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Abstract

We consider the following sequential allocation
process. A benevolent central authority has to al-
locate a set of indivisible goods to a set of agents
whose preferences it is totally ignorant of. We con-
sider the process of allocating objects one after the
other by designating an agent and asking her to pick
one of the objects among those that remain. The
problem consists in choosing the “best” sequence
of agents, according to some optimality criterion.
We assume that agents have additive preferences
over objects. The choice of an optimality crite-
rion depends on three parameters: how utilities of
objects are related to their ranking in an agent’s
preference relation; how the preferences of differ-
ent agents are correlated; and how social welfare is
defined from the agents’ utilities. We address the
computation of a sequence maximizing expected
social welfare under several assumptions. We also
address strategical issues.

1 Introduction

Approaches to fair division, and more generally resource
allocation, can be classified according to four dichotomies
[Chevaleyre et al., 2006]: (a) divisible vs. indivisible ob-
jects; (b) centralized vs. decentralized approaches; (c) rev-
enue efficiency vs. fairness criteria; (d) allowing money
transfers or not. (a), (c) and (d) are self-explanatory. As
for (b), in centralized approaches, the agents communicate
their preferences to some central authority, which computes
the optimal allocation, according to some optimality crite-
rion; in decentralized approaches, agents interact with each
other (possibly with the help of a central authority), through
actions that reveal only a part of their preferences. A typical
class of decentralized approaches of this type is the class of
cake cutting procedures (e.g., [Robertson and Webb, 1998;
Brams and Taylor, 1996]), which are typically designed for
the allocation of divisible goods; Centralized approaches
have two drawbacks: (a) the elicitation process and the win-
ner determination algorithm can be very expensive; (b) the
agents have to reveal their full preferences, which they might
be reluctant to do.

Although many centralized approaches to allocating indi-
visible goods have been proposed, decentralized approaches
are much less frequent, up to a few exceptions such as [Brams
et al., 2011] who adapt a cake-cutting protocol to the alloca-
tion of indivisible goods, and [Chevaleyre et al., 2010], who
study negotiation-based protocols for allocating indivisible
objects in a distributed way.

Here we study a much simpler decentralized protocol for
allocating indivisible objects, which is used in a variety of
daily situations. We have p indivisible objects to allocate to n
agents. The central authority defines a sequence of agents of
length p. Every time an agent is designated, she picks one ob-
ject out of those that remain. For instance, if n = 3 and p = 5,
the sequence 12332 means that agent 1 picks an object first;
then 2 picks an object; then 3 picks two objects; and 2 takes
the last object. The central authority has to find the best se-
quence, according to some criterion. For instance, if we want
to be fair, π = 12332 seems better than π′ = 12321, because
in π, agent 1, who receives only one object, is compensated
by the fact that she ends up with his preferred object. This
process is arguably very natural. Brams and Taylor [Brams
and Taylor, 2000] give it some attention, by studying partic-
ular sequences, namely strict alternation, where two agents
pick objects in alternation, and balanced alternation (for two
agents) consisting of sequences of the form 1221, 12212112
etc. However they do not justify these sequences by optimal-
ity arguments. In fact, we do not know of any work on the
definition and computation of optimal sequences.

To make this formal, we need to define a (generic) model,
as follows: (i) agents have additive utilities (the value of a
subset of objects is the sum of the values of its elements); (ii)
a scoring function maps the rank of an object in a preference
relation to its utility value – the agents may have different
rankings, but this scoring function is the same for all agents;
(iii) we have a probability distribution on the possible collec-
tions of rankings (or profiles); we focus on two prototypical
models: full independence (all profiles are equally probable,
hence the rankings of two different agents are independent),
and full correlation (agents have identical preferences). (i),
(ii) and (iii) suffice to determine the expected utility of an
agent for a given sequence. Finally, (iv) we have a social wel-
fare function F aggregating the utilities of the agents; we will
focus on F = + (utilitarianism) and F = min (egalitarian-
ism). We then look for a sequence optimizing the expected
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social welfare.
The general model is defined in Section 2. In Section 3 we

address the computation of the optimal sequence under vari-
ous instances of the model. In Section 4 we consider strategi-
cal issues. We show that if agents have identical preferences,
the process is strategyproof. In the general case, we show that
an agent who knows the preferences of other agents can find
in polynomial time whether she has a strategy for getting a
given set of objects, and that if the scoring function is lexico-
graphic, then computing an optimal strategy is polynomial.1.

