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a b s t r a c t

In voting contexts, some new candidates may show up in the course of the process. In this case, we may
want to determinewhich of the initial candidates are possiblewinners, given that a fixed number k of new
candidates will be added. We give a computational study of this problem, focusing on scoring rules, and
we provide a formal comparison with related problems such as control via adding candidates or cloning.
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1. Introduction

Inmany real-life collective decisionmaking situations, the set of
candidates (or alternatives)may varywhile the voting process goes
on, and may change at any time before the decision is final; some
new candidates may join, whereas some others may withdraw.
This, of course, does not apply to situations where the vote takes
place in a very short period of time (such as, typically, political
elections in most countries), and neither does the addition of
new candidates during the process apply to situations where the
law forbids new candidates to be introduced after the voting
process has started (which, again, is the case for most political
elections). However, there are many practical settings where this
may happen, especially situations where votes are sent by email
during an extended period of time. This is typically the case when
making a decision about the date and time of a meeting. In the
course of the process, we may learn that the room is taken at
a given time slot, making this time slot no longer a candidate.
The opposite case also occurs frequently; we thought the room
was taken on a given date and then we learn that it has become
available, making this time slot a new candidate.

The paper focuses on candidate addition only. More precisely,
the class of situations we consider is the following. A set of voters
have expressed their votes about a set of (initial) candidates. Then
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some new candidates declare their intention to participate in the
election. The winner will ultimately be determined using some
given voting rule and the voters’ preferences over the set of all
candidates. In this class of situations, an important question arises:
who among the initial candidates can still be a winner once the voters’
preferences about all candidates are known? This is important in
particular if there is some interest to detect as soon as possible the
candidates who are not possible winners: for instance, candidates
for a job may have the opportunity to apply for different positions,
and time slots may be released for other potential meetings.

This question is strongly related to several streams of work
in the recent literature on computational social choice, especially
the problem of determining whether the vote elicitation process
can be terminated (Conitzer and Sandholm, 2002; Walsh, 2008);
the possible winner problem, and more generally the problem of
applying a voting rule to incomplete preferences (Konczak and
Lang, 2005; Pini et al., 2007; Xia and Conitzer, 2011; Betzler
and Dorn, 2009; Betzler et al., 2009) or uncertain preferences
with probabilistic information (Hazon et al., 2009); swap bribery,
encompassing the possible winner problem as a particular case
(Elkind et al., 2009); voting with an unknown set of available
candidates (Lu and Boutilier, 2010); the control of a voting rule by
the chair via adding candidates; and resistance to cloning—we shall
come back to the latter two problems in more detail in the related
work section.

Clearly, considering situations where new voters are added
is a specific case of voting under incomplete preferences, where
incompleteness is of a very specific type: the set of candidates
is partitioned in two groups (the initial and the new candidates),
and the incomplete preferences consist of complete rankings on
the initial candidates. This class of situations is, in a sense, dual
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to a class of situations that has been considered more often,
namely, when the set of voters is partitioned in two groups:
those voters who have already voted, and those who have not
expressed their votes yet. The latter class of situations, while being
a subclass of voting under incomplete preferences, has been more
specifically studied as a coalitional manipulation problem (Conitzer
et al., 2007; Faliszewski and Procaccia, 2010), where the problem
is to determine whether it is possible for the voters who have not
voted yet to make a given candidate win. Varying sets of voters
have also been studied in the context of compiling the votes of
a subelectorate (Chevaleyre et al., 2009; Xia and Conitzer, 2010):
there, one is interested in summarizing a set of initial votes, while
still being able to compute the outcome once the remaining voters
have expressed their votes.

The layout of the paper is as follows. In Section 2 we recall the
necessary background on voting and we introduce some notation.
In Section 3 we state the problem formally, by defining voting
situations where candidates may be added after the votes over
a subset of initial candidates have already been elicited. In the
following sections we focus on specific voting rules and we study
the problem from a computational point of view. In Section 4, we
focus on the family of K -approval rules, including plurality and
veto as specific subcases, and give a full dichotomy result for the
complexity of the possible winner problem with respect to the
addition of k new candidates; namely, we show that the problem is
NP-complete as soon as K ≥ 3 and k ≥ 3, and polynomial if K ≤ 2
or k ≤ 2. In Section 5 we focus on the Borda rule and show that the
problem is polynomial-time solvable regardless of the number of
new candidates. We also exhibit a more general family of voting
rules, including Borda, for which this result can be generalized.
In Section 6 we show that the problem can be hard for some
positional scoring rules even if only one new candidate is added.
In Section 7 we discuss the relationship to the general possible
winner problem, to the control of an election by the chair via
adding candidates, and to candidate cloning. Section 8 summarizes
the results and mentions further research directions.

2. Background and notation

Let C be a finite set of candidates, and N a finite set of voters.
The number of voters is denoted by n, and the (total) number
of candidates by m. A C-vote (called simply a vote when this is
not ambiguous) is a linear order over C , denoted by ≻ or by V .
We sometimes denote votes in the following way: a ≻ b ≻ c
is denoted by abc , etc. An n-voter C-profile is a collection P =
⟨V1, . . . , Vn⟩ of C-votes. Let PC be the set of all C-votes and
therefore P n

C be the set of all n-voter C-profiles. We denote by P ∗C
the set of all n-voter C-profiles for n ≥ 1, i.e., P ∗C = ∪n≥1 P n

C .
A voting rule on C is a function r from P ∗C to C . A voting

correspondence is a function from P ∗C to 2C
\ {∅}. Themost natural

way of obtaining a voting rule from a voting correspondence is
to break ties according to a fixed priority order on candidates.
In this paper, we do not fix a priority order on candidates (one
reason being that the complete set of candidates is not known to
start with), whichmeans that we consider voting correspondences
rather than rules, and ask whether x is a possible cowinner for a
given profile P . This is equivalent to asking whether there exists a
priority order forwhich x is a possiblewinner, or elsewhether x is a
possiblewinner for themost favorable priority order (with xhaving
priority over all other candidates). This is justified in our context
by the fact that specifying such a priority order is problematic
when we don’t know in advance the identities of the potential
new candidates. With a slight abuse of notation we denote voting
correspondences by r just as voting rules. Let r(P) be the set of
cowinners for profile P .
For P ∈ P ∗C and x, x′ ∈ C , let n(P, i, x) be the number of votes
in P ranking x in position i, ntop(P, x) = n(P, 1, x) the number of
votes in P ranking x first, and NP(x, x′) the number of votes in P
ranking x above x′. Let s⃗ = ⟨s1, . . . , sm⟩ be a vector of integers such
that s1 ≥ · · · ≥ sm and s1 > sm. The scoring rule rs⃗(P) induced by
s⃗ elects the candidate(s) maximizing Ss⃗(x, P) =

m
i=1 si · n(P, i, x).

If K is a fixed integer then K -approval, rK , is the scoring rule
corresponding to the vector s⃗K = ⟨1, . . . , 1, 0, . . . , 0⟩—with K
1’s and m − K 0’s. The K -approval score Ss⃗K (x, P) of a candidate
x is denoted more simply by SK (x, P): in other words, SK (x, P) is
the number of voters in P who rank x in the first K positions, i.e.,
SK (x, P) =


i=1,...,K n(P, i, x). When K = 1, we get the plurality

rule rP , and when K = m− 1 we get the veto (or antiplurality) rule.
The Borda rule rB is the scoring rule corresponding to the vector
⟨m− 1,m− 2, . . . , 0⟩.

We now define formally situations where new candidates are
added.

Definition 1. A voting situation with a varying set of candidates is a
4-tupleΣ = ⟨N, X, PX , k⟩whereN is a set of voters (with |N| = n),
X a set of candidates, PX = ⟨V1, . . . , Vn⟩ an n-voter X-profile, and
k is a positive integer, encoded in unary.

X denotes the set of initial candidates, PX the initial profile,
and k the number of new candidates. Nothing is known a priori
about the voters’ preferences over the new candidates, henceforth
their identity is irrelevant and only their number counts. The
assumption that k is encoded in unary ensures that the number
of new candidates is polynomial in the size of the input. Most of
our results would still hold if the number of new candidates is
exponentially large in the size of the input, but for the sake of
simplicity, and also because in practice kwill be small anyway, we
prefer to exclude this possibility.

Because the number of candidates is not the same before and
after the new candidates come in, we have to consider families
of voting rules (for a varying number of candidates) rather than
voting rules for a fixed number of candidates. While it is true that
for many usual voting rules there is an obvious way of defining
them for a varying number of candidates, this is not the case for all
of them, especially scoring rules. Still, some natural scoring rules,
including plurality, veto, more generally K -approval, as well as
Borda, are naturally defined for any number of candidates.We shall
therefore consider families of voting rules, parameterized by the
number of candidates (rm). We slightly abuse notation and denote
these families of voting rules by r , and consequently often write
r(P) instead of rm(P). The complexity results we give in this paper
make use of such families of voting rules, where the number of
candidates is variable.

If P is a C-profile and C ′ ⊆ C , then the projection of P on
C ′, denoted by P↓C

′

, is obtained by deleting all candidates in C \
C ′ in each of the votes of P , and leaving unchanged the ranking
on the candidates of C ′. For instance, if P = ⟨abcd, dcab⟩, then
P↓{a,b} = ⟨ab, ab⟩ and P↓{a,b,c} = ⟨abc, cab⟩. In all situations, the
set of initial candidates is denoted by X = {x1, . . . , xp} ∪ {x∗},
the set of the k new candidates is denoted by Y = {y1, . . . , yk}.
If PX is an X-profile and P ′ an X ∪ Y -profile, then we say that
P ′ extends PX if the projection of P ′ on X is exactly PX . For
instance, let X = {x1, x2, x3} ∪ {x∗}, Y = {y1, y2}; the profile
P ′ = ⟨x1y1x∗x2y2x3, y1y2x1x2x3x∗, x3x2y2x∗y1x1⟩ extends the X-
profile PX = ⟨x1x∗x2x3, x1x2x3x∗, x3x2x∗x1⟩.

3. Possible winners when new candidates are added

We recall from Konczak and Lang (2005) that given a collection
⟨P1, . . . , Pn⟩ of partial strict orders on C representing some
incomplete information about the votes, a candidate x∗ is a possible
winner if there is a profile ⟨T1, . . . , Tn⟩where each Ti is a ranking on
C extending Pi in which x∗ wins. Reformulated for the case where
Pi is a ranking of the initial candidates (those in X), we get the
following definition:
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Definition 2. Given a voting situation Σ = ⟨N, X, PX , k⟩, and a
collection r of voting rules, we say that x∗ ∈ X is a possible cowinner
with respect to Σ and r if there is a (X ∪ Y )-profile P ′ extending PX
such that x∗ ∈ r(P ′), where Y = {y1, . . . , yk} is a set of k new
candidates.

Note that we do not have Y in the input, because it would
be redundant with k: it is enough to know the number of new
candidates. Note also that all new candidates {y1, . . . , yk} have to
appear in the extended votes composing P ′.

Also,we do not consider the problemof decidingwhether a new
candidate yj is a possible cowinner, because it is trivial. Indeed, as
soon as the voting correspondence satisfies the extremely weak
property that a candidate ranked first by all voters is always a
cowinner (which is obviously satisfied by all commonvoting rules),
any new candidate is a possible cowinner.

We now define formally the problems we study in this paper.

Definition 3. Given a collection r of voting rules, the possible
cowinner problem with new candidates (or PcWNC) for r is
defined as follows:

Input A voting situation Σ = ⟨N, X, P, k⟩ and a candidate
x∗ ∈ X .

Question Is x∗ a possible cowinner with respect to Σ and r?
Also, the subproblem of PcWNC where the number k of new

candidates is fixed will be denoted by PcWNC(k).

We can also define the notion of necessary cowinner with
respect to Σ and r : x∗ ∈ X is a necessary cowinner with respect
to Σ, Y , and r if for every (X ∪ Y )-profile P ′ extending PX we have
x∗ ∈ r(P). However, the study of necessary cowinners in this
particular setting will almost never lead to any significant results.
There may be necessary cowinners among the initial candidates,
but this will happen rarely (and this case will be discussed for a
few specific voting rules in the corresponding parts of the paper).

Now we are in position to consider specific voting rules.

4. K -approval

As a warm-up we start by considering the plurality rule.

4.1. Plurality

Let us start with an example: suppose X = {a, b, c}, n = 13,
and the plurality scores in PX are a → 6, b → 4, c → 3. There is
only one new candidate (y). We have:
1. a is a possible cowinner (a will win in particular if the top

candidate of every voter remains the same);
2. b is a possible cowinner: to see this, suppose that 2 voters who

had ranked a first now rank y first; the new scores are a →
4, b → 4, c → 3, y → 2;

3. c is not a possible cowinner: to reduce the scores of a (resp. b)
to that of c , we need at least 3 (resp. 1) voters who had ranked
a (resp. b) first to now rank y first; but this then means that y
gets at least 4 votes, while c has only 3.

