Learning Ordinal Preferences on Multiattribute
Domains: the Case of CP-nets*

Yann Chevaleyre!, Frédéric Koriche?, Jérome Lang!, Jérome Mengin®, and
Bruno Zanuttini*

1 LAMSADE, Université Paris-Dauphine, CNRS, France
lang@lamsade.dauphine.fr, yann.chevaleyre@lamsade.dauphine.fr
2 LIRMM, Université Montpellier IT, CNRS, France
frederic.koriche@lirmm.fr
3 IRIT, Université Paul Sabatier, CNRS, France
jerome.mengin@irit.fr
4 GREYC, Université de Caen Basse-Normandie, CNRS, ENSICAEN, France
bruno.zanuttini@info.unicaen.fr

Abstract. A recurrent issue in decision making is to extract a preference
structure by observing the user’s behavior in different situations. In this
paper, we investigate the problem of learning ordinal preference orderings
over discrete multi-attribute, or combinatorial, domains. Specifically, we
focus on the learnability issue of conditional preference networks, or CP-
nets, that have recently emerged as a popular graphical language for
representing ordinal preferences in a concise and intuitive manner. This
paper provides results in both passive and active learning. In the passive
setting, the learner aims at finding a CP-net compatible with a supplied
set of examples, while in the active setting the learner searches for the
cheapest interaction policy with the user for acquiring the target CP-net.

1 Introduction

Suppose we observe a user expressing her preferences about airplane tickets.
Namely, she prefers an Aeroflot flight landing at Heathrow to a KLM flight
landing at Gatwick, while she prefers an Aeroflot flight landing at Heathrow to a
KLM flight landing at Heathrow. An intuitively correct hypothesis that explains
her behavior is that she prefers Aeroflot to KLM unconditionally, and Heathrow
to Gatwick, again unconditionally. Such an hypothesis allows for predicting that
she will prefer an Aeroflot flight landing at Heathrow to anything else, and an
Aeroflot flight landing at Gatwick to a KLM flight landing at Gatwick. Yet,
this hypothesis is not able to predict whether she will prefer an Aeroflot flight
landing at Gatwick or a KLM flight landing at Heathrow. Now, if we observe
later that she prefers a KLM flight landing at Gatwick to a KLM flight landing at
Heathrow, the current hypothesis must be updated. A new possible hypothesis,

* Partially supported by the ANR projects CANAR (ANR-06-BLAN-0383-02) and
PHAC (ANR-05-BLAN-0384-01)

2 Chevaleyre, Koriche, Lang, Mengin, Zanuttini

among others, could be that she prefers Aeroflot to KLM, and Heathrow to
Gatwick when flying on Aeroflot and wvice versa when flying on KLM.

The learning problem underlying this scenario is to extract a preference struc-
ture by observing the user’s behavior in situations involving a choice among
several alternatives. Each alternative can be specified by many attributes, such
as the flight company, the airport location, the arrival and departure time, the
number of transits, and so on. As a result, the space of possible situations has
a combinatorial structure. Furthermore, the preferences induced by the user’s
behavior are intrinsically related to conditional preferential independence, a key
notion in multiattribute decision theory [20]. Indeed, the initial hypothesis is un-
conditional in the sense that the preference over the values of each attribute is
independent of the values of other attributes. By contrast, in the final hypothesis,
the user’s preference between airports is conditioned by the airline company.

Preferences over combinatorial domains have been investigated in detail by
researchers in multiattribute Decision Theory (DT) and Artificial Intelligence
(AI). In multiattribute DT, researchers have focused on modeling preferences,
that is, giving axiomatic characterizations of classes of preference relations or
utility functions, while researchers in Al have concentrated on the development
of languages for representing preferences that are computationally efficient; such
languages have to express preferences as succinctly as possible, and to come with
fast algorithms for finding optimal alternatives.

These classes of models and languages can be partitioned by examining the
mathematical nature of the preferences they consider. Namely, a distinction is
made between ordinal preferences that consist in ranking the alternatives, and
numerical preferences consisting of utility functions mapping each alternative to
some number. Learning or eliciting numerical preferences has received a great
deal of attentions in the literature [7,9,10,16,18]. A related stream of work is
preference elicitation in the context of combinatorial auctions [26]; what has to
be learnt is the valuation function of every buyer, which associates with every
combination of goods the maximum value that she is ready to pay for it. Recently,
there has been a growing interest for learning ordinal preferences using numerical
models. Many standard machine learning methods, such as neural networks [8]
or support vector machines [14], have been adapted to this framework, often
called learning to rank instances by the machine learning community.

In contrast, learning preferences using ordinal models has received much less
attention. In fact, the most studied model is the lexicographic preference model
that provides ordering relations between examples described as pairwise com-
parisons between tuples of values. Dombi et al. [13] propose a learning algorithm
that elicits a lexicographic preference model by guiding the user through a se-
quence of queries involving test examples. Although it is possible to determine in
polynomial time whether there exists a lexicographical model compatible with a
set of such examples, Schmitt and Martignon [27] show that the corresponding
optimization problem of minimizing preference disagreement is NP-hard, and
can even not be approximated in polynomial time to within a constant factor.
They also give the Vapnik-Chervonenkis dimension of lexicographical preference

Learning CP-nets 3

relations: it is equal to the number of attributes. Finally, Yaman et al. [32] do not
commit to a single lexicographic preference relation but approximate the target
using the votes of a collection of consistent lexicographic preference relations. In
a nutshell, learning lexicographic preference relations proves not to be so hard,
but this comes with a price, namely, the induced hypothesis is highly restrictive.

In this paper, we examine a different class of ordinal preference models,
where the hypotheses we make bear on the preferential dependence structure.
As emphasized in the above scenario, a key point when dealing with ordinal
preferences on combinatorial domains is the dependence structure between at-
tributes. To this point, conditional preference networks, also known as CP-nets,
are a graphical language for representing preferences based on conditional prefer-
ential independence [5]. Informally, a CP-net consists in a collection of attributes
pointing to a (possibly empty) set of parents, and a set of conditional tables as-
sociated to each attribute, expressing the local preference on the values of the
attribute given all possible combinations of values of its parents. The transitive
closure of these local preferences is a partial order over the set of alternatives,
which can be extended into several total orders. CP-nets and their generaliza-
tions are probably the most popular compact representation language for ordinal
preferences in multiattribute domains.

While many facets of CP-nets have been studied into detail, such as consis-
tency, dominance checking, and optimization (constrained and unconstrained),
the problem of learning CP-nets from examples have only rarely, and very re-
cently, been addressed. One exception is [12], who proposed an algorithm that,
given a set of examples, outputs a CP-net which implies them (see Section 5 for
more details). Although not directly concerned with CP-nets, a related work is
[25] which proposes to learn preference theories in the sense of [15].

The aim of this position paper is to examine the problem of learning CP-nets
according to several dimensions that naturally emerges in preference learning. A
first dimension is to consider whether the user’s preferences are representable, or
not, by a CP-net. If the target preference relation can be described by a CP-net,
the goal is to identify this network. Alternatively, if the target preference relation
is not representable by a CP-net, we can only hope finding an approximation
of it. Among the candidate approximations, some of them are particularly rel-
evant from a reasoning viewpoint. From this perspective, we shall concentrate
on finding CP-nets for which the target relation is a “completion” of the hy-
pothesized relation. Orthogonally, a second dimension in CP-net learning is to
consider whether the learning process is merely passive, by simply observing
the user’s behavior in given situations, or active, by allowing the learner to test
the user’s behavior in some carefully chosen situations. In many contexts, it is
relevant to identify, or at least approximate, a CP-net by mixing both active
and passive learning. Consider for instance a system helping a user finding a flat
from a large database, such as in [29,30]. A flat is described by attributes such as
price, location, size etc. The system can start to extract a pool of preferences by
observing the user’s behavior, and then use queries in order to converge toward
the ideal hypothesis while minimizing the number of interactions.