2 The general model

2.1 Preferences

We have a set of p indivisible objects O = {o1, . . . , op} and
a set of agents {1, . . . , n}. We assume that each agent i has a
(hidden) additive utility function ui over objects: for any ob-
ject o, ui(o) is the value that agent i gives to object o, and for
any A ⊆ O, ui(A) =

∑
o∈A u(o) (and u(∅) = 0). There-

fore, we assume that agents have no preferential dependen-
cies between objects. The preference relation �i induced by
ui is defined by A �i B if and only if ui(A) ≥ ui(B). The
strict preference �i associated with �i is defined as usual by
A � B if A � B and not B � A.

Now, because the allocation process does not involve any
elicitation stage, the central authority will never know the
agent’s utilities. Instead, it can only observe a small part of
it, by seeing an agent picking a given objet at a given stage.
Now, the central assumption of this paper is that we consider
a utility model where any rank in {1, . . . , k} is mapped to a
utility value via a scoring function.

Definition 1 A scoring function is a non-increasing function
g from {1, . . . , p} to R

+: if i ≤ j then g(i) ≥ g(j).

We focus on three prototypical scoring functions:

• Borda: for any k, gB(k) = p− k + 1.

• lexicographic: for any k, gL(k) = 2p−k.

• QI (quasi-indifferent): for any k, gI(k) = 1+ ε.(p− k),
where ε� 1.

We denote by ranki(o) ∈ {1, . . . , p} the rank of object o
in the preference relation of agent i. g(i) denotes the value
that an agent gives to her ith preferred object: thus, fixing
the scoring function to g amounts to assume that ui(o) =
g(ranki(o)), for any agent i and any object o.

The choice of a scoring function depends on the application
domain. In a domain where the number of objects received
is of primary importance QI is reasonable. On the other ex-
tremity, if agents are likely to have huge discrepancies in the
way they value objects, the lexicographic model is more re-
alist. Between both, the Borda model (named after the Borda
voting rule) assumes that the value agents give to objects de-
creases linearly between two consecutive ranks. The choice
of a scoring function for a specific domain may be guided by

1Due to space restrictions, most proofs are omitted. Com-
plete proofs and detailed examples can be found at http://
recherche.noiraudes.net/en/sequences.php

some learning process (one may even think of giving different
scoring functions to agents according to their type).

A profile R consists in a collection of rankings, one for
each agent: R = 〈�1, . . . ,�n〉.
2.2 Uncertainty over profiles

First, we assume that for a given agent, all possible rankings
are equally probable. Next, we have to specify whether the
events “agent i having ranking Ri” and “agent j having rank-
ing Rj” are independent or not. For this we focus on two
prototypical models which lie at both extremities of the spec-
trum: one where these events are independent and one where
they are fully correlated.

Full independence (FI) For any agent i, all possible
rankings on O are equiprobable and the rankings of differ-
ent agents are independent: Pr(R) = 1

(p!)n for every profile
R = 〈�1, . . . ,�n〉.

Full correlation (FC) The agents rank the objects in the
same way: �1= . . . =�n. This assumption (also consid-
ered in [Brams and Fishburn, 2002]) makes sense if the agents
are similar enough so that the value of an object can be con-
sidered objective. We will see later that this assumption is
equivalent to focusing on the worst case, as it gives the worse
possible utility to the agents; hence we don’t need to define
a probability distribution in this case (for the sake of defining
the model completely, we may further assume that all profiles
of the form R = 〈�, . . . ,�〉 are equiprobable, hence have
probability 1

p! each; but the results do not depend on this).