More generally, we have the following result:

Proposition 1. Let PX be an n-voter profile on X, and x∗ ∈ X. The
candidate x∗ is a possible cowinner for PX and plurality with respect
to the addition of k new candidates if and only if

ntop(PX , x∗) ≥
1
k
·


xi∈X

max(0, ntop(PX , xi)− ntop(PX , x∗)).

Proof. Suppose first that the inequality holds.Webuild the follow-
ing (X ∪ Y )-profile P ′ extending PX :
1. for every candidate xi such that ntop(PX , xi) > ntop(PX , x∗) we

simply take ntop(PX , xi)− ntop(PX , x∗) arbitrary votes ranking
xi on top and place one of the yj’s on top of the vote (and the
other yj’s anywhere), subject to the condition that no yj is placed
on top of a vote more than ntop(PX , x∗) times. (This is possible
because the inequality is satisfied.)

2. in all other votes (those not considered at step 1), place all yj’s
anywhere except on top.

We obtain a profile P ′ extending PX . First, we have ntop(P ′, x∗) =
ntop(PX , x∗), because in all the votes in PX where x∗ is on top, the
new top candidate in the corresponding vote in P ′ is still x∗ (cf. step
2), and all the votes in PX where x∗was not on top obviously cannot
have x∗ on top in the corresponding vote in P ′. Second, let xi ≠ x∗.
If ntop(PX , xi) ≤ ntop(PX , x∗) then ntop(P ′, xi) = ntop(PX , xi);
and if ntop(PX , xi) > ntop(PX , x∗) then we have ntop(P ′, xi) =
ntop(PX , xi)−(ntop(PX , xi)−ntop(PX , x∗)) = ntop(PX , x∗). There-
fore, x∗ is a cowinner for plurality in P ′.

Conversely, if the inequality is not satisfied, in order for x∗
to become a cowinner in P ′, the other xi’s must lose globally an
amount of


xi∈X

max(0, ntop(PX , xi) − ntop(PX , x∗)) votes; and
since


xi∈X

max(0, ntop(PX , xi)−ntop(PX , x∗)) > k ·ntop(PX , x∗),
for at least one of the yj’s we will have ntop(P ′, yj) > ntop(P ′, x∗);
therefore x∗ cannot be a cowinner for plurality in P ′. �

Wedo not need to paymuch attention to the veto rule, since the
characterization of possible cowinners is trivial. Indeed, by placing
any of the new candidates below x∗ in every vote of PX where x∗ is
ranked at the bottom position, we obtain a vote P ′ where no one
vetoes x∗, so any candidate is a possible cowinner.

As a corollary, computing possible cowinners for the rules of
plurality (and veto) with respect to candidate addition can be
computed in polynomial time (which we already knew, since
possible cowinners for plurality and veto can be computed in
polynomial time Betzler and Dorn, 2009).

4.2. K-approval, one new candidate

We start with the case where a single candidate is added.
Recall that we denote by SK (xj, PX ) the score of xj for PX and
K -approval (i.e. the number of voters who rank xj among their top
K candidates); and by n(PX , K , xj) the number of voters who rank
xj exactly in position K .

Proposition 2. Let K be an positive integer, PX be an n-voter profile
on X, and x∗ ∈ X. The candidate x∗ is a possible cowinner for PX and
K-approval with respect to the addition of one new candidate if and
only if the following two conditions hold:
1. for every xi ≠ x∗, if SK (xi, PX ) > SK (x∗, PX )

then n(PX , K , xi) ≥ SK (xi, PX )− SK (x∗, PX ).
2. SK (x∗, PX ) ≥


xi∈X

max(0, SK (xi, PX )− SK (x∗, PX )).

Proof. Assume conditions (1) and (2) are satisfied. Then, we build
the following (X ∪ {y})-profile extending PX :
(i) for every xi such that SK (xi, PX ) > SK (x∗, PX ), we take

SK (xi, PX ) − SK (x∗, PX ) arbitrary votes who rank xi in position
K in PX and place y on top (condition (1) ensures that we can
find enough such votes).

(ii) In all other votes (those not considered at step (i)), place y in
the bottom position.
We obtain a profile P ′ extending PX . First, we have SK (x∗, P ′) =

SK (x∗, PX ), because (a) all votes in PX ranking x∗ in position K are
extended in such a way that y is placed in the bottom position,
therefore x∗ gets a point in each of these votes if and only if it
got a point in PX , and (b) in all the other votes (those where x∗
is not ranked in position K in PX ), x∗ certainly gets a point in P ′
if and only if they got a point in PX . This holds both in the case
where y was added at the top or the bottom of the vote. Second,
for every xi such that SK (xi, PX ) > SK (x∗, PX ), xi loses exactly
SK (xi, PX )−SK (x∗, PX ) pointswhen PX is extended into P ′, therefore
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19

x∗ x1 x2 x3 x1 x1 x1 x2 x2 x2 x2 x2 x3 x3 x3 x3 x3 x3 x4
x1 x∗ x∗ x∗ x4 x4 x5 x1 x3 x4 x5 x5 x1 x2 x4 x4 x5 x6 x6
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Box I.
SK (xi, P ′) = SK (xi, PX )−SK (xi, PX )+SK (x∗, PX ) = SK (x∗, PX ). Third,
SK (y, P ′) =


xi∈X

max(0, SK (xi, PX ) − SK (x∗, PX )) ≤ SK (x∗, PX )
– because of (2) – hence SK (y, P ′) ≤ SK (x∗, P ′). Therefore, x∗ is a
cowinner for K -approval in P ′.

Now, assume condition (1) is not satisfied, that is, there is an
xi such that SK (xi, PX ) > SK (x∗, PX ) and such that n(PX , K , xi) <

SK (xi, PX ) − SK (x∗, PX ). There is no way of having xi lose more
than SK (xi, PX ) points, therefore x∗ will never catch up with
xi’s advantage and is therefore not a possible cowinner. Finally,
assume condition (2) is not satisfied, which means that we have

xi∈X
max(0, SK (xi, PX )− SK (x∗, PX )) > SK (x∗, PX ). Then, in order

for x∗ to reach the score of xi’s we must add y in one of the top
K positions in a number of votes exceeding SK (x∗, PX ), therefore
SK (y, P ′) > SK (x∗, PX ) ≥ SK (x∗, P ′), and therefore x∗ is not a
possible cowinner. �

Therefore, computing possible cowinners for K -approval with
respect to the addition of one candidate can be done in polynomial
time.

4.3. 2-approval, any (fixed) number of new candidates

For each profile P and each candidate x′, we simplywrite s(x′, P)

for the score of x′ in P under r2, that is, s(x′, P) = S2(x′, P), i.e.
the number of times that x′ is ranked within the top two positions
in P .

Let PX = ⟨V1, . . . , Vn⟩ be an initial profile and Y = {y1, . . . , yk}
the set of new candidates. Let x∗ ∈ X . We want to know whether
x∗ is a possible cowinner for 2-approval and PX . Let us partition
PX into P1, P2 and P3, where P1 consists of the votes in which x∗ is
ranked in the top position, P2 consists of the votes in which x∗ is
ranked in the second position and P3 consists of the votes in which
x∗ is not rankedwithin the top two positions. Let P be an extension
of PX to X ∪ Y . For each candidate x′ ∈ X , we define the following
three subsets of P:

• HP(P, x′) is the set of votes in P where x′ is ranked in the second
position and neither x∗ nor any new candidate is ranked in the
top position (HP stands for ‘‘high priority’’).
• MP(P, x′) is the set of votes in P where x∗ or any new candidate

is ranked in the top position and x′ is ranked in the second
position (MP stands for ‘‘medium priority’’).
• LP(P, x′) is the set of votes in P where x′ is ranked in the top

position and some x′′ ∈ X \{x∗} is ranked in the second position
(LP stands for ‘‘low priority’’).

These definitions also apply to PX ; our definitions then simplify
into: HP(PX , x′) is the set of votes in PX where x′ is ranked second
and x∗ is not ranked first; MP(PX , x′) is the set of votes in PX where
x∗ is ranked first and x′ is ranked second; LP(PX , x′) is the set of
votes in PX where x′ is ranked first and x∗ is not ranked second.
These definitions are summarized in Fig. 1. Finally, for x ∈ X ∪ Y ,
let ∆(P, x) = S2(x, P)− S2(x∗, P).

Let us compute these sets on a concrete example, which will be
reused throughout the section.
Fig. 1. A vote V ∈ P belongs respectively to the sets HP(.),MP(.), LP(.) if its top
two candidates belong to the respective sets.

Example 1. Let X = {x∗, x1, . . . , x6} and consider the following
profile PX consisting of 19 votes (we only mention the first two
candidates in each vote) see Box I:

We have P1 = {v1}, P2 = {v2, v3, v4} and P3 = {v5, . . . , v19}.
This is summarized together with the priority classification in the
following table:

HP MP LP ∆(PX , xi)
x1 v8, v13 v1 v5, v6, v7 3
x2 v14 v8, v9, v10, v11, v12 3
x3 v9 v13, v14, v15,

v16, v17, v18

4

x4 v5, v6, v10,
v15, v16

v19 2

x5 v7, v11, v12, v17 0
x6 v18, v19 −2

If P∗ is an extension of PX to X ∪ Y then we write P∗ =
⟨V ∗1 , . . . , V ∗n ⟩, where V ∗i is the vote over X ∪ Y extending Vi. We
now establish a useful property of the extensions of PX for which x∗
is a cowinner. Without loss of generality, we assume that in every
vote V ∗i , every new candidate yj is ranked either in the first two
positions, or below all candidates of X .

Proposition 3. If there exists an extension P of PX such that x∗ ∈
r2(P), then there exists an extension P∗ of PX such that x∗ ∈ r2(P∗),
and satisfying the following conditions:

1. For each Vi ∈ PX , if x∗ is ranked within the top two positions in Vi,
then x∗ is also ranked within the top two positions in V ∗i .

2. For each V ∗i ∈ P∗, if the top candidate of V ∗i is not in Y then the
second-ranked candidate of V ∗i is not in Y either.

3. For each x′ ∈ X \ {x∗} and each Vi ∈ MP(PX , x′) ∪ LP(PX , x′), if
x′ is not ranked within the top two positions in V ∗i , then for each
Vj ∈ HP(PX , x′), x′ is not ranked within the top two positions in
V ∗j .

Proof. We consider in turn the different conditions:

1. This is because if there exists V ′ ∈ P such that x∗ is not in
the top two positions whereas x∗ is in the top two positions
in its original vote V ∈ PX , then we can simply move all of
candidates in Y ranked higher than x∗ to the bottom positions.
Let V ∗ denote the vote obtained this way. By replacing V ′ with
V ∗, we increase the score of x∗ by 1, and the score of each other
candidate by no more than 1, which means that x∗ is still a
cowinner.

2. If there exists V ′ ∈ P such that x′ ∈ X is ranked in the top
position and y ∈ Y is ranked in the second position, then we
simply obtain V ∗ by switching y and x′.
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3. The condition states that for each candidate x′, whenever we
want to reduce its score, we should first try to reduce it by
putting a new candidate y ∈ Y on top of some vote in V ∈
HP(PX , x′). This is because by putting y on top of some vote
in HP(PX , x′), we may use only one extra candidate y′ ∈ Y to
reduce by one unit the score of the candidate ranked at the top
position of V . Formally, suppose there exist V1 ∈ HP(PX , x′) and
V2 ∈ MP(PX , x′) ∪ LP(PX , x′) such that x′ is within the top two
positions of V ′1 (the extension of V1) but not within the top two
positions of V ′2 (the extension of V2). Let y ∈ Y be any candidate
rankedwithin the top twopositions ofV ′2. LetV

∗

2 denote the vote
obtained from V ′2 by moving y to the bottom, and let V ∗1 denote
the vote obtained from V ′1 bymoving y to the top position. Next,
we replace V ′1 and V ′2 by V ∗1 and V ∗2 , respectively. It follows that
the score of each candidate does not change, which means that
x∗ is still a cowinner. We repeat this procedure until statement
(3) is satisfied for every x′ ∈ X \ {x∗}. Since after each iteration
there is at least one additional vote that will never be modified
again, this procedure ends in O(|PX |) times. �

Proposition 3 simply tells us that when looking for an extension
that makes x∗ a cowinner, it suffices to restrict our attention to
the extensions that satisfy conditions (1)–(3). Moreover, using (1)
of Proposition 3, we deduce that s(x∗, P∗) = s(x∗, PX ). Hence,
for votes V ∈ P2 (the votes in which x∗ is ranked in the second
position), we can assume that the new candidates of Y are put in
bottom positions in P∗.

