is satisfied or not, with no possible gradation). Furthermore, Booteaagas
defined in [23, 14] are two-player zero-sum games where the play#isés are
binary and specified by a single propositional formpilé&he Boolean formof the
game) expressing the goal of player number 1. These three restriciqtayer,
zero-sum, binary preferences) strongly limit the expressivity of thedmork.
They were first relaxed in Chapter 8 of [22], which we discuss in detékiction
4.2.

In Section 3 we stick to the assumption that preferences are dichotomdus-{bu
lax the other two restrictions), and revisit Boolean games by defining thasige
preferences as an arbitramytuple of propositional formulas (see [4]). Then, we
focus on the third restriction.Whereas a single propositional formula (¢czdh-
not express more than a binary preference relation on interpretatiorte igvaf

¢ are strictly better than models ofp), expressing arbitrary (non-binary) pref-
erences within a propositional framework is possible, making use of a mere s
phisticated propositional language for compact preference repatisen Clearly,
many choices for such a language are possible, and for each of themaitis
giving characterizations of Nash equilibria and other solution concepielhas
addressing complexity issues. After briefly discussing the proposal apt€h8
of [22] and some of its possible generalizations, we focus on the langiiagje-
nets, for several reasons: first, this is one of the most popular andiexadloped
compact representation language (both because it is easy to elicitemedsrep-
resented by CP-nets, and because of its computational properties$ecanad,
because this language has enosglctureto allow for interesting characteriza-
tions of our solution concepts. The good point with ordinal prefereiscbst they
are often easier to elicit, mainly for cognitive reasons. The bad point istimaé
game-theoretical concepts, such as mixed-strategy Nash equilibrianoseti-
cal preferences. However, some do not, including pure-strategly d@slibria
and dominated strategies: these notions only require ordinal preference

Some background is given in Section 2. In Section 3, we give a (simplified) d
scription of Boolean games and generalize them so as to representroesune
games with an arbitrary number of players (but we keep the assumptioratiiat e
player’s preferences are represented by a unique propositionalim inducing a
binary utility function). Then, we show how well-known tools from propositib
logic can be used so as to give simple characterizations of two of the most im-
portant game-theoretical notions, namely pure-strategy Nash equilitttiean-
inated strategies, and so as to derive complexity results for their computétion.
Section 4, Boolean games are coupled with non-dichotomous prefereneds-
troduce some languages for compact preference representatiaghearvde briefly
discuss Harrenstein’s proposal given in Chapter 8 of [22] and sditegenerali-



sation. Boolean games are then coupled with propositionalized CP-netgionSec
5. Sections 6 and 7 respectively address related work and furthesidtoofs are
given in Appendix A.

2 Background

LetV = {a,b,...} be afinite set of propositional variables andlgtbe the propo-
sitional language built fronv and Boolean constanis (true) and L (falsg with

the usual connectives. Formulaslgf are denoted by, Y, etc. Aliteral is a vari-
ablex of V or the negation of a variable. fermis a consistent conjunction of
literals. Var(¢) (resp. Lit(¢)) denotes the set of variables (resp. literals) occur-
ing in the formula¢. A formula¢ is in DNF when it is written as a disjunction
(possibly empty) of terms.

2V is the set of the interpretations fdr, with the usual convention that fiMt € v
andx € V, M gives the valugrueto x if x € M andfalseotherwise.

Let X C V. 2% is the set oiX-interpretations A partial interpretation(for V) is an
X-interpretation for som& C V. Partial interpretations are denoted by listing all
variables ofX, with a~ symbol when the variable is set to false: for instance, let
X = {a,b,d}, then theX-interpretatiorM = {a,d} is denotedabd. If {V4,...,V,}

is a partition ofV and {My,...,My} are partial interpretations, whehd; € 24,
(M1,...,Mp) denotes the interpretatidviy U... UM,

If M is an interpretation fow andVar(¢) C V, we writeM |= ¢ if M satisfies

¢. For two formulash, ), ¢ = W denotes the classical consequence relation, that
is, ¢ = W if every model ofp is a model of. If M is a partial interpretation of
Var(¢), we writeM |= ¢ if ¢ is satisfied by every interpretation fgar(¢) which
agrees withM; equivalently,M |= ¢ if the conjunction of all literals assigned true
by M logically entails¢. Due to this equivalence, we use the same notation for
entailment and satisfaction, as is standard in propositional logic.

Forv eV, we denote by < x the fact that the variableis assigned to the value

The partial instantiation of a formulfaby anX-interpretatiorMy is denoted by:

((I))Mx = ¢veMxHT,veX\Mer_

Let y be a propositional formula. A termis animplicantof @ iff a = @ holds.a

is aprime implicantof Y iff a is an implicant ofy and there is no implicart’ of

Y with Lit(a’) C Lit(a). PI(@) denotes the set of all the prime implicantsjoflf

X CV, anX-prime implicant ofy is a prime implicant ofp such thavar(a) C X.

Plx (W) denotes the set of all theé-prime implicants of}.

Let$ € Ly andX C V. Theforgettingof X in ¢ [33], denoted byiX : ¢, is defined
inductively by:



(i) 32:¢=9¢
(i) X} o=y T Vs
(i) IXU{x}):d=3X:(3{x}:9).

JX: ¢ is the logically strongest consequencepoontaining only variables from
V\ X [29, 32]. In other terms, it is the projection ¢fon X. We also need the dual
of forgetting defined by'X : ¢ = —3X : .

Lastly, if ¢ is a propositional formula, theDepVar($) is the set of propositional
variables on whichp depends [29], defined by: fore V, x € DepVar$) if and
only if dx—7 #Z dx—, thatis if the two propositional formulas obtained fragnby
substitutingx by T and by_L define distinct propositional functions.

3 n-player Boolean games with binary preferences

Given a set of propositional variable’s a Boolean game ov [23, 22] is a zero-
sum game with two players (1 and 2), where the actions available to each playe
consist in assigning a truth value to each variable in a given sub¥etTdie utility
functions of the two players are represented by a propositional forprindit from

the variables iV and called théBoolean formof the game¢ represents the goal

of player 1: her payoff is 1 whed is satisfied, and 0 otherwise. Since the game is
zero-sum, the goal of player 2 is:$.?

Example 1

Consider V= {a, b, c}. Player1 controls a and c whil controls b.

Player 1's goal is¢1 = (a«< b) v (-aAbA —c) and therefore2’'s goal is ¢, =
-1 = (-aAbAc)V(aA-b).

The normal form of this game is depicted here (in eack), x—resp. y—represents
the payoff of playeil—-resp.2):

1Stricto sensu, the obtained games are not zero-sum, but constafiheusnm of utilities being
1) — the difference is irrelevant and we use the terminology “zero-swewértheless.

2The original definition [23] is inductive: a Boolean game consists of a filjt@amic game.
We use here the equivalent, simpler definition of [14], who showed tisatrée-like construction is
unnecessary.



b b

ac (1,0)| (0,1
ac (1,0)| (0,1)
ac 0,1 (10,0
ac (1,0)| (1,0)

We now give a more general definition of a Boolean game, which may have an
number of players and is not necessarily zero-sum.

Definition 1 (Boolean game)

An nplayer Boolean gameis a 4-tuple(N,V, 1, ®), where N={1,2,...,n} is
a set of players, V is a set of propositional variables (caliettision variablés
m: N — 2V is a control assignment function, ael= (¢1,...,¢n) is a collection
of formulas of k.

The control assignment functiammaps each player to the variables she controls.
For the sake of notation, the set of all the variables controlled ibywritten g
instead ofri(i). We require that each variable be controlled by one and only one
agent, i.e.{my,..., T} forms a partition o¥.

Our notion of Boolean games corresponds to the specialization of distrievaéd
uation games defined in Chapter 8 of [22] — see Section 4.2 for more details. |
is easily seen that Boolean games as studied by [23, 22, 14] are a sjzswiadf

our n-player Boolean games, obtained by making the following two assumptions:
n= 2 (two players) an®, = —¢, (zero-sum).

Definition 2 (Strategy, strategy profile)

Let G= (N,V, T, ®) be a Boolean game. #trategy s for a playeriin G is arg-
interpretation. Astrategy profile s for G is a n-tuple s= (s1,%,...,S) Where for
alli, sj € 2.

In other words, a strategy foiis a truth assignment for all the variablesontrols.
Note that sincqmy,...,T,} forms a partition ol/, a strategy profils defines an
(unambiguous) interpretation fof. Slightly abusing notation and words, we write
se 2V, to refer to the value assigned byo some variable, etcS denotes the set
of all strategy profiles foG.

More generally, we could add to Boolean gangesstraintsrestricting the set of
individual strategies: a Boolean game would then contain a collection obgrop
tional formulaef{y;,i € N}, where, for each e N, y; is a propositional formula of
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Lni)- The setS of strategies available to playewould then be the set of partial
interpretations in 2 that satisfyy;. For the sake of simplicity, we choose to omit
constraints. Most of our results can easily be generalized to Boolearsgaitie
constraints (for those that cannot we explicitly mention it).

In the rest of the paper we make use of the following notation, which is standa
in game theory. Le6G = (N,V, 11, @) be a Boolean game with = {1,...,n}, and
s=(s1,...,%), 8 = (s},...,5,) be two strategy profiles_; denotes the projection
of sontoN\ {i}: s.i=(s1,%,.--,S-1,5+1,---,5n)-

Similarly, Tt; denotes the set of the variables controlled by all players except
T =V \Ts.

Finally, (s_i,5) denotes the strategy profile obtained frsimy replacings with s
without changing the other strategi€s:i,s) = (S1,%,.--,S-1,5,S+1,---,5n)-
Players’ utilities in Boolean games are binary: playés satisfied by a strategy
profile (and gets utility 1) if and only if her god); is satisfied, and she gets util-
ity O otherwise. Therefore, the goal$;,i = 1,...,n} play the role of the utility
functionsug, ..., un.2

Example 2 We consider here a Boolean n-player (simplified) version of the well-
known prisoners’ dilemma. n prisoners (denotedlby .,n) are kept in separate
cells. The same proposal is made to each of them: “Either you coverdiar y
accomplices (denoted by,&C=1,...,n) or you denounce themC;,i=1,...,n).
Denouncing makes you free while your partners will be sent to prisaefdthose
who denounced you as well; these ones will also be free). But if nooe cfyposes

to denounce, everyone will be ffée

Here is the representation of this game in normal form fes &:

strategy of3: C3 strategy of3: C3
2 — 2 —
1 C G 1 G C2
Cl <1a 17 1) (07 17 0) Cl (07 oa l) (07 17 1)
C (1,0,0) | (1,1,0) Cy (1,0,1) | (1,1,12)

So, for n prisoners, we have a n-dimension matrix, there28me-tuples must be
specified.

SAlternatively, we can define, for every playiethe (binary) utility function induced by her goals
i by: for every strategy profils, uj(s) = 0 if s|= —¢; andui(s) = 1 if s|= ¢;.

