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Abstract

We study fair division of indivisible goods among
agents from the point of view of compact repre-
sentation and computational complexity. We iden-
tify the complexity of several problems, including
that of deciding whether there exists an efficient
and envy-free allocation when preferences are rep-
resented in a succinct way. We also draw connec-
tions to nonmonotonic reasoning.

1 Introduction
Allocation of goods among agents has been considered from
different perspectives in social choice theory and AI. In this
paper we focus onfair division of indivisible goods without
money transfers. Fair division makes a prominent use of fair-
ness criteria such asequity and envy-freeness, and on this
point totally depart from auctions, where onlyefficiencyis
relevant (and moreover a specific form of efficiency, since
the criterion to be maximized is the total revenue of the auc-
tioneer). Envy-freeness is a key concept in the literature on
fair division: an allocation is envy-free if and only if each
agent likes her share at least as much as the share of any
other agent. Ensuring envy-freeness is considered as cru-
cial; however, envy-freeness alone does not suffice as a cri-
terion for finding satisfactory allocations, therefore it has to
be paired with some efficiency criterion, such as Pareto opti-
mality. However, it is known that for any reasonable notion of
efficiency, there are profiles for which no efficient and envy-
free allocation exists (see[Bramset al., 2000])1.

Whereas social choice theory has developed an important
literature on fair division, computational issues have rarely
been considered. On the other hand, artificial intelligence
has studied these issues extensively, but until now has fo-
cused mainly on combinatorial auctions and related prob-
lems, investigating issues such as compact representation
as well as complexity and algorithms. Complexity issues
for negotiation (where agents exchange goods by means of
deals) have also been studied (e.g.[Dunne et al., 2005;
Chevaleyreet al., 2004]). See also[Bouveretet al., 2005]
for a preliminary complexity study of fair division problems.

1This is even trivial if every good must be assigned to someone:
in this case, there are profiles for which not even an envy-free allo-
cation exists.

The above discussion reveals the existence of a gap: com-
pact representation and complexity issues for fair division
have received very little attention until now, apart of the re-
cent work[Lipton et al., 2004] which studies approximation
schemes for envy-freeness. The need for compact representa-
tion arises from the following dilemna, formulated by several
social choice theorists: either (a) allow agents to express
any possible preference relation on the set of all subsets of
items, and end up with an exponentially large representation
(such as in[Herreiner and Puppe, 2002]); or (b) severely re-
strict the set of expressible preferences, typically by assuming
additive independence between items, and then design proce-
dures where agents express preferences between single items,
thus giving up the possibility of expressing preferential de-
pendencies such as complementarity and substitutability ef-
fects among items; this is the path followed by[Bramset al.,
2000] and[Demko and Hill, 1998]. Yet, as we advocate in
this paper, conciliating conciseness and expressivity is possi-
ble, by means ofcompact representation.

As in most works on fair allocation of indivisible items
we focus on the joint search for envy-freeness and efficiency.
The impossibility to guarantee the existence of an efficient
envy-free allocation implies that determining whether there
exists such an allocation is a crucial task, since a positivean-
swer leads to choose such an allocation whereas a negative
answer calls for a relaxation of one of the criteria. We con-
sider this problem from the point of view of compact repre-
sentation and computational complexity. We focus first in
the simple case where agents havedichotomous preferences,
that is, they simply express a partition between satisfactory
and unsatisfactory shares. The interest of such a restriction
is that in spite of the expressivity loss it imposes, it will be
shown to be no less complex than the general case, while be-
ing much simpler to expose. The most natural representa-
tion of a dichotomous preference is by a single propositional
formula, where variables correspond to goods. Expressing
envy-freeness and efficiency within this logical representation
reveals unexpected connections to nonmonotonic reasoning.
We identify the complexity of the key problem of the exis-
tence of an envy-free and Pareto-efficient allocation, which
turns out to beΣp

2-complete; we also identify the complexity
of several other problems obtained either by imposing some
restrictions on the latter or by replacing Pareto-efficiency by
other criteria. In Section 5 we extend this result to the caseof
non-dichotomous, compactly represented preferences.



2 Background
2.1 Fair division problems
Definition 1
A fair division problem is a tupleP = 〈I,X,R〉 where

• I = {1, . . . , N} is a set of agents;

• X = {x1, . . . , xp} is a set of indivisible goods;

• R = 〈R1, . . . , RN 〉 is a preference profile, where each
Ri is a reflexive, transitive and complete relation on2X .