Define X• as the set of all candidates in X such that ∆(PX , xi) >
0. Our objective is to reduce all score differences to 0 for x ∈ X•,
while keeping the score differences of each new candidate non-
positive. (We do not have to care about the candidates in X \ X•.)

The intuition underlying our algorithm is that when trying to
reduce∆(P, xi) on the current profile P , we first try to use the votes
in HP(PX , xi), then the votes in MP(PX , xi), and finally the votes in
LP(PX , xi). This is because putting some candidates from Y in the
top positions in the votes of HP(PX , xi) not only reduces ∆(P, xi)
by one unit, but also creates an opportunity to ‘‘pay’’ one extra
candidate from Y to reduce ∆(P, xj) by one unit, where xj is the
candidate ranked on top of this vote. For the votes in MP(PX , xi),
we can only reduce∆(PX , xi) by one unitwithout any other benefit.
For the votes in LP(PX , xi) wewill have to use two candidates from
Y to bring down ∆(P, xi) by one unit; however, if we already put
some y ∈ Y in the top position in order to reduce ∆(P, xj), where
xj is the candidate ranked in the second position in the original
vote, then we only need to pay one extra candidate in Y to reduce
∆(P, xi) by one unit. Therefore, the major issue consists of finding
the most efficient way to choose the votes in HP(PX , xi) to reduce
∆(P, xi), when ∆(P, xi) ≤ |HP(P, xi)|. We will solve this problem
by reducing it to a max-flow problem.

The algorithm is composed of a main function CheckCowin-
ner(.)which comes together with two sub-functions AddNewAlter-
nativeOnTop(.) and BuildMaxFlowGraph(.) that we detail first.

Algorithm 1: AddNewAlternativeOnTop(P, V , Y )

1 yi ← argminj

∆(P, yj) : yj ∈ Y


// take lowest index i when

tie-breaking
2 add yi on top of V and update P
3 return P

The procedure AddNewAlternativeOnTop simply picks new
candidates to be put on top of votes, and updates subsequently the
profile. Note that in this procedure, candidates from Y to be added
on top of the votes are those with the lowest score (or the lowest
index, in case of ties). This results in choosing new candidates in a
cyclic order y1 → y2 · · · → y|Y | → y1 · · ·.

As for the function BuildMaxFlowGraph(P, x∗, X1, X2), it builds
the weighted directed graph G = ⟨W , E⟩ defined as follows:
Fig. 2. The flow graph returned by BuildMaxFlowGraph(P, x∗, {x4}, {x3}).

• W = {s, t} ∪ X1 ∪ X2 ∪


xi∈X2
LP(P, xi);

• E contains the following weighted edges:
– for each x ∈ X1, an edge (s, x) with weight ∆(P, x);
– for each x ∈ X2 and each V ∈ LP(P, x): an edge (V , x) with

weight 1; plus, if the candidate x′ in second position in V is in
X1, an edge (x′, V ) with weight 1;

– for each x ∈ X2, an edge (x, t) with weight ∆(P, x).

We refer the reader to Fig. 2 for an illustration. (Once this graph is
constructed, any standard function to compute a flowφ ofmaximal
value can of course be used.) We are now in a position to detail the
main function CheckCowinner(.).

Algorithm 2: CheckCowinner(PX , x∗, Y )

1 P ← PX
2 T ← 0 // number of calls AddNewAlternativeOnTop
3 X1 ← {xi ∈ X• : |HP(PX , xi)| > ∆(PX , xi)}
4 X2 ← {xi ∈ X• : |HP(PX , xi)| ≤ ∆(PX , xi)}
5 REM ← ∅
6 for xi ∈ X2 do
7 for V ∈ HP(P, xi) do
8 P ← AddNewAlternativeOnTop(P, V , Y )
9 T ← T + 1

10 for xi ∈ X2 do
11 for V ∈ MP(P, xi) do
12 if ∆(P, xi) > 0 then
13 P ← AddNewAlternativeOnTop(P, V , Y )
14 T ← T + 1
15 else
16 REM ← REM ∪ {xi}

17 X2 ← X2\REM
18 if ∃y ∈ Y such that ∆(P, y) > 0 then
19 return false
20 G← BuildMaxFlowGraph(P, x∗, X1, X2)
21 φ← ComputeMaxFlow(G, s, t)
22 if

φ ≥


i≤m−1 ∆(P, xi)+


xi∈X2
∆(P, xi)− (|Y | · s(x∗, PX )− T )

then
23 return true
24 return false

Proposition 4. Given a profile PX on X, a candidate x∗ ∈ X and a set
of new candidates Y , a call to algorithm CheckCowinner(PX , x∗, Y )
returns in polynomial time the answer true if and only if there exists
an extension of PX in which x∗ is a cowinner.

Proof. Algorithm 2 starts by partitioning X• into X1 and X2: an
alternative x ∈ X• is in X1 if |HP(PX , x)| > ∆(PX , xi) and in X2 if
|HP(PX , x)| ≤ ∆(PX , x).

Let x ∈ X2. Then by item (3) of Proposition 3, for each vote
in V ∈ HP(P, x), we can safely put one candidate from Y in the
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top position of V ; this is done in the first phase of Algorithm 2,
lines 6–9. Note that after adding a new candidate on top of a vote
V ∈ HP(P, x) and after updating P , themodified votewill no longer
belong toHP(P, x). Instead, itwill nowbelong toMP(P, x′) for some
other candidate x′.

When Phase 1 is over, the score of x ∈ X2 may still need to
be lowered down, which can be done next by using votes from
MP(PX , x). This is what Phase 2 does, from line 10 to line 16. There
are three possibilities:
1. |HP(PX , x)| = ∆(PX , x). In this case, the votes in HP(PX , x)

are sufficient to make x∗ catch up x: after Phase 1, we have
∆(PX , x) = 0 and Phase 2 is void; we are done with x.

2. |HP(PX , x)| < ∆(PX , x) and |HP(PX , x)| + |MP(PX , x)| ≥
∆(PX , x): in this case, to make x∗ catch up x, it is enough to take
∆(PX , x)− |HP(PX , x)| arbitrary votes in MP(PX , x) and add one
new candidate on top of them; this is what Phase 2 does, and
after that we are done with x.

3. |HP(PX , x)| + |MP(PX , x)| < ∆(PX , x): in this case, because of
Proposition 3, we know that it is safe to add one new candidate
on top of all votes of MP(PX , x); this is what Phase 2 does; after
that, we still need to lower down the score of x, which will
require to add new candidates on top of votes of LP(PX , x).
If at this point a newly added candidate has a score higher than

x∗, then x∗ cannot win, and we can stop the program (line 19).
For readability, let us denote by P the profile obtained after

Phases 1 and 2. For each x ∈ X2 satisfying condition 3, the only
way to reduce ∆(P, x) is to put two candidates of Y within the
top two positions in a vote of LP(P, x), because in Phases 1 and
2 we have used up all the votes in HP(P, x) and MP(P, x). Now,
reducing ∆(P, x) by one unit will cost us two candidates in Y , but
meanwhile, ∆(P, x′) is also reduced by one unit, where x′ is the
candidate ranked in the second position in V . We must have x′ ∈
X1. We note that


x∈X2

LP(PX , x) ⊆


x′∈X1
HP(PX , x′). Choosing

optimally the votes in LP(PX , x) for each x ∈ X2 can be done by
solving an integral max-flow instance which is build by algorithm
BuildMaxFlowGraph (note that in case where either X1 or X2 is
empty, we just assume that the flow has a null value).

Let us show that x∗ is a possible cowinner if and only if
the value of the flow from s to t is at least


i≤m−1 ∆(P, xi) +

xi∈X2
∆(P, xi)−(|Y |·s(x∗, PX )−T ). Observe that the flowdoes not

necessarily bring all ∆(P, xi) to 0, therefore we sometimes need a
postprocessing consisting of adding further new candidates on top
of some votes (see steps 2 and 3 below).

Suppose the above max-flow instance has a solution whose
value is at least
i≤m−1

∆(P, xi)+

xi∈X2

∆(P, xi)− (|Y | · s(x∗, PX )− T ).

We next show how to solve our cowinner problem from the
solution to this flow problem. Because the instance is integral,
there must exist an integral solution. We arbitrarily choose
one integral solution φ (as returned by ComputeMaxFlox), which
assigns to each edge (xi, xj) an integer φ(xi, xj) which represents
the value of the flow on this edge. Here, we give a procedure which
produces an extension P of PX where x∗ is a cowinner:
1. For each xi ∈ X2 and each V ∈ LP(P, xi), if there is a flow from xi

to xj via V , then we obtain V ∗ from V by putting two candidates
from Y in the top positions (that is, both ∆(P, xi) and ∆(P, xj)
are reduced by 1, which comes at the cost of using candidates
in Y twice). It is possible since |Y | ≥ 2.

2. For each xi ∈ X2, if φ(xi, t) < ∆(P, xi), then we arbitrarily
choose ∆(P, xi) − φ(xi, t) votes V ∈ LP(P, xi) among those
which haven’t been selected in the previous step, and obtain
V ∗ by putting two candidates from Y in the top two positions
(again, we will specify how to choose the two candidates from
Y later). It is possible since |Y | ≥ 2.
3. For each xj ∈ X1, if φ(s, xj) < ∆(P, xi), then we arbitrarily
choose∆(P, xi)−φ(s, xj) votesV ∈ HP(P, xj) such thatV ∗ is not
defined above (in step 1 or step 2), and we obtain V ∗ by putting
exactly one candidate from Y in the top position of V . This is
possible because, by construction, |HP(P, xj)| = |HP(P, xj)| ≥
∆(P, xi) ≥ ∆(P, xi) for xj ∈ X1.

4. For each V ∗, if a candidate y ∈ Y is not selected for one of the
first two positions, then it is ranked at the bottom position.

In the above procedure (similarly to what is done in Algo-
rithm 1), priority is given to candidates from Y with the lowest
score (or the lowest index, in case of ties) when it comes to choose
those to be added on top of the votes.

Let us now determine the number of times that new candidates
from Y are inserted on top of the votes. Recall that until line 20 of
the algorithm,we have used the candidates from Y exactly T times.
Now consider the four-step procedure described above. Observe
that to reduce by one unit the score deficit with respect to one
candidate, steps 1 and 3 require one occurrence of a candidate of
Y (step 1 uses two occurrences but reduces the score deficit with
respect to two candidates), while step 2 requires two occurrences.
Thus, for each i ≤ m − 1, we have to use ∆(P, xi) times the
candidates from Y , plus the additional occurrences required in step
2. More precisely, step 2 requires, for each xi ∈ X2, ∆(P, xi) −
φ(xi, t) additional occurrences of new candidates in the completed
votes. Therefore, the total number of times that the candidates
of Y are ranked either in first or second position (denoted sY for
readability), is such that:

sY ≤


i≤m−1

∆(P, xi)+


xi∈X2

∆(P, xi)−

xi∈X2

φ(xi, t)


(1)

=


i≤m−1

∆(P, xi)+


xi∈X2

∆(P, xi)− φ


(2)

But we also have:

φ ≥


i≤m−1

∆(P, xi)+

xi∈X2

∆(P, xi)− (|Y | · s(x∗, PX )− T ). (3)

By combining (2) and (3), we thus get:

sY ≤ |Y | · s(x∗, PX )− T
≤ |Y | · s(x∗, PX ).

That is, our algorithm will put candidates from Y in the top
two positions in the extension no more than |Y | · s(x∗, PX ) times.
Because the addition of new candidates is done in a cyclic order,
each new candidate will eventually appear at most s(x∗, PX ) in
the top two positions of the votes. Thus, the score of these new
candidateswill not exceed that of x∗. It follows that x∗ is a cowinner
in P∗, since for all other candidates xi ∈ X , we have ∆(P∗, xi) ≤ 0.

Next, we show that if x∗ is a possible cowinner, then the value
of a max-flow is at least
i≤m−1

∆(P, xi)+

xi∈X2

∆(P, xi)− (|Y | · s(x∗, PX )− T ).

Due to Proposition 3, each extension profile P∗ of PX where x∗
becomes a cowinner to the problem instance can be converted to
a profileP as in the steps before line 20 in the algorithm. Now, for
each xi ∈ X2, let li denote the number of votes V ∈ LP(P, xi) such
that in its extension V ∗, the top two positions are the candidates of
Y .Wemust have that li ≥ ∆(P, xi). For every xi ∈ X2, we arbitrarily
choose li−∆(P, xi) such votes, andmove the first ranked candidate
to the bottom position. For each xj ∈ X1, let lj denote the number
of votes V ∈ HP(P, xj) ∪MP(P, xj) such that in its extension V ∗, a
candidate from Y is ranked in the top position. We must have that
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Box III.
lj ≥ ∆(P, xj). For every xj ∈ X1, we arbitrarily choose lj − ∆(P, xj)
such votes, and move the first ranked candidate to the bottom
position.