4Notice that the limitation to binary preferences make it impossible to exprata fhayer prefers
the situation where he denounces and the others cooperate to the situaierewdryone cooperates,
and the latter to a situation where everyone denounces. In order to dorssed a more sophisticated
language — see Section 5.



This game can be expressed much more compactly by the following Boal®ean g
G = (N,V,;®), where N={1,2,...,n},V = {Cy,...,Cy}, Vi€ {1,...,n}, 15 =
{Gi},andVi € {1,...,n},;i = (CLACoA...ACy) vV —C.

Here, each player i has two possible strategigs=€; and ¢ = C;.

There are 8 strategy profiles for G, including@GCsz andC;C,Cs.

Under GC,C;3, players 1, 2 and 3 have their goal satisfied, wiGi€,C; satisfies
only the goal of played.

Note that this choice of binary utilities implies a loss of generality, but it provides
a good starting point for the study of Boolean games, and it will give usrlowe
complexity bounds. See Section 5 for less restrictive approaches.

Definition 3 (Winning strategy)
Let G= (N,V, 11, @) be a Boolean game, with = (¢1,...,¢n) and N={1,...,n}.
Strategy sis awinning strategy for i if Vs_j € 2™ (s_i,s) = ¢i.

Proposition 1
Let G= (N,V,,®) be a Boolean game. PlayekiN has a winning strategy iff

Pl (61) # 2.

Clearly enough, deciding the existence of a winning strategy for a gilsmipis
an instance of the controllability problem [5, 30, 40] and can be reducd¢ieto
resolution of &BF; 5 instance.

3.1 Nash equilibria

Pure-strategy Nash equilibria (PNE) foiplayer Boolean games are defined ex-
actly as usual in game theory (see for instance [35]), keeping in mind tilit u
functions are induced from players’ gods,...,¢,. A PNE is a strategy pro-
file in which each player’s strategy is an optimum response to the other player
strategies.

Definition 4 (Pure-strategy Nash equilibria)

Let G= (N,V, T, ®) be a Boolean game with N {1,...,n}. s=(s,...,%) is
a pure-strategy Nash equilibrium (PNE) if and only ifVi € {1,...,n},Vs €
2" ui(s) > ui(s.i, S).

Example 3 Let G= (N,V, T, ®) be the Boolean game defined by=/{a,b,c},
N=1{1,2,3}, ; ={a}, o= {b}, s = {c}, p1 = -av(aAbAr—C), dp2 = (a

(b« c))andpz = ((aA—=bA—-c)V(-arbAc)).

Player 1 has a winning strategy, namely setting a to false. It can be checked that
the strategy profile s- abc is the only PNE of G.
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In some examples, several PNE exist: in Ex. 1, the PNEabteandabc, and in
Ex. 2, the PNE ar€,C,C3; andC,C,Cs.

We now give simple characterizations of pure-strategy Nash equilibriadteBo
games, starting with the following one:

Proposition 2
Let G= (N,V, 1, ®) be a Boolean game and lets2". s is a pure-strategy Nash
equilibrium for G iff for all i € N, s}~ ¢; implies s = —;.

Example 3, continued: The strategy profile s- abc is a PNE (notice that it is
the only one). Indeed, we have:

1. s=abcl=¢; = -aVv(anbA-c)
2. s=abck¢o=(a« (b))
3. s3=abfE-¢3=((-avbVvc)A(av-bv-c))

As s_; = —¢; means that-¢; follows from s_; whateverthe instantiation of the
variables controlled by playeythe previous characterization of PNE can be sim-
plified again, using the forgetting operator. For the sake of notation, wehes
notation3i : ¢; instead ofaTs : ¢;.

Proposition 3
Let sc 2V. sis a pure-strategy Nash equilibrium for G if and only #=sA; (¢; v

(=i di)).

This result can be seen as the syntactical counterpart of Propositich énhé
Corollary 9.5.3 in [22] (the latter result being established in the more gesetal
ting of distributed evaluation games — see Section 4.2).

Example 3, continued: Let again s=abc.33:¢3= ((aA-bA-T)V(-aAbA
T))V((@arn—-bAa—-L)Vv(-anbA 1)) =(-aAb)V(aA—-b). We easily check that
SE 01 AP2A-33: §s.

In the particular case of 2-player zero-sum Boolean games, we rettwvevell-
known fact that pure-strategy Nash equilibria coincide with winning straddgie
one of the players.

Proposition 4

If G is a 2-player zero-sum Boolean games=gs;,S,) is a pure-strategy Nash
equilibrium iff § is a winning strategy foll or s, is a winning strategy fog.
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This fact enables us to easily determine the complexity of deciding whether ther
is a pure-strategy Nash equilibrium in a given Boolean game.

Recall thatzg = NP NP is the class of all the languages that can be recognized in
polynomial time by a nondeterministic Turing machine equipped Wrtoracles
(see for instance [36]).

Proposition 5

Deciding whether there exists a pure-strategy Nash equilibrium in a Bogieare

is Zg—complete. Completeness holds even under the restriction to 2-player zer
sum games.

The fact that this problem lies at the second level of the polynomial higyaran
intuitively be explained by the presence of two independent sourcesrgdlexity:

the search for the “good” strategy profiles, and the test whether thisgprarofile

is indeed a pure-strategy Nash equilibrium.

This result can be positioned with respect to other results about the catppex

the existence of Nash equilibria in compactly represented games. [20]thlabw

in a graphical game where the utility function of each player depends ondy on
number of variables bounded by a constant, the existence of a FNfEGemplete.

This result heavily depends on this “locality” assumption that each playglity
depends on a small number of variables controlled by other players. A similar
assumption in our framework leads to a similar complexity gap: indeed, for the
family of Boolean games such that for some conskanVar(¢;)| < K for everyi,
deciding whether there exists a PNE isNiR (we can see from Proposition 3 that
the number of variables we have to eliminate is constant, so the computation of
skE Ai(¢i VvV (—=3i: ¢i)) is polynomial).

We now briefly investigatsyntacticalrestrictions on the formulas representing the
players’ goals which make the problem easier. We are especially intene el
formulas. Recall that any Boolean function can be represented byasiachula,

and thus that this is a syntactical but not a semantical restrictiSnDNF goal
intuitively represents an enumeration of “winning situations”, where a situaio

a partial combination of strategies.

As far as 2-player zero-sum games are concerned, since decidinglitli¢y of
JN,VB, ®, aQBF; 5 formula, isz5-complete even ifp is restricted to be in DNF,
Proposition 5 holds even if player 1's goal is restricted to be in DNF (angkpla
2's goal is implicit). However, when we explicitly represent the goal ohgaayer

in DNF, the complexity of the problem goes down to NP, as the next proposition
shows.

SHowever, of course, the equivalent DNF representation of a formajabe exponentially larger
than this formula.
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Proposition 6

Let G be a Boolean game. If the gajalof every player is in DNF, then deciding
whether there is a pure-strategy Nash equilibrium is NP-complete. Compkte
holds even if we restrict the number of playergto

When restricting to 2-player games, the complexity of deciding whether a gasne h
a PNE can even be lowered to P. This is the case if goals are represefitétbim-
renamable DNF, (ii) affine form, (iii) 2CNF or (iv) monotone CNF with the same
polarity for each variable in both players’ goals. This is ensured by tréitya

of projection in these cases, and algorithms similar to those for abduction [41,
Section 6] can be used.

The case of goals expressed by Horn-renamable DNFs encompagsgfationo-
tone DNF. That is, the case where each variable is monotone for one,daye
may have opposite polarity for both players. This means that two playermxean
press preferred combinations of variables (DNF) with opposite prefeszover
individual variables (e.qg., there is no case where player 1 prefersx and where
player 2 prefers-x to x), and one can decide whether there is a PNE in polynomial
time, that is, a tradeoff between their “opposite” preferences.

3.2 Dominated strategies

Another key concept in game theorydeminance A strategys for playeri strictly
dominatesanother strategy if s does strictly better thag against all possible
combinations of other players’ strategies, avehkly dominates & s does at least
as well against all possible combinations of other players’ strategiesstently
better against at least one. The key idea is that dominated strategies aseiub
and can be eliminated (iteratively, until a fixpoint is reached). This peocdies
on the hypothesis that every player behaves in a rational way and khaivthe
other players are rational.

Definition 5 (Strictly/weakly dominated strategies)

Let 5 € 2™ be a strategy for player i. jgs strictly dominated if 35 € 2™ s.t.
Vs € 2™, u(s,s.i) < Ui(S,S-i).

s is weakly dominated if 35 € 2™ s.t. Vs j € 2™, ui(s,s.i) < ui(§,s-i) and
Js_j € 2™ st u(s,sui) < Ui(S,Si).

The following simple example shows the interest of eliminating dominated strate-
gies.

Example 4 Let G= (N,V, 11, ®) be the Boolean game defined by>\{a,b}, N =
{1,2}, ;m = {a}, = {b}, p1 =2 =an -b.
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This game has two PNESs: strategy profildsandab. Nevertheless, only one of
these equilibria is interesting. Indeedliind2 are rational, they will both choose
strategy profile &, which makes both of them win. This result may be obtained by
eliminating weakly dominated strategies: for playleresp. 2), strategy a (resp.

b) weakly dominates strategy(resp. b).

This interest also appears in Example 2 (the resulting strategy pro@iCi€s),

but not in Example 1 (the resulting strategy profiles are exactly the PNE)alt
well-known fact from game theory that there is no strictly dominated strategy in
any Nash equilibrium, whereas a weakly dominated strategy can be pire et
(see for instance [24]).

Example 5 G = (N,V, 1, ®), where V= {a,b}, N = {1,2}, 4 = {a}, T = {b},
1= (anb)Vv-a,d2=anb.

This game has three PNESs: strategy profilesatbandab. However, the strategy a
is weakly dominated by the strategyor the playerl, even if it appears in a PNE.

Moreover, the order of elimination of strictly dominated strategies does feattaf
the final result, which is no longer true for weakly dominated strategiese $iivec
latter negative result holds for general games (with no restriction on tlyersla
utility functions), it is worth wondering whether it still holds for Boolean games
It actually does, as shown by the following example.

Example 6 G = (N,V, 1, ®), where V= {a,b}, N = {1,2}, , = {a}, T = {b},

d1 =aAb, o =an—-b. For playerl (resp. 2), strategy a (resp.b) weakly
dominates strategs (resp. b). If we first eliminata, thenb weakly dominates b
and only one strategy profile remains, namdby Bow, if we first eliminate b, then
a no longer dominatea any more, and two strategy profiles remain, namdly a
andab.