We could have a more general model, with some intermedi-
ate correlation between the rankings (e.g., for some constant
α ∈ [ 12 , 1], Pr(o �i o′ | o �j o′) = α) of which (FI) and
(FC) are particular cases; we will not develop it here.

2.3 Policies

At each stage of the process, a designated agent picks an ob-
ject (supposedly, her preferred object among those that re-
main), following a policy that assigns an agent to each stage.
Formally, a policy is a function π : �1, p� → N . We simply
denote a policy by enumerating the agents picking an object
at time 1, 2, . . . , p. For instance, if n = 3 and p = 7, the
policy defined by π(1) = 2, π(2) = 1, π(3) = 1, π(4) =
2, π(5) = 3, π(6) = 3, π(7) = 3 is denoted by 2112333.

Given a policy π and a profile R = 〈�1, . . . ,�n〉, for ev-
ery agent i, we denote by sπi,k(R) her current share right after
stage k. For every i, sπi,k(R) is defined inductively as follows:

• sπi,0(R) = ∅

• sπi,k(R) = sπi,k−1(R) if π(k) �= i, and sπi,k(R) =

sπi,k−1(R) ∪ {max�i(o ∈ Oπ
k−1(R))} otherwise,

whereOπ
k (R) =

⋃
i s

π
i,k(R) denotes the set of objects already

allocated according to π right after stage k, and Oπ
k (R) =

O \ Oπ
k (R) the remaining objects.

Finally, let ui(π,R) = ui(s
π
i,p(R)) be the utility of agent

i at the end of the process, that is, the value of her share ac-
cording to the scoring function:

ui(π,R) =
∑

o∈sπi,p(R) g(ranki(o))
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Example 1 Let there be 5 objects, π = 12332, and 3 agents
with the following preferences: 1 : o1 � o2 � o3 � o4 � o5;
2 : o4 � o2 � o5 � o1 � o3; 3 : o1 � o3 � o5 � o4 � o2.
The allocation process proceeds as follows:

k 0 1 2 3 4 5
s(1)πk ∅ o1 o1 o1 o1 o1
s(2)πk ∅ ∅ o4 o4 o4 o4o2
s(3)πk ∅ ∅ ∅ o3 o3o5 o3o5
Oπ

k ∅ o1 o1o4 o1o4o3 o1o4o3o5 o1o4o3o5o2

Finally, sπ1,5 = {o1}, sπ2,5 = {o2, o4}, and sπ3,5 = {o3, o5}.
The utilities of the three agents are the following, depending
on the choice made for scoring:

• Borda: u1(π) = 5;u2(π)=5+4=9;u3(π)=4+3=7.
• lexicographic: u1(π) = 16;u2(π) = 24;u3(π) = 12.
• QI: u1(π) = 1 + 4ε;u2(π) = 2 + 7ε;u3(π) = 2 + 5ε.

2.4 Expected utility and social welfare

Since the arbitrator does not know the agents’ preferences,
she is not able to compute their actual individual utility, but
can only rely on an expected utility, given the probability dis-
tribution Pr over profiles. Given a policy π, the expected
utility of agent i is defined by:

u(i, π) =
∑

R∈Prof(N ,O)

Pr(R)× ui(π,R).

Finally, we define an aggregation function as a symmetric,
non-decreasing function from (R+)n to R

+.
Two typical choices for F correspond to the well-known

utilitarian criterion and the Rawlsian egalitarian criterion:

• utilitarian: F (u1, . . . , un) =
∑

i=1,...,n ui;

• egalitarian: F (u1, . . . , un) = mini=1,...,n ui.

Given a probability distribution Pr on profiles and an ag-
gregation function F , the expected social welfare of policy π
is defined as the aggregation of individual expected utilities:

swF (π) = F (u(1, π), . . . , u(n, π)).