Now, let there be a flow from xj ∈ X1 to xi ∈ X2

via V if V ∈ LP(P, xi) and the top two positions in V ∗
are both in Y . This defines a flow whose value is at least

xi∈X2
∆(P, xi)−


xj∈X1

(lj −∆(P, xj)). Because the score of each
candidate of Y is no more than s(x∗, PX ), we know that |Y | ·
s(x∗, PX )− T ≥


i≤m−1 li. Actually, |Y | · s(x

∗, PX ) is the maximum
score that the whole set of new candidates of Y can reach in
such a way that x∗ is a cowinner. In the partial profileP (line 20
of Algorithm CheckCowinner (PX , x∗, Y )), the global score of Y is
T . Finally, since


i≤m−1 li + T corresponds to the global score

that Y has in profile P∗ (where x∗ becomes a cowinner), we get
|Y | · s(x∗, PX ) ≥


i≤m−1 li + T .

Hence, |Y |·s(x∗, PX )−T≥


i≤m−1 li≥


xi∈X2
∆(P, xi)+


xj∈X1

lj,

or equivalently,−


xj∈X1
lj ≥


xi∈X2

∆(P, xi)−(|Y |· s(x∗, PX )−T ).
Hence, we get:

φ ≥

xi∈X2

∆(P, xi)−

xj∈X1

(lj −∆(P, xj))

=


i≤m−1

∆(P, xi)−

xj∈X1

lj

≥


i≤m−1

∆(P, xi)+

xi∈X2

∆(P, xi)− (|Y |s(x∗, PX )− T ).

Thus, we have shown that x∗ is a possible cowinner if and only
if the value of the flow from s to t is at least


i≤m−1 ∆(P, xi) +

xi∈X2
∆(P, xi)−(|Y | ·s(x∗, PX )−T ). This concludes the proof. �

Corollary 1. Deciding whether x∗ is a possible cowinner for 2-
approval with respect to the addition of new candidates is in P.

To better understand Algorithm 1, we will now run it step by
step on the example introduced previously.

Example 2. Consider the profile described in Example 1. We as-
sume the number of new candidates is k = 3. First, the ini-
tial scores of the candidates are s(x∗, PX ) = 4, s(x1, PX ) = 7,
s(x2, PX ) = 7, s(x3, PX ) = 8, s(x4, PX ) = 6, s(x5, PX ) = 4
and s(x6, PX ) = 2. The candidates whose score exceeds that of
x∗ are x1, x2, x3 and x4, with the score differences ∆(P, x1) =
3, ∆(P, x2) = 3, ∆(P, x3) = 4 and ∆(P, x4) = 2. At the first
phase, we check if there are candidates xi for which |HP(PX , xi)| ≤
∆(PX , xi). This is the case for x1, x2 and x3, thusweput onenewcan-
didate on top of v8, v9, v13 and v14. The updated table is as follows:
HP MP LP ∆(P, xi)
x1 v1 v5, v6, v7 1
x2 v′8, v

′

9 v10, v11, v12 2
x3 v′13, v

′

14 v15, v16, v17, v18 3
x4 v5, v6, v10,

v15, v16

v19 2

Here, v′i refers to the vote vi to which new candidates have been
added.

At the second phase, X2 = {x1, x2, x3} and X1 = {x4} (we do not
worry about x5 and x6 for which nothing special has to be done).
We put one new candidate on top of v1, v

′

8, v
′

9, v
′

13 and v′14, and we
are done with x1 and x2 (since ∆(P, x1) = 0 and ∆(P, x2) = 0).
The profile is nowP and the updated table is

HP MP LP ∆(P, xi)
x3 v15, v16,

v17, v18

1

x4 v5, v6, v10,
v15, v16

v19 2

So far we have used the new candidates 9 times, and s(x∗,P) =
4, therefore if we have less than three new candidates we stop (x∗
is not a possible cowinner) otherwise we continue. Now the situa-
tion is as follows and we have to solve the corresponding maxflow
problem (we omit the value of edges when it equals 1) see Box II.

The maximum flow has value 1 and is obtained for instance by
having a flow 1 for instance through the edges s → x4, x4 →
v16, v16 → x3, x3 → t (going through v15 is an equally good op-
tion). Therefore we place two new candidates on top of v16, which
has the effect of making the score of x3 and x4 decrease by one unit
each. We still have to make the score of x4 decrease by one unit,
and for this wemust place one new candidates on top of any of the
votes v5, v6, v10, v15 (say v5). In total we will have used the new
candidates 12 times, therefore, c is a possible cowinner if and only
if the number of new candidates is at least 3. A possible extension
(with 3 new candidates) is given in Box III:

4.4. K-approval, two new candidates

Let X = {x∗} ∪ {x1, . . . , xp} be the set of (initial) candidates, x∗
being the candidate thatwewant tomake a cowinner, Y = {y1, y2}
the two new candidates, and PX = ⟨V1, . . . , Vn⟩ the initial profile,
where each Vi is a sequence of K candidates in X .We first introduce
the following notation:
• For each x ∈ X,UPX (x) is the number of votes in PX whose

candidates ranked K − 1 and K are respectively x and x∗, and
T PX (x) = SK−2(x, PX ) + UPX (x). (Recall that SK−2(x, PX ) is the
number of voters in PX who rank x in the first K − 2 positions.)
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We establish the following lemma.

Lemma 1. For each x ∈ X, there exists a completion Q of PX by
adding two candidates such that SK (x,Q ) ≤ SK (x∗,Q ) if and only
if T PX (x) ≤ SK (x∗, PX ).

Proof. Assume T PX (x) > SK (x∗, PX ), and let Q be a completion
of PX by adding two candidates in which x∗ is a cowinner. Let us
partition PX into P1, P2 and P3, as follows: every vote in P1 is such
that the candidates ranked K − 1 and K are respectively x and
x∗; P2 contains all votes ranking x in the first K − 2 positions;
and P3 contains all other votes in PX . Let Q1,Q2 and Q3 be the
corresponding votes in Q , and let α be the number of votes in
Q1 where the two new candidates have been placed in the first K
positions, thus eliminating both x and x∗ from the K first positions;
clearly, we have SK (x,Q1) = SK (x, P1) − α = UPX (x) − α and
SK (x∗,Q1) ≤ SK (x∗, P1) − α (the inequality can be strict, in case
there are some votes in Q1 where only one new candidate was
placed in the first K positions). Now, regardless of the position of
the two new candidates, we have SK (x,Q2) = SK−2(x, P2). We get
SK (x,Q ) = SK (x,Q1) + SK (x,Q2) + SK (x,Q3) ≥ UPX (x) − α +
SK−2(x, P2) = T PX (x) − α, whereas SK (x∗,Q ) ≤ SK (x∗, PX ) − α.
The initial assumption T PX (x) > SK (x∗, PX ) implies T PX (x) − α >
SK (x∗, PX )− α, therefore SK (x,Q ) > SK (x∗,Q ).

Conversely, assume T PX (x) ≤ SK (x∗, PX ), and let us build Q as
follows: we introduce one new candidate on top of each vote of PX
that ranks x in position K , and two new candidates on top of each
vote of PX that ranks x in position K−1 and x′ ≠ x∗ in position K . It
is easy to check that SK (x∗,Q ) = SK (x∗, PX ). Now, the only votes of
Q where x remains among the first K position are those of Q1 and
of Q2, therefore SK (x,Q ) = T PX (x) ≤ SK (x∗, PX ) = SK (x∗,Q ). �

Proposition 5. Deciding whether x∗ is a possible cowinner for
K-approval with respect to the addition of 2 new candidates is in P.

Proof. A consequence of Lemma 1 is that if T PX (x) > SK (x∗, PX )
for some x, then x∗ cannot be a possible cowinner in PX under
2-approval with 2 new candidates; and obviously, checking
whether T PX (x) > SK (x∗, PX ) holds for some x can be done in
polynomial time. Therefore, from now on, we assume that T PX (x) ≤
SK (x∗, PX ) holds for every x ∈ X—assuming this will not change the
complexity of the problem.

We now give a polynomial reduction from the possible cowin-
ner problem for K -approval and 2 new candidates to the possible
cowinner problem for 2-approval and 2 new candidates, which we
already know to be polynomial. Let ⟨N, X, PX , 2⟩ be an instance of
the possible cowinner problem for K -approval with respect to the
addition of 2 new candidates. We build an instance ⟨N ′, X ′, RX ′ , 2⟩
of the possible cowinner problem for 2-approval with respect to
the addition of 2 new candidates in the following way. The profile
PX is translated into the following profile R = RX ′ :

• the set of candidates is X ′ = X ∪ {zj, 1 ≤ j ≤


x∈X\{x∗}
SK−2(x, PX )} ∪ {z ′j , 1 ≤ j ≤ SK−2(x∗, PX )}, where all zj and z ′j
are fresh candidates;
• for every vote Vi in PX , we have in R a vote Wi including the

candidates ranked in positions K − 1 and K of Vi, and then the
remaining candidates in any order. We denote by R1 be the re-
sulting set of votes;
• for every x ∈ X \ {x∗}, we have SK−2(x, PX ) votes xzj, and then

the remaining candidates in any order. We denote by R2 the re-
sulting set of votes;
• similarly, we have SK−2(x∗, PX ) votes z ′jx

∗, and then the remain-
ing candidates in any order. We denote by R3 the resulting set
of votes.
We note that if x ∈ X then SK (x, PX ) = S2(x, R), and for every
fresh candidate z, S2(z, R) = 1. Without loss of generality we as-
sume SK (x∗, PX ) ≥ 1 (otherwise we know for sure that x∗ cannot
be a possible cowinner).

We decompose the rest of the proof into two lemmas.

Lemma 2. If x∗ is a possible cowinner for K-approval with 2 new
candidates in PX , then it is a possible cowinner for 2-approval
with 2 new candidates in R.

Proof. Suppose that x∗ is a possible cowinner for K -approval with
2 new candidates Y = {y1, y2} in PX and let P ′ = ⟨V ′1, . . . , V

′
n⟩ be an

extension of PX with two new candidates where x∗ is a cowinner.
Let us use these two new candidates in the same way in R: every
time a new candidate is used for being placed on top of Vi, it is also
used for being placed on top of Wi. Let R′ be the resulting profile.
All candidates in X have the same scores in PX and in R, they also
will have the same scores in P ′ and R′; as for the fresh candidates
zj, z ′j , S2(zj, R

′) = S2(z ′j , R
′) = 1 ≤ S2(x∗, R′); therefore, x∗ is a

cowinner in R′ and a possible cowinner for 2-approval with 2 new
candidates in R. �

Lemma 3. If x∗ is a possible cowinner for K-approval with 2 new
candidates in R, then it is a possible cowinner for 2-approval in PX .

Proof. Suppose that x∗ is a possible cowinner for 2-approval with
2 new candidates Y = {y1, y2} in R, and let R′ be a completion of R
where x∗ is a cowinner for 2-approval. Let uswrite R′ = R′1∪R

′

2∪R
′

3,
where R′1 (resp. R′2, R

′

3) consists of the completions of the votes in
R1 (resp. R2, R3). By a slight abuse of language we denote by R1, R′1
etc. only the part of the votes in R1, R′1 etc. consisting of the top two
candidates only.

We first claim that we can assume without loss of generality
that R′2 = R2 and R′3 = R3 that is, the only votes in R′ where some
new candidates have been placed on one of the top two positions
are in R′1. Suppose this is not the case; then we are in one of the
following four situations: (1) there is a vote in R′2 of the form yjxi,
where yj ∈ Y and xi ∈ X , or (2) there is a vote in R′2 of the form
y1y2 or y2y1, or (3) there is a vote in R′3 of the form yiz ′j or (4) there
is a vote in R′3 of the form y1y2 or y2y1. Consider first cases (1), (3)
and (4). Take one of these votes in R′2 (case (1)) or in R′3 (cases (3)
or (4)) and replace it by the original vote xzj in R2 (case 1) or in
z ′jx
∗ in R′3 (cases (3) or (4)). Let R

′′ be the profile obtained. We have
S2(x∗, R′′) ≥ S2(x∗, R′) ≥ 1, for every xi ∈ X, S2(xi, R′′) = S2(xi, R′),
for every zj, S2(zj, R′′) ≤ 1, and for every z ′j , S2(z

′

j , R
′′) ≤ 1.