We now study properties and characterizations of dominated strategiesst A fi
result, that we just state as a remark, is that in a Boolean game, if steastggtly
dominates strategg{, thens is a winning strategy for. Stated in more formal
terms,s strictly dominates strategy if and only if:

sE(-3—i:=¢i) ands = (-3 —i:dp)
This shows that, due to the restriction to binary utilities, the notion of strict dom-

inance degenerates and loses its interest. This is however not the cassafo
dominance. We have the following simple characterization of weak dominance:

12



Proposition 7
Strategy sweakly dominatestrategy &if and only if(q)i)q = (0i)s and (di)s =

(i)

For example, we have for the game presented in Exampig:6; = b and(¢1)z =
1. S0,(¢1)a E (¢1)a, and(d1)a ~= (1)a : as seen in Example & weakly domi-
natesa.

This characterization allows us to derive the following complexity result.

Proposition 8
Deciding whether a given strategyis weakly dominated i§’2°-complete. Hard-
ness holds even(f; is restricted to be in DNF.

Characterizing strategies that survive iterated elimination of weakly dominated
strategies looks much more complicated, as well as finding the complexity of de-
ciding whether a given strategy survives any iterated elimination of weaity-d
nated strategies. This is left for further research.

4 Coupling Boolean games and compact preference rep-
resentation languages: principles and first examples

4.1 Towards Boolean games with non-dichotomous preferences

The choice of dichotomous utilities (where agents can only express plaifasatis
tion or plain dissatisfaction, with no intermediate levels) is an important loss of
generality. Fortunately, this restriction can easily be relaxed, at leastfre point

of view of generalizing definitions. It suffices to replace the prefezermnponent

of a Boolean game by an input expressed in a (propositional) languagenpact
preference representatioRecall that languages for preference representation may
be eitherordinal (i.e., expressed by weak orders)mamerical(i.e., expressed by
utility functions). For the sake of the exposition the discussion below segpbat
preferences are ordinal (the case for numerical preferences isrimila

A preference relatiort is a reflexive and transitive binary relation (not necessarily
complete) orS. The strict preference associated with- is defined as usual by
s> s ifand only ifs>= g and nots' = s.

Let L be a propositional language for compact representation of ordinfdrpre
ences, equipped with a functidnduce that maps any input df to a preference
relation>= on 2. An L-Boolean gamés defined to be a 4-uplé = (N,V, T, ®),
whereN = {1,...,n},V andmare as before an® = (P4, ..., P,), where for each
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i, d; is a compact representation, lin of the preference relation; of agenti on

S thatis,Inducd®;) =>-i. We letPrefg = (=1,...,>n).

Since most propositional languages for compact ordinal preferepcesentation

can be used to represent partial preference relations, we startiéfniag pure-
strategy Nash equilibria and dominated strategies, since the usual defirfition o
these notions assume that players’ preferences are complete.

We first have to definéwo notions of PNEs, a weak one and a strong one (these
notions correspond respectively to the notions of maximal and maximum eguilibr
in [22]).

Definition 6 (Weak, strong Nash equilibrium)

Let G= (N,V,,®) and Pret = (>=1,...,>=n) the collection of preference rela-
tions on S induced fromp. Let s= (s1,...,%) € S.

s is aweak PNE(WPNE) for G iffvi € {1,...,n}, Vs € 2", (5,s.i) i (S, S-i).

s is astrong PNE (SPNE) for G iffvi € {1,...,n}, Vg € 2™ (S,s.i) =i (S,S).
NEs(G) and NE,(G) denote respectively the set of strong and WeRIKES for G.

Clearly, any SPNE is a WPNE, that BEs(G) C NE,(G).

The notions of dominated strategies, initially defined with binary utilities (Defini-
tion 5), have to be refined too.

Definition 7 (Strictly/weakly dominated strategies)

Let s € 2™ be a strategy for player i, ang; her preference relation on S.

5 is strictly dominated if 35 € 2™ s.t.Vs_; € 2™, (s,5.) <. (5,5-i)

s is weakly dominatedif 35 € 2™ s.t.Vs_j € 2™, (s,5i) =i (S, S.i anst,i S
2 st (s,s5) <i (§,5-0)-

The introduction of partial preferences allows us to introduce a new notidom-
inated strategies. This new notion is very weak: all strategies can be partially
dominated.

Definition 8 (Partially dominated strategies)

Let s € 2™ be a strategy for player i, ang; her preference relation on S.

s is partially dominated if 35 € 2™ s.t.Vs_; € 2™ (s,S) i (§,S-i) and3s_; €
2 s.t.(s,5.) <i (S,5-)

6There is an interesting equivalent way of defining weak and strong Biguiiibria. A partial
preference relatiorj can be identified with the set of dixt(=;) of complete preference relations
that extend it, and a-uple of partial preference relatiofs= (>1,...,>n) is then identified with
the setExt(P) of all n-uples of complete preference relations, ..., Jn) such that for every, J;
extends=i. Formally, Ext(P) = Ext(>1) x ... X Ext(>n). Finally, let G be a Boolean gamé,
thensis a strong (respectively weak) Nash equilibrium @iff sis a Nash equilibrium for every
(respectively, at least one) game whose preferential componenEid(P).

14



If =i is a total pre-order, then weakly and partially dominated strategies ane equi
alent.

Moreover, we still have [34]:

¢ the order of elimination of strictly dominated strategiEses not affecthe
final result.

e the order of elimination of weakly and partially dominated strategiey
affectthe final result.

4.2 Distributed evaluation games

A first way of extending Boolean games so as to allow players’ prefesetiche
non-dichotomous has been proposed in Chapter 8 of [22] distebuted evalua-
tion game the preferences of a player are expressed by a finite set of jtiopak
formulae expressing elementary goals that she wants to see satisfiedod¥e th
give a formal presentation of distributed evaluation games in our own terms.

Definition 9 (Distributed evaluation games, reformulated)

An individual goal baseés a set> = {¢1,...,¢q} of propositional formulas. A
distributed evaluation gameis a 4-uple G= (N,V, 1, ®), where® = (Z1,...,%,)
is a collection of goals bases.

The preference of a player is induced from her goal base in the folipway: she
prefers a stateto a states' if the set of goals satisfied scontains the set of goals
satisfied bys'. Formally:

Definition 10
Let Z be a goal base. For any statessS, let Sats,2) = {¢p € Z | s=¢}. The
preference relatior-s on S induced fron is defined by

s=5 S iff Sat(s, ) D Sat(s,5)

Note that>s may not be complete. An alternative to finding a preference relation
from a goal base is to use cardinality instead of inclusens s iff [Satf(s,X)| >
|Sat(s,Z)|.

Now that we have a preference relation for each player, results afeStibn 4.1
apply.

The following example shows how the prisoner’s dilemma can be represented
distributed evaluation game.
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Example 7 Let G= (N,V, 1, @), with N={1,2},V = {C,C}, Ty = {C1}, T =
{Cz}, 21= {Cl — Cy, —Cq,Cy /\Cz} and, = {CZ — Cp, Gy, —|C2/\C1}.
The preference relations associated with playkend?2 are the following:

Ci1C2 -1C1Cp =1 C1C -1 C1Co
CiC; =2C1Cy =2 CiCy =2 C1Cy

We can give a simple characterization of pure strategy Nash equilibrium in this
framework, which is a reformulation of Corollary 9.5.3 in [22] in our framekvo

Proposition 9 Let G= (N,V, 1t ®) be a distributed evaluation game and let S.
If s is a SPNE then for all& N, Safs, %) is maximal s;-consistent.

Note that the previous implication can be extended to an equivalence if si&leon
WPNE instead of SPNE.

Example 7, continued: C;C; is a SPNE of G: we have S&;C,,2;) = {C; —
C;} maximal G-consistent (because $@,C,,%;) = 0), and SafC,C,,3,) = {C,
— C1} maximal G-consistent.

We can check that this is the only SPNE of this game.

Let us say a word about complexity. It is easy to check that the problete-of
ciding whether there exists a strong or weak PNE i§§n Now, whenZ; is a
singleton, SPNEs coninde with PNEs as defined in Section 3.1. Therdémwie-
ing whether there exists a strong pure-strategy Nash equilibrium in a Bogéeae
is Z5-complete.

4.3 Generalizing distributed evaluation games: Boolean gaes and
prioritized goals

Generalizing a simple goal to a set of goals is a first step to allow to have more
expressing preferences. However, expressing preferencesset of goals does

not allow to express the relative importance of goals. A practical way tcodo s
is to introduce priority over goals. Thus, a simple generalisation of distributed
evaluation games is Boolean games with prioritized goals [3]. The prefsaia
single player in this framework are expressed by a set of goals ortdgmegriority
relation.

"Recall that a séiV C 5; is maximals-consistent if it is consistent witg, and if there is no
W’ C 5 consistent withs; such thatv ¢ W'.
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A prioritized goal baseZ is a collection(z*; ...; =P) of sets of propositional
formulas. X! represents the set of goals of prioritywith the convention that the
smallerj, the more prioritary the formulas &.

Several criteria can be used in order to generate a preference refatiom z, as

for example thaliscrimincriteria based on inclusion, or theximin criteria based

on cardinality. We choose to skip the formal definition of these criteria, mmol

give an example where the two well-known criteria discrimin and leximin coincide.

Example 8 Prisoner’s dilemma can be translated into the following Boolean game
with prioritized goals G= (N,V,;®): N = {1,2}, 4 = {C1}, TR, = {C3}, Z1 =

(Co; ~C1), 22 = (Cyq; —Cy).

The preference relations associated with playemnd 2 are the following (they
are identical with leximin or discrimin) :

CiC; =1 C1Cp =1 CiCy -1 C1Cy
Ci1C2 =2C1Cs =2 C1Cy =2 C1Co

We choose to omit details about Boolean games with prioritized goals becé#ise th
would require a significant amount of space, while we have no signifresotts
other than simple generalization of results of Section 3. These results éaumae

on [3].

5 Coupling Boolean games and compact preference rep-
resentation languages, a case study: CP-nets and Boolean
games

5.1 CP-nets

In this section we consider a very popular language for compact preferepre-
sentation on combinatorial domains, namely CP-nets.

This graphical model exploits conditional preferential independencedardo
structure the decision maker’s preferences undeetaris paribusassumption.
They were introduced in [8] and extensively studied in many subseqnagars,
most notably [6, 7].

Although CP-nets generally consider variables with arbitrary finite dom@inthe
sake of simplicity (and homogeneity with the rest of the paper) here we @nsid
only “propositionalized” CP-nets, that is, CP-nets with binary variablege(that
this is not a real loss of generality, as all our definitions and results caadily
lifted to the more general case of non-binary variables).
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Definition 11 (Conditional preferential independence)

Let V be a set of propositional variables af¥,Y,Z} a partition of V. X is
conditionally preferentially independent of Y given Z if and only itz € 24,
Vx1, %o € 2% andVyy, Y, € 2¥ we have: xy1z > xoy1Z iff Xiyoz > Xoyz.