Note that swF (π) is determined from the scoring function
g, the correlation model c, and the aggregation function F .

To sum up, a sequential allocation problem is a 5-uple
P = 〈N ,O, g, c, F 〉 where N = {1, . . . , n} is the set of
agents, O = {o1, . . . , op} the set of objects, g the scoring
function, c ∈ {FI, FC} the correlation function, and F the
aggregation function. A policy π is optimal for P if it maxi-
mizes swF (π). Solving a sequential allocation problem con-
sists in finding the optimal sequence once those five parame-
ters have been fixed.

3 Computing optimal sequences

3.1 Full correlation

Recall that under the full correlation assumption, all agents
have the same ranking over objects. Without loss of general-
ity, assume this ranking is o1 � o2 � . . . � op. Then, at stage
k, the designated agent π(k) will pick object ok. Therefore,
expected social welfare can be rewritten as follows.

swF,FC(π) = F
(∑

k∈π−1(1) g(k), . . . ,
∑

k∈π−1(n) g(k)
)

Note that maximizing this social welfare comes down to
maximizing the social welfare for the worst possible pro-
file: let R be a profile with identical preference rank-
ings, and R′ be any other profile. Then for any policy π

and agent i, ui(π,R) ≤ ui, (π,R
′), hence swF,FC(π) =

F (u1(π,R), . . . , un(π,R)) ≤ F (u1(π,R
′), . . . , un(π,R

′)).
This is simply because: (i) obviously, at every stage i, agent
π(i) will get an object she ranks in position at most i, and (ii)
under full correlation, agent π(i) will actually get the object
she ranks ith, which is the worst she could get.

Now we consider the three distinguished scoring functions.
We start by utilitarian social welfare. We have

sw+(π) =
∑

i∈�1,n�

∑
k∈π−1(i) g(k) =

∑
k∈�1,p� g(k)

Note that
∑

k∈�1,p� g(k) is a constant, which depends only
on n, p, and g, but not on π. In other words:

Proposition 1 Under utilitarianism and full correlation, all
policies have the same expected social welfare.

This holds for the following intuitive reason: whatever
agent is designated by π at stage k, she will pick ok and re-
ceive g(k).

Therefore, under utilitarianism and full correlation, the
problem is trivial. Now, we consider egalitarianism and study
the following problem:

Problem 1: Sequential allocation under egalitarianism and
full correlation.
Instance: A number of agents n, a number of objects p, a
scoring function g, an integer K.
Question: Is there a policy π such that swmin(π) ≥ K, under
full correlation ?

Proposition 2 Under egalitarianism and full correlation,
Problem 1 is NP-complete.

The hardness part of the proof, which is not particularly
difficult, comes from a reduction from PARTITION.

We now consider the three specific scoring functions de-
fined above.

Lexicographic scoring

It is not difficult to show that if there are at least as many
objects as agents (p ≥ n), the optimal policies are those of
the following form, where σ is a permutation of {1, . . . , n}:
σ(1)σ(2) . . . σ(n − 1)σ(n)p−n+1 and that if there are less
objects than agents (p < n), the optimal policies are those of
the following form, where σ is a permutation of {1, . . . , n}:
σ(1)σ(2) . . . σ(p).

In other terms, the first n−1 agents choose an object in se-
quence, and the remaining agent picks all remaining objects.

Borda scoring

In this case, the problem is equivalent to finding a partition
of {1, . . . , p} in n classes such that the sum of the integers in
each class is above a threshold. This comes down to solving
the following problem:
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Problem 2: Sequential allocation under egalitarianism, full
correlation, and Borda scoring
Instance: A number of agents n, a number of objects p, an
integer K.
Question: Is there a partition of Xp = �1, p� into n clusters
A1, . . . , An such that

∑
k∈Ai

k ≥ K, ∀i ≤ n?