4 Chevaleyre, Koriche, Lang, Mengin, Zanuttini

In the different learning models that arise from these dimensions, we will
investigate the learnability issues in terms of the worst-case number of resources
required to converge toward the desired CP-net, where resources refer both to
the running time, the sample complexity in passive learning, and the query com-
plexity in active learning. Section 2 provides the necessary background about
CP-nets. In Section 3, we extend the paradigm of concept learning to prefer-
ence learning and introduce two frameworks, one for the problem of learning
partial orderings that are representable by a CP-net, and the other for the prob-
lem of learning linear orderings that are not representable by a CP-net. Our
learnability results lie in the next three sections. Namely, section 4 focuses on
the VC-dimension and the approximate fingerprint property for classes of CP-
nets. Section 5 addresses passive learning of CP-nets. Section 6 considers active
learning of CP-nets. Finally, section 7 briefly discusses issues for further work.

Given that this is a position paper, the proofs of the results are only sketched,
or even omitted. They can be found in [11,21,23].

2 Conditional Preference Networks

Throughout this paper, we shall assume a finite list V = (Xy,...,X,,) of at-
tributes, with their associated finite domains D = (Dy,...,D,). An attribute
X, is binary if D; has two elements, which by convention we note x; and Z;. By
V = X x,evD;, we denote the set of all complete assignments, called outcomes.

For any nonempty subset X of V, we let X = X x,exD;. Elements of X
are called X-assignments and denoted using vectorial notation, e.g., . For any
disjoint subsets X and Y of V, the concatenation of assignments x € X and
y €), denoted xy, is the (X UY)-assignment which assigns to attributes in X
(resp. Y) the value assigned by x (resp. y).

A preference relation is a reflexive and transitive binary relation > over V. A
complete preference relation is a preference relation > that is connected, that is,
for every @,y € X we have either x = y or y = x. A strict preference relation
>~ is an irreflexive and transitive (thus asymmetric) binary relation over V. A
linear preference relation is a strict preference relation that is connected. From
a preference relation = we define a strict preference relation in the usual way:
x -y iff x =y and not (y > x).

Preferences between outcomes that differ in the value of one attribute only,
all other attributes being equal (or ceteris paribus) are often easy to assert, and
to understand. CP-nets [5] are a graphical language for representing such pref-
erences. Informally, a CP-net is composed of a directed graph representing the
preferential dependencies between attributes, and a set of conditional preference
tables expressing, for each attribute, the local preference on the values of its
domain given all possible combinations of values of its parents.

Let us call a swap any pair of outcomes (x,y) that differ in the value of
one attribute only, and let us then call swapped attribute the attribute that has
different values in and y.

Learning CP-nets 5

Definition 1. Suppose that V' is partitioned into the subsets X, Y and Z. Let
> be a linear preference relation over V. Then, we say that X is preferentially
independent of Y given Z (w.r.t. >=) if for all x1, k2 € X, Yy1,y2 €Y, z € Z,

T1Y12 = T2y12 if and only if 1Ysz = oYz

Ezxample 1. Consider three binary attributes X;, Xo and X3 and suppose that
the four swaps on X5 are ordered as follows:

L1X2X3 > T1T2X3
T1ToXT3 > T1T2I3
T1T2T3 »— T1T2X3
T1T2T3 = T1T2T3

We can see that, irrespective of the value of Xj, if x; is the case, then zo
is preferred to T, whereas if T, is the case, then Ty is preferred to xo. This
ordering on the Xs-swaps with two conditional preferences: x1 : xo = Ty and
Tp : Ty > To. We remark that X5, given X, is preferentially independent of X3.

Definition 2. A CP-net N over V. ={Xy,---, X, } consists in a directed graph
over V', and a set of preference tables CPT(X;) associated to each X; € V. For
attribute X;, we denote by Pa(X;) the set of parents of X; in the graph of N,
and by NonPa(X;) the set V' \ ({X;} UPa(X);)).

Each conditional preference table CPT(X;) is a list of rows, also called entries
or rules, of the form w: z;, > --- > x; _, where w is an instantiation of Pa(X;)
and x;, > -+ = x;, is a linear ordering of the domain D; (with m = |D;|). It
indicates that wzx;; = uzw,,,, for every possible instantiation z of NonPa(X;).

Ezxample 2. A CP-net over the binary attributes X7, X5 and X3 is:

xr1 > T X1 X9 > To X9 1 XT3y > T3
ZT1 T2 ™ T2 To : T3 ™ I3

where ®—>@ means “X is a parent of Y. The associated ordering of

the swaps is:

L1X2X3 —» T1X2T3 —> T1T2T3 T1ToX3 — T1L2X3 — T1TL2T3
\ /V'
T1T2T3

where & — ¥ means “x is preferred to y”.

6 Chevaleyre, Koriche, Lang, Mengin, Zanuttini

The size of a CP-net N, denoted by |N|, is the number of entries in the
preference tables of N:

IN=> II 1%l

X,€V X;€Pa(X;)

which in the case of binary CP-nets boils down to [N| =)y oy 2IPa(Xi)l,

Although a CP-net only specifies an ordering of all swaps, we are naturally
interested in the transitive closure of this ordering; for a CP-net N, we write
> for this transitive closure. Note that this relation > may not be total, and
it may not be a irreflexive since it may contain cycles. Yet, we know from [5]
that if the graph of N is acyclic, then >y is a strict preference relation (i.e.
contains no cycles), and we say that N is consistent. Otherwise, we say that N
is inconsistent. Note that even if IV is consistent, > may still not be connected;
it can then be completed in a number of linear preference relations. If > is one
of them, we say that > is a completion of N, or that it is compatible with N.

It is important to keep in mind that several CP-nets can induce the same
preference relation: for example, if a CP-net N over the binary attributes X3
and X5 contains the table x5 : 1 = T and Ty : 1 > Ty, then the CP-net N’
in which X; has no parent and the table x; > 77 is equivalent to N. In general,
for every consistent CP-net N there is a unique CP-net N’ equivalent to N that
is minimal in the number of parents/table entries for each variable.

It is easy to verify that every linear preference relation is compatible with
exactly one (minimal) CP-net. For instance, x1z9 = T1T2 = x1T2 > T1Za is
compatible with the CP-net

To 1 X1 > T X1 X > T2
T2 1 T1 » T T1:T2 = T2

The following property will be frequently used in the remaining sections.

Proposition 1. ([5]) Let N be an acyclic CP-net and x, y two outcomes. Then
x =N y iff there is a sequence of swaps (x°, '), (x',x?),..., ("1, x*) such
that ° = x, ¥ =y, and for every 0 < i < k, ' = 'L, that is, if X;, is the
attribute swapped between x* and ', and if u is the vector of values commonly
assigned by « and y to the parents of X;,, then N contains u : x; - a:;H

Though a CP-net is usually defined as above, most of the results presented
here extend to possibly incomplete CP-nets. Such a CP-net is one in which each
conditional preference table C PT(X;) contains at most one conditional prefer-
ence rule per instantiation of Pa(X;) (instead of exactly one). A particular case
is when some of the tables are empty. The semantics of an incomplete CP-net is
still given by the transitive closure of the dominance relation on swaps induced
by the rules. An important difference is that in an incomplete CP-net, not all
swaps are comparable.

