Variable forgetting in preference relations over
propositional domains
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Abstract. Representing (and reasoning about) preference
relations over combinatorial domains is computationally ex-
pensive. For many problems involving such preferences, it is
relevant to simplify them by projecting them on a subset of
variables. We investigate several possible definitions, focusing
without loss of generality on propositional (binary) variables.

1 Introduction and background

Decision-making problems are concerned with managing
agents’ preferences. When the set of alternatives is small,
preferences can be represented explicitly, by simply ranking
alternatives, and the associated tasks such as optilization or
aggregation are computationally easy. However, in many real-
world applications, domains have a combinatorial structure.
In that case, managing agents’ preferences can be an enor-
mous computational burden. This has led to the study of
compact preference representation languages.

For some problems it might be relevant to process prefer-
ence relations, so as to simplify it and make it more compact,
even if this results in a loss of information. Especially, it may
be helpful to project a preference relation on a subset of the
variables. This way of summarizing a preference relation is
relevant in particular when some variables are more impor-
tant than others, or when some variables should be assigned
prior to others. Consider for instance a group decision making
scenario. Rather than aggregating the whole preference rela-
tions before finding out an optimal assignment of variables,
which generally is computationally intractable, it may be a
good idea to focus on “primary” variables first, project the
preference relation on those variables, aggregate them, decide
on the values to be assigned to those variables, and only then
consider secondary variables.

Projection operations have not been considered much as
far as preference relations are concerned, but there is a huge
amount of work about projecting (or marginalizing) proba-
bility distributions (especially when they are represented by
Bayesian networks), and more generally valuation functions
[6, 3], as well as sets of constraints, and propositional formu-
las (cf. the forgetting operation [5]). In this paper we define
similar projection operations for ordinal preference relations.
For the sake of simplicity, we focus on combinatorial domains
formed from propositional (i.e., binary) variables.

Let V be a finite set of propositional variables. For any
subset X of V, an X-alternative is an element of 2%, that
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is, an assignment of a binary truth value to each one of the
variables in X. X-alternatives are denoted by #, ¥’ etc. If
X and Y are disjoint subsets of V' then the concatenation
of € 2% and 7 € 2 is the X U Y-alternative, denoted by
ZY, assigning values to variables of X (resp. Y) as & (resp. ¥)
does.

A V-preference relation R is a reflexive and transitive rela-
tion over 2V. The strict preference > g associated with R is the
strict order defined by ¥ > ¥’ iff R(7,¥’) and not R(%’, 7).
The indifference relation ~r assoc1ated with R is the equiva-
lence relation defined by 7 ~g ¢’ iff R(7, _”) and R(v', 7). If
neither R(7,7") nor R(¥’, 1_)') then ¥ and ¢’ are incomparable
w.r.t. R, denoted by 7Qu¢’. For the sake of notation, when
we specify a preference relation explicitly, we omit pairs com-
ing from reflexivity and transitivity. R* denotes the transitive
closure of a relation R over 2V .

For any V-preference relation R and any partition {X,Y, Z}
of V, X is preferentially independent from Y given Z w.r.t.
R iff for all &2’ € 2%, all 7,5’ € 2¥ and all 7 € 27,
R(Zyz,2'572) 1mp11es R(Zy'z,%'y'2). If Z = () then we say
that X is preferentially independent from V \ X w.r.t. R.

2 Lower and upper projections

Definition 1 (lower and upper projections) Let R be a
V -preference relation and X C V. Let Y =V \ X;

° RiX, called the lower projection of R on X, is the binary
relation over X defined as follows R X(z,2") holds iff
R(Z#,Z'Y) holds for all §f € 2%

° R%]X, called the upper prOJectlon of R on X, is the
transitive closure of the relation R’ over X defined by:

R/(Z,Z') holds iff R(Zy, %) holds for some § € 2.

Note that, when R is complete, Ri,X is obviously complete
as well but RiX may fail to be complete. other properties are:

Proposition 1 For any R, R, X, Y:

RYX and RYY are X -preference relations;

if R is complete then R is complete;

if RC R then R\ C (R )lX and RS C (R ;

(RN R)X = le N (R (RmR)lX C R N(R)Y;
(RURY)E = (REY U ()
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Proposition 2 For any V-preference relation R and any
XCv, RiX = R[lJX iff X is preferentially independent from
VA\X wrt. R.