Therefore, when transforming R′ into R′′, the score of x∗ does
not decrease whereas the score of all other candidates does not in-
crease; because x∗ is a cowinner in R′, it is still a cowinner in R′′.
Lastly, R′′ is also an extension of R.

By induction, if we perform this operation for each occurrence
of cases (1), (3) or (4), we end up with a profile R′′, which is an
extension of R for which situations (1), (3) and (4) do not occur,
and such that x∗ is a cowinner for 2-approval in R′′. Let R′′ =
R′′1 ∪ R′′2 ∪ R′′3 = R′′1 ∪ R′′2 ∪ R3.

Now, consider case (2). Let xizj be one of the votes in R2 corre-
sponding to a vote y1y2 (or y2y1) in R′′2 . Apply the following proce-
dure in this order:

1. Assume that xi does not appear in R′′1 except in votes of the
form xix∗, and let R′′′ be the profile obtained from R′′ by re-
placing the vote y1y2 in R′′2 by the original vote xizj in R2. Then
S2(xi, R′′′) = S2(xi, R′′′1 ) + S2(xi, R′′′2 ) ≤ S2(xi, R′′′1 ) + S2(xi, R2).
Now, S2(xi, R′′′) ≤ S2(xi, R′′′) = UPX (xi) and S2(xi, R2) =
SK−2(xi, PX ), therefore S2(xi, R′′′) ≤ UPX (xi) + SK−2(xi, PX ) =
T PX (xi) ≤ SK (x∗, PX ) = S2(x∗, R) = S2(x∗, R′′′). Therefore, x∗ is
also a cowinner in R′′′.
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2. Now, assume that xi appears in at least one vote of R′′1 of the
form x∗xi, xixj or xjxi. If this is a vote of the form xixj, we replace
y1y2 in R′′2 by the original vote xizj in R2 and the vote xixj by a
vote y1y2. If this is a vote of the form x∗xi or xjxi, we replace y1y2
in R′′2 by the original vote xizj in R2 and the vote x∗xi (resp. xjxi)
by y1x∗ (resp. y1xj). In all three cases, the score of all candidates
remain the same after the transformation, except the score of y2
and zj, which can only decrease, therefore x∗ is still a cowinner
after the transformation.

We perform this procedure on xi iteratively until all the votes
y1y2 (or y2y1) in R′′′2 have been replaced by the original votes xizj
in R2. After doing this sequentially on all candidates of X such that
case (2) occurs, we end upwith a profile R′′′′ of P such that R′′′′2 = R2
and R′′′′3 = R3 and x∗ is a cowinner in R′′′′. This proves the claim.

Now, let R′ be a completion of R where x∗ is a cowinner for
2-approval, where R′2 = R2 and R′3 = R3. From R′ we build the
following extension P ′ of P: for every voteWi ∈ R1,

• ifW ′i is of the form x∗x′ then V ′i = W ′i ;
• if W ′i is of the form yix then V ′i is obtained from Vi by placing yi

on top;
• ifW ′i is of the form y1y2 (or y2y1) then V ′i is obtained from Vi by

placing {y1, y2} on top.

The scores of all candidates are the same in P ′ and in R′, therefore
x∗ is a cowinner in P ′ if only if it is a cowinner in R′. Therefore, it
is a cowinner in P ′, which means that x∗ is a possible cowinner for
2-approval in P . �

We can now end the proof of Proposition 5: from Lemmas 2 and
3 we conclude that deciding whether x∗ is a possible cowinner for
K -approval with respect to the addition of two candidates can be
polynomially reduced to a problem of a deciding whether x∗ is a
possible cowinner for 2-approval, which we know is in P. �

4.5. 3-approval, 3 new candidates

We will now see that the problems addressed in previous
subsections constitute the frontier of what can be solved in
polynomial-time for K -approval rules. In the rest of this paper,
the hardness proofs will use reductions from the 3-dimensional
matching (3-DM) problem.

Definition 4. An instance of 3-DM consists of a subset C =

{e1, . . . , em} ⊆ A × B × C of triples, where A, B, C are 3 pairwise
disjoint sets of size n′ with A = {a1, . . . , an′}, B = {b1, . . . , bn′}
and C = {c1, . . . , cn′}. For z ∈ A ∪ B ∪ C, d(z) denotes the
number of occurrences of z in C, that is the number of triples of
C which contain z. A matching is a subsetM ⊆ C such that no two
elements inM agree on any coordinate. The 3-DMproblemconsists
of answering this question: does there exist a perfect matching M
on C, that is, a matching of size n′?

The 3-DM problem is known to beNP-complete (problem [SP1]
page 221 in Garey and Johnson (1979)), even with the restriction
where ∀z ∈ A∪B∪C, d(z) ∈ {2, 3} (that is, no element of A∪B∪C
occurs inmore than 3 triples, and each element of A∪B∪C appears
in at least 2 triples).

Proposition 6. Deciding if x∗ is a possible cowinner for 3-approval
with respect to the addition of 3 new candidates, is an NP-complete
problem.

Proof. This problem is clearly in NP. The hardness proof is based
on a reduction from 3-DM (see Definition 4).

Let I = (C, A × B × C) be an instance of 3-DM with n′ ≥ 3
and ∀z ∈ A ∪ B ∪ C, d(z) ∈ {2, 3}. From I , we build an instance
of the PcWNC problem as follows. The set X of candidates contains
x∗, X1 = {x′i, y
′

i, z
′

i : 1 ≤ i ≤ n′} where x′i, y
′

i, z
′

i correspond to
elements of A ∪ B ∪ C and a set X2 of dummy candidates. We now
describe the votes informally; their formal definition will follow.
The set N of voters contains N1 = {v

e
: e ∈ C} and a set N2

of dummy voters. For each voter, we only indicate her first three
candidates. Thus, the vote of ve is (x′i, y

′

j, z
′

k)where e = (ai, bj, ck) ∈
C. The preference of dummy voters are such that:

(i) the scores of the candidates in X satisfy ∀x ∈ X1, S3(x, PX ) =
n′ + 1, S3(x∗, PX ) = n′ and ∀x ∈ X2, S3(x, PX ) = 1;

(ii) the vote of any voter ofN2 contains atmost one candidate from
{x′i, y

′

i, z
′

i : 1 ≤ i ≤ n′} in the first three positions, and if it
contains one, then it is in top position.

Formally, the instance ⟨N, X, PX , 3, x∗⟩ of the possible cowinner
problem for 3-approval and 3 new candidates is described as
follows: the set of voters is N = N1 ∪ N2 where N1 = {v

e
: e ∈ C}

and N2 = NA ∪ NB ∪ NC ∪ Nx∗ , the set of candidates is X = X1 ∪ X2.
For the candidates in X , we have x∗ together with:

• X1 = X ′ ∪ Y ′ ∪ Z ′ where X ′ = {x′1, . . . , x
′

n′}, Y
′
= {y′1, . . . , y

′

n′}

and Z ′ = {z ′1, . . . , z
′

n′}.
• X2 = {x∗i : 1 ≤ i ≤ 2n′} ∪
{xji : 1 ≤ i ≤ n′, 1 ≤ j ≤ 2


n′ − d(xi)+ 1


} ∪

{yji : 1 ≤ i ≤ n′, 1 ≤ j ≤ 2

n′ − d(yi)+ 1


} ∪

{z ji : 1 ≤ i ≤ n′, 1 ≤ j ≤ 2

n′ − d(zi)+ 1


}.

Note that n′ − d(xi)+ 1 ≥ 1 since d(z) ≤ 3 ≤ n′.

For each voter vi ∈ N , we only indicate her first three candidates
(in order of preference). The set of all X-votes PX of the voters in N
is as follows:

• NA = {v
A
i,j : 1 ≤ i ≤ n′, 0 ≤ j ≤


n′ − d(xi)


}. The vote of vA

i,j is
(x′i, x

2j+1
i , x2j+2i ).

• NB = {v
B
i,j : 1 ≤ i ≤ n′, 0 ≤ j ≤


n′ − d(yi)


}. The vote of vB

i,j is
(y′i, y

2j+1
i , y2j+2i ).

• NC = {v
C
i,j : 1 ≤ i ≤ n′, 0 ≤ j ≤


n′ − d(zi)


}. The vote of vC

i,j is
(z ′i , z

2j+1
i , z2j+2i ).

• N1 = {v
e
: e ∈ C}. The vote of ve is (x′i, y

′

j, z
′

k) where e =
(ai, bj, ck) ∈ C.
• Nx∗ = {v

x∗
j : 0 ≤ j ≤ n′− 1}. The vote of vx∗

j is (x∗, x∗2j+1, x
∗

2j+2).

We claim that I admits a perfect matchingM ⊆ C if and only if
x∗ becomes a possible cowinner by adding three new candidates.

Let Y = {y1, y2, y3} be the new candidates added. Since we
cannot increase the score of x∗, we must decrease by one point the
scores of candidates of X ′ ∪ Y ′ ∪ Z ′. Let us focus on candidates in
X ′. In order to reduce the score of x′i , we must modify the votes
of voters in N1 or in NA. By construction, each such voter must
put y1, y2, y3 in the first three positions (since in NA or from (ii),
candidates of X ′ are put in top position when they appear in the
first three positions) and then, the score of each yi increases by
1 at each time. Since there are n′ candidates in X ′, we deduce
S3(yi, P) ≥ n′ for every i = 1, 2, 3. On the other hand, if x∗ becomes
a cowinner, S3(yi, P) ≤ S3(x∗, P) ≤ S3(x∗, PX ) = n′ from (i).
Thus, S3(yi, P) = n′ for every i = 1, 2, 3 and there are exactly
n′ voters N ′ which put y1, y2, y3 in the first three positions (for the
remaining voters of N \ N ′, yi is ranked in position at least 4 for
every i = 1, 2, 3).

We claim that N ′ ⊆ N1. Otherwise, at least one voter of NA put
y1, y2, y3 in the first three positions. There remains at most n′ − 1
voters of N ′ to decrease by 1 the score of candidates in Y ′. It is
impossible because |Y ′| = n′ and, from (ii) and by construction
of N1, each candidate of Y ′ appears at most once in the first three
positions for all voters. Finally, since the score of candidates in
Y ′ ∪ Z ′ must also decrease by 1, we deduce that x∗ is a possible
cowinner iffM = {e ∈ C : y1, y2, y3 are in the first three positions
for voter ve} is a perfect matching of C. �
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4.6. General case

We finalize the study of the possible cowinner problem for
K -approval with respect to candidate addition by showing that
the problem is hard in any other case. For this we proceed in two
steps: we first prove that for each k ≥ 3, the problem PcWNC(k)
for 3-approval is NP-complete (Lemma 4). Next we prove that if
the problem PcWNC(k) for K -approval is NP-complete then it is
also the case for the problem PcWNC(k) for (K + 1)-approval
(Lemma 5).

Lemma 4. For all k ≥ 3, the problem PcWNC(k) for 3-approval can
be reduced in polynomial-time to the problem PcWNC(k + 1) for 3-
approval.

Proof. Let ⟨N, X, PX , k, x∗⟩, where P = PX = ⟨V1, . . . , Vn⟩, be
an instance of PcWNC(k) for 3-approval. Assume S3(x∗, P) ≥ 1
(otherwise, the problem is trivial). Consider the following instance
⟨N ′, X ′,QX ′ , k+ 1, x∗⟩ of the PcWNC(k+ 1) for 3-approval:

• the set of candidates is X ′ = X ∪ {z} ∪ {t1i , t
2
i | 1 ≤ i ≤

2S3(x∗, P)};
• there are n+ 2S3(x∗, P) votes:

– for every vote Vj in P we have a voteWj in Q whose first three
candidates are the same as in Vj and in the same order, and
the other candidates are in an arbitrary order.

– for every i = 1, . . . , 2S3(x∗, P), we have a vote Ui in which
the first 3 candidates are t1i , t

2
i , z, the remaining candidates

being ranked arbitrarily.

Assume x∗ is a possible cowinner for P = PX (w.r.t. the
addition of k new candidates) and let P ′ be an extension of P
where x∗ is a cowinner. Let Y = {y1, . . . , yk} denote the new
candidates for the instance ⟨N, X, PX , k⟩, and Y ′ = {y1, . . . , yk+1}
the new candidates for the instance ⟨N ′, X ′,QX ′ , k + 1⟩. Consider
the following extension Q ′ of Q = QX ′ : for every vote V ′j of P

′ we
have a vote W ′j in Q ′ whose 3 first candidates are the same as in
V ′j (and the remaining ones in an arbitrary order); and for every
vote Ui such that 1 ≤ i ≤ S3(x∗, P) we have a vote U ′i whose
first 3 candidates are yk+1, t1i , t

2
i and for every vote Ui such that

S3(x∗, P) + 1 ≤ i ≤ 2S3(x∗, P), we have a vote U ′i whose first 3
candidates are t1i , t

2
i , z. It is easy to check that Q ′ is an extension

of Q . The scores of all candidates in X ∪ Y are the same in P ′ and
Q ′, while the score of each t1i , t

2
i is 1, the scores of z and of yk+1 are

S3(x∗, P); therefore x∗ is a cowinner in Q ′ and a possible cowinner
in Q .