For each variabl&, the agent specifies a set pérent variables P&X) that can
affect her preferences over the valuexoformally,X andV \ ({X} UPa(X)) are
conditionally preferentially independent givea(X). This information is used to
create the CP-net:

Definition 12 (CP-net)

LetV be a set of propositional variable®( = (G, 7) is aCP-net onV, whereG
is a directed graph over V, and is a set of conditional preference tables CEXY)
for each % € V. Each CPTX;) associates a linear order }, with each instantia-
tion p e 2FaX)),

Example 9 Consider the following simple CP-net that expresses my preference
over dinner configurations. This network consists of two variables $\&r&tand-
ing respectively for the soup and wine. | strictly prefer fish soup (&vegetable
soup ($), while my preference between red, jVdnd white (W) wine is condi-
tioned on the soup to be served: | prefer red wine if served a vegetalne and

white wine if served a fish soup.

@ St | W =W
S| W= Wy
The preference information captured by a CP-Agfcan be viewed as a set of
logical assertions about a user’s preference ordering over conggigignments to
variables in the network. These statements are generally not complete, thayis
do not determine a unique preference ordering. Those orderingsstamt with
AL can be viewed as possible models of the user’s preferences, andedenepce

assertion that holds in all such models can be viewed as a consequeheeCst-
net [7].

Definition 13

Let A’ be a CP-net over propositional variables V, ang'oc 2V be two interpre-
tations (also called outcomes).~00' is aconsequenc®f A, written A’ =0 0/,

iff o = o’ holds in all preference orderings consistent with the ceteris paribus pref-
erence statements encoded by the CPTX of
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The set of consequences- o of a CP-net constitutes a partial ordering over
outcomesp s preferred ta' in this ordering iffAl =0~ 0. This partial ordering
can be represented by a directed graph, referred to as the indefeckpce graph:

1. The nodes of the induced preference graph correspond to thdaterap-
signments to the variables of the network, and

2. there is an edge from nodeto noded’ if and only if the assignments at
andd differ only in the value of a single variabl¢, and given the values
assigned by andd’ to Pa(X), the value assigned hyto X is preferred to
the value assigned hy to X&.

In turn, the transitive closure of this graph specifies the partial ordesneg out-
comes induced by the CP-net. More precisely, we haveihgt o - o’ if and only
if there is a directed path fromto o’ in the induced preference graphaf.

Formally, the induced preference relationtagf represented by the induced prefer-
ence graph, is defined as follows:

Definition 14 (Induced preference relation)
Thepreference relationover outcomes induced by a CP-11gtis denoted by,
and defined byo,0' € 2V, 0 o O ifand only if A =0~ 0.

Informally, a CP-net)\( is satisfied by~ if - satisfies each of the conditional
preferences expressed in the CPTS\6finder theceteris paribusnterpretation.

Definition 15 (Satisfiability of a CP-net)
A CP-net\l is satisfiableiff there is some ranking such thatvo, A’ 0> ... -
0.

Example 9, continued: The following figure shows the preference graph over
outcomes induced by this CP-net. The bottom elememt\(&) is the worst out-
come while the top element(&W,) is the best.

St AWy
|

We can totally order the outcomesSs AWy) = (St AW) = (SIAW) = (SyAW ).
This relation:- is the only ranking that satisfies this CP-net.

8In [6, 7], the arrows are oriented from less preferred to more medlebut we choose here the
opposite representation in order to stick with the other graphical repiegigers used in this paper.
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5.2 CP-Boolean games

Definition 16 (CP-Boolean games)

A CP-Boolean games a 4-uple G= (N,V, 1t @), where N= {1,...,n} is a set of
players, V= {x1,...,Xp} is a set of propositional variables;: N — V is a control
assignment function, artl = (A4, ..., Ag). EachA{ is a CP-netonV, andi € N,

Zi=2

Each CP-nefij is a compact representation of the preference relation of player
onS

Example 10 G = (N,V,,®) where N= {1,2}, V = {a,b,c}, y = {a,b}, T =
{c}, Ab and A;, as well as—1=1,; and =,=">,,, are represented on the follow-
ing figure.

Arrows are oriented from more preferred to less preferred strategfilpsp we do
not draw edges that are obtained from others by transitivity; and the dotted/a
indicate the links taken into account in order to compute Nash equilibria.

a>a

@ b>-b

a|b>
aAb|c~tT :
anb|t-c : b|cs-t
.A. a7 <" '.' C — an
anb|Tc>c ) ¢ O b|c>c C
anb|c-tc Y “ 2be
A1 =1 Ao =2

Using these partial pre-orders, Nash equilibria are: NENE, = {abc}.
Consider now the CP-nex; of player 2. Only two rankings satisfy this network:

abc -, abc -, abc-, abc -, abec -, abc =, abc =, abc

abc -, abc -, abc - abc-» abc = abc -5 abt = abc
Notice that we havé\; = abt >, abc, butA [~ abc - abc.
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In [8] it was shown that, given a CP-né{, we can easily determine the best
outcome (or one of the nondominated outcomes, if the best outcome is noguniqu
among those preference rankings that satigfyin our framework, a best outcome

is a strategy profile which is preferred in a CP-Agtin every preference ordering
that satisfies\(.

Definition 17 (Best outcome)
Let AL be a CP-net over the set of variables V.
A strategy profile s is &est outcome of/\( if and only ifVs € S, A s>~ S.

Determining the best outcome, or one of the nondominated outcomes, among the
preference rankings that satisly is calledoutcome optimizatianf A/ is acyclic,

the network does not generally determine a unique ranking but determuimésgee

best outcome.

This query can be answered using tbevard sweeprocedure, taking time linear

in the network size [8, 6]. This procedure consists in instantiating varidbles
lowing an order compatible with the graph, choosing for each variable itsrped

value given the value of the parents.

Lemma 1 [8]
Let Al be an acyclic CP-net over the set of variables V. The forward swesepr
dure constructs the best outcome in S.

Since indifferences are not allowed, strictly and weakly dominated stratagee
the same.

Proposition 10 Let G be a CP-Boolean game such that the grgpfor the player
i is acyclic.

¢ i has adominated strategyif and only if there is a variable controlled by i
and independent (for;) from all other variables, i.e. if and only if there is
a variable ve 1 such that Pév) could be simplified to Ra) = @ without
changing preferences.
Moreover, in this case; slominates sif and only if $v] i S[v], where gV]
denotes the value of v in the stratég)g.

¢ i has adominant strategy, that is a strategy which dominates all the others,
if and only if every variable controlled by i is independent (fa) from all
other variables, i.e. if and only if for all variables& g, Pa(v) C 5.

9A variablew could appear in the parents of another variablgithout having an influence on
the preferences om we could havev € Pa(v) without v depending onv. We consider here that
depends ow if and only if w € Pa(v) (otherwise we remove in Pa(v)).

1050,i prefers the value of in s over the value of/in .
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If Gi is not acyclic,ji can have a dominated strategy even if there is gag such
thatPa(v) = @.

Example 11 G= (N,V, 1, ®) where N={1,2},V ={a,b,c,d}, m = {a,b}, T, =
{c,d}, A5 and A, are represented on the following figure.

o

bla-3a d|c~c
R © [oc] [ara] ® @
a-a c-CT

ol
Ql

b — = d
>b B (@) |d-d| |b-b (D) — >d

Ql
o
Y
ol
o
Y

N Az

For player 1, strategy ab dominates all other strategies, even ifalpa= b and
Pa(b) = a.

In A4, the configuration of a and b, controlled by playgris the same as the
configuration of ¢ and d im\, which are controlled by2. However,2 has no
dominated strategies.

The previous example shows that cycles in a CPAdetn lead to an inconsistency
in the associated preference relatiegy. In this case, our results can be appltéd.
The following lemma introduces the notion of best response, useful &vacter-
izing Nash equilibria in CP-Boolean games.

Lemma 2 Let G= (N,V, 11,®) be a CP-Boolean game such that the graghare
all acyclic, andie N. Forall s_j € 2V\T there exists a best response for i, that is,
a strategy s € 2™ such that for all § 57, (S", i) >i (5,5-i)-

Notice thats" depends only os_;, thereforer;(s_;) will denote the best response
byitos . Then:

Lemma 3 s is a SPNE if and only if for each i, s ri(s_).

These two lemmas allow us to show the following propositions:

11if we want to generalize our results to cyclic CP-net, it is possible to takeetimaustics intro-
duced by [9], which coincides with the standard semantics whgris consistent. In Brafman and
Dimopoulos semantics, the preferences expressed in the CPT of atGiPeveak They defined
0> 0 aso> o ando' ¥ o.
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Proposition 11 Let G= (N,V, 1, ®) be a CP-Boolean game such that the graphs
G are all acyclic. Deciding whether a given strategy profile s is a SPNE of G is
polynomial.

Proposition 12
In a CP-Boolean game where the graph associated to each playerseCis
acyclic, SPNE and WPNE coincide.

If the graphs are not all acyclic, that is, if there is at least one playese/graph
is cyclic, this property is no longer guaranteed, and we can have a WRINE 8
not a SPNE:

Example 12 Let G= (N,V, 1, @) be a CP-Boolean game, with N {1,2}, V =
{a,b}, m = {a}, m = {b}. Players’ preferences are represented on the following
figure.

Playerl Player2
alb>-b —
® fifes] @ [
bla-a bo b
Q b|la-a -

Using these partial pre-orders, Nash equilibria are: NE @, NEy = {ab,ab}.

Consequently, in the following we will talk of PNEs (instead of SPNEs and WP-
NESs) as soon as the graph associated to each player's CP-net is.acyclic

The second property concerns a very interesting case where thenegisted the
unigueness of PNE hold:

Proposition 13
Let G= (N,V, T, @) be a CP-Boolean game such that the graghare all identical
(Vi, ], Gi = G;) and acyclic. Then G has one and only one PNE.

If the graphs are all acyclic but not identical, that is, if there are two ptaytose
graphs differ over at least one edge, neither existence nor unisgiane guaran-
teed:

Example 13 Let G= (N,V, ,®) be a CP-Boolean game, withN{1,2,3},V =
{a,b,c}, m = {a}, o = {b}, T3 = {c}. Players’ preferences are represented in
the following figure.
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a-a (B)

anc | b>=b anb|c>-tT
— ant | b>=Db anb|t-c
alb>b —
— = anc | b>b anb|Tt>c
alb-b — —
ant | b=b anb|c~¢C
N1 A2 A3
G has no PNE.

Example 14 Let G= (N,V, 1, @) be a CP-Boolean game, with N {1,2}, V =
{a,b}, m = {a}, = {b}. Players’ preferences are represented on the following
figure.