3 Optimistic and pessimistic projections
Definition 2 (optimistic/pessimistic projections) Let

R be a V-preference relation and X CV. Let Y =V \ X;

° Rgi(rongOpt’ the strong optimistic projection of R on X, is
defined by: RYy. 000 (&) iff 37 V', R(EG,E'§");
° Ré[i(eakOpt’ the weak optimistic projection of R on X, is

defined by: Ré‘ﬁakopt(f,f’) iff Vy' 3y R(Zy, 2'y");

. Réﬁongpess, the strong pessimistic projection of R on X,
is defined by: RY} o pess(7,3) iff 37" VY, R(3G,%§");

® Ry i pesss the weak pessimistic projection of R on X, is
defined by: Rip, o pee.(T,87) iff V7 37" R(ZG,Z'F").

The optimistic projections focus on finding some possibility
to have ¥ dominating ¥’ whatever the context for #'. The
pessimistic projections focus on finding some possibility to
have ¥’ dominated by Z whatever the context for Z.

When R is complete, Rgfmngopt and Ré\iakom coincide,

D
as well as RStrongPess

complete. In this case, Réﬁongom(f,f ") (and equivalently

X
and Ry, ..pesss and all four are

Ré‘f{mkom(f, Z')) iff the best alternatives extending Z are at
least as good as the best alternatives extending 7', whereas
REY ongpess(T, ') (and equivalently R ... (%, %)) if and
only if the worst alternatives extending & are at least as good

as the worst alternatives extending #'3.

Proposition 3 We have the following inclusions.

° Rix g Ré‘frong()pt g R‘l/\i{eakOpt g RLUX)
b R%‘X g Rgfrongpess g R%ﬂi(eakpess g R[{TX
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When R = Ri: all projections on x coincide and are equal
to the preference relation x > z. All projections of Ry on y
coincide and are equal to the preference relation yQy in which
y and g are incomparable.

When R = R»: all projections on x are equal to zQz. Ri{y}

H{y} Hy}
as well as RStrongOpt and RStrongPess

R[lJ{y} as well as R‘lﬂﬁzikopt and R‘lﬂﬁzik}’ess are equa‘l to y~ g

When R = Rs: Ri{z} is equal to zQT; Rll]{z} is equal to x ~
Hz}

StrongPess?

are equal to yQy, while

T Rg{tfgngopt and R%:ﬁkom are equal to z > 7; R
is equal to xQz, while R‘l,xgkpess is equal to x ~ Z. Things
are symmetric for the projections on y.

When R = Ry: all pro{jections on x are equal to x > T.
Ri{y} is equal to yQy; R[lj v} is equal to y ~ 7; the optimistic

3 These criteria are reminiscent of those used in qualitative decision
theory (see e.g. [1, 2] — with the slightly different interpretation
that X-alternatives represent possible decisions and elements of
(V' \ X)-alternatives represent possible states of the world.

projections on y (which coincide because R is complete) are
equal to y > ¥; the pessimistic projections on y (which coin-
cide, again because R is complete) are equal to § > y.

Lastly, for Rs, all projections on z are equal to z > T and
all projections on y are equal to y ~ .

5 Connection to propositional logic

Let Ly be the propositional language built up from V. if
¢ € Ly, Var(e) denotes the set of propositional variables
occurring in . We make use of the next two notions from [4]
where ¢ € Ly and X C V: the strongest necessary condition
of ¢ on X, denoted by I(V \ X).¢, is the strongest formula
1 of Ly such that Var(y) C X and ¢ | t; the weakest
sufficient condition of ¢ on X, denoted by V(V'\ X).p), is the
weakest formula 1 of Ly such that Var(y) C X and ¢ = .
3(V \ X).p is usually known as the forgetting of V'\ X in .
A V-preference relation is bipartite iff there exists G C 2V
such that for all ¥, 7' € 2", then R(%,7’) holds iff ¥ € G
or 7’ € 2V \ G; the characteristic formula Or of a bipartite
V -preference relation R is the propositional formula — unique
up to logical equivalence — whose set of models is exactly G
(in symbols, Mod(6r) = G). Note that if R is bipartite, it is
complete and then strong and weak notions coincide.

Proposition 4 Let R be a bipartite preference relation whose

characteristic formula is Or. Let X CV andY = V\X. Then

. R‘l/;(eakOpt = gﬁongOpt s the bipartite relation whose
characteristic formula is 3(V \ X).0r.

o RIX = RX is the bipartite relation whose

WeakPess StrongPess
characteristic formula is V(V \ X).0r.

6 Conclusion and perspectives

This paper is meant to pave the way towards simplifying and
decomposing preference relations over combinatorial struc-
tures. It is still a preliminary work and raises many questions.
One of the most salient issues that we did not investigate is
about computing the various notions of projection when the
initial preference relation is represented in a compact repre-
sentation language The long version of the paper also includes
a section on the various possible notions of independence of a
preference relation from a set of variables.
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