Because the number of possible cumulated values for a
given agent is polynomially bounded (namely p(p+1)

2 ), the
problem can be solved by dynamic programming, where
we need to fill a table of O(p × n.p2) cells2, each requir-
ing O(n) computation time. One may however notice that
this algorithm runs in polynomial space and time only if n
and p are encoded in unary (hence the size of the input is
n+ p+ log(K)). Thus:

Proposition 3 Under egalitarianism, full correlation, and
Borda scoring, Problem 2 is pseudopolynomial.

QI scoring

Due to the lack of space we will not go into details. It can
be shown that if m = � pn� and q = p − nm, an optimal
policy is necessarily such that n− q agents receive m objects
each, and receive them during the m(n−q) first rounds, while
the remaining q agents receive m + 1 objects each during
the remaining rounds. For example π = 1122333444 and
π′ = 1221333444 are of this form. However, not all such
policies are optimal (π′ is optimal whereas π is not). We can
show that finding an optimal policy comes down to finding
an optimal policy w.r.t. the Borda scoring for the n − q first
agents and the m(n− q) first rounds.

Proposition 4 Under egalitarianism, full correlation, and QI
scoring, finding an optimal policy is pseudopolynomial.

3.2 Full Independence

The full independence (FI) case is more complex. We conjec-
ture that the problem of finding an optimal allocation policy
under FI, and for any of our three specific scoring functions,
is NP-hard, but we do not have a proof. Moreover, we do not
even know if, for a given policy π, swF (π) can be computed
in polynomial time (we conjecture it is NP-hard as well).

However, it is possible to compute an optimal policy in rea-
sonable time for small numbers of objects using an exhaustive
search algorithm: for each possible complete policy, the algo-
rithm computes the social welfare and compares it to the best
one found so far. So as to break symmetries, we only consider
policies π where π(k) ≤ k (the first agent in the sequence can
only be 1, the second one can be 1 or 2, and so on).

The expected utility for an agent i can computed by de-
veloping a search tree: each node is a partial assignment of
the objects, and is expanded into (i) one single branch if i
is the next agent to choose (she will pick her top object for
sure), and (ii) #(remaining objects) branches otherwise (the
current agent can possibly pick each one of the remaining
objects with uniform probability). Algorithm 1 slightly im-
proves this procedure by expanding several levels at once, if
i does not appear during several successive rounds. At each

2Thanks to Bruno Escoffier and Thang Nguyen Kim.

step, a set X of ranks are chosen, and the problem is trans-
formed into a problem with p − |X| objects, and a scoring
function built from g, where all the values from g(X) are re-
moved. On Line 6 of the algorithm we denote by g \ X the
functions that maps k to the kth element in dom(g)\X . Here
is an example of how this algorithm computes the utility of
agent 1 for the sequence 12221, using the Borda scoring func-
tion. We use a compact notation for g, namely g = 12345 for
g(1) = 1; . . . , g(5) = 5; note that dom(g) is the number of
objects remaining to be allocated.

• First call: g is 54321 and the added value (Line 3) is
g(1) = 5.

• Second call: g is 4321 and since 1 is not served during
3 rounds, there are

(
4
3

)
= 4 recursive calls (Line 7): for

X = 123 (value added : 1), X = 124 (value added : 2),
X = 134 (value added : 3) and X = 234 (value added :
4). The global added value is thus (4 + 3 + 2 + 1)/4 =
2.5.

• Therefore, the value returned is 7.5.

Algorithm 1: EU(π, i, g)
input : A policy π, an agent i, a scoring function g.
output: Expected utility of i under the FI assumption.

1 if (dom(g) = ∅) ∨ (∀k, π(k) �= i) then return 0;
2 if π(1) = i then
3 return g(1) + EU(k �→ π(k + 1), i, k �→ g(k + 1));
4 λ← min{k′ | π(k′) = i} − 1;
5 u← 0;
6 for X ⊂ �1, |dom(g)|� such that |X| = λ do
7 u← u+ EU(k �→ π(k + λ), i, g \X);

8 return u/
(|X|

k

)
;

We provide an implementation of this algorithm that com-
putes optimal policies (and their values) once the user has
given n, p, g and F , and can be tested online (http://
recherche.noiraudes.net/en/sequences.php).