Playerl Player2

@ b>-b Q a-a

b|la-a albs
@ b|las-a 9 b-b

This game hag PNEs: NE= {ab,ab}

b

The point is that in general the graplgsfor i € {1,...,n} may not be identical.
However, they may benadeidentical, once it is noticed that a CP-n&f,7) can
be expressed by a CP-ng}’,7’) as soon as the set of edgesgris contained in
the set of edges igy’. We may then take as a common graplfto all players) the
graph whose set of edges is tineion of the set of edges af1, ..., Gn. The only
problem is that the resulting graph may not be acyclic, in which case Rtiopos
13 is not applicable. Formally:

Definition 18 (Union graph)

Let G= (N,V, 1, ®) be a CP-Boolean game. For each playeiG, is denoted by
(V,Edge), with Edge being the set of edges of i's CP-net. Turéon graph of G
is defined byg = (V,Edggq U...UEdgg,)).
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We now define the normalized game equivalenGtavhich is the game obtained
from G by rewriting each player’'s preferences: the graph of each plag#'s
net are replaced by the graph of the union of CP-nets ahd the CPTs of each
player’s CP-net are modified in order to fit with the new graph, keepingdhee
preferences.

Definition 19 (Normalized game)

Let G= (N,V, L, ®) be a CP-Boolean game and It be the union graph of G.
Thenormalized game equivalent tdG, denoted by G= (N, V, 1, ®*), is the game
such that

e for each player i,G* = G and,

e if =7 denotes the relation associated with GBT for player i's CP-net in
G, then we have for G Vx € V such that x is a parent of y in"Gout not in
G, =1 5=>1)-

The following lemma is straightforward:

Lemma4
Let G be a CP-Boolean game and @&s equivalent normalized game. Theri G
and G define the same preference relations on strategy profiles.

Therefore, ifG* is acyclic, then Proposition 13 applies, a@t has one and only
one PNE. Now, sinc& andG* define the same pre-orders Snthe latter is also
the only PNE ofG (on the other hand, if the graph & is cyclic, neither the
uniqueness nor the existence of PNEs is guaranted, as you can seamoplés 13
and 14).

Proposition 14

Let G= (N,V, 1t ®) be a CP-Boolean game. If the union graph of G is acyclic then
G has one and only one PNE.

Example 10, continued: Players’ preferences in the normalized gamg&juiv-
alent to G) are represented by the CP-nets given on the following figure.
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b>-b alb>=b

a-a alb-b a-a alb-b
C C
anb|c~tT anb|c>-tC
anb|ct-c anb|ct-c
N = = N = -
anb|ct~c anb|c~tC
aAb|c>-tC anb|Tc>-c

The union graph is acyclic, therefore Proposition 13 can be applied and<3he
and only one PNE (abc).

>From Proposition 11, we know that@&is a CP-Boolean game such that the union
graph is acyclic, then deciding whether a given strategy prefdea PNE ofG is
polynomial.

There is a last condition (less interesting in practice because it is quite strong
guaranteeing the existence and the uniqueness of a PNE. This conditesmtistd

any variable controlled by an agent is preferentially independent framaiMes
controlled by other agents (in other words, the parents of any variabteotied

by a playeri are also controlled by), and that the graphs of players’ CP-nets
are all acyclic. In this case, each agent is able to instantiate her variabdes in
unambiguously optimal way, according to her preferences.

Proposition 15

Let G= (N,V, 7, ®) be a CP-Boolean game such that all graphs are acyclic and
for every player ie N, for every ve 15, we have P&/) € ;. Then G has one and
only one PNE.

In the framework of CP-Boolean games, each agent's preferenees@mesented

by a CP-net. Yet, to compute Nash equilibria, we are only interested in vagiable
controlled by a player on her CP-net. The idea here is to introduce a neweCP-
called theglobal CP-net of G unique for the set of players, gathering for each
player the set of variables she contf8lsSince{my, ..., T} forms a partition of

V, each variable will be present once and only once in this CP-net. Wodkiray
unigue CP-net will allow us to use classical tools from the CP-net franiewor

125 pointed out by a referee, this construction can be viewed as a foprefgrence aggregation,
where every player is a dictator for the variables she controls. The tredlqeference relation is
well-defined only when the global CP-net is consistent, therefore thiegagtjon function applies
only to a specific family of preference profiles and not all possiblegpegice profiles, which explains
why it escapes Arrow’s theorem. See Section 4 of [28] for more dadnithis issue.
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Definition 20 (global CP-net)
Let G= (N,V,1,®) be a CP-Boolean game.
Theglobal CP-net of G denotes the CP-né&{" = (G*,7") such that:

e VieN,Wem, CPT(v)e T,
e G'=(V,Edgg U...UEdgg), with eachEdge” defined by
Edge™ = {(w,v) € Edgelv € %}
whereEdgeg is the set of edges ig;.

Example 15 Consider the same CP-Boolean game as in Example 10:

G = (N,V, 1t ®) where N= {1,2}, V = {a,b,c}, y = {a,b}, T = {c}, Aj and
N> are represented on the following figure. On the figure, each box contiaéns
variables controlled by the player concerned, therefore it contains thEs@Pthe
global CP-net of G.

a-a @ a-a

— b-b
® (b6 ® 2

alb-
anb | c~tC
anb|c-c b|lc-tC
C @ -
anb|C>c b|t~c
aAb|cstC
Ay A2

The global CP-net\'" of G is represented on the following figure (we keep the
boxes, the edges entering in each box, and the internal edges of egdch b
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(B) b-b |abc]| |akx]|

blc>-cC —— =
@ ble-c | C| |
N/
abc
Since computing the global CP-net of a game allows us to have a uniquetCP-ne

computing the best outcome of this CP-net, if it is acyclic, can give us integestin
results.

Proposition 16 13

Let G be a CP-Boolean game such that the graghare all acyclic andA_* be
the global CP-net of G. Let s be a strategy profilealf is an acyclic CP-net, we
have the following equivalence:

sis a PNE of G if and only if s is the best outcome\of.

To prove this proposition, we will need the following lemma :

Lemmab

Let G be a CP-Boolean gam@/ be an acyclic CP-net of G, and s be a strategy
profile.

If 35: ¢’ = s, thends”: s” = s such that s and’differ from only one variable.

This proposition allows us to compute more easily the PNE of a CP-Boolean game,
using the “forward sweep” procedure.

Example 15, continued: G has one and only one PNE: abc.
And the global CP-nef\* has one best outcome: abc.

Proposition 17

Deciding whether an acyclic CP-Boolean game=GN,V, 1t ®) (i.e., where each
CP-net4j € @ is acyclic) has a PNE i8lP-complete. Hardness holds even if the
number of players is restricted &

The complexity of the problem of deciding if a general CP-Boolean game has
PNE is still open.

13Thanks to Nic Wilson for pointing this to us.
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6 Related work

The related work section is structured in the following way. First we disauss
few previous works on the representation of static games in propositiogial lo
formalisms and give computational characterizations of Nash equilibrian Wiee
discuss work which relates CP-nets to pure-strategy Nash equilibriallyFive
compare Boolean games to other frameworks for the compact represerghtio
games, especially graphical garmés.

6.1 Expressing static games in propositional logic

In [16], a game in normal form is mapped intdagic program with ordered dis-
junction(LPOD) where each player owns a set of clauses that encodes tiee'play
preference over her possible actions given every possible stratefile pf other
players. It is then shown that pure-strategy Nash equilibria corresgexactly to

the most preferred answer sets. The given translation suffers fribmitation,
namely its size: the size of the LPOD is the same as that of the normal form of the
game (since each player needs a number of clauses equal to the nuipbssibfe
other strategy profiles for other players). However, this limitation is due ta/élye
LPODs are induced from games and could be overwhelmed by allowing tessxp
the players’ preferences by any LPOD (in the same spirit as our Segtion 5

In [13], a strategic game is represented usikfaice logic programwhere a set of
rules expresses that a player will select a “best response” givesthibe players’
choices. Then, for every strategic game, there exists a choice logiapnagich

that the set of stable models of the program coincides with the set of Nasibeg

of the game. This property provides a systematic method for computing Nash
equilibria for finite strategic games.

An earlier work [37] uses logic programming as well for specifying ganibs:
independent choice logiepresents games (possibly dynamic and under incom-
plete knowledge) using a logic program to model the agent and the envinbnme
and allows for expressing Nash equilibria as well as other solution ctscep

6.2 Games and CP-nets

In Apt et al [1], CP-nets are viewed as games in normal form and vicav&ach
playeri corresponds to a variabl§ of the CP-net, whose domald(X) is the
set of actions available to the player. Preferences over a playerssgfiven the

14We do not discuss previous papers on Boolean games [23, 22, 14kisettion. They are
obviously related to our work (this is a euphemism...) but they have disenssed in Sections 3 and
4,
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other players’ strategies are then expressed in a conditional predetainie. The
CP-net expression of the game can sometimes be more compact than its normal
form explicit representation, provided that some players’ prefesedepend only
on the actions of a subset of other players. A first important differeitieour
framework is that we allow players to control an arbitrary set of variakled thus
we do not view players as variables; the only way of expressing in aeCEhat a
player controls several variables would consist in introducing a nelablarwhose
domain would be the set of all combination of values for these variablesthand
size of the CP-net would then be exponential in the number of variablescadd
important difference, which holds as well for the comparison with [16] [Ard,

is that players can express arbitrary binary preferences, includingnee cases
where the satisfaction of a player’s goal may depend only on variabigsotled
by other players. A last (less technical and more foundational) differasith both
lines of work, which actually explains the first two above, is that we donma
normal form games into anything but we&presggames using a logical language.

6.3 Other classes of compactly represented games

In the last few years a lot of work has been done on defining compaetsentation
languages for games and studying the computation of Nash equilibria given a
compact representation of a game. Boolean games and CP-Boolean games a
just two families of compactly represented games, which relate to other ctafsses
compactly represented games but are significantly different, as we will see

The closest framework to the two models developed in this paper is tigaaoffi-

ical games A graphical game specifies, for each playethe set of all players

that have an influence dnwhich is represented by a directed graph on the set of
players, where an edge frono j means that the utility of depends on the action
chosen byj). Then, the utility of playeii is compactly represented byusility
tablethat specifies a value for each combination of actions of the players oh whic

i depends. This graphical representation for games has been indaefigmio-
posed by [25] and [26F. The complexity of the existence of pure-strategy Nash
equilibria in graphical games was extensively studied in [20]; these resalts
strengthened in [15].

One may wonder whether Boolean games are just a specific case ofcgtaph
games (restricted to dichotomous preferences). This is actually not tegheas
cause there is no polynomial-size translation of propositional formulae into utility
tables, which implies that even the simple propositional preference repatse

15The latter framework, callethulti-agent influence diagram($1AIDs), also allows for dynam-
icity and incomplete knowledge.
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framework used in Section 3 can sometimes be exponentially more compact than
a representation by utility tablés.

The next example gives a family of Boolean games that are representpdda s
polynomial in the number of players, and whose graphical representa@po-
nential in the number of agents.