Ri is the preference relation of agenti. ARiB is alterna-
tively denoted byRi(A,B) or byA �i B; we noteA ≻i B
(strict preference) forA �i B and notB �i A andA ∼i B
(indifference) forA �i B andB �i A.

In addition,Ri is said to bemonotonousif and only if for
all A,B, A ⊆ B ⊆ X impliesB �i A. R = 〈R1, . . . , RN 〉
is monotonous if and only ifRi is monotonous for everyi.

Definition 2
• An allocation for P = 〈I,X,R〉 is a mappingπ : I →

2X such that for alli andj 6= i, π(i) ∩ π(j) = ∅. If for
everyx ∈ X there exists ai such thatx ∈ π(i) thenπ is
a completeallocation.

• Let π, π′ two allocations.π dominatesπ′ if and only if
(a) for all i, π(i) �i π

′(i) and (b) there exists ani such
thatπ(i) ≻i π

′(i). π is (Pareto-) efficient if and only if
there is noπ′ such thatπ′ dominatesπ.

• An allocationπ is envy-freeif and only ifπ(i) �i π(j)
holds for alli and all j 6= i.

2.2 Propositional logic
Let V be a finite set ofpropositional variables. LV is the
propositional language generated fromV , the usual connec-
tives¬, ∧ and∨ and the Boolean constants⊤ and⊥ in the
usual way2. An interpretationM for LV is an element of
2V , i.e., a truth assignment to symbols: for allx ∈ V , x ∈M
(resp.x 6∈M ) means thatM assignsx to true (resp. to false).
Mod(ϕ) = {M ∈ 2V | M |= ϕ} is the set of all models of
ϕ (the satisfaction relation|= is defined as usual, as well as
satisfiability and logical consequence).

A literal is a formula ofLV of the formx or of the form¬x,
wherex ∈ V . A formulaϕ is undernegative normal form(or
NNF) if and only if any negation symbol inϕ appears only in
literals. Any formula can be turned in polynomial time into
an equivalent NNF formula. For instance,a ∧ ¬(b ∧ c) is not
under NNF but is equivalent to the NNF formulaa∧(¬b∨¬c).

A formula is positive if it contains no occurrence of the
negation symbol. For instance,a∧ (b∨¬c) anda∨ (¬a∧ b)
are not positive, whereasa∧ (b∨ c) and(a∧ c)∨ (a∧ b) are.
⊤ and⊥ are considered positive as well.

Let ϕ ∈ LV . V ar(ϕ) ⊆ V is the set of propositional
variables appearing inϕ. For instance,V ar((a ∧ c) ∨ (a ∧
b)) = {a, b, c} andV ar(⊤) = ∅.

Lastly, if S = {ϕ1, . . . , ϕn} is a finite set of formulas then
∧

S = ϕ1 ∧ . . . ∧ ϕn is the conjunction of all formulas ofS.

2Note that connectives→ and↔ are not allowed; this is impor-
tant for the definition of positive formulas (to come).

2.3 Computational complexity
In this paper we will refer to some complexity classes located
in the polynomial hierarchy. We assume the reader to be fa-
miliar with the classesNP andcoNP. BH2(also referred to
as DP) is the class of all languages of the formL1 ∩ L2

whereL1 is in NP andL2 in coNP. ∆p
2= PNP is the class of

all languages recognizable by a deterministic Turing machine
working in polynomial time usingNP oracles. Likewise,Σp

2=

NPNP. Θp
2 = ∆p

2[O(log n)] is the subclass of∆p
2 of prob-

lems that only need a logarithmic number of oracles. See for
instance[Papadimitriou, 1994] for further details.

3 Fair division problems with dichotomous
preferences: logical representation

We start by considering in full detail the case where prefer-
ences are dichotomous.

Definition 3 Ri is dichotomous if and only if there exists a
subsetGoodi of 2X such that for allA,B ⊆ X , A �i B if
and only ifA ∈ Goodi or B 6∈ Goodi. R = 〈R1, . . . , RN 〉
is dichotomous if and only if everyRi is dichotomous.

There is an obvious way of representing dichotomous pref-
erences compactly, namely by a propositional formulaϕi (for
each agenti) of the languageLX (a propositional symbols for
each good) such thatMod(ϕ) = Goodi. Formally:

Definition 4 LetRi be a dichotomous preference on2X , with
Goodi its associated subset of2X , andϕi a propositional
formula on the propositional languageLX . We say thatϕi

representsRi if and only ifMod(ϕi) = Goodi.