Learning CP-nets 7

The rationale for considering incomplete CP-nets can be understood with
the following example. A user may well know that she prefers traveling by bus
rather than in the subway in Paris, vice-versa in London, but be unable to state
her preference for a city in which she has never been, say Madrid. This does not
mean that she would not have a preference, rather that she does not know it
(so far). In this case, a variable encoding the transportation means (with values
subway and bus) would have the variable encoding the city as its parent, with
values Paris, London, and Madrid, but would contain only two rules.

3 Learning CP-nets: learning what?

The problem of concept learning is to extrapolate from a collection of examples,
each labeled as either positive or negative by some unknown target concept,
a representation of this concept that accurately labels future, unlabeled exam-
ples. Most concept learning algorithms operate over some concept class, which
captures the set of concepts that the learner can potentially generate over all
possible sets of training examples.

In the setting suggested by our framework, a concept is a strict preference
relation > over V. We say that a concept > is representable by a CP-net NV
if the induced ordering >y coincides with >, that is, >==>y. For example,
the preference relation >~ defined by {ab = ab,ab = @b,ab = ab,ab = ab} is
representable by the CP-net N specified by {a : b = b,@:b = b, b:a = a,b:
a - a}. A representation class is a collection N of consistent CP-nets, and the
concept class Cpr defined over N is the set of all preference relations >~ that are
representable by a CP-net N in N.

Since we consider consistent CP-nets only, any target concept > in a class
Cnr can be represented by a unique minimal CP-net N. So, with a slight abuse
of language, we shall simply say that Cy is the class of all CP-nets in A/. For
instance, the concept class C,cy is the class of all acyclic CP-nets; and Crggg is
the class of tree-structured CP-nets.

With these notions in hand, we assume that the user has in mind a target
preference ordering >, and the learner has at its disposal a predetermined and
known class of CP-nets Cxr. In this study, we shall consider two different types
of target concepts.

(A) The target concept is a preference relation > that belongs to the learner’s
concept class Car. In other words, there is a CP-net N in N, such that =y
coincides with . In this context, the goal of the learner is to find N.

(B) The target concept is a preference relation > that does not necessarily belong
to the learner’s concept class Cps. For example, we can easily observe that
the linear ordering ~ defined by {ab = @b = ab > @b} cannot be represented
by any CP-net. Still, we shall make the assumption that > is a completion
of some representation in N. Specifically, we say that > is a completion of
a CP-net N if >y vy implies > y for any pair of outcomes (x,y). For
example, the above ordering > is a completion of N = {a : b = b, @ : b =

8 Chevaleyre, Koriche, Lang, Mengin, Zanuttini

b,b:a>a,b:a > a}. In this “agnostic” setting, the goal of the learner is
to find a CP-net N of which > is a completion.

Note that the distinction between (A) and (B) is not on the set of objects
we want to learn, but on their interpretation, which has crucial consequences on
how examples are interpreted.

3.1 Learning a preference relation induced by a CP-net

Let us start with context (A) where the target concept is representable by a
CP-net N of some given representation class A/. Here, an instance, or ezample,
is a pair (x, y) of outcomes, and an instance class is a set € of examples. Given a
target concept >y, and an example (x,y), we say that (x,y) is positive for =y
if =y vy, that is, dominates y according to =p. Dually, (x,y) is negative
for =y if ¢ ¥ y. It is important to keep in mind that, in general, if the pair
(z,y) is a negative example of >y then the reverse pair (y, x) is not necessarily
a positive example of > .

In this context, our learning problem can be seen as a standard concept
learning problem: given a set 7 of positive and negative training examples, we
want to find a CP-net that “implies” all positive examples and no negative
example.

Definition 3. Let N be a CP-net over V. An example (x,y) is entailed by N
ifx =N y. A set of examples T is implicatively consistent with N, or implied
by N, if

— all positive examples in T are entailed by N;
— no negative example in T is entailed by N.

Finally, we shall say that a training set 7 is implicatively compatible if it is
implied by at least one CP-net.

3.2 Learning a CP-net which approximates the user’s preferences

Now, we turn to context (B) and make the assumption that the user’s preference
relation > is a linear order, in general not exactly representable by any CP-net.
In this framework, we start by examining an appropriate notion of consistency
between a CP-net and a training set. Consider the following example:

Ezample 3. We have two binary attributes X; and X5 (with domains {z1,Z}
and {x2,T2}), and the set of positive examples

T ={(z122, 21T2), (21T2, T122), (T122, T172)}

What do we expect to learn from the above set of examples 77 The transitive
closure of 7 is the complete preference relation x1xs > x1ZTo > T1ZT2 > T1To.
This preference relation is separable (the agent unconditionally prefers 1 to Ty

Learning CP-nets 9

and x2 to Ty). The fact that x1Ts is preferred to Tixo simply means that when
asked to choose between X; and X,, the agent prefers to give up Xo (think
of X7 meaning “getting rich” and X5 meaning “beautiful weather tomorrow”).
Intuitively, since 7 is separable, we expect to output a structure N that contains
x1 > T1 and z9 > To. However, no CP-net implies 7, whatever the dependencies.
The structure N induces a partial preference relation in which z1%> and Tixo
are incomparable. More generally, no ceteris paribus structure can “explain”
that 1 > T; is “more important” than zs > Ty (i.e., with no intermediate
alternative). Therefore, if we look for a structure implying all the examples, we
will simply output “failure”. On the other hand, if we look for a separable CP
structure that is simply contingent with the examples, i.e., that does not imply
the contrary of the examples, we will output N.

The explanation is that when an agent expresses a CP-net, the preference
relation induced by this CP-net is not meant to be the whole agent’s preference
relation, but a subset (or a lower approzimation) of it. In other terms, when
an agent expresses the CP-net IV, she simply expresses that she prefers x; to
Ty ceteris paribus (i.e., for a fixed value of X3) and similarly for the preference
Zo > To; the fact that 175 and Ty 25 are incomparable in N surely does not mean
that the user really sees them incomparable, but, more technically, that CP-nets
are not expressive enough for representing the missing preference z1Zy = Z;22°.

Therefore, in such cases we do not look for a CP-net which implies the ex-
amples. Rather, we look for one whose preference relation is consistent with the
examples. A first way of understanding consistency is to require that the learnt
CP-net N be such that the examples are consistent with at least one preference
relation extending N. Yet, there are cases where it may even be too strong to
require that one of the completions of >y contains all the examples, in partic-
ular if they come from multiple users (given that we want to learn the generic
preferences of a group of users), or a single user in different contexts:

Ezxample 4. Suppose that we learn that all users in a group unconditionally
prefer x1 to Ty and x5 to To, whereas their preferences between x1%> and Txo
may differ (think as x; and zs as, respectively, “being invited to a fine dinner”
and “receiving a $50 award”): then 7 2 {(Z1z2, 21T2), (21T2, T1x2)}. T is
clearly inconsistent, so there cannot be any preference structure whose ordering
can be completed into a linear preference relation that contains 7. However, if
N = {z1 > T1,x2 > T2}, then each example in 7 is (individually) contained in
at least one completion of > .