Example 16 For every number of playersn0, let G, = (N,V, T, ®) be a Boolean
game, with N={1,2,...n},V = {Cq,...,Cy}, foralli € n, s = {C} and for all

ien, ¢i =Ci < (Aj<i =Cj A N G-

In the graphical representation of (Gfirst notice that the utility of each agent
depends on the actionsalf other agents, which implies that the dependency graph
between agents is complete, and the utility tables are exponentially large (for the
sake of illustration, we give the utility table wher=1):

Utility tables:

Strategy profiles| u1 | up
CiCGCs
C,C.C3
C1C.Cs3
C,C.Cs
C1CCs
Ci1C.,C3
C1CCs
C1C,Cs

e
w

P,k OO0 O |0 |k
R OO |, |k, |, |O|O
O|lrRr |, |O|FL,|O|F, |O

16More precisely, the representation of utility functions by sum of local utiliteessh of which
being expressed by utility tables, is polynomial if and only if there exists ataotK bounding the
number of variables involved in each tabie,, if and only if players’ utilities are alK-additive.
Now, the utility functions expressable by means of propositional formadek -additive if and only
if the size of the formulas used in the representation is boundé&d(sge for instance [10]).
17with the following convention: for every formul®, AycpWx= T if D= 2.
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Notice that the representation of utilities remains exponentially large in n even if
the utilities are represented by decision trees instead of tables; for exafople,
player1.

Comparing graphical games and CP-Boolean games is less easy, bgeqlse
cal games are tailored for numerical preferences whereas CP-Boydeaes are
tailored for ordinal preferences (where the preference relatiorcealhy a CP-net
may not be complete). However, we want to stress the informal proximity leaetwe
both frameworks: CP-nets are the most well-known graphical modelrtbna
preferences, therefore CP-Boolean games can be viewed as thal cadinterpart
of graphical game&®

A specificity of Boolean games (and CP-Boolean games) is that a player enay b
able to control several variables. Of course, Boolean games canristateal in
such a way that each player controls a single variable: if plagentrols a set of
variablest;, we consider a new variablg whose domain is™. But this trans-
lation is clearly exponentially large. Another idea would consist in duplicating a
player controllingp variables intop different players with identical preferences;
clearly, the game obtained would be very different from the initial gamegusex

the duplicated players cannot coordinate when choosing their actions.

Another difference between Boolean games and graphical games isablaaB
games allow only for binary variables. This is not really a loss of generality,
cause it is well-known that eagtiary variable can be expressed bgg p]| binary

variables.

Another class of compactly-represented games is thait@fit gamed38], where

the utility of each player is represented by a Boolean circuit computing the pay
offs. Because any propositional formula can be translated into a polyheinéa
Boolean circuit, circuit games are more succinct than Boolean gamesrgdigsu

18Another graphical framework for numerical utilities is that of G-netg [2hose goal is rather
to represent causality relations in a graphical way and therefore is fattffeom Boolean games.
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ingly, deciding the existence of a pure Nash equilibrium in a circuit ganié-is
complete (Theorem 6.1 in [38]).

Lastly, local-effect games and action-graph games [31, 2], whichextieated to
classes of games where players may share some actions and the utility ofia play
depends only on the number of players who choose each action, arefumiiner

from Boolean games (and CP-Boolean games).

6.4 Controllability in propositional logic

In Section 3.1 we mentioned a relationship to propositional controllability, as stud
ied by [5] and [30]. A recent line of work within this alley [40] studies a peta-

tion logic in which each agent is assumed to control a set of propositionables.
While we focus on preferences and solution concepts, [40] focusepaftactive
power of agents, that is, they reason about the state of affairs thatip gf agents
can bring about.

7 Conclusion

In this paper we extended Boolean games to an arbitrary number of pkayers
to arbitrary Boolean goals. Extended Boolean games are a first stepdtowar
more general framework for expressing and reasoning with interagemgswhen
the set of strategy profiles has a combinatorial structure. Once this fiakew
has been defined, extending it so as to allow for more general preésreives
not present any particular difficulty: the definition remains uncharexegptthe
agents’ goal#i, ..., dn, which are replaced by more complex structures, expressed
within logical languages for compact representation. These framewatioxs for
representing compactly eitheumericalpreferences (utility functions on'2 or
ordinal preferences (partial or complete orderings 8. Here, we focused on a
specific representation language, namely CP-nets. Our conferepee[Bhalso
includes an extension of Boolean games with prioritized goals (evokedvhgre
briefly in Section 4.3).

Boolean games can be seen as the logical counterpart of graphicas.gamtleis
setting, our results show the impact of the structure of players’ prefeseon the
properties of the game (e.g., existence of pure-strategy Nash equilibd@nahe
computational complexity of some specific problems. In particular, Proposition
14 shows that if the players’ preferences share enough prefdrecigendence
properties, then the existence and the uniqueness of a pure-stratsyydjalib-
rium is guaranteed and that the latter can be computed in polynomial time.
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Two extensions to our work should not present any particular difficuiy gmit-

ted them for the sake of simplicity). First, extending Boolean games so as+o han
dle variables with nonbinary domains, by the usual way of binarizing nampin
variables. Second, adding constraints restricting the set of indivithad¢gies as
suggested in Section 3.

On the contrary, some other extensions demand much more additional wbrk an
are left for further research:

e in Section 3.2 we characterized dominated strategies in Boolean games;
however, we did not investigate complexity issues for the iterative elimi-
nation of dominated strategi€s

¢ integrating Boolean games with languages for representing numerical pref
erences (for instance using sets of weighted formulas, e.g. as ingbd]jor
addressing the computation of mixed-strategy Nash equilibria in this setting.

e defining and studying dynamic extensions of Boolean games, as well as al-
lowing for incomplete knowledge states.

Yet another interesting issue for further research stems from thevaltiserthat is
often unnatural to require players to express preference relatienswategy pro-
files. Rather, they have natural preferences over a spguessfble outcomeand
each strategy profile is then mapped to an outcome. Expressing prefe@rer
outcomes rather than strategy profiles is not only more natural in many, tases

it may also make the description of players’ preference much more sucsimaz,
there might generally be far less outcomes than strategy profiles. Thehmettide-
serves then some attention is how the mapping from strategy profiles to outcomes
can be described succinctly; this can be done for instance using asfifopal
language for concurrent actions, suchC44.8].

We end this paper by some positioning with respect to a large stream of vairk th
aims at bridging logic and games (see for instance [39]). We remark thatile&n
games logic plays a role only in the description of the players’ preferehaethe
control function remains extralogical. We could think of “modalizing” Boolean
games, which can be done in many ways. First, we could modalize prefstdnc
expressing preferences directly in the language as in modal logicsfefgmees
(e.g. [21]). Then, we may also want to modalize the “control” component of

19For games represented in normal form, deciding whether there is pathehat eliminates a
given strategy is polynomial with strict dominance airlcomplete with weak dominance [19, 11].
We are not aware of any extension of these results to compactly rafgdggmmes.
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Boolean games; this could be done for instance by expressing the domctbn
Ttusing group ability modalities [4GP
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A Proofs

Proposition 1
Let G= (N,V,,®) be a Boolean game. PlayekiN has a winning strategy iff

Plry (0) # .

Proof:

Intuitively, if a player’s goal has a prime implicaatin which all the variables are
controlled by this player, then she has a winning strategy. Indeed, thisitean
be satisfied, hence the goal which contains it is also satisfied, and the wiage

e If Pl (i) # @, then3a € 2V such thata |= ¢; andvar(a) C .

So, as controls all variables im, i has a strategg € 2™ such thats = a.
Then,Vs_j € 2™i(s_i,s) E ¢i.

e According to Definition 3j has a winning strategy iff:
Js € 2™ Vs j € 2 (s ,S) = ¢

So, playeri can satisfy her goal whatever the choices of her opponents.
Therefore, there exists € 2™ such thata = ¢; andVar(a) C 1, i.e.,ais a
T-implicant ofd;. Thus there exists&-prime implicanta’ of ¢;. Therefore

Pl (§1) # 2.

Proposition 2
Let G= (N,V, Tt ®) be a Boolean game and lets2". s is a pure-strategy Nash
equilibrium for G iff for all i € N, s}~ ¢; implies s = —;.

Proof: sis a PNE forG iff

VieN,Vs € 2 ui(s) > ui(s_i,5), i.e.,Vi e N,V € 2 uj(s) =1 orui(s_i,§) =0,
i.e.,VieN, u(s)=1lorvs € 2™ u(sj,5) =0.

Finally, ui(s) =1 < sk ¢i, andvs € 2™, ui(s_i,5) =0 < Vs € 27T, (s.i,5)
—|¢i, i.e.,s_i |:—|¢i.

So, we haves |= ¢; or s_j = —¢;, that iss = ¢; impliess_; = —¢;. [}

Proposition 3
Let sc 2V. sis a pure-strategy Nash equilibrium for G if and only #=sA; (¢; v

(=i di)).
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Proof: We have the following chain of equivalences; = —¢; < s_j = —3i :
< (s,s.i) E —Ji : ¢i (because variables controlled by playdrave disappeared
from —3i : ¢;) & sl= —Ji: ¢;. Putting everything together, we géti € N,s = ¢;
ors.i=-¢i) & (VieN,sEdiorsE—Jii¢i) = VieN s v(—Ji:di) <
SE AV (=3 1)),

Proposition 4
If G is a 2-player zero-sum Boolean games=gs;,S) is a pure-strategy Nash
equilibrium iff § is a winning strategy fol or s, is a winning strategy fog.

Proof: Lets= (s1,%) be a PNE. Assume, (s) = 1 (the casel(s) = 1 is symmet-
ric). SinceG is zero-sum, we havey(s) = 0. Now sincesis a PNEVS,, ux(s) >
Ux(s1,S,), Which entailsvs,, ux(s1,S,) = 0. It follows Vs,, (s1,s,) = —¢2, which
entails that's,, (s1,S,) = ¢1. Thuss; is a winning strategy for 1.
Conversely, assume thatis a winning strategy for 1 (the case of 2 is symmetric).
Then we havevs;,ui(s1,S2) = 1 andVsy,up(sy,s) = 0. Lets= (s1,S) where
S € 2™. We havevs|,ui(s) > ui(S],S) andVs,, ux(s) > Ux(s1,S,). Thussis a
PNE.

]

Proposition 5

Deciding whether there is a pure-strategy Nash equilibrium in a Boolearegam
>5-complete. Completeness holds even under the restriction to 2-plagesaer
games.

Proof: Membership inZS comes from the following algorithm. Guess a strategy
profile and check that no player has a better strategy. This is as mankschec
as players, and each check is the complement of guessing a better stmategy
deciding whether it is better by evaluating the player's goal in the new sjrateg
profile. Thus each check is in coNP, hence checking a strategy prafilbeedone

by a polynomial number of calls to a coNP oracle (one for each playengehe
deciding whether there is one isWP®NP = 5.