Clearly, for any dichotomous preferenceRi there is a for-
mulaϕi representingRi; furthermore, this formula is unique
up to logical equivalence.

Example 1 X = {a, b, c} andGoodi = {{a, b}, {b, c}}.
Note thatRi is not monotonous. Thenϕi = (a ∧ b ∧ ¬c) ∨
(¬a ∧ b ∧ c) representsRi.

An easy but yet useful result (whose proof is omitted):

Proposition 1 Let Ri be a dichotomous preference on2X .
The following statements are equivalent:

1. Ri is monotonous;

2. Goodi is upward closed, that is,A ∈ Goodi andB ⊇ A
implyB ∈ Goodi.

3. Ri is representable by a positive propositional formula.

From now on, we assume that allocation problemsP are
represented in propositional form, namely, instead ofI, X
andR we only specify〈ϕ1, . . . , ϕN 〉. I andX are obviously
determined from〈ϕ1, . . . , ϕN 〉.

Let P = 〈ϕ1, . . . , ϕN 〉 be an allocation problem with di-
chotomous preferences; then for eachi ≤ N , we rewriteϕi

into ϕ∗
i obtained fromϕi by replacing every variablex∗ by

the new symbolxi. For instance, ifϕ1 = a ∧ (b ∨ c) and
ϕ2 = a ∧ d thenϕ∗

1 = a1 ∧ (b1 ∨ c1) andϕ∗
2 = a2 ∧ d2.

For all i ≤ N , letXi = {xi, x ∈ X} An allocation for
a standard allocation problemP corresponds to a model of
V = X1∪. . .∪XN satisfyingat mostonexi for eachx ∈ X .
In other terms, there is a bijective mapping between the set of



possible allocations and the models of the following formula
ΓP =

∧

x∈X

∧

i6=j ¬(xi ∧ xj)
If allocation are required to be complete, thenΓP is replaced
by ΓC

P = ΓP ∧
∧

x∈X(x1∨ . . .∨xn). The rest in unchanged.
Let V = {xi | i = 1, . . . , N, x ∈ X}. Any interpretation

M ofMod(ΓP) is such that it is never the case thatxi andxj

are simultaneously true fori 6= j, therefore we can mapM ∈
Mod(ΓP) to an allocationF (π) = M simply defined by
π(i) = {x |M |= xi}. This mapping is obviously bijective,
and we denoteF−1(M) the allocation corresponding to an
interpretationM of Mod(ΓP ).

3.1 Envy-freeness
We now show how the search for an envy-free allocation can
be mapped to a satisfiability problem. Letϕ∗

j|i be the formula
obtained fromϕ∗

i by substituting every symbolxi in ϕ∗
i by

xj : for instance, ifϕ∗
1 = a1 ∧ (b1 ∨ c1) thenϕ∗

2|1 = a2 ∧

(b2 ∨ c2). (Obviously,ϕ∗
i|i = ϕ∗

i .)

Proposition 2 LetP = 〈ϕ1, . . . , ϕN 〉 be an allocation prob-
lem with dichotomous preferences under propositional form,
and the formulasϕ∗

j|i and mappingF as defined above. Let

ΛP =
∧

i=1,...,N

[

ϕ∗
i ∨

(

∧

j 6=i ¬ϕ
∗
j|i

)]

Thenπ is envy-free if and only ifF (π) |= ΛP .

The proof is simple, so we omit it. The search for envy-free
allocations can thus be reduced to a satisfiability problem:
{F−1(M) |M |= ΓP∧ΛP } is the set of envy-free allocations
for P Note that, importantly,ΓP ∧ΛP has a polynomial size
(precisely, quadratic) in the size of the input data.

Example 2
ϕ1 = a ∨ (b ∧ c); ϕ2 = a; ϕ3 = a ∨ b.
ΛP = ((a1 ∨ (b1 ∧ c1))∨ (¬(a2 ∨ (b2 ∧ c2))∧¬(a3 ∨ (b3 ∧ c3)))
∧ (a2 ∨ (¬a1 ∧ ¬a3)) ∧ ((a3 ∨ b3) ∨ (¬(a1 ∨ b1) ∧ ¬(a2 ∨ b2));
Mod(ΓP ∧ ΛP ) = {{c1}, {c1, b3}, {c2, b3}, {c2}, {b3}, {c3}, ∅}.
There are therefore 7 envy-free allocations, namely(c,−,−),
(c,−, b), (−, c, b), (−, c,−), (−,−, b), (−,−, c) and
(−,−,−). Note that none of them is complete.