Such considerations lead us to define two new notions of compatibility of a
CP-net with a set of examples. Note that because the target concept is a linear
order, (x,y) is a negative example if and only if (y, x) is a positive one. For this
reason, we can make the assumption that all examples in the learner’s training
set T are positive, with the implicit knowledge that the reverse (y, x) of any pair
(z,y) in 7 is negative.

5 If we want to do this, we have to resort to a more expressive language such as
TCP-nets [6] or conditional preference theories [31].

10 Chevaleyre, Koriche, Lang, Mengin, Zanuttini

Definition 4. Let N be a CP-net over V. An example (x,y) is consistent by
completion with N if there is a completion = of =N such that x > y. Further-
more, we will say that a set of examples T is:

— strongly consistent by completion with N if there is a completion = of =N
such that for all (x,y) €T, x > y;

— weakly consistent by completion with N if every example (x,y) € T is
individually consistent by completion with N .

Lastly, we will say that 7 is strongly / weakly compatible if it is strongly
/ weakly consistent by completion with at least one CP-net. Clearly, strong
compatibility implies weak compatibility. Moreover, since an example (x,y) is
consistent by completion with a CP-net N if and only if (y, «) is not implied by
N, implicative compatibility implies strong compatibility.

As it stands, it turns out to be significantly more difficult to search for a
CP-net strongly or weakly consistent with a set of examples than to search
for a CP-net implicatively consistent with it. Therefore, we mainly focus on
implicative compatibility; strong and weak compatibility will only be discussed
in the context of separable CP-nets, that is, CP-nets where all variables are
independent.

4 Learnability of CP-nets

In this section we investigate the theoretical limits concerning the learnability
issue of CP-nets. In essence, the Vapnik-Chervonenkis dimension of a class gives
upper bounds on the difficulty to learn, in terms of numbers of examples, while
the approximate fingerprint property gives lower bounds.

4.1 Vapnik-Chervonenkis dimension

The Vapnik-Chervonenkis (VC) dimension of a class of concepts is a fundamental
complexity measure used in theoretical machine learning. Intuitively, the VC-
dimension of C is the maximum number of informative examples which can be
received by the learner, where an “informative” example is an observation that
helps the learner reducing the number of consistent hypotheses.

Formally, let C be a concept class defined over some representation class R.
A set of instances 7 is said to be shattered by C if, whatever the partition of
7 into 77 U T ™, there is a concept N € C which admits all instances in 7+
as positive examples and all instances in 7~ as negative examples. The Vapnik-
Chervonenkis dimension of C, denoted VC(C), is the maximum size of a set of
examples 7 which is shattered by C. The intuition is that for such a set 7, as
long as the learner ignores the label of at least one example, at least two concepts
in C are consistent with the labels it has seen so far.

When the learner has access only to a certain kind of example (e.g., swap
examples), it makes sense to adapt the notion of VC-dimension. So if £ is a class
of instances, we write VCg(C) for the VC-dimension of C with respect to £, that

Learning CP-nets 11

is, the maximum size of a 7 C £ which is shattered by C. Clearly, if £ C &', then
VCe(C) < VCe(C).

Observe that, as there are 2™ partitions of a set of m examples into positive
and negative examples, each of which must be captured by a different concept,
VC(C) < log, |C| always holds (whatever the class of examples).

We now give the VC-dimension of the class of all CP-nets which have a fixed
graph. The intuition here is that since the parents of each variable are known,
the quantity of information needed to characterize a CP-net is exactly 1 per
possible rule in the CP-net, namely, one pair of outcomes which dictates the
conclusion of the rule.

Call subgraph of G a graph with the same vertices as G but whose set of
edges is included in that of G.

Proposition 2. Let G be a graph, and let Cg be the class of all concepts which
are representable by a binary complete CP-net whose graph is G or a subgraph
of G. Then the VC-dimension of Cq with respect to swap examples is exactly
the number of conditional preference rules in any such CP-net. If CP-nets are
possibly incomplete, then the VC-dimension (w.r.t. swap examples) is still the
number of rules in any complete CP-net on (a subgraph of) G.

This property can help us finding an upper bound of the VC-dimension of
acyclic CP-nets. Intuitively, the number of acyclic graphs with indegree at most
k is lower bounded by |Cg| for a convenient graph with k& roots and n — k
vertices with indegree exactly k, and upper bounded by (n — 1)+ (for each
vertex, choose at most k parents). Since any binary-valued CP-net built over
an acyclic graph of degree at most k allows at most n2* entries, there are at
most (n — 1)”(k+1)2”2k binary-valued acyclic CP-nets with degree at most k. We
therefore obtain the following result.

Corollary 1. Let k € o(n), and let C¥., be the class of all concepts which are
representable by a possibly incomplete binary CP-net whose graph is acyclic and
with indegree at most k. Then, the VC-dimension of CF., with respect to swap

or arbitrary examples is in é(n2k)

Finally, without any restriction over the degree, it can be shown that the
VC-dimension grows as ©(2"), which is still much below the VC-dimension of
the class of all possible CP-nets.

Corollary 2. Let Cycy be the class of all concepts which are representable by
a possibly incomplete binary CP-net whose graph is acyclic. Then, the VC-
dimension of Cpoy with respect to swap examples is in O(27).

4.2 Approximate fingerprints

Approximate fingerprints are a powerful tool for obtaining non learnability re-
sults in active learning. Intuitively, a class of concepts C has the approximate
fingerprint property if there is a subset C* of C such that for any concept N € C,

12 Chevaleyre, Koriche, Lang, Mengin, Zanuttini

there is an example with which N is consistent, but with which only a super-
polynomially small fraction of the concepts in C* are also consistent.

This property can be used to show that in an interactive learning setting, a
hypothesis N € C may fail on an example which only gives clues about superpoly-
nomially few candidate hypotheses. Hence, if the learner only gets information
from such failures, in the worst case it necessarily makes an exponential number
of errors before correctly identifying the target concept. We refer the reader to
[2] for formal details.

As for the VC-dimension, the definition of approximate fingerprints can be
restricted to instance classes £. Observe that if £ C £ and C has the approximate
fingerprint property with respect to £, then it also has this property with respect
to &'.

Proposition 3 ([21]). Let Cyoy be the class of all concepts which are repre-
sentable by a binary complete CP-net whose graph is acyclic. Then Cycy has the
approximate fingerprint property with respect to swap examples.

Proposition 4 ([21]). Let Cirer be the class of all concepts which are repre-
sentable by a binary complete CP-net whose graph is a tree. Then Crpgg has the
approximate fingerprint property with respect to arbitrary examples.

5 Passive learning of CP-Nets

In this section, we investigate passive learning of CP-nets. In this setting, the only
information about the target concept available to the learner is a set of examples.
We shall concentrate here on the widely studied Probably Approzimately Correct
(PAC) learning model introduced by [28]. The intent of this model is to obtain
with high probability a representation that is a good approximation of the target
concept. To formalize the notion of a good approximation, we need to assume
that there is some fixed, but unknown, probability distribution D defined on the
example space &, from which the available examples were drawn. In our case, D
would define a probability over each instance (x,y). Given a target concept >,
we then define the error of an hypothesized CP-net N as the probability that
= and > g disagree on an example:

ermr(ﬁ) = Pr(gy)~p [(m =y and x g y) or (a: #yand T -5 y)]

How does one generate a good approximation? In the PAC model, one does
this by looking at an example set, in which each example (z, y) has been drawn
independently at random from the distribution D, and labeled with “+” (posi-
tive) if > y and with “—” (negative) if & ¥ y.