Egalitarian Utilitarian
p n = 2 n = 3 n = 2 n = 3
4 1221 1233 1212 1231
5 11222 12332 12121 12312
6 121221 123321 121212 123123
8 12212112 11332232 12121212 12312312
10 1221121221 1231223133 1212121212 1231231231
12 121212122121 121212121212

Table 1: Optimal sequences for small n and p, under the FI
assumption and Borda scoring function.

This implementation computes optimal policies in less than
a few minutes until around 10 objects (12 objects when n =
2). Table 1 shows some results for small n and p. An intrigu-
ing result is that for the values of p and n we tested, strict
alternation is an optimal strategy for F = +; we do not know
whether this is true for every p and n. Also, the optimal strat-
egy returned for p = 12, n = 2 is not a balanced alternation.

Things become much harder when p becomes larger. How-
ever, we claim that, in this case, the problem loses much of its
interest. Informally, when p increases (while n is fixed) then
agents receive more and more objects, and it will be more and
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more easy to find an optimal sequence.
Proposition 5 Let p = kn+ q. Under FI and Borda scoring,
any policy π of the form σ1σ2 . . . σkθ, where σ1, . . . , σk, are
permutations of {1, . . . , n}, tends to an optimal allocation
when p → +∞ (n being held constant) both for egalitarian
and utilitarian social welfare.
Proof Assume first that p is a multiple of n. Consider the first n
stages. The agent who comes first in σ1 receives p. The one who
comes second receives p−1

p
.p + 1

p
(p − 1) = p2−1

p
∼p→∞ p. The

one who comes third gets also Θ(p), and so on: everyone receives
p + O(p−1). Now, during the next n stages: the agent who comes
first in σ2 gets her second preferred object if none of the n−1 agents
have taken it, which happens with probability 1−n−1

p−1
; therefore, she

gets an utility at least
(
1− n−1

p−1

)
.(p− 1) = p− 1+O

(
p−1

)
. We

check that it also applies to every other agent during the execution
of σ2. During σ3, we check then that every agent receives p − 2 +
O
(
p−1

)
, and so on until σk, where everyone receives p− k + 1 +

O
(
p−1

)
. Therefore, the total utility received by any agent is at least

[p + (p − 1) + . . . + (p − k + 1)] + O
(
p−1

)
, i.e., p2

n
+ O(1).

Now, in the best case, for whatever policy, the maximal utility that
an agent can receive is the utility corresponding to his preferred k

objects, i.e., p + . . . + p − k + 1 = p2

n
+ O(1). Therefore, ū(σ)

tends to the expected utility of an optimal policy when p → ∞.
When p is not a multiple of n, the proof is analogous, noticing

that the increment of utility brought by the last object picked by an
agent during the last subsequence is small compared to the p2

n
utility

already gathered. �

4 Strategical issues

As most collective decision mechanisms, our sequential allo-
cation problems are generally not strategyproof. This can be
seen on the very simple example with any scoring function,
two agents, four objects, the preferences of 1 being abcd and
those of 2 being bcda, and π = 1221. If 1 and 2 play sin-
cerely, i.e., pick their preferred object at each stage, then the
final allocation is 1 �→ ad, 2 �→ bc. However, if 1 knows
2’s preferences and plays strategically, then she picks b first,
then 2 picks c and d, 1 finally picks a and the allocation is
1 �→ ab, 2 �→ cd, which makes her better off.

We now address these two questions: (1) is sequential al-
location strategyproof for some restricted domains? (2) when
it is not, how hard is it for an agent who knows the prefer-
ences of the others to compute an optimal strategy? For both
questions, the choice of the social welfare function F and of a
probability distribution over profiles is irrelevant (remember
that the manipulating agent knows the others’ preferences).