Hardness is obtained by a reduction from the problem of deciding the vadidity
QBF, 5. GivenQ = JA, VB, ®, whereA andB are disjoint sets of variables aduis

a formula ofLa g, we define a 2-player zero-sum Boolean gamé by @V (x

y), wherex,y are new variablesx(y ¢ AUB) andm = AU {x}. Obviously, this
game can be built in polynomial time givéh
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Clearly, if Qis valid with Ma € 2* as a witness, then botiVia, x) and(Ma,X) are
winning strategies for 1. Conversely, @ is not valid, then whateveviy € 24 1
plays, 2 can playg € 28 such that(Ma,Mg) [~ ®, and 2 can play (resp. y)
if 1 playsx (resp. X), resulting in both cases in 2 winning (so, 1 has no winning
strategy). Now it is easily seen that 2 has no winning strategy. Finally, ibere
winning strategy for 1 (or 2, vacuously) if and onlyQ¥is valid, and Proposition 4
concludes.

]

Proposition 6

Let G be a Boolean game. If the gajalof every player is in DNF, then deciding
whether there is a pure-strategy Nash equilibrium is NP-complete. Compkte
holds even if we restrict the number of playergio

Proof: If ¢; is in DNF, thendi : ¢; can be computed in linear time [29, Proposi-
tions 17-18]. Thus if every; is in DNF, a formulap = A;(¢; vV (—3i : ¢i)) can be
computed in linear time. By Proposition 3 it is enough to guess a strategy @ofile
and checls = , thus the problem is in NP.
As for hardness, we give a reduction from (the complement of) thelgmrolof
deciding whether a DNP = Viklei is tautological, a well-knowooNRcomplete
problem. WriteX for the set of variables ob and letx,y ¢ X. Define a 2-player
gameG by o1 = VI (TIAXA=Y) V (TA=XAY), Ta = {y}, 2= (XAY) V (=XA-Y),
™ = XU {x}. Clearly,G can be built in linear time andl;, ¢, are in DNF.
Observah; = DA (X #£y) andz = (Xx=Y).
By Proposition 3, there is a PNE @if and only if (P A (X#Y)) VD) A (X=Y)
is satisfiable. Indeed: (i) singedoes not occur i we have-3y: (PAX#Y) =
S(PATY:XAY)=(PAT)=-P,and (i) -IXU{x}: (x=y) =L.
Since® A (x#Y) A (X=1y) is unsatisfiable, there is a PNE®Gff -® A (x=Y) is
satisfiable, i.e., if-® is satisfiable sinc& andy do not occur ind. Finally, there
is a PNE inG iff ® is not tautological.

]

Proposition 7
Strategy sweakly dominatestrategy &if and only if(¢i)g = (9i)s and(di)s ~

(9i)s-

Proof: Strategys weakly dominates iff (i) Vs_j € 2™, ui(s,s_i) > ui(s,s_i) and
(i) 3s_j € 2™ ui(s,s-i) > ui(S,S-0).
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Now (i) < Vs_j € 2™ (ui(s,s-i) =1 orui(s,s-i) =0) & Vs ; € 2™, if (5,s.i) E
i then(s,s_i) F ¢i & Vs € 2, if s = (¢i)g thens_i = (9i)s < ($i)g F

(9i)s-
Fin;IIy, (i) & (i) if we swaps ands;; thus (i) < (di)s = (9i)s-

Proposition 8
Deciding whether a given strategyis weakly dominated iﬁg-complete. Hard-
ness holds even(f; is restricted to be in DNF.

Proof: Membership inzg comes from the following algorithm. First guess a
candidate strategy. To check whether it weakly domingteonsider every strat-
egys_i and checkui(s,s_i) > ui(s,s_i), and guess one for which dominance is
strict. Thus the candidate strategy can be checked with one call to a c@aNP or
cle and one to an NP oracle, hence deciding whethisrweakly dominated is in
NPNFUCONP zP
Hardness is obtalned again by a reduction from the problem of decidinglitléy
of aBF, 3. GivenQ JA VB, ®, let a,b be two new variables, and defigpe =
(an®)V (-anb), m = Au{a}, T, = BU{b} (> does not matter). Le¥l, be
anyA-interpretation andll be (Mj,a). We have(ds)g = (b).
AssumeQ is valid with M € 2 as a witness, and Iesl (Ma,a). Then clearly
s1 is a winning strategy for 1 wherea$ is not, thuss; weakly dominatess;.
Conversely, assum® is not valid, and letMa € 2. Lets, = (Ma,a@). Then
(¢1)s, = (b) = (¢1)g, thus by Proposition % does not weakly dominatg. Now
let s; = (Ma,a). SinceQ is not valid, there isVlg € 2B such thatMa, Mg) [~ .
Thus (Mg,b) = (¢1)g but (Mg, b) = (¢1)s,, and by Proposition 75, does not
weakly dominates;. Finally, s; is weakly dominated (bg,) iff Q is valid.
For goals in DNF, just note (i) i is in DNF then3A VB, @ is still Zg-complete
and (ii) a DNF for¢4 can be built efficiently.

]

Proposition 9 Let G= (N,V, 1t ®) be a distributed evaluation game and let S.
If s is a SPNE then for all&€ N, Sats, %) is maximal s;-consistent.

Proof: Assume thatis a SPNE, which means thet € N, Vs € 27, (5,s.i) =
(s,S.i). Thisis equivalent t&i € N, Vs € 2, Sat((s,s.j Z. G sat((s,s-i),Zi),
which implies that/i € N, As € 2™ such thaSat((s,s_i), %) Di Sat((s,si), %)
Therefore Sat(s, Z;) is maximals_;-consistent.

i)y &i)-
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Proposition 10 Let G be a CP-Boolean game such that the grgpfor the player
i is acyclic.

¢ i has adominated strategyif and only if there is a variable controlled by i
and independent (for;) from all other variables, i.e. if and only if there is
a variable ve 15 such that Pév) could be simplified to Ra) = & without
changing preferences.
Moreover, in this case; slominates sif and only if $v] i S[v], where gV]
denotes the value of v in the strategy s

¢ i has adominant strategy, that is a strategy which dominates all the others,
if and only if every variable controlled by i is independent (fq) from all
other variables, i.e. if and only if for all variablese g, Pa(v) C T5.

Proof:

e = Suppose thatv € 15, Pa(v) # @. As G is acyclic, we know that exists
v € T, such thata(v) C 1. So,3uy an instantiation of all parents of
v such thatv -, v, and3u, another instantiation of all parents of
such thawv = v (otherwise, the graph could be simplified in order
to havePa(v) = @). Vs € 2T, existsg € 2 and existss_j € 2™
such that eithe(s,s_i) <iu, (§,S-i), or (S,8-i) <iu, (§,5-i). i has
no dominated strategies.

< Leti aplayer, andv € 1 such thaPa(v) = @.

So eithewv -; vorv > v. So, strategy, defined by assigning the best
value tov (i.e. vin the first case) is better forto all others, defined
by assigning the other valuedi.e. vin the first case). ARPa(v) = &,
we know tharv/s_; € 2™, (s,si) =i (§,5.i). § dominatess, and we
haves V] =i S[V].

e = Suppose thalv € 15, such thaBw € Pa(v) such thatv ¢ T5. So,w € 1.
So,Juy an instantiation of all parents efsuch that >, v, and3u;,
another instantiation of all parents wfsuch thatv - , v. Vs € 2,
existsg € 2™ and exists_j € 2" such that eithefs,s_i) <i , (§,S-i),
or (s,s-i) <iy, (§,s-i). i has no dominant strategies.

<« Leti aplayer, and/v € T, Pa(v) C 1.
Let (x1,...,X) be a topological order om; with respect toG;. We
define a strategyg as follows.
As G is acyclic, by construction we hawa(x;) = @, and eithex; >;
X1 or X1 ~i X1. Define strategys,, as assigning the best value xp
(i.e.,x1 in the first case ang in the second case). This process can be
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iterated along the topological order, since by definition, at any time the
value of each parent of the current variaklevill have been fixed by.

We thus end up with a strategy profée

We now show thas is a dominant strategy. Indeed, assume it is not
one, and let a strategyand a strategg_; such that{s,s_i) =i (s,Si).

Let x be the first variable im with respect to the topological or-
der above, such that[x] # S[x]. Then by construction of we have

s[X| =i, S[X, whereuy is the mstantiation of all parents af Now

this instantiation is the same (8,s_i) and(s,s_i), because we have
chosen the first variable over whishands disagree w.r.t. the topolog-
ical order. It follows that replacing[x] with s[x] in § yields a better
strategy, and iterating this reasoning we end up with showing that re-
placing eveny [x] with s[X] in § yield ever better strategies. Since this
process ends up witk, we finally have(s,s_i) > (5,si), which to-
gether with the assumptidis,s_i) i (s,s_;) contradicts the fact that
acyclic CP-nets are always satisfiable.

Lemma 2

Let G= (N,V, 1, ®) be a CP-Boolean game such that the graghare all acyclic,
and ie N. For all s j € 2™ there exists a best response for i, that is, a strategy
s € 2" such that for all §# ', (S', i) =i (S,5-i).

Proof: Suppose thag" does not exist. Sajs_;j € 2™ such that's € 2, 35 # 5
such that(s,s_i) =i (s,S-i). And, there exists & # § such that(s’,s_i) >~
(§,s-i), and so on. As each agent has a finite number of strategies.aisdiran-
sitive, 354 § € 2" such tha(s,s_i) =i (s,s-i), (5, s-i) =i (5,5-i) and(s,S_i) i
(s',s-i), which contradicts the fact thag is acyclic

[

Lemma 3
sis a SPNE if and only if for each i, & r;(s_j).

Proof:

= Lets=(s,...,) beaSPNEYi € N, Vs € 2", (s,s.i) =i (§,Si). But, by
definition of a CP-net, we cannot have egality between two strategy profiles
so we know that{(s,s_i) #i (§,s-i) if s # 5. Thus, we hav&i € N, Vs #
s €2 (s,s) =i (§,s.i), and thervi € N, s = ri(si).
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< VieN,lets =ri(s_j). So, by definitionys # s € 2%, (s,5i) >i (S,S-i)-
Then, we obviously havei € N, Vs € 2™, (s,s_j) =i (§,S-i): Sis a SPNE.

Proposition 11 Let G= (N,V, 1, ®) be a CP-Boolean game such that the graphs
G; are all acyclic. Deciding whether a given strategy profile s is a SPNE of G is
polynomial.

Proof: From Lemma 3, we know thatis a SPNE if and only if for all player; 5 is
a best response for her. Moreover, Lemma 2 shows than we canrefficierify
for eachi if 5 is a best response. Then, decidingi$ a SPNE is polynomial.

]

Proposition 12
In a CP-Boolean game where the graph associated to each playerseCis
acyclic, SPNE and WPNE coincide.

Proof: It is obvious thaNEs C NE,. Let us verify tharNE, C NEs.
Assume thatis a WPNE but is not a SPNE. The#fi, € N such thats # ri(s_).
But (ri(s_i),s-i) =i (§,si) for all §, in particular forg = s; therefores cannot be
a WPNE.