Conversely, assume x∗ is a possible cowinner in Q = QX ′

and let Q ′ be an extension of Q in which x∗ is a cowinner. We
are now going to reason abut the number of occurrences of the
new candidates y1, . . . , yk+1 in the first three positions of the
votes of Q ′. For the sake of notation, for any vote V we denote
S3(Y ′, V ) =


y∈Y ′ S3(y

′, V ): in words, S3(Y ′, V ) is the number of
new candidates in the first three positions of V . Similarly, if R is a
profile, we denote S3(Y ′, R) =


y∈Y ′ S3(y

′, R).
Without loss of generality, we assume that S3(x∗,Q ′) =

S3(x∗,Q ) = S3(x∗, P), since under 3-approval it is never beneficial
to decrease the score of x∗ to make it a possible cowinner. We have
S3(z,Q ′) ≤ S3(x∗,Q ′) = S3(x∗, P) and S3(z,Q ) = 2S3(x∗, P),
therefore a new candidate must be put above z in at least S3(x∗, P)

votes U ′i ; therefore,

2S3(x∗,P)
j=1

S3(Y ′,Ui) ≥ S3(x∗, P). (4)
Now, S3(Y ′,Q ′) =
n

i=1 S3(Y
′,Wi) +

2S3(x∗,P)

j=1 S3(Y ′,Ui), which
together with (4) entails

n
i=1

S3(Y ′,Wi) ≤ S3(Y ′,Q ′)− S3(x∗, P). (5)

Now, x∗ is a cowinner in Q ′, therefore, for all yj ∈ Y ′ we have
S3(yj,Q ′) ≤ S3(x∗,Q ′) = S3(x∗, P), from which we get

S3(Y ′,Q ′) ≤ (k+ 1)S3(x∗, P). (6)

From (5) and (6) we get

n
i=1

S3(Y ′,Wi) ≤ kS3(x∗, P). (7)

Now, consider the extension P ′ of P built from the restriction of Q ′
to {W ′1, . . . ,W

′
n} by changing the candidates in Y placed in the first

three positions in such a way that each candidate appears at most in
S3(x∗, P) votes, which is made possible by (7). We have:

• S3(x∗, P ′) = S3(x∗, P ′);
• for each y ∈ Y , S3(y, P ′) ≤ S3(x∗, P) = S3(x∗, P ′);
• for each x ∈ X \ {x∗}, S3(x, P ′) = S3(x,Q ′); because x∗ is a

possible cowinner in Q ′, we have S3(x,Q ′) ≤ S3(x∗,Q ′) =
S3(x∗, P), therefore, S3(x, P ′) ≤ S3(x∗, P) = S3(x∗, P ′).

From this we conclude that x∗ is a possible cowinner in P ′. �

Lemma 5. The problem PcWNC(k + 1) for K-approval can be
reduced in polynomial-time to the problem PcWNC(k) for (K + 1)-
approval.

Proof. Let ⟨N, X, PX , k, x∗⟩ where PX = ⟨V1, . . . , Vn⟩ be an in-
stance of PcWNC(k) for K -approval. Consider the following in-
stance ⟨N ′, X ′, RX ′ , k, x∗⟩ of the PcWNC(k) for (K + 1)-approval:

• the set of candidates is X ′ = X ∪ {ti | 1 ≤ i ≤ n};
• for every vote Vi in P we have a vote Wi in R whose top candi-

date is ti and the candidates ranked in position 2 to K + 1 are
the candidates ranked in positions 1 to K in Vi, the remaining
candidates being ranked arbitrarily.

Assume x∗ is a possible cowinner for P = PX and let P ′ =
⟨V ′1, . . . , V

′
n⟩ be an extension of P where x∗ is a cowinner. Denote

by y1, . . . , yk the new candidates. Consider the extension R′ =
⟨W ′1, . . . ,W

′
n⟩ of R = RX ′ where W ′i ranks ti first and then the

candidates ranked in the first K positions in V ′i . For every x ∈ X
we have SK+1(x, R′) = SK (x, P ′); for every i = 1, . . . , k we have
SK+1(yi, R′) = SK (yi, P ′); and for every j = 1, . . . , n, we have
SK+1(tj, R′) = 1. Therefore x∗ is a possible cowinner in R′ and a
possible cowinner in R.

Conversely, assume x∗ is a possible cowinner in R = RX ′ and let
R′ = ⟨W ′1, . . . ,W

′
n⟩ be a completion of R in which it is a possible

cowinner. Since none of the ti threatens x∗, without loss of gener-
ality we assume ti still appears in the first K + 1 positions of W ′i —
otherwise, changeW ′i by moving ti to the top ofW ′i . Consider now
the extension P ′ = ⟨V ′1, . . . , V

′
n⟩ of P = PX where V ′i is obtained

fromW ′i by removing all the t ’s. Since exactly one ti appears in the
first K + 1 positions ofW ′i , the K candidates approved in V ′i are ex-
actly the K + 1 candidates approved in W ′i minus ti. From this we
conclude that for every x ∈ X we have SK+1(x, P ′) = SK (x, R′) and
for every i = 1, . . . , k we have SK+1(yi, P ′) = SK (yi, R′). Therefore
x∗ is a possible cowinner in P ′ and a possible cowinner in P . �

Proposition 7. Deciding whether a candidate is a possible cowinner
for K-approval with respect to the addition of k new candidates is
NP-complete for each (K , k) such that K ≥ 3 and k ≥ 3.
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Proof. Since deciding whether x∗ is a possible cowinner for
3-approval with respect to the addition of 3 new candidates is
NP-hard, using inductively the reductions of Lemmas 4 and 5
shows that NP-hardness propagates to every (K , k) ≥ (3, 3).
Hence, the problem PcWNC(k) for K -approval is NP-complete for
any fixed pair of values K ≥ 3 and k ≥ 3. �

We summarize the results obtained in this section by the
following table:

k = 1 k = 2 k ≥ 3
Plurality P (Proposi-

tion 1)
P (Proposi-
tion 1)

P (Proposition 1)

2-approval P (Proposi-
tion 2)

P (Corol-
lary 1)

P (Corollary 1)

K -approval,
K ≥ 3

P (Proposi-
tion 2)

P (Proposi-
tion 5)

NP-complete
(Proposition 7)

Observe that it would also be possible to address the PcWNC(k)
problem (for K ≥ 3 and k ≥ 3) by working out a direct polyno-
mial reduction from 3-DM, as done in Proposition 6. This would
however result in a much less readable proof. One further interest
of the proposed reduction is to show how it is possible to ‘‘neu-
tralize’’ the (extended) power induced by adding more candidates
by also adding onemore (dummy) candidate in the initial instance.
Intuitively, by setting the score of dummycandidate t to 2SK (x∗, P),
a single new candidate yi will have to be ‘‘consumed’’ to ensure that
t does notwin.More generally, the sameproof holds even ifK and k
depend on the instance (i.e. are not constant). If we allow f (n) new
candidates (where f is polynomially bounded function) instead of k
a constant, the hardness result also holds (in the proof of Lemma 4,
we duplicate each vote V f (n) times by adding candidates zi for
i = 1, . . . , f (n) instead of z and we add dummy voters and candi-
dates). Formally, we replace the construction given in Lemma 4 by:

• the set of candidates is X ′ = X ∪ {z1, . . . , zf (n)} ∪ {t1i,ℓ, t
2
i,ℓ | 1 ≤

i ≤ 2S3(x∗, P), 1 ≤ ℓ ≤ f (n)};
• there are n+ 2f (n)S3(x∗, P) votes:

– for every vote Vj in P we have a voteWj in Q whose first three
candidates are the same as in Vj and in the same order, and
the other candidates are in an arbitrary order.

– for every i = 1, . . . , 2S3(x∗, P) and ℓ = 1, . . . , f (n), we have
a vote Ui,ℓ in which the first 3 candidates are t1i,ℓ, t

2
i,ℓ, zℓ, the

remaining candidates being ranked arbitrarily.

Finally, Y ′ = {y1, . . . , yk+f (n)} are the new candidates.
Thus, using above construction, Lemma 4 and Proposition 6, we

obtain that for any ε such that 0 < ε < 1, PcWNC(f (n)) for 3-
approval is an NP-complete problem where f (n) = Θ(|N|1−ε) =

Θ(|X |1−ε) (by setting f (n) = |N|r in the above construction where
r is a constant arbitrarily large). On the other hand, PcWNC(f (n))
for K -approval is a problem which can be solved in polynomial
timewhen f (n) = K · |N|, i.e., when the number of new candidates
is K times the number of voters.

Note that some candidates (other than the new candidates)
can be necessary cowinners with K -approval. Specifically, each
candidate xi such that SK−k(PX , xi) = n is a necessary cowinner,
since she is approved by all voters and there are not enough new
candidates to push her (in at least one vote) out of the set of
approved candidates.

5. Borda

Let us now consider the Borda rule (rB). Characterizing possible
Borda cowinners when adding candidates is easy due to the
following lemma:
Lemma 6. Let PX be an X-profile where X = {x∗} ∪ {x1, . . . , xp}
and let Y = {y1, . . . , yk} be a set of k new candidates. Let rs⃗ be
a scoring rule for p + k candidates1 defined by the vector s⃗ =
s1, . . . , sp, . . . , sp+k


such that (si − si+1) ≤ (si+1 − si+2) for all i.

x∗ ∈ X is a possible cowinner for PX w.r.t. the addition of k
newcandidates for the scoring rule rs⃗(P) iff x∗ ∈ r(P) where P is the
profile on X∪Y obtained from PX by putting y1, . . . , yk right below x∗
(in arbitrary order) in every vote of PX .

Proof. We show that it is never strictly better to put the new
candidates anywhere but right below x in the new profile. Let P
be an extension of PX in which x∗ is a cowinner, and assume there
is a vote V ∈ P and a new candidate y such that either (i) y≻v x∗
or (ii) there exists at least one candidate x′ such that x∗≻v x′≻v y.

If we are in case (i), let us move y right below x∗; let V ′ be the
resulting vote, and P ′ the resulting profile. Obviously, Ss⃗(y, P ′) ≤
Ss⃗(y, P) and Ss⃗(x∗, P ′) ≥ Ss⃗(x∗, P), therefore Ss⃗(x∗, P ′) ≥ Ss⃗(y, P ′).
For each candidate z such that y≻v z≻v x∗, let i be the rank of z in
v and j > i be the rank of x∗ in v. Then (Ss⃗(z, P ′) − Ss⃗(x∗, P ′)) −
(Ss⃗(z, P)−Ss⃗(x∗, P)) = (si−1−sj−1)−(si−sj) = (si−1−si)−(sj−1−
sj) ≤ 0, therefore Ss⃗(x∗, P ′) ≥ Ss⃗(z, P ′). The scores of all other
candidates are left unchanged, therefore x∗ is still a cowinner in P ′.
By applying this process iteratively for all new candidates and in
all votes until (i) no longer holds, we obtain a profile Q in which x∗
is a cowinner, and such that x∗ is ranked above all new candidates
in every vote.

Now, if (ii) holds for some new candidate y and some vote V of
Q , then we move y upwards, right below x∗; let V ′ be the resulting
vote and Q ′ the resulting profile. The score of y improves, but since
y is still ranked above all new candidates in every vote of Q ′, we
have Ss⃗(x∗,Q ′) ≥ Ss⃗(y,Q ′). For each candidate z ∈ X ∪ Y \ {x∗, y}
such that x∗≻v z≻v y in vote V , z moves down one position in
Q ′, therefore Ss⃗(z,Q ′) ≤ Ss⃗(x′,Q ) ≤ Ss⃗(x∗,Q ) = Ss⃗(x∗,Q ′). The
scores of all other candidates do not change, therefore x∗ is still
a cowinner in Q ′. By applying this process iteratively and in all
votes, until (ii) no longer holds, we obtain a profile in which x∗ is a
cowinner and neither (i) nor (ii) holds.