We first show that the answer to the Question 1 is positive
when the agents’ rankings coincide (full correlation).
Proposition 6 When all the agents have the same preference
rankings, sequential allocation is strategyproof for any scor-
ing function and any policy π.

We now move to Question 2. Let π be a policy, and let
i1, . . . , ir be the picking stages of agent 1, i.e., the stages such
that π(ij) = 1, with i1 < . . . < ir. Let 〈�2, . . . ,�n〉 be the
rankings of the other agents. A strategy for 1 is a function
σ : {1, . . . , r} to O, specifying which object 1 should take at
any stage where it is her turn to pick an object. σ is said to

be well-defined with respect to π and 〈�2, . . . ,�n〉 if at any
stage ir, the object σ(r) is still available (assuming that 2 to
n play sincerely). Note that the allocation process (who gets
what and when) is fully determined from �2, . . . ,�n and a
well-defined strategy σ.

A manipulation problem M consists of π, 〈�2, . . . ,�n〉,
and a target set of objects S ⊆ O. A well-defined strategy σ is
successful for M if, assuming the agents 2 to n act sincerely,
σ ensures that agent 1 gets all objects in S. Solving M con-
sists in determining whether there exists a successful strategy.
Below we show that the manipulation problem can be solved
in polynomial time. First, we give a simple characterization
of successful strategies in problems with two agents.
Proposition 7 Let μ be the permutation of {1, . . . , p} such
that �2= oμ(1) � . . . � oμ(p). For any j ≤ p, let
PS(j) = #{i ≤ j|π(i) = 1} be the number of picking
stages of 1 until j and Cl(j) = {oμ(i)|i ≤ j, oμ(i) ∈ S}.
There exists a successful strategy for 1 iff for any j ≤ p we
have PS(j) ≥ |Cl(j)|. Moreover, in this case any strategy
starting by picking the objects in S according to their ranking
in �2 (and completed so as to be well-defined) is successful.

Instead of giving a proof sketch, we show how it works on
an example. Let p = 4, �2= o2 � o4 � o3 � o1, π = 1221,
and S = {o1, o2}. We have PS(1) = PS(2) = PS(3) = 1,
PS(4) = 2. Then, Cl(1) = Cl(2) = Cl(3) = {o2} and
Cl(4) = {o1, o2} — intuitively, Cl(j) represents the objects
in S “claimed” by agent 2 until j, and thus that 1 will not get
if she does not pick them before. Because PS(j) ≥ |Cl(j)| is
satisfied for all k, the strategy σ such that σ(1) = o2;σ(2) =
o1 is successful. Now, let S = {o2, o3}: PS(3) = 1 and
Cl(3) = {o2, o3}, therefore there is no successful strategy.

Now, we show that a problem M with n agents can be
translated into a problem M∗ with two agents, such that there
is a successful strategy in M if and only if there is a suc-
cessful strategy in M∗. M∗ is defined as follows: S∗ = S;
the preference relation �∗ of agent 2 is computed by Algo-
rithm 2, and the policy π∗ is defined by: for every i ≤ p, if
π(i) = 1 then π∗(i) = 1, and if π(i) > 1 then π∗(i) = 2.

Let us run Algorithm 2 on an example. Let n = 3, p = 6,
�2= o3 � o1 � o2 � o4 � o5 � o6, �3= o2 � o3 �
o4 � o6 � o5 � o1, π = 123123, and S = {o1, o2}. Then
π∗ = 122122 and �∗= o3 � o2 � o4 � o1 � o5 � o6.
Proposition 8 There exists a successful strategy for 1 in M
if and only if there exists a successful strategy for 1 in M∗.

The proof of Proposition 8 is structured in two lemmas.
Lemma 1 If there exists a successful strategy for M then
there exists a successful strategy for M in which the first |S|
objects picked by 1 are the objects of S.

In other words it is never harmful for 1 to start picking the
objects of S; taking an object out of S instead will never help.