3.2 Efficient allocations
Definition 5 Let∆ = {α1, . . . , αm} a set of formulae andβ
a formula.S ⊆ ∆ is a maximalβ-consistent subset of∆ iff
(a)

∧

S ∧ β is consistent and (b) there is noS′ such thatS ⊂
S′ ⊆ ∆ and

∧

S′ ∧ β is consistent. LetMaxCons(∆, β) be
the set of all maximalβ-consistent subsets of∆.

Proposition 3 Let P = 〈ϕ1, . . . , ϕN 〉 an allocation prob-
lem. LetΦP = {ϕ∗

1, . . . , ϕ
∗
N}. Thenπ is efficient forP if

and only if{ϕ∗
i | F (π) |= ϕ∗

i } is a maximalΓP -consistent
subset ofΦP .

This simple result, whose proof is omitted, suggests that ef-
ficient allocations can be computed from the logical expres-
sion Φ of the problem, namely, by computing the maximal
ΓP -consistent subsets ofΦ; call them{S1, . . . , Sq}. Then for
eachSi, letMi = Mod(

∧

Si ∧ ΓP ) and letM = ∪q
i=1Mi.

ThenF−1(M) is the set of all efficient allocations forΦ3.

3Note that there are in general exponentially many maximalΓP -
consistent subsets ofΦ (and therefore exponentially many efficient

Example 2 (cont’d) The maximalΓP -consistent subsets of
Φ are S1 = {ϕ∗

1, ϕ
∗
2}, S2 = {ϕ∗

1, ϕ
∗
3} andS3 = {ϕ∗

2, ϕ
∗
3}.

∧

S1 ∧ ΓP has only one model:{b1, c1, a2}.
∧

S2 ∧ ΓP has
two models:{a1, b3} and {b1, c1, a3}.

∧

S3 ∧ ΓP has one
model: {a2, b3}. Therefore the four efficient allocations for
P are (bc, a,−), (a,−, b), (bc,−, a) and (−, a, b). None of
them is envy-free.

3.3 Efficient and envy-free allocations
We are now in position of putting things together. Since
envy-free allocations corresponds to the models ofΛP and
efficient allocations to the models of maximalΓP -consistent
subsets ofΦP , the existence of an efficient and envy-free
(EEF) allocation is equivalent to the following condition:
there exists a maximalΓP -consistent subsetS of ΦP such
that

∧

S ∧ ΓP ∧ ΛP is consistent. In this case, the models
of the latter formula are the EEF allocations. Interestingly,
this is an instance of a well-known problem in nonmonotonic
reasoning:

Definition 6 A supernormal default theory4 is a pair D =
〈β,∆〉 with ∆ = {α1, . . . , αm}, whereα1, . . . , αm and β
are propositional formulas. A propositional formulaψ is a
skeptical consequence ofD, denoted byD |∼∀ ψ, if and only
if for all S ∈MaxCons(∆, β) we have

∧

S ∧ β |= ψ.

Proposition 4 Let P = 〈ϕ1, . . . , ϕN 〉 a fair division prob-
lem. LetDP = 〈ΓP ,ΦP 〉. Then there exists an efficient and
envy-free allocation forP if and only ifD 6|∼∀ ¬ΛP .

This somewhat unexpected connection to nonmonotonic
reasoning has several implications. First, EEF allocations
correspond to the models of

∧

S ∧ ΓP ∧ ΛP for S ∈
MaxCons(ΦP ,ΓP ); however,MaxCons(ΦP ,ΓP ) may be
exponentially large, which argues for avoiding to start com-
puting efficient allocations and then filtering out those that
are not envy-free, but rather compute EEF allocations in a
single step, using default reasoning algorithms thus, fairdi-
vision may benefit from computational work in default logic
and connex domains such as belief revision and answer set
programming. Moreover, alternative criteria for selecting ex-
tensions in default reasoning (such as cardinality, weights or
priorities) correspond to alternative efficiency criteriain allo-
cation problems.

4 Allocation problems with dichotomous
preferences: complexity

It is known that skeptical inference isΠp
2-complete[Gottlob,

1992]; now, after Proposition 4, the problem of the existence
of an EEF allocation can be reduced to the complement of a
skeptical inference problem, which immediately tells thatit

allocations). This can be tempered by (a) there are many practical
cases where the number of maximal consistent subsets is small; (b)
it is generally not asked to look forall efficient allocations; if we
look for just one, then this can be done by computing one maximal
ΓP -consistent subset ofΦ.