Thus, in the PAC setting, training and testing use the same distribution, and
there is no noise in either phase. A learning algorithm is then a computational
procedure that takes a sample of the target concept >, consisting of a sequence
of independent random examples of >, and returns a hypothesis. We can define
PAC learnability of CP-nets as follows.

Learning CP-nets 13

Definition 5 (PAC learning). A concept class Cnr is PAC learnable by an ez-
ample class € if there is a polynomial time learning algorithm A and a polynomial
p(+,+,) such that for any target concept = in Cnr over n variables, any probabil-
ity distribution D over £, and any parameters d,e¢ € (0,1), if the algorithm A

is given at least p(n, %, %) independent random examples of > drawn according

to D, then with probability at least 1 — 6, A returns a hypothesis N € N with
error(N) < e. The smallest such polynomial p is called the sample complexity
of the learning algorithm A.

The intent of this definition is that the learning algorithm must process the
examples in polynomial time, and must be able to produce a good approximation
of the target concept with high probability using only a reasonable number of
training examples.

It is important to emphasize that our learnability results are defined over
specific instance classes. In particular, if £ is the class of all swap instances,
then any distribution D over £ will assign a zero probability to any “non-swap”
instance. This restriction has deep consequences on the predictive power of CP-
nets. Namely, even if a positive learnability result with swap instances guaran-
tees that the hypothesized CP-net N is expected to correctly classify “swap”
instances drawn independently at random according to the distribution D, such
a result does not ensure that the learner will correctly classify arbitrary outcome
pairs. Indeed, even if the probability of making a mistake on swaps is low, the
probability of making a mistake on an arbitrary instance (x,y) may increase
along an improving sequence from y to x.

Many positive learnability results in the PAC model are obtained by showing
that (1) there is an efficient algorithm capable of finding a hypothesized repre-
sentation that is consistent by implication with a given sample of the target
concept (called a consistent algorithm), and (2) the sample complexity of any
such algorithm is polynomial.

The sample complexity of a consistent learning algorithm is usually measured
using the VC-dimension of the concept class Cpr. Indeed, it is shown in [4] that
the sample complexity of a consistent learning algorithm is at most

o
e(1=ve)

A preliminary work on passive learning of CP-nets is [12]. They give an
algorithm which, given a set of positive examples, outputs a CP-net that implies
them, under some conditions. It is not entirely clear yet which class of CP-nets
is learned by this algorithm.

(QVC(CN)lnf +In ?) (1)

5.1 PAC Learning of Acyclic CP-Nets

We first investigate PAC learnability of various classes of acyclic CP-nets when
the examples provided to the learner are swaps. Recall that for such examples,
the dominance test with acyclic CP-nets is linear-time solvable (simple lookup
in the conditional preference table), contrary to the general case.

14 Chevaleyre, Koriche, Lang, Mengin, Zanuttini

We first show that even for the restricted class of concepts which are repre-
sentable by a CP-net whose graph is a chain, the consistency problem is NP-
complete. It follows directly (unless P=NP) that this class is not PAC-learnable
with the very weak restriction that the produced hypothesis classifies correctly
the examples received.

Proposition 5. Deciding whether there exists a binary complete CP-net whose
graph is a chain and which implies a given set of swaps is NP-complete. The
result holds even if all examples are positive.

A proof based on a reduction from the Hamiltonian path problem can be
found in [11]. Another interesting class of CP-nets is that of acyclic singly-
connected CP-nets [5], that is, those acyclic CP-nets in whose graph each pair
of vertices is connected by at most one directed path. Unfortunately, again we
have a negative result for PAC learnability of such CP-nets.

Proposition 6. Deciding whether there exists a binary complete CP-net whose
graph is acyclic singly-connected and which implies a given set of swaps is NP-
complete. The result holds even if all examples are positive.

This result [11] can be proven with a reduction from propositional satisfia-
bility (SAT). We conjecture that a similar negative result holds for more general
classes of acyclic CP-nets.

We now turn to positive results with swaps. Observe that if Cpy is PAC
learnable with swaps and Car C Carv, then Cpr is not necessarily PAC learnable
with swaps as well. So our positive results do not contradict the negative ones.
The main result is that tree CP-nets are PAC-learnable from swaps.

Proposition 7. The class of all concepts which are representable by a (possibly
incomplete) tree binary CP-net is PAC-learnable from swap examples.

In addition, learning the structure of such a CP-net can be reduced to finding
a spanning tree in a directed graph [11]. Since in general there may be several
CP-nets which imply a given set of examples, it is interesting to impose some
restrictions, e.g., on the degree of the forest (maximum number of children of a
node). The next result states that the class of CP-nets whose graph is a forest
with degree at most k is improperly PAC-learnable (in quasi-polynomial time)
[11]. That is, it is “PAC-learnable”, but the hypothesis may be in a larger rep-
resentation class than the target concept.

Proposition 8. There is a quast-polynomial time algorithm which, given a set
of swaps T over n variables implied by a (possibly incomplete) binary-valued
CP-net whose graph is a forest of degree k, computes a binary-valued CP-net
which implies T and whose graph is a forest of degree at most k + logn.

Finally, we give a more general result about tree CP-nets with a bounded
number of tables on arbitrary examples. By Cayley’s formula, we know that there
are k*~1 rooted trees with k vertices. Each root is labeled by an unconditional

Learning CP-nets 15

rule of the form p > p, and all other nodes are labeled by conditional rules of
the form p’ : p = P, where p and p’ are literals. There are 2n tables with no
condition per rule and 6n(n —1) (possibly incomplete) tables with one condition
per rule. It follows that the number Cj of CP-trees with at most k tables is
bounded by Zf:() 2n(6kn(n — 1) + 1)¥=1 which is indeed polynomial in k. So
the VC-dimension of such CP-trees is polynomial in n.

Based on this result, we can use a simple consistent algorithm specified as
follows. Start with the hypothesis set A/ of all CP-trees with at most k tables.
For each example (x,y) in 7, remove any hypothesis N in A that is inconsistent
with (&, y), that is, any hypothesis N for which the dominance test over (x,y)
disagrees with its label. If the resulting set N is empty then 7 is not consistent
with N. Otherwise, pick an arbitrary tree from A. Because the dominance test
is quadratic in the number of variables for binary-valued CP-trees, the running
time is polynomial in C}.

Proposition 9. The class CF,.,, of all concepts representable by a (possibly in-

complete) binary-valued CP-tree with at most k tables is PAC learnable from
arbitrary examples.

5.2 PAC Learning of Separable CP-nets

We now consider the task of learning a CP-net of the simplest form: the variables
are independent of each other. With binary variables, this means that if the
possible values for variable X are x and T, and the target CP-net is complete,
then the preference table for X contains either x > T or T > x.

In this case, checking if a given CP-net N entails © >y y for an arbitrary
example is easy. Let Diff (@, y) = {x; | (x); = 2; and (y); = T;} U {77 | (x); =
Z; and (y); = 2;}. Then x =y y if and only if N contains x; > Z; for every
x; € Diff(z,y) and T; = z; for every T; € Diff(x,y) (this is a corollary of
Theorems 7 and 8 by [5]).