We conclude that x∗ is a possible cowinner for a profile if and
only if it is a cowinner in an extension of the profile where all new
candidates have been placed right below x∗. �

In words, Lemma 6 applies to the rules where the difference
of scores between successive ranks can only become smaller or
remain constant as we come closer to the highest ranks. This
condition is satisfied by Borda (but not by plurality), by veto, and
by rules such as ‘‘lexicographic veto’’, where the scoring vector is
⟨Mp,Mp

−M,Mp
−M2, . . . ,Mp

−Mp−1, 0⟩where M > n.
The following result then easily follows:

Proposition 8. Let PX be an X-profile where X = {x∗}∪{x1, . . . , xp}
and let Y = {y1, . . . , yk} be a set of k new candidates. A candidate x∗
is a possible cowinner for Borda with respect to the addition of k new
candidates if and only if

k ≥ max
z∈X\{x∗}

SB(z, PX )− SB(x∗, PX )
NPX (x∗, z)

.

Proof. By Lemma 6, x∗ a possible cowinner if and only if it is
a cowinner in the X ∪ {y1, . . . , yk}-completion P of PX where
y1, . . . , yk are placed right below x∗, that is, if and only if
SB(x∗, P) = SB(x∗, PX ) + kn. Now, for each vote, all candidates in
X \ {x∗} ranked above x∗ get k additional points in the extended

1 In this lemma we do not have to deal with profiles with less than p + k
candidates, therefore it is not necessary to mention how rs is derived for fewer
candidates than p+ k.



Y. Chevaleyre et al. / Mathematical Social Sciences 64 (2012) 74–88 85
vote, while those ranked below x∗ keep the same score. Hence, for
every z ∈ X \{x∗}we have SB(z, P) = SB(z, PX )+k(n−NPX (x

∗, z)),
therefore, x∗ is a cowinner in P if and only if SB(x∗, PX ) + kn ≥
SB(z, PX )+k(n−NPX (x

∗, z)), which is equivalent to k ≥ [SB(z, PX )−
SB(x∗, PX )]/NPX (x

∗, z). (We recall that NPX (x
∗, z) stands for the

number of votes in PX ranking x∗ above z.) �

In words, checking whether x∗ is a possible cowinner boils
down to checking, for each other candidate z, whether there
are enough votes where x∗ is preferred to z to compensate
for the scoredifference with this candidate. This means that
possible cowinners with respect to adding any number of new
candidates can be computed in polynomial time for Borda, and
more generally for any rule satisfying the conditions of Lemma 6.
Note that computing possible winners for Borda is NP-hard (Xia
and Conitzer, 2011), therefore, the restriction of the problem to
candidate addition induces a complexity reduction.

Example 3. Take X = {a, b, c, d}, n = 4, and PX = ⟨bacd, bacd,
bacd, dacb⟩. The Borda scores in PX are SB(a, PX ) = 8, SB(b, PX ) =
9, SB(c, PX ) = 3, and SB(d, PX ) = 4, while N(a, b) = 1,N(a, c) =
4, N(a, d) = 3, N(b, c) = 3, N(b, d) = 3, N(c, d) = 3, and
for all x, y,N(x, y) = 4 − N(y, x). Let δ(x, z) = SB(z, PX ) −
SB(x, PX )/NPX (x, z). The followingmatrix gives the values of δ(x, z)
for the possible pairs of distinct candidates (for the sake of
readability, non-positive values are denoted by≤0).

δ(x, z) a b c d max
a – 1 ≤0 ≤0 1
b ≤0 – ≤0 ≤0 ≤0
c +∞ 5 – ≤0 +∞
d 5 6 1 – 6

Applying Proposition 8, b is a possible cowinner whatever the
value of k, a is a possible cowinner if and only if k ≥ 1, d is a
possible cowinner if and only if k ≥ 6, c is not a possible cowinner
whatever the value of k.2 Note that for k ≥ 6, d is a possible
cowinnerwhereas c is not, although c has a higher Borda score than
d in PX .

6. Hardness with a single new candidate

Even though we have seen that the possible cowinner problem
can be NP-hard for some scoring rules, NP-hardness required the
addition of several new candidates.We now show that there exists
a scoring rule for which the possible cowinner problem is NP-hard
with respect to the addition of one new candidate.

The scoring rule we use is very simple: it allows each voter
to approve exactly 3 candidates, and offers 3 different levels of
approval (assigning respectively 3, 2, 1 points to the three preferred
candidates). Let r∆ be the scoring rule defined by the vector s⃗ =
⟨3, 2, 1, 0, . . . , 0⟩with m− 3 0’s completing the vector.

Proposition 9. Deciding if x∗ is a possible cowinner for r∆ with
respect to the addition of one candidate is NP-complete.

Proof. This problem is clearly in NP. The hardness proof is quite
similar to that of Proposition 6. Let I = (C, A×B×C) be an instance
of 3-DM with n′ ≥ 5 and ∀z ∈ A ∪ B ∪ C, d(z) ∈ {2, 3}. From
I , we build an instance ⟨N, X, PX , 1, x∗⟩ of the PcWNC problem
as follows. The set X of candidates contains x∗, X1 = {x′i, y

′

i, z
′

i :

1 ≤ i ≤ n′} where x′i, y
′

i, z
′

i correspond to elements of A, B and C

2 This is so because c is always ranked below a. We make this intuition clear in
Section 7.
respectively and a set X2 of dummy candidates. The set N of voters
contains N1 = {v

e
: e ∈ C} and a set N2 of dummy voters. For

each voter vi ∈ N , we only indicate the vote for the first three
candidates. So, the vote Vi = (t1, t2, t3) means that candidate ti
receives 4 − i points. The vote Ve of voter ve is (x′i, y

′

j, z
′

k) where
e = (ai, bj, ck) ∈ C. The preferences of dummy voters are such that
(a) the score of the candidates in X satisfies ∀x ∈ X1, Ss⃗(x, PX ) =
3n′ + 1, Ss⃗(x∗, PX ) = 3n′ and ∀x ∈ X2, Ss⃗(x, PX ) ≤ 3 and (b) each
voter in N2 ranks at most one candidate of {x′i, y

′

i, z
′

i : 1 ≤ i ≤ n′}
in the first three positions, and if he ranks one in second position,
then x∗ occurs in third position.

Formally, the instance of the PcWNC problem is built as follows.
The set of voters is N = N1 ∪ N2 where N1 = {v

e
: e ∈ C} and

N2 = NA∪NB∪NC ∪Nx∗ , the set of candidates is X = X1∪X2∪{x∗}
where X1 = X ′∪Y ′∪Z ′with X ′ = {x′1, . . . , x

′

n′}, Y
′
= {y′1, . . . , y

′

n′},
Z ′ = {z ′1, . . . , z

′

n′} andX2 = XA∪XB∪XC∪Xx∗ . These sets are defined
as follows:

• XA = {x
j
i : 1 ≤ i ≤ n′, 1 ≤ j ≤ 2


n′ − d(ai)


}.

• XB = {y
j
i : 1 ≤ i ≤ n′, 1 ≤ j ≤ 2


3n′ − 2d(bi)+ 1


}.

• XC = {z
j
i : 1 ≤ i ≤ n′, 1 ≤ j ≤ 2


3n′ − d(ci)+ 1


}.

• Xx∗ = {x∗i : i = 1 ≤ i ≤ 2n′}.

The set of all X-votes PX is given by:

• NA = {v
A
i,j : 1 ≤ i ≤ n′, 0 ≤ j ≤ (n′ − d(ai)− 2)} ∪ {vA,j

i : 1 ≤
i ≤ n′, j = 1, 2}. The vote V A

i,j of vA
i,j is V A

i,j = (x′i, x
2j+1
i , x2j+2i ).

Note that n′ − d(ai) − 2 ≥ 0. The vote of v
A,j
i is V A,j

i =

(x2(n
′
−d(ai)−1)+j

i , x′i, x
∗).

• NB = {v
B
i,j : 1 ≤ i ≤ n′, 0 ≤ j ≤ 3n′ − 2d(bi)}. The vote of vB

i,j is
V B
i,j = (y2j+1i , y2j+2i , y′i).

• NC = {v
C
i,j : 1 ≤ i ≤ n′, 0 ≤ j ≤ 3n′ − d(ci)}. The vote of vC

i,j is
V C
i,j = (z2j+1i , z2j+2i , z ′i ).

• Nx∗ = {v
x∗
j : 0 ≤ j ≤ n′ − 1}. The vote of vx∗

j is V x∗
j =

(vx∗
2j+1, v

x∗
2j+2, x

∗). Note that n′ − 1 ≥ 0.
• N1 = {v

e
: e ∈ C}. The vote of ve is Ve = (x′i, y

′

j, z
′

k) where
e = (ai, bj, ck) ∈ C.

We claim that I admits a perfect matching M ⊆ C if and only
if x∗ becomes a possible cowinner by adding a new candidate y1.
Observe that the scores of the candidates in X satisfy:

(i) ∀x ∈ X1, Ss⃗(x, PX ) = 3n′ + 1.
(ii) Ss⃗(x∗, PX ) = 3n′.
(iii) ∀x ∈ X2, Ss⃗(x, PX ) ≤ 3.

Items (i), (ii) and (iii) correspond to the conditions (a) and (b)
described previously. For instance, each candidate x′i from X1 gets
respectively 3, 3, and 2 points from the votes Ve, V A

i,j, and V A,j
i ,

summing up to 3d(ai) + 3(n′ − d(ai) − 1) + 2 = 3n′ + 1. The
reader can easily check that the conditions also hold for all other
candidates.

Let y1 be the new candidate. By construction of this scoring rule,
wemust decrease the score of candidates in X which dominate the
score of x∗, that is the candidates of X1 using (i) and (iii).

Let P ′ be a X ∪ {y1}-profile such that x∗ is a cowinner. Let us
focus on candidates in X ′. In order to reduce the score of x′i by
1, we must modify the preference for at least one voter ve or vA

i,j

or v
A,j
i . If we modify it for some voter in v

A,j
i , then the score of x′i

(with respect to v
A,j
i ) decreases by one if and only if the score of

x∗ (with respect to v
A,j
i ) also decreases by one. In conclusion, we

must modify the preference of x′i for at least one voter ve or vA
i,j.

By construction, each such voter must put y1 in top position and
then, the score of y1 increases by 3 at each time. Since there are
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n′ candidates in X ′, we deduce Ss⃗′(y1, P
′) ≥ 3n′. From the above

remark, we also get Ss⃗′(x
∗, P ′) ≤ Ss⃗′(x

∗, PX ) = 3n′. Thus for each
i ∈ {1, . . . , n′}, exactly one voter among those of ve or vA

i,j must
put candidate y1 in top position. Finally, if it is one voter vA

i,j, then
we deduce Ss⃗′(y1, P

′) > 3n because the score of Y ′ ∪ Z ′ must also
decrease, which is not possible since y1 will then win.

Following a line of reasoning similar to the one developed in the
proof of Proposition 6, we conclude that for each i ∈ {1, . . . , n′},
exactly one voter among those of ve must put candidate y1 in top
position. Since the score of Y ′ ∪ Z ′ must also decrease by 1, we
deduce that x∗ is a possible cowinner if and only ifM = {e ∈ C : y1
is in top position in vote Ve} and is a perfect matching of C (for the
remaining voters, y1 is put in last position). �

This rule shows that it may be difficult to identify possible
cowinners with a single additional candidate. Giving a characteri-
zation of all rules possessing this property is an open problem.

7. Related work

7.1. The possible winner problem

The possible winner problem was introduced in Konczak and
Lang (2005): given an incomplete profile P = ⟨V1, . . . , Vn⟩ where
each Vi is a partial order over the set of candidates X, x is a
possiblewinner for P given a voting rule r if there exists a complete
extension P ′ = ⟨V ′1, . . . , V

′
n⟩ of P , where each V ′i is a linear order on

X extending Vi, such that r(P ′) = x. Possible winners are defined
in a similar way for a voting correspondence C , in which case we
say that x is a possible cowinner if there exists an extension P ′ of P
such that x ∈ C(P ′). Clearly, the possible winner problem defined
in this paper is a restriction of the general possiblewinner problem
to the following set of incomplete profiles:

(Restr) there exists X ′ ⊆ X such that for every i,
Vi is a linear order on X ′.

As an immediate corollary, the complexity of the possible
(co)winner problem with respect to candidate addition is at most
as difficult as that of the general problem. This raises the ques-
tionwhether (Restr) leads to a complexity reduction for the scoring
rules we have considered here.