4“Supernormal” defaults are also called “normal defaults without
prerequisites” (e.g.,[Reiter, 1980]).



is in Σp
2. Less obviously, we now show that it is complete for

this class, even if preferences are required to be monotonous.
Let us first note that skeptical inference remainsΠp

2-
complete under these two restrictions (to which we refer as
RSI, for RESTRICTED SKEPTICAL INFERENCE): (a)ψ = ϕ1;
(b) n ≥ 2. (Here is the justification:∆ |∼ ψ if and only
if ∆ ∪ {ψ, ψ} |∼ ψ.) Equivalently,RSI is the problem of
deciding whether, given∆ = 〈α1, . . . , αn〉 with n ≥ 2, all
maximal consistent subsets of∆ containα1.

Proposition 5 The problemEEF EXISTENCEof determining
whether there exists an efficient and envy-free allocation for a
given problemP with monotonous, dichotomous preferences
under logical form isΣp

2-complete.

We show hardness by the following reduction fromRSI
(the complement problem ofRSI) to EEF EXISTENCE. Given
any finite set∆ of propositional formulae, letV∆ = V ar(∆)
the set of propositional symbols appearing in∆, and let
P = H(∆) the following instance ofEEF EXISTENCE:

(1) I = {1, 2, ..., n+ 2};

(2)
X = {vi|v ∈ V∆, i ∈ 1...n} ∪ {v̄i|v ∈ V∆, i ∈ 1...n}

∪ {xi|i ∈ 1...n} ∪ {y};

(3) for eachi = 1, . . . , n, let βi be obtained fromαi by the
following sequence of operations: (i) putαi into NNF form
(let α′

i be the result); (b) for everyv ∈ V∆, replace, inα′
i,

each (positive) occurrence ofv by vi and each occurrence of
¬v by v̄i; let βi be the formula obtained. Then

• ϕ1 = β1 ∨ x1;

• for i = 2, . . . , n, ϕi = βi ∧ xi;

• ϕn+1 =
((

∧

v∈V ar(∆)

(
∧n

i=1 v
i
)

∨
(
∧n

i=1 v̄
i
)

)

∧ x1
)

∨y;

• ϕn+2 = y.

Lemma 1 An allocationπ for P is said to beregularif and
only if for all i 6= n, π(i) ⊆ σ(i), where

• for all i 6= n, σ(i) =
⋃

v∈V∆
{vi, v̄i}

⋃

{xi};

• σ(n+ 1) =
⋃

v∈V∆,i=1,...,n{v
i, v̄i}

⋃

{x1, y};

• σ(n+ 2) = {y}.

Let nowπR defined byπR(i) = π(i) ∩ σi. Then

1. πR is regular;

2. π is efficient if and only ifπR is is efficient;

3. if π is envy-free thenπR is is envy-free.

Proof: (1) is obvious. For alli, the goods outsideσ(i) do
not have any influence on the satisfaction ofi (since they
do not appear inαi), thereforeπR(i) ∼i π(i), from which
(2) follows. The formulasαi being positive, the preference
relations�i are monotonous, thereforeπ(j) �i πR(j) holds
for all i, j. Now, if π is envy-free then for alli, j we have
π(i) �i π(j), thereforeπR(i) ∼i π(i) �i π(j) �i πR(j)
andπR is envy-free, from which (3) follows. �

Lemma 2 If π is regular then

1. 1 can only envyn+ 1;

2. 2, . . . , n envy noone;

3. n+ 1 can only envyn+ 2;

4. n+ 2 can only envyn+ 1;

Proof: First, note that for anyi, j 6= i, i enviesj if and only
if π(i) |= ¬ϕi andπ(j) |= ϕi.
1. Let i = 1 andj ∈ {2, . . . , n, n + 2}. Assume 1 envies
j. Thenπ(j) |= ϕ1. π being regular,x1 6∈ π(j), therefore
π(j) |= β1. Now, sinceπ is regular,π(j) does not contain
any vi nor any v̄i; now, β1 can only be made true by
variablesvi or v̄i (which cannot be the case here) unless it is
a tautology. Now, ifβ1 is a tautology, then 1 is satisfied byπ
and cannot envyj, a contradiction.
2. Let i ∈ {2, . . . , n} and j 6= i. If i enviesj then
π(j) |= βi ∧ xi, which is impossible becausexi 6∈ π(j), due
to the regularity ofπ.
3. Leti = n+ 1. Assumen+ 1 envies 1 thenπ(1) |= ϕn+1.
Sinceπ(1) |= y is impossible (becauseπ is regular), we have
π(1) |=