Now, with each example (x, y) we associate the clause C,.,, that contains —x;
iff z; € Diff(x,y) and z; iff T; € Diff (x,y). The intended meaning of the literal
—x; is that T; is preferred to z;, whereas the meaning of the literal z; is that x;
is preferred to Z;; hence the meaning of the clause C , is that @ %y y for every
separable CP-net N in which at least one of these local preferences is true, by
virtue of the lemma above. For instance, if x=71x2x374 and y=x1T2x324 then
Diff(x,y) = {Z1,x2,T4} and Czy = T1V ~x2 V z4. This clause expresses that
x1 is preferred to Ty, or Ty is preferred to x4, or x4 is preferred to z4.

With each positive example (x, y) we can also associate the cube (conjunction
of literals) C;f , = ~C . Given a set of training examples 7, let I'r = A{C |
e € T}, where Cy ,, = C';;y if (z,y) is a positive example, and C; , = Cp , if
the example is negative. Clearly, I'r is equivalent to a set of clauses.

Now consider the following one-to-one correspondence between truth assign-
ments M over {z1,...,z,} and separable CP-nets Nj; over V: Ny contains the
preference x; = T; for every ¢ such that M |= z; and the preference T; > x;
for every ¢ such that M | —x;. For instance, if M(x1) = M(xz4) = T and

16 Chevaleyre, Koriche, Lang, Mengin, Zanuttini

M(z2) = M(x3) = L, Nj contains the preference tables {z1 > Z1, T2 >
Xo, T3 > X3, T4 > T4}. Then for an interpretation M, it is easily seen that
M E Cg, if and only if Ny does not imply (z,y) or, equivalently, that
M | G, if and only if Ny, implies (z,y).

It follows that a set of examples 7 is implicatively consistent with Nj; for
a given model M if and only if M | I'y. Therefore, searching for a CP-net
which implies a given set of examples amounts to searching for a model of the
corresponding set of clauses, the size of which grows polynomially with the size
of the set of examples.

This technique easily extends to nonbinary variables: we can use a proposi-
tional variable z%! for every pair of distinct values {z¥, 2!} for every variable X,
where the intended meaning of z¥! is 2% =y 2!, and add clauses to represent the
transitivity of the relation > y; there is a polynomial number of them (details
can be found in [22]).

The one-to-one correspondence given above is a reduction from our learning
problem to satisfiability. It is actually possible to find a reduction in the opposite
direction (see [22]), from which we get the following result.

Proposition 10. [22] Deciding whether there is a (binary or non-binary) com-
plete separable CP-net which implies a given set of arbitrary examples is NP-
complete. The result holds even if all examples are negative.

It follows directly that this class is not PAC-learnable with the very weak re-
striction that the produced hypothesis classifies correctly the examples received.
However:

Proposition 11. [22] Deciding whether there is a binary-valued complete sep-
arable CP-net which implies a given set of positive examples can be done in
polynomaal time.

Observe that this result can be extended to PAC-learnability of (possibly
incomplete) separable CP-nets from positive examples, in the setting of one-sided
errors [28]. This is because there is always a unique minimal (in terms of rules)
incomplete separable CP-net which implies a given set of positive examples.

Now, as soon as 7 becomes large with respect to the number of attributes
n, the chances that 7 is implicatively consistent with a separable CP-net be-
come low. In this case, we may want to determine a separable CP-net that is
implicatively consistent with as many examples of 7 as possible. This problem
amounts to solving a MAXSAT problem, when each example corresponds to ex-
actly one clause of Iz, that is when we have no positive example: the separable
CP-net that best fits a set of positive examples corresponds to the interpreta-
tion maximizing the number of clauses from I’y satisfied. In this case, we can
reuse algorithms for MAXSAT for computing a separable CP-net that best fits
a set of positive examples, as well as polynomial approximation schemes. This
extends to nonbinary variables, with the difference that the clauses representing
transitivity of the local preference tables are protected.

Lastly, again using the same kind of translation, we easily get the following
results.

Learning CP-nets 17

Proposition 12. If all variables are binary and all examples in T differ at
most on two variables, then deciding whether there exists a separable CP-net
which implies T can be done in polynomial time; however, the corresponding
optimization problem remains NP-hard.

5.3 Learning a complete preference relation

We close this section by providing results about the learning context (B) specified
in section 3: the target concept is a linear order, not necessarily representable
by a CP-net. Our goal is to find a CP-net that would be a good representation
for this relation. Recall that since the target is a linear order, we only need to
consider positive examples.

In the rest of this section, we investigate in turn the problems of finding a
CP-net that is weakly consistent with a given set of examples, then strongly
consistent with it. We focus on the problem of finding separable CP-nets. A set
of examples is said to be weakly separable (resp. strongly separable) if there exists
a separable CP-net with which it is weakly (resp. strongly) consistent.

We start by showing how the search for a separable CP-net that is weakly
consistent with a set of examples can be rewritten as an instance of proposi-
tional satisfiability (SAT). Recall from Section 5.2 that an example (x,y) can
be translated into a clause Cy ., the models of which correspond to separa-
ble CP-nets that are consistent with (x,y). Given a set of examples 7, let
&1 ={Cy, | (x,y) € T}. Then, given an interpretation M, a set of examples
7 is weakly consistent with Ny, if and only if M |= &7. As a consequence, 7 is
weakly separable if and only if @7 is satisfiable.

Ezxample 5. Consider three binary attributes A, B, C, and the set of examples
T = {(abc, abc), (@bc, abe), (abe, abe), (abc, abe)}

@7 has a unique model, corresponding to the separable CP-net N = {a =a,b >
b,c = ¢}. Therefore, N is the unique separable CP-net weakly consistent with
N, and 7 is weakly separable.

As in section 5.2, a similar translation can be used with non-binary variables,
and algorithms for solving MAXSAT can be used to search for a CP-net that is
weakly consistent with as many examples as possible.

Proposition 13. Deciding whether a set of examples over (binary or non-bin-
ary) attributes is weakly separable is NP-complete.

Now, let us turn to the notion of strong compatibility. Characterizing such
a property is less easy. Indeed, the difference between weak and strong compat-
ibility is that while in weak compatibility we look for a separable CP-net which
is consistent with each individual example in 7, in strong compatibility we look
for a separable CP-net which is consistent with the whole set of examples 7.

Example 5, continued 7 is not strongly consistent with N, because T U >

18 Chevaleyre, Koriche, Lang, Mengin, Zanuttini

has the following cycle:

abc = N @bc =1 abé =N Gbe =1 abe
Since T is not strongly consistent with any separable CP-net other than N (be-
cause N is the unique one with which T is weakly compatible), T is not strongly
separable’.

Note that all outcomes in the cycle on the example above appear in 7. More
generally, if we denote by O(7) the set of outcomes that appear in 7, it can
be proved that 7 is strongly consistent with N if and only if the restriction
of =n UT to O(T) is acyclic. Since this restriction has at most 2 |7| vertices,
checking if it possesses a cycle can be done in polynomial time. Thus, checking
whether 7 is strongly consistent with a given CP-net NV is in P, and we have
the following result:

Proposition 14. [23] Checking whether T is strongly separable is NP-complete.

Note that although weak and strong separability have the same complex-
ity, weak separability enjoys the nice property that there is a simple solution-
preserving translation into SAT (the models of @7 correspond bijectively to the
CP-nets that are weakly consistent with 7), which allows weak separability to
be computed in practice using algorithms for SAT?. Contrastingly, in order to
compute a separable CP-net strongly consistent with 7", we can generate struc-
tures N weakly consistent with 7, and test for acyclicity of >y U7 using graph
algorithms.