Given a manipulation problem and a strategy θ, we define
all(P, θ) as the function mapping each i to the object picked
by π(i) at round i.
Lemma 2 Let θ be a strategy for agent 1 (either for M or
M∗) in which the first |S| objects picked by 1 are the objects
of S. Then θ is successful for M if and only if it is successful
for M∗, and in that case, for each i, all(M, θ) = all(M∗, θ).
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Algorithm 2: Transforms a n-agent manipulation prob-
lem into a 2-agent manipulation problem

input : 〈�2, . . . ,�n〉: preference rankings; O: set of
objects; S ⊆ O: target subset; π: policy

output: a preference relation �∗ on X
1 T ← O; i← 1; �∗← ∅; /* Initialization */
2 repeat
3 j ← π(i) ; /* agent j is the next one to pick an object */
4 if j �= 1 then /* this agent is not the manipulator */
5 ol ←Max(�j , T ); /* j intends to pick ol */
6 append ol to �∗;
7 T ← T \ {ol};
8 if ol �∈ S then
9 i← i+ 1 ; /* next agent in the sequence */

/* only if 1 and j do not compete on object ol */

10 else i← i+ 1;
11 if i = p+ 1 then
12 complete �∗ with all T , in arbitrary order;
13 T ← ∅;

14 until T = ∅;

Proposition 8 can be easily proved using Lemmas 1 and 2.

So far we have shown that the manipulating agent can find
in polynomial time a strategy, if any, to make sure she gets
all objects in a target set S, assuming other agents are sincere
and that she knows their preferences. We now address the
following issue: given an agent 1 and her scoring function g,
when can 1 find an optimal strategy in polynomial time?

We show that this is true under the lexicographic scoring
function. Let 1 be the manipulator (again we assume the oth-
ers act sincerely). We build the best set of objects that 1 can
manage to get in a greedy way, considering the objects one
after the other in decreasing order of 1’s preference ranking;
if we find out that 1 has a strategy to get this object together
with the already secured objects, we add this object to the best
set of objects she can get; otherwise, we don’t, and move on
to the next object. This greedy algorithm calls the previous
algorithm to check whether there exists a successful strategy.
Algorithm 3: Finding the optimal strategy for agent 1

input : a policy π; a collection of preference rankings
〈�1,�2, . . . ,�n〉

output: an optimal picking strategy σ for agent 1
1 t← number of occurrences of 1 in π;
2 S ← ∅;
3 i← 1;
4 repeat
5 if ∃σ, successful strategy for S ∪ {i}, π and

〈�1,�2, . . . ,�n〉 then S ← S ∪ {i}; i← i+ 1;
6 until i > p or |S| = t;
7 return σ

Proposition 9 If agent 1’s utility function is lexicographic,
then Algorithm 3 returns the optimal strategy for agent 1.
Proof Suppose not: there exists a strictly better strategy σ′. Let k
be the smallest index such that σ(k) �= σ′(k). Since σ′ is better

than σ, we have σ′(k) �1 σ(k). But then 1 could have picked
{oiσ(1)

,...,oiσ(k)
}, thus the condition on Line 5 of Algorithm 3 would

have been true, contradicting the fact that Algorithm 3 returns σ. �
Corollary 1 Under lexicographic scoring, the optimal strat-
egy for an agent can be computed in polynomial time.

For the Borda scoring, we conjecture that the manipulation
problem is NP-hard, but we could not find a proof. We be-
lieve such a proof will be hard to find, as it might be related
to problem of coalitional unweighted manipulation of voting
under the Borda rule, whose complexity was an open problem
until this conference.

5 Conclusion

We have defined a generic model of a very intuitive proto-
col for allocating indivisible goods to agents without eliciting
their preferences, and studied it from the points of view of
the computation of optimal sequences and the complexity of
manipulation by one agent. Further work includes finding
the missing complexity results for the FI case, evaluating the
probability that the resulting allocation is envy-free, develop-
ing a full game-theoretic analysis of the process, and studying
the opportunity to model and solve the problem as a mono-
or multi-objective MDP.
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