∧

v∈V∆

(
∧n

i=1 v
i
)

∨
(
∧n

i=1 v̄
i
)

∧ x1, which implies
that eitherπ(1) |=

∧

v∈V∆

(
∧n

i=1 v
i
)

or π(1) |=
(
∧n

i=1 v̄
i
)

.
Both are impossible becauseπ is regular andn ≥ 2. The
casej ∈ {2, . . . , n} is similar.
4. Let i = n + 2 andj 6= n. If i enviesj thenπ(j) |= y,
which is impossible becauseπ is regular. �

Lemma 3 Letπ be a regular allocation satisfyingn+ 1 and
n + 2. LetM(π) be the interpretation onV∆ obtained from
π by: for all v ∈ V∆, M(π) |= v (i.e., v ∈ M(π)) if n + 1
receives̄v1, . . . , v̄n, andM(π) |= ¬v otherwise, i.e., ifn+ 1
receivesv1, . . . , vn. Thenπ is envy-freeiff M(π) |= α1.

Proof: Let π be a regular allocation satisfyingn + 1 and
n + 2. Sinceπ satisfiesn + 2, y ∈ π(n + 2). Now, π
satisfiesn + 1 without giving him y, therefore, for anyv,
n + 1 receives either all thevi’s or all the v̄i’s. This shows
that our definition ofM(π) is well-founded. Now, sinceπ
is regular, it is envy-free if and only if (a) 1 does not envy
n+1, (b) n+1 does not envy n+2 and (c) n+2 does not envy
n+1. Sincen + 1 andn+ 2 are satisfied byπ, we get thatπ
is envy-free if and only if 1 does not envy n+1, that is, if and
only if eitherπ(1) |= ϕ1 or π(n + 1) 6|= ϕ1. Now,π(n + 1)
containsx1, thereforeπ(n + 1) |= ϕ1, which entails thatπ
is envy-free if and only ifπ(1) |= ϕ1. This is equivalent to
π(1) |= β1, because1 does not getx1 (which is assigned to
n+1), which in turn is equivalent toM(π) by construction.�

Lemma 4 For each interpretationM overV∆, let us define
πM : I → 2X by:
• πM (1) = {v1 |M |= v} ∪ {v̄1 |M |= ¬v};
• for each i ∈ 2, . . . , n, πM (i) = {vi | M |= v} ∪
{v̄i |M |= ¬v} ∪ {xi};

• πM (n + 1) = {x1} ∪ {v̄i | M |= v, i = 1, . . . , n} ∪
{vi |M |= ¬v, i = 1, . . . , n};

• πM (n+ 2) = {y}

Then:
1. πM is a well-defined and regular allocation satisfying
n+ 1 andn+ 2;

2. MπM
= M (MπM

is obtained fromπM as in Lemma3).

3. for anyi ∈ 1, . . . , n, πM satisfiesi iff M |= αi.



4. πM is efficient iffM satisfies a maximal consistent sub-
set of∆.

Proof:
1. πM does not give the same good to more than one individ-
ual, therefore it is an allocation. The rest is straightforward.

2. if M |= v thenπM (n + 1) contains{v̄i | i = 1, . . . , n}
and thereforeM(πM ) |= v. The caseM |= ¬v is similar.

3. let i ∈ 2, . . . , n. SinceπM givesxi to i, πM satisfiesi if
and only ifπM (i) |= βi, which is equivalent toM |= αi. If
i = 1 then, sinceπM does not givex1 to 1, πM satisfies1 if
and only ifπM (1) |= β1, which is equivalent toM |= α1.

4. from point 3,{i, πMsatisfiesi} = {i,M |= αi}. Now,
since preferences are dichotomous, an allocationπ is
efficient if and only if the set of individuals it satisfies is
maximal with respect to inclusion. Therefore,πM is efficient
if and only ifM satisfies a maximal consistent subset of∆. �

Lemma 5 Letπ be a regular and efficient allocation satisfy-
ingn+1 andn+2. ThenM(π) satisfies a maximal consistent
subset of∆.