6 Active learning of CP-nets

In this section, we investigate the learnability issues of CP-nets in the paradigm
of active learning. Recall that in the standard PAC learning model, examples
are drawn at random according to an unknown but fixed distribution. This
model of learning is merely passive in the sense that the learner has no control
over the selection of examples. One can increase the flexibility of this model
by allowing the learner to ask about particular examples, that is, the learner
makes membership queries [1]. This capability appears to increase the power of
polynomial-time learning algorithms. For instance, it is known that propositional
Horn formulas are PAC-learnable with membership queries [3], but the results
of [19] show that without membership queries, Horn formulas are no easier to
learn than general CNF or DNF formulas.

In the setting of active preference learning, we assume that the user has in
mind a target preference structure >, but does not know how to represent this

5 Note that 7 is both weakly separable and does not contain any cycles as it was the
case for Example 4, yet is not strongly separable.

" Such a translation exists for strong separability (which we do not give here), but
unfortunately, the set of clauses generated uses O(n?) variables (where n is the set
of examples), which limits its practical applicability.

Learning CP-nets 19

structure into a CP-net. However, the user is disposed to help the learner by
answering membership queries of the form “does * dominates y?”, where & and
y are outcomes chosen by the learner. A membership query for a target concept
>~ is a map MQ that takes as input a pair of outcomes (x,y) and returns as
output yes if x > y, and no if x ¥ y.

From a practical perspective, one must take into account the fact that out-
comes are typically mot comparable with an equivalent cost. As observed in
[17], users can meaningfully compare outcomes if they differ only on very few
attributes. To this end, we define the width of MQ(x,y) to be the number of
variables on which x and y differ. A membership query of width 1 is called a
swap membership query.

Based on these considerations, a minimal requirement behind active learning
is to ask as few membership queries as possible. An additional desiderata for
minimizing the cognitive effort spent by the user in answering preference queries
is to restrict to swap membership queries.

Definition 6 (PAC learning with membership queries). A concept class
Cn is PAC learnable with swap membership queries over an instance class € if
there is a polynomial time learning algorithm A and two polynomials p(-,-,-) and
q(+) such that for any target concept = in Car, any probability distribution D over
Z, and any parameters §,e € (0,1), after receiving p(n, %, %) random examples
of > drawn independently according to D, and asking q(n) swap membership
queries, then with probability at least 1 — ¢, A returns a hypothesis N € N with
error(N) < e. The smallest such polynomial q is called the query complexity of
the learning algorithm A.

6.1 Active Learning with swap examples

We now investigate the problem of active preference learning, where the target
concept can be represented by an acyclic CP-net, and the questions are restricted
to swap membership queries.

In this setting, we can build an online algorithm for learning actively acyclic
CP-nets. Recall that online learning proceeds into trials. Initially the learner
chooses an hypothesis N. During each trial, the learner first receives an example
(z,y), next predicts the label “+” or “—” of this instance according to its current
hypothesis, and then receives the correct label from the user. If the prediction
was incorrect then the learner is charged one mistake.

The basic idea underlying our online learning algorithm is to start from the
empty CP-net N = & and, during each trial, iteratively revise N' by maintaining
two invariants. The first invariant is that each rule (or entry) in the learner’s
hypothesis N is subsumed by a rule in the minimal representation of the target
CP-net N. In other words, for each rule & : z > T in N, thereisarule w:z = T
in the minimal representation of N, with @ C w. The second invariant is that
cach such rule r = @ : 2 = 7 in N is supported by an instance (x,,y,) of N,
that is, , =N Y., T, and y, satisfy 4, x, satisfies x, and y,- satisfies T.

20 Chevaleyre, Koriche, Lang, Mengin, Zanuttini

Technically, the algorithm proceeds as follows. On seeing an example (x,y),
if the learner predicts this instance as negative, while it is positive, then it
expands its CP-net with a new rule w : > T, where the support (x, y) is stored.
Here, z is the literal in & whose value differs from y, and w is the projection
of the outcome x onto the current parent set of the variable X in N. Dually, if
the learner predicts (x,y) as positive, while it is negative, then it expands the
condition w of the misclassifying rule w : x > T with a new parent. Using the
support (x,,y,) of this rule, a new parent can be found by asking at most n — 1
membership queries. To this end, we simply need to incrementally transform
x into x, by iteratively flipping those literals that differ from @ and x,, until
we find the first literal z; for which the label of (x;[z],x;[Z]) is positive; this
literal is kept as a new parent of X. In fact, only log, n membership queries are
needed to find this parent, by performing a binary search over this sequence of
transformations. A detailed implementation of this algorithm is given in [21].

Example 6. Assume so far the learner has only learnt the rule z; : z3 > T3,
supported by x12203T4%5 =N T1T2T3X4T5.

Now assume it receives the positive example (x,y) with @ = T22T52475,
Yy = T1x923x425. Then it learns the rule T; : T3 > x3, and stores (x,y) as its
support.

Finally, assume it receives the positive example x1Z2T3T4T5 =N T1T2X3T4T5,
which contradicts its first rule. Then it searches for a new parent of x3. Using
the support of this rule and the new example, it asks the membership query
T1T2T3T4T5 >N T1T2X3T4T5. Assuming the answer is yes, it goes on with the
membership query x1xoT3T4T5 =N T1X22324T5. Assuming this one answers no,
the learner deduces that x4 is a parent of x3, hence it updates the previously
learnt rules according to their support, resulting in rules xyx4 : z3 > T3 and
T1T4 : T3 > x3, and creates a new rule x17T4 : T3 > x3 so as to cover the new
example.

By using a well-known conversion from online learning to PAC-learning [24],
we derive the following result.

Proposition 15. Acyclic (possibly incomplete) binary CP-nets are PAC-lear-
nable with swap membership queries, over the instance class of swaps. There is
an online learning algorithm A for this class, such that for any target concept >
of description size s, the algorithm makes at most s mistakes and uses at most
slog, n membership queries.

6.2 Active Learning with Unrestricted Examples

When the instances supplied to the learner are unrestricted, even predicting
their label is a difficult task, because dominance testing is NP-hard for acyclic
CP-nets. As observed in the previous section, an important class of concepts for
which dominance testing can be accomplished in polynomial time is the class of
tree CP-nets. In this section, we briefly discuss an online algorithm for learning
tree CP-nets.

Learning CP-nets 21

The algorithm can be specified as follows. Initially, the learner starts from
the hypothesis N = @ and iteratively expands N until it finds the target repre-
sentation N. An invariant of the algorithm is that N is always included in N so
the learner can only make mistakes on positive examples (x,y). In such cases,
the algorithm considers in turn each variable on which x and y differ, and builds
its CP-table and that of all its ascendants in the tree. It stops whenever such a
variable already has a CP-table in its current hypothesis. Again, to find a parent
for each candidate variable, the algorithm can use a binary search strategy.

Proposition 16. Tree (possibly incomplete) binary CP-nets are PAC-learnable
with swap membership queries, over arbitrary examples: there is an online learn-
ing algorithm A for this class, such that for any target concept = with k nodes, the
algorithm makes at most k mistakes and uses O(klog, n) membership queries.

We conclude this section by emphasizing that some classes of CP-nets are
teachable, that is, learnable by asking a polynomial number of membership
queries, without the need of observing any sample. Thus after making those
queries, the learner is guaranteed to correctly predict any instance.