[

Proposition 13
Let G= (N,V, T, @) be a CP-Boolean game such that the graghare all identical
(Vi, ], Gi = G;j) and acyclic. Then G has one and only one PNE.

This proof is inspired of théorward sweepprocedure [8, 6] for outcome optimiza-
tion.
Proof:

e Existence:

Let (x1,...,%) be atopological order ovi with respect tag; (for anyi since
all graphs are identical). We define a PNE (sy,...,s,) for G as follows.

Letabe the agent controlling variabkg. By construction we havea(x;) =
@, and eitherx; =4 X1 or X1 =4 X1. Define strategy, as assigning the best
value tox; (i.e., xp in the first case ang in the second case). This process
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can be iterated along the topological order, since by definition, at any time
the value of each parent of the current variabhill have been fixed (by the
same player’s strategy or by another one’s). We thus end up with a strateg
profiles.

We now show thas is a PNE. Indeed, assume it is not one, and let an agent
i and a strategg such that(s,s_i) > (s,S_i). Letx be the first variable in

TG, with respect to the topological order above, such &t # §[x]. Then

by construction of we haves x| >y, S[X], whereu, is the instantiation of

all parents ofx. Now this instantiation is the same {8,s_;) and(s,s_i),
because we have chosen the first variable over wéjiahds disagree w.r.t.

the topological order. It follows that replacirgfx] with s[x] in § yields

a better strategy, and iterating this reasoning we end up with showing that
replacing eveng[x] with s[X] in § yield ever better strategies. Since this
process ends up with, we finally have(s,s i) =i (§,s_i), which together
with the assumptiolis,s_i) =i (S,S-i) contradicts the fact that acyclic CP-
nets are always satisfiable.

e Uniqueness
Uniqueness derives easily from the construction above. Indeaginass
has two different Nash equilibria, and let, ..., %) be a topological order
onV with respect to any;;. Since once this order is fixed, the construction
above is deterministic (resulting in a “canonical” PN, there is at least
one Nash equilibriuns for G which is not built according to it. Lex be
the first variable (w.r.t. to the topological order) such thand s differ,
and leti be the agent controlling. Let u be the instantiation of all previous
variables w.r.t. the order. By constructiom,js common tos ands. and
instanciates all variables Pa(x). Assumex > , X (the dual case is similar).
Then by constructions, assign to x and thuss assigns<to it. It follows
that replacing«with X in syields a (strictly) better strategy, contradicting the
assumption thatis a PNE forG.

Lemma 4
Let G be a CP-Boolean game and @s equivalent normalized game. Ther G
and G define the same preference relations on strategy profiles.

Proof: For each player< N, let =; be the preference relation satisfyirgyCP-net
for the gameG. We show that-; satisfies’s CP-net forG*.
Two cases are possibi&x € V:
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1. x has the same parents in CP-net$&6fandG. In this case¢} is the same
in G and inG* (idem for>-¥).

2. x has not the same parents in the CP-neGbfas in the CP-net o6. An
edge has been added, denoted¥yy). We have thut{fy:zﬁyzzf‘. Thus
this is the same relation.

Proposition 14

Let G= (N,V, 7, ®) be a CP-Boolean game such that all graphs are acyclic and
for every player i€ N, for every v 15, we have P&/) € 5. Then G has one and
only one PNE.

The proof of this proposition is also given by the use of the forward pvpeece-
dure, and follows the same scheme as that of Proposition 13.

Proposition 15

Let G be a CP-Boolean game such that the graghare all acyclic, and\ " be
the global CP-net of G. Let s be a strategy profileadf is an acyclic CP-net, we
have the following equivalence:

sis a PNE of G if and only if s is a best outcomengf .

To prove this proposition, we will need the following lemma :

Lemmab

Let G be a CP-Boolean gam@/ be an acyclic CP-net of G, and s be a strategy
profile.

If 35: ¢’ = s, thends”: s” = s such that s and’differ from only one variable.

Proof:

Let sands be two strategy profiles such theit- s. We suppose that there is no
s’ = s such thats ands’ differ from only one variable: in this case, indifference
being impossible, for all suctf we haves - s”.
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Considers = viVa.. . WViy1...Vp, With vy,...,vp €V, andVv; € V, letu; denote
the assignment to the parentswpf Then, we consider all possibéé:

S>ViVo.. . ViVk+1...Vp =V -y V1
S>ViVo.. . ViVk+1...Vp = V2 =y, V2
S>ViVo.. . WVkt1...Vp = Vi >y, Yk

S ViVa.. . WVik+1---Vp = Vi1 o Vkrl

Thus each variable is instanciated to its best value according to its parestési-in
tiation. This assignment corresponds to the “forward sweep” proeedis thus
the best outcome ol according to Lemma 1, which is in contradiction with the
assumptiords’ such thas' = s. So3ds’: §’ = ssuch thas ands’ differ from only
one variable.

]
We can now prove Proposition 16.
Proof:

= Letsbe a PNE ofG. Let us suppose thatis not the best outcome o{ .

>From Definition 1735 € Ssuch that\(" s ~" s

So, there exists a preference relation such shat"™ s which satisfies\(".
From Lemma 5, we know thats” =" s such thats ands” differ from only
one variable3!v € V such thaty -} Vs, whereu is the assignment isand
s’ of Pa(v), all others being identical. Leétbe the player such thate 1.
Then, we havés’,s_i) -7 (s,s_i). Let us now show what happens fBr

s’ -+ s satisfiesCPT*(v) for all v € V. By construction ofA_* from G,
Vi €N, W € T, CPT(v) = CPTH(v).

Thus fori in G, we havevy - vs, andvw € V \ {v}, V] € N such thaw € T,
Wer =j Ws. Then: (s',si) =i (s,5-i).

Thus,sis not a PNE, contradiction.

< Let s be the best outcome of(". Let us suppose thatis not a PNEJi €
{1,...,n}, 35 € 2% such that(s,s_i) > (s,S-i). Thus,3W C 15 such that
Yw e W, Vp € 272wy =i , ws, andvx € 1§ \W, Vg € 2P| xg =i ¢ Xs.
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By construction ofA’* from G, Vi € N, Vv € 15, CPT(v) = CPT"(v). We
always haverw € W, Vp € 2P, wy & w, andvx € 15 \W, g € 27X,
X¢ =¢ Xs- Then(s,s.i) =7 (s,s.i). Sos' =" s, andN\ " [£s~* s

Thussis not a best outcome @ . Contradiction.

Proposition 16

Deciding whether an acyclic CP-Boolean game=GN,V, 1t ®) (i.e., where each
CP-netAf € @ is acyclic) has a PNE islP-complete. Hardness holds even if the
number of players is restricted &

Proof: Thanks to Proposition 11, we know that the problem iNin. As for
hardness, we give a reduction from the satisfiability problem for CNiRddas in
which every clause contains at most three literals and each variablesdncair
most three clauses [17, comments for problem LO1].

The intuition behind the reduction is the following. Given a CNF formpilas
above, a player 1 will try to satisfg by assigning values to its variables; more
precisely, he will be happy only if all clauses are satisfied, and othetvaseill
always prefer flipping the value of at least one variable in the curssigament.
Another player 2 will tag each variable with a literal (—) p; telling whether; is
positive or not in 1's strategy.

The precise construction is as follows. Given a CNF fornquia/\}(:lci in which
every clause contains at most three literals and each variable occursastthree
clauses, let 12 be two players. Lefxi,...,x,} be the set of variables df. For
each claus€; of ¢ lety; be a new variable (intuitively meaning thatis satisfied).
Finally, for each variable occurring ing, let p; be a new variable. We build a CP-
Boolean gam& = (N,V, 1t @) whereN = {1,2},V = {xq1,..., X} U{y1,..., Wk} U
{p1,--,Pn}, Tu = {X1,... ., %n} U{VY1,..., Yk}, andte = {pu,..., pn}; the CP-net of
each player is defined below.
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For each variable; of ¢, if x; occurs (negated or not) in three clausisC;,,Ci,
then the following CP-table is added to 1's CP-net:

Yi YioYisBi | Xi = Xi
YidYiYisPi | Xi = Xi
Vilyizyia Pi | Xi =X
Vi1WZyi3bi X = Xi
ViV, VisPi | % > X
Yis Vi, Yis B | Xi - Xi

Vi, Vi, Yi Pi | Xi = X
i, Vi, Yia Bi | Xi > X

If x; appears in only one or two clauses, a similar CP-table is added (with only one
or two y-variables appearing in the table). In other words, 1 prefers to chiwege
value ofx; (w.r.t. what 2 reports about that value) as soon as at least one clause
containingy; is not satisfied.

Now for each claus€; in ¢, say,Ci = (x1V —x2 V —X3) for the example, the fol-
lowing CP-table is added:

P1P2P3 | Vi - Vi
P1P2P3 | Vi =i

P1P2P3 | Vi - Vi
P1P2P3 | Vi ~ Vi
In other words, 1 prefeng as soon a€; is satisfied (by his strategy, as reported by
2) andy; otherwise. It follows that

(1) in any PNE ofG, y; is true if and only if the claus€; is satisfied

(otherwise 1 would have a better strategy, since 1 comrpls

1's CP-net is then defined to be the set of all these tables together with ey pr
erence on the values @’s (with no parents). The construction is unambiguous
since only one table is built pe¢ or y;, and the graph is acyclic since the only
dependencies are frop)’s to yi's and fromyi’s andp;’s to x;’s.

Finally, 2’'s CP-net is built as follows. For each variakiethe following CP-table

is added:

X | Pi =B

X | P~ Pi
Obviously, 2's CP-net is acyclic, and

(2) in any PNE ofG, for all i, pj is true if and only ifx is true
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(otherwise 2 would have a better strategy, since 2 confxdls
Now, we have the following:

(3) in any PNE ofG, if for somei C; is false then there is psuch thak; = —p;.

Indeed, supposE; is false. Then, by (1) is false. Let nowk; be one of the vari-
ables ofC;. The CP-table of 1 attached %p contains two conditional preference
statements of the form(...) p; : Xj = Xj andyi(...)pj : X; = Xj. Becausey; is false
and 1 controlx;j, in a PNE ofG, x; will have the opposite value of that @f.
>From (2) and (3), we get that in a PNE®f each claus€; is satisfied. Therefore,
if G has a PNE thet is satisfiable.

Conversely, assuneis satisfiable and let= (xq,...,%,) = ¢. Consider the strat-
egy profile forG defined by assigning eachas inX, eachp; asx, and eacly; to
true. It is easily checked that this strategy profile is a PNEXor herefore, if is
satisfiable thei has a PNE.

]

Observe that cyclicity in the union graph of the CP-game built in the proof allow
1 to get information on its own variables via 2, and hence to decide to playx£.g.,
(%3) if x3 is currently false (true) and a clause containing it is not satisfied; thus her
decisions abouts are partly based on the valuexgfitself.
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