Proof: π is regular and satisfiesn + 1 andn + 2, therefore
π(n + 2) = {y}, x1 ∈ π(n + 1), andM(π) is well-defined.
Let π′ obtained fromπ by

• π′(1) = {v1|M(π) |= v} ∪ {v̄1|M(π) |= ¬v};

• for eachi = 2, . . . , n: π′(i) = {vi|M(π) |= v} ∪
{v̄i|M(π) |= ¬v} ∪ {xi};

• π′(n+1) = {x1}∪{vi|M(π) |= ¬v}∪{v̄i|M(π) |= v};

• π′(n+ 2) = {y}.

π being regular and satisfyingn + 1 andn + 2, we have
π(n + 1) = π′(n + 1), π(n + 2) = π′(n + 2), and then for
eachi, π(i) ⊆ π′(i): indeed, letj ∈ {2, . . . , n} (for n + 1
andn + 2 this inclusion is obviously satisfied); then (a)π
is regular, thereforeπ(j) ⊆ σ(j); now, all goods ofσ(j)
are either inπ′(j) or in π(n + 1) (namely:x1 if j = 1 and
all the vj such thatM(π) |= ¬v and all thev̄j such that
M(π) |= v); therefore,π(j) ⊆ π′(j) ∪ π(n + 1), which,
together withπ(1) ∩ π(n + 1) = ∅, impliesπ(j) ⊆ π′(j).
Since preferences are monotonous, all individuals satisfied
byπ are satisfied byπ′ as well; and sinceπ is efficient,π and
π′ satisfy the same set of individuals. Now, we remark that
π′ = πM(π). By Lemma 4,π′ is efficientiff M(π) satisfies a
maximal consistent subset of∆, from which we conclude.�

Lemma 6 Any envy-free and efficient allocation forP sati-
fiesn+ 1 andn+ 2.

Proof: Supposeπ doesn’t satisfyn + 1; theny 6∈ π(n + 1);
now, if y ∈ π(n+2) thenn+1 enviesn+2; if y 6∈ π(n+2)
thenπ is not efficient because givingy ton+2 would satisfy
n+ 2 and thus lead to a better allocation thanπ.
Now, supposeπ does not satisfyn + 1, i.e., y 6∈ π(n + 2);
if y ∈ π(n + 1) thenn + 2 enviesn + 1; if y 6∈ π(n + 1)
then again,π is not efficient because givingy to n+ 2 would
satisfyn+ 2 and thus lead to a better allocation thanπ. �

Lemma 7 If there exists an EEF allocation, then there exists
a maximal consistent subset of∆ containingα1.

Proof: Let π be an efficient and envy-free allocation. By
Lemma 1,πR is regular, efficient and envy-free. By Lemma
6, πR satisfiesn + 1 andn + 2. Then by Lemma 5,M(πR)
satisfies a maximal consistent subset of∆, and by Lemma
3, M(πR) |= α1. ThereforeSat(M(πR),∆) is a maximal
consistent subset of∆ and containsα1. �

Lemma 8 If there exists a maximal consistent subset of∆
containingα1 then there exists an EEF allocation.

Proof: Assume that there exists a maximal consistent subset
S of ∆ containingα1, and letM be a model ofS. By point
4 of Lemma 4,πM is efficient.
By point 1 of Lemma 4,πM is regular; then by Lemma 2,
πM is envy-free if and only if (i) 1 does not envyn + 1, (ii)
n + 1 does not envyn + 2 and (iii) n + 2 does not envy
n+ 1. By point 1 of Lemma 4,πM satisfiesn+ 1 andn+ 2,
therefore (ii) and (iii) hold. Lastly, by point 5 of Lemma 4,
M |= α1 implies thatπM satisfies1, therefore (i) holds as
well andπM is envy-free. �

Proof of Proposition 5: from Lemmas 7 and 8, the ex-
istence of a maximal consistent subset of∆ containingα1

and the existence of an efficient and envy-free allocation
for P = H(∆) are equivalent. Clearly,H is computed in
polynomial time. Therefore,H is a polynomial reduction
from RSI to EEF EXISTENCE, which shows that the latter
problem isΣp

2-hard, and thereforeΣp
2-complete. �

As a corollary, thisΣp
2-completeness result holds for gen-

eral (not necessarily monotonous) dichotomous preferences.
As a consequence of this high complexity, it is worth study-

ing restrictions and variants of the latter problem for which
complexity may fall down. We start by consideringidentical
dichotomous preference profiles, that is, all agents have the
same preference, i.e. the same formulaϕ.

Proposition 6 EEF EXISTENCE with N identical dichoto-
mous, monotonous preferences isNP-complete, for any fixed
N ≥ 2.