We focus on the class of acyclic CP-nets whose graph has indegree at most
k. The learner proceeds by using a levelwise generate-and-test procedure and
membership queries for uncovering the set of parents of each variable. Clearly,
this approach is acceptable only for small bounded degrees, such as tree CP-nets.

Proposition 17. The class of concepts representable by a binary-valued acyclic
CP-net whose graph has degree at most k is teachable: there is an algorithm
which outputs such a CP-net using O(kn*+125¥=1) membership queries and no
other queries or examples, where n is the number of variables and k is the degree
of the target concept.

7 Conclusion and open problems

In this paper we addressed many issues related to learning CP-nets. We argued
that a first important problem is whether the CP-net that we aim at learning
is such that the user’s preference relation coincides with its induced preference
relation, or is an approximation by below of the user’s complete preference re-
lation. Then we gave a few theoretical results on the learnability of CP-nets,
and considered two different learning frameworks: passive learning (from a set
of examples), and active learning (by queries).

We hope that our preliminary results in the learnability issue of CP-net open
the door to new theoretical results and practical learning algorithms. First of all,
we do not have a general method (other than brute-force search) for computing
a CP-net which is weakly or strongly consistent with a set of examples in the
nonseparable case, nor do we have algorithms for outputting a CP-net realizing
an optimal trade-off between simplicity and accuracy.

We already emphasized the lack of expressivity of CP-nets. Although CP-
nets are a representation language well-suited to expressing preferential (in)de-
pendencies, they do not allow, for instance, to express statements of relative

22

Chevaleyre, Koriche, Lang, Mengin, Zanuttini

importance between variables, as lexicographic orders do. We may desire to learn
preferences that combine both aspects (preferential dependencies and relative
importance). For this, it is necessary to study preference learning with more
expressive languages such as TCP-nets [6] or (even more general) conditional
preference theories [31].

References

1.
2.

10.

11.

12.

13.

14.

15.

16.

D. Angluin. Queries and concept learning. Machine Learning, 2(4):319-342, 1988.
D. Angluin. Negative results for equivalence queries. Machine Learning, 5:121-150,
1990.

D. Angluin, M. Frazier, and L. Pitt. Learning conjunctions of Horn clauses. Ma-
chine Learning, 9:147-164, 1992.

M. Anthony and N. Biggs. Computational Learning Theory. Cambridge Univ.
Press, 1992.

C. Boutilier, R. Brafman, C. Domshlak, H. Hoos, and D. Poole. CP-nets: a tool for
representing and reasoning with conditional ceteris paribus preference statements.
Journal of Artificial Intelligence Research, 21:135-191, 2004.

R. Brafman, C. Domshlak, and S. Shimony. On graphical modeling of preference
and importance. Journal of Artificial Intelligence Research, 25:389-424, 2006.

D. Braziunas and C. Boutilier. Local utility elicitation in GAI models. In Proceed-
ings of the 21st Conference on Uncertainty in Artificial Intelligence (UAI), pages
42-49, 2005.

C.J.C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and
G. Hullender. Learning to rank using gradient descent. In Proceedings of the 22nd
International Conference on Machine Learning (ICML), 2005.

U. Chajewska, L. Getoor, J. Norman, and Y. Shahar. Utility elicitation as a
classification problem. In Proceedings of the 14th Conference on Uncertainty in
Artificial Intelligence (UAI), pages 79-88, 1998.

U. Chajewska, D. Koller, and R. Parr. Making rational decisions using adaptive
utility elicitation. In Proceedings of the 17th National Conference on Artificial
Intelligence (AAAI), pages 363-369, 2000.

Y. Chevaleyre. A short note on passive learning of CP-nets. Rapport de recherche,
Lamsade, mars 2009.

Y. Dimopoulos, L. Michael, and F. Athienitou. Ceteris paribus preference elicita-
tion with predictive guarantees. In Proc. 21st International Joint Conference on
Artificial Intelligence (IJCAI 2009), 2009.

J. Dombi, C. Imreh, and N. Vincze. Learning lexicographic orders. Furopean
Journal of Operational Research, 183:748-756, 2007.

C. Domshlak and T. Joachims. Efficient and non-parametric reasoning over user
preferences. User Modeling and User-Adapted Interaction (UMUAI), 17(1-2):41—
69, 2007.

J. Doyle, Y. Shoham, and M. Wellman. A logic of relative desire (preliminary
report). In Proceedings of the 6th International Symposium on Methodologies for
Intelligent Systems (ISMIS), pages 16-31. Springer, 1991.

Ch. Gonzales and P. Perny. GAI networks for utility elicitation. In Principles
of Knowledge Representation and Reasoning: Proceedings of the 9th International
Conference (KR), pages 224-234, 2004.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Learning CP-nets 23

P. Green and V. Srinivasan. Conjoint analysis in consumer research: Issues and
outlook. Journal of Consumer Research, 5(2):103-123, 1978.

V. Ha and P. Haddawy. Problem-focused incremental elicitation of multi-attribute
utility models. In Proceedings of the 13th Conference on Uncertainty in Artificial
Intelligence (UAI), pages 215-222, 1997.

M. J. Kearns, M. Li, L. Pitt, and L. G. Valiant. On the learnability of boolean
formulae. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing, pages 285295, 1987.

R. Keeney and H. Raiffa. Decision with Multiple Objectives: Preferences and Value
Trade-offs. Wiley, 1976.

F. Koriche and B. Zanuttini. Learning conditional preference networks with
queries. In Proc. 21st International Joint Conference on Artificial Intelligence
(IJCAI 2009), 2009.

J. Lang and J. Mengin. The complexity of learning ceteris paribus separable pref-
erences. In Proc. 21st International Joint Conference on Artificial Intelligence
(IJCAI 2009), 2009.

J. Lang and J. Mengin. The complexity of learning separable ceteris paribus
preferences. Rapport de recherche RR-2009-3-FR, IRIT, Université Paul Sabatier,
Toulouse, mars 2009.

N. Littlestone. From on-line to batch learning. In Proceedings of the Second Annual
Workshop on Computational Learning Theory, pages 269—284. Morgan Kaufmann,
1989.

M. Sachdev. On learning of ceteris paribus preference theories. Master’s thesis,
Graduate Faculty of North Carolina State University, 2007.

T. Sandholm and C. Boutilier. Preference Elicitation in Combinatorial Auctions,
chapter 10. In Combinatorial Auctions, Cramton, Shoham, and Steinberg Ed.,
MIT Press, 2006.

M. Schmitt and L. Martignon. On the complexity of learning lexicographic strate-
gies. Journal of Machine Learning Research, 7:55-83, 2006.

L. G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134-1142, 1984.

P. Viappiani, B. Faltings, and P. Pu. Evaluating preference-based search tools: a
tale fo two approaches. In Proceedings of the 21st National Conference on Artificial
Intelligence (AAAI), pages 205-210, 2006.

P. Viappiani, B. Faltings, and P. Pu. Preference-based search using example-
critiquing with suggestions. Journal of Artificial Intelligence Research, 27:465-503,
2006.

N. Wilson. Extending CP-nets with stronger conditional preference statements.
In Proceedings of the 19th National Conference on Artificial Intelligence (AAAI),
pages 735741, 2004.

F. Yaman, Th. Walsh, M. Littman, and M. desJardins. Democratic approxima-
tion of lexicographic preference models. In Proceedings of the 35th International
Conference in Machine Learning (ICML),, pages 1200-1207, 2008.