Due to space limitations the proofs of this result and the
following ones are omitted5. Note that we have here a hard-
ness result for anyfixednumber of agents (≥ 2). Things are
different with Proposition 5, for which hardness does not hold
whenN is fixed. Namely, the following holds forN = 2:

Proposition 7 EEF EXISTENCE for two agents with
monotonous dichotomous preferences isNP-complete.

Unlike Proposition 5, these results are sensitive to whether
preferences are required to be monotonous or not.

Proposition 8 EEF EXISTENCE with N identical dichoto-
mous preferences iscoBH2-complete, for any fixedN ≥ 2.

Proposition 9 EEF EXISTENCE for 2 agents with dichoto-
mous preferences iscoBH2-complete.

Complexity decreases as well if we weaken Pareto-efficiency
by only requiring allocations to becomplete:

5They can be found in the long version of the paper, accessibleat
http://www.irit.fr/recherches/RPDMP/persos/JeromeLang/papers/eef.pdf.



Proposition 10 The existence of a complete envy-free allo-
cation for agents with monotonous, dichotomous preferences
is NP-complete, even for 2 agents with identical preferences.
Lastly, replacing Pareto-efficiency by an utilitarianistic notion
of efficiency results in a complexity decrease as well:
Proposition 11 The existence of an envy-free allocation sat-
isfying a maximal numberof agents with monotonous di-
chotomous preferences isΘp

2-complete.

5 Non-dichotomous preferences
We now consider the case where preferences are no longer
dichotomous. Again, since an explicit description of prefer-
ences is exponentially large, the need for a compact descrip-
tion thereof is clear. Many languages exist for succinct rep-
resentation of preference. However, Proposition 5 extendsto
any language, provided that (a) it extends propositional logic,
i.e., it is able to express compactly any dichotomous pref-
erence represented by a propositional formula; (b) comparing
two sets of goods can be done in polynomial time. Conditions
(a) and (b) are met by many languages for succinct represen-
tation of preference6. Under assumptions (a) and (b):
Corollary 1 EEF EXISTENCE with monotonous preference
under logical form isΣp

2-complete.

For the latter result preferences do not have to be numerical
since Pareto efficiency and envy-freeness are purely ordinal
notions. Now, if preferences are numerical, which implies the
possibility of intercomparing and aggregating preferences of
several agents, then, besides Pareto-efficiency, we may con-
sider efficiency based on social welfare functions. We con-
sider here only the two most classical way of aggregating a
collection of utility functions〈u1, . . . , un〉 into a social wel-
fare functionsw: utilitarianism (sw =

∑

i ui) and egalitari-
anism (sw = mini ui).
Proposition 12 Given a collection of utility functions on2R

given in compact form:
• the problem of the existence of an envy-free allocation

maximizing utilitarian social welfare is∆p
2-complete,

even ifN = 2.

• the problem of the existence of an envy-free allocation
maximizing egalitarian social welfare is∆p

2-complete,
even ifN = 2.

A last case that has not been considered is the case ofaddi-
tivenumerical preferences. In the latter case, the utility func-
tion of agenti ≤ N is simply expressed by thep numbers
ui({xj}), j = 1, . . . , p. While the existence of acomplete
envy-freeallocation is easily shown to beNP-complete (see
[Lipton et al., 2004]), things become much harder withEEF
EXISTENCE: all we know is that this problem isNP-hard and
in Σp

2, but its precise complexity remains an open problem.

6For the sake of illustration, we pick here one of the most sim-
ple ones, similar to those used for combinatorial auctions:agents’
preferences are numerical (i.e., utility functions) and are represented
by a set of propositional formulas, each of which is associated with
a weight denoting its importance; the utility of a set of goods is
the sum of the weights of the formulas satisfied. Preferencesare
monotonous if all formulas are positive and all weights are positive.
See for instance[Lang, 2004] for a survey of logical languages for
compact preference representation.

6 Concluding remarks
We have identified the exact complexity of the key problem
of deciding whether there exists an efficient and envy-free
allocation when preferences are represented compactly, in
several contexts; we have also considered variations of the
problem. We have also drawed connections to a well-studied
problem in nonmonotonic reasoning. The next step will
consist in designing and experimenting algorithms for the
search of an EEF allocation (when it exists) and approxima-
tion notions for defining optimal allocations when there is
no EEF allocation (see[Lipton et al., 2004] for approximate
envy-freeness, although not coupled with efficiency).
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