The possible (co)winner problem for scoring rules has received
a significant amount of attention in the last years. Xia and Conitzer
(2011) proved that the problem was NP-complete for the Borda
rule, and more generally for scoring rules whose scoring vector
contains four consecutive, equally decreasing values, followed by
another strictly decreasing value. Betzler and Dorn (2009) went
further by showing that NP-completeness holds more generally
for all pure3 scoring rules, except plurality, veto, and scoring rules
whose vector sm is of the form sm = ⟨2, 1, . . . , 1, 0⟩ for large
enough values of m. The issue was finally closed by Baumeister
and Rothe (2010), who showed that the problem for sm = ⟨2,
1, . . . , 1, 0⟩ is NP-complete as well. These results compare to
ours in the following way: all our NP-hardness results strengthen
the known NP-hardness results for the general possible winner
problem, while our polynomiality results show a complexity
reduction induced by (Restr).

Two recent papers give results about the PcWNC problem
for other voting rules. Xia et al. (2011) give results about the
possible (co)winner with new candidates for other voting rules;

3 A (family of) scoring rules (rm)m≥1 is pure if for each m, the scoring vector for
m+ 1 candidates is obtained from the scoring vector form candidates by inserting
an additional score at an arbitrary position. All interesting families of scoring rules
are pure; this is in particular the case for K -approval and Borda.
they showed that PWNC and PcWNC are NP-complete for Bucklin
andmaximin, that PcWNC isNP-complete for Copeland0, and they
give several results for approval voting, depending on how the
extension a vote is defined. Baumeister et al. (2011) generalize our
Proposition 9 by showing that the PcWNC problem isNP-complete
for any pure scoring rule of the form ⟨α1, α2, 1; 0, . . . , 0⟩; they also
give NP-completeness results for plurality and 2-approval when
voters are weighted.

Results about the PcWNC known so far (except our Proposi-
tion 9 and its generalization by Baumeister et al., 2011) are sum-
marized in the following table. For the sake of completeness, we
also mention the complexity of the other prominent subproblem
of the possible cowinner problem, namely unweighted coalitional
manipulation.

General
problem

Candidate
addition

Manipulation

Plurality
and veto

P P(Proposition 1) P

Borda NP-complete
(Xia and
Conitzer,
2011)

P(Proposition 8) NP-complete
(Betzler et al.,
2011; Davies
et al., 2011)

2-approval NP-complete
(Betzler and
Dorn, 2009)

P (Corollary 1) P

K -approval,
K ≥ 3

NP-complete
(Betzler and
Dorn, 2009)

NP-complete
(Proposition 6)

P

Bucklin NP-complete
(Xia and
Conitzer,
2011)

NP-complete
(Xia et al.,
2011)

P (Xia et al.,
2009)

Maximin NP-complete
(Xia and
Conitzer,
2011)

NP-complete
(Xia et al.,
2011)

NP-complete
(Xia et al., 2009)

Copeland0 NP-complete
(Xia and
Conitzer,
2011)

NP-complete
(Xia et al.,
2011)

NP-complete
(Faliszewski
et al., 2008)

Another interesting line of work is the parameterized complex-
ity of the possible winner problem for scoring rules, which has
been investigated in Betzler et al. (2009). Among other results,
they show that for all scoring rules, the problem is fixed-parameter
tractable with respect to the number of candidates (in particular,
when the number of candidates is bounded by a constant, the prob-
lem becomes polynomial-time solvable). This polynomiality result
clearly holds in the possiblewinner problemwith respect to candi-
date addition, with some caution: the number of candidates here is
the total number of candidates (the initial ones plus the new ones);
this result has practical impact in some situationsmentioned in the
introduction, such as finding a date for a meeting, where the num-
ber of candidates is typically low.

We end this subsection by mentioning other works on the
possible winner problem and its variants and subproblems, that
are less directly connected to our results. The possible winner
problem has also been studied from the probabilistic point of
view by Bachrach et al. (2010), where the aim is to count the
number of extensions in which a given candidate is the winner.
Such a probabilistic analysis is highly relevant in candidate-adding
situations: given PX , a number k of new candidates, and a prior
probability distribution on votes, computing the probability that
a given candidate x ∈ X will be the winner, or that one of the
initial (resp. new) candidates will be the winner, is extremely
interesting.4

4 Note that if the voting rule is insensitive to the identity of candidates (i.e.
neutral), then although the prior probability that one of the k new candidates will



Y. Chevaleyre et al. / Mathematical Social Sciences 64 (2012) 74–88 87
7.2. Control via adding candidates

The possible winners with respect to the addition of candidates
is highly reminiscent of constructive control by the chair via adding
candidates—this problem first appeared in Bartholdi et al. (1992)
and was later studied in more depth for many voting rules, see
e.g., Hemaspaandra et al. (2007) and Faliszewski et al. (2009).
However, even if a voting situation where new candidates are
added looks similar to an instance of constructive control by
adding candidates, these problems differ significantly. In control
via adding candidates, the input consists of a set of candidates X ,
a set of ‘‘spoiler’’ candidates Y , and a full profile PX∪Y : the chair
knows how the voters would vote on the new candidates; the
problem is to determine whether a given candidate x∗ can be
made a winner by adding at most k ≤ |Y | candidates from Y . In
the possible winner problem with respect to candidate addition,
we have to take into account all possible ways for voters to
rank the new candidates. In spite of their significant differences,
there is a straightforward connection between these problems: if
an instance ⟨N, X, PX∪Y , x∗, k⟩ of control via adding candidates is
positive, then x∗ is a possible winner in PX with respect to the
addition of k new candidates (the voting rule being the same in
both problems).

Bartholdi et al. (1992) noted that a voting rule is immune to
control by adding candidates as soon as it satisfies theWeak Axiom
of Revealed Preference (WARP), which requires that the winner
among a set of candidatesW to be the winner among every subset
of candidates to which he belongs (Plott, 1976); formally: for any
Z ⊆ W , if r(PW ) ∈ Z then r(PZ ) = r(PW ). This property can be used
in a similar way for the possible winner problem with respect to
candidate addition. Obviously, if the voting rule r satisfies WARP,
then any possible winner from X is a winner for the current profile
PX .5 Unfortunately, this social-choice theoretic property is very
strong: Dutta et al. (2001) show that a voting rule satisfies this
property (there, it is called candidate stability) and unanimity if and
only if it is dictatorial.

7.3. Cloning

Finally, the possible winner problem via candidate addition is
closely related to manipulation by candidate cloning. Indepen-
dence of clones was first studied in Tideman (1987), further stud-
ied in Laffond et al. (1996) and Laslier (2000), and a variant of this
property was recently considered from the computational point of
view in Elkind et al. (2010). The main difference between x being
a possible winner with respect to candidate addition and the exis-
tence of a candidate cloning strategy so that x or one of its clones
becomes the winner, as in Elkind et al. (2010), is that candidate
cloning requires a candidate and its clones to be contiguous in all
votes. In other terms,whereas our problem considers the introduc-
tion of genuinely newcandidates, cloningmerely introduces copies
of existing ones.

be a cowinner under the impartial culture assumption is at least k
|X |+k , this is no

longer the case when PX is known: for instance, let us use plurality and consider
the profile PX = ⟨ab, ab, ab⟩, and let the number of new candidates be one. For a
third candidate to be a cowinner, he either needs to be placed first in all three votes
(which occurs with probability 1

27 ), or to be placed first in two votes, but not in
the third vote (which occurs with probability 6

27 ); therefore the probability that the
new candidate is a cowinner in the completed profile is only 7

27 .
5 In order for the converse to hold, we must add one more condition, such as

consensus (a Pareto-dominated candidate cannot be elected). Then, if thewinner for
the current profile PX is x, by ranking all new candidates at the bottom of all votes,
none of them can be the winner in PX∪Y , and byWARP, no candidate x′ ∈ X \{x} can
either, therefore x is a possible winner for PX with respect to candidate addition.
The complexity of this problem is considered by Elkind et al.
(2010) for several voting rules. Although the proposed model
allows for the possibility of having a bounded number of new
clones (via a notion of cost), most of their results focus on
the case of unboundedly many clones. Therefore, to be able to
compare their results with ours, we should first say something
about the variant of the possible winner problem with respect to
candidate addition,when the number of new candidates is not known
beforehand and can be arbitrarily large. The definitions of voting
situations and possible winners are straightforward adaptations
of Definitions 1 and 2: a voting situation is now a triple Σ =

⟨N, X, PX ⟩ and x∗ is a possible cowinner with respect to Σ and r if
there exists an integer k and a set Y of cardinality k such that there
is a (X∪Y )-profile P extending PX such that x∗ ∈ r(P).We nowgive
a necessary and sufficient condition for a candidate to be a possible
winner, for a class of scoring rules including the Borda rule.

Proposition 10. Let S be a collection of scoring vectors (sm),m ≥ 1,
such that
• for every p, (smj ), 1 ≤ j ≤ m is strictly decreasing;

• for all j, j′ ∈ N, (1) limm→∞
smj −s

m
j′

s1
= 0 and

(2) limm→∞
smj −s

m
m−j′

s1
= 1.

Then, x∗ is a possible winner w.r.t. ⟨N, X, PX ,+∞⟩ if and only if it is
undominated6 in PX .
Proof. First, suppose x∗ is undominated in PX . For any candidate
xi ≠ x∗, define ∆v

i as the difference between the score of x∗ and
the score of xi, divided by s1, in the vote v. As in the construction of
Lemma 1, put k new candidates right below x∗ in every vote, and
let P ′ be the resulting profile. As the value of k grows, for any vote
v ranking candidate x∗ below xi, the value of ∆v

i will tend towards
0 (by condition 1). Also, condition 2 ensures that for each vote v
ranking x∗ above xi, the value of ∆v

i tends towards 1. Because x∗ is
undominated, such votes always exist for every candidate xi ≠ x∗.
Therefore, when k grows,


v∈P ′ ∆

v
i tends towards the number of

votes ranking x∗ above xi, which is at least 1. This implies that the
score of x∗ will be eventually larger than the score of xi, and this
is true for every xi ≠ x∗, therefore x∗ will eventually become the
winner as k grows. Conversely, suppose x∗ is dominated by some
candidate xi. Because the scores (smj ), 1 ≤ j ≤ m are strictly
decreasing, the score of x will always remain strictly below the
score of xi in the completion of the profile, hence x∗ is not a possible
cowinner. �

Clearly, this large class of voting rules includes Borda, since it
satisfies the conditions of Proposition 10. However, it does not
include plurality, and more generally K -approval, which violate
condition (1). Still, a very simple condition can be stated for
K -approval: a candidate is a possible winner as soon as it is
approved at least once.

Proposition 11. When r is K-approval, x∗ is a possible winner w.r.t.
the addition of an unbounded number of new candidates if and only if
SK (x∗, PX ) ≥ 1.
Proof. The condition is obviously necessary. Suppose the condi-
tion holds on a given profile. We extend this profile by taking a
set of new candidates yij where 1 ≤ i ≤ n and 1 ≤ j ≤ K .
Consider the i-th vote: if x∗ is ranked in one the top k positions,
put all new candidates at the bottom of the vote. Otherwise, intro-
duce the new candidates {yi1, . . . , yiK } at the top of the vote, and
all other new candidates at the bottom. The score of the new candi-
dates is at most 1, while that of xi ≠ x∗ is at most that of x∗ (which
is unchanged). �

6 We recall that candidate x dominates candidate x′ if every voter ranks x above
x′ , and that a candidate is undominated if no other candidate dominates it.
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Note that for K ≥ 2 this condition does not imply that the
candidate is undominated (nor vice-versa). It does obviously when
K = 1, i.e., for plurality.

Let us see now how the above results relate to those in Elkind
et al. (2010).We first note that in the case of the Borda rulewehave
the same condition. Indeed one sees intuitively that Lemma 6 tells
us that for some voting rules (including Borda), introducing new
candidates in a contiguous manner, as with cloning, is the best
thing to do. For plurality, again the condition is similar in both
cases. However, for K -approval as soon as K > 1, the problem
becomes hard in the cloning settingwhereas it is easy in our setting
with an unbounded number of new candidates.

8. Conclusion

In this paper we have considered voting situations where
new candidates may show up during the process. This problem
increasingly occurs in our societies, as many votes now take place
online (through dedicated platforms, or simply by email exchange)
during an extended period of time.

We have identified the computational complexity of computing
possible winners for some scoring rules. Some of them allow
polynomial algorithms for the problem (e.g. plurality, 2-approval,
Borda, veto) regardless of the (fixed) number of new candidates
showing up. For the rules of the K -approval family, when K ≥
3, the problem remains polynomial only if the number of new
candidates is at most 2. Finally, we have exhibited a simple rule
where the problem is hard for a single new candidate.

The results address the problem of making some designated
candidate a cowinner, which is similar to x being unique winner
under the assumption of the most favorable tie-breaking. In the
other extreme case (if we want x to be a strict winner, i.e., to
win regardless of the tie-breaking rule), the results are easily
adapted: for instance, the inequalities in Propositions 1 and 8
become strict. For K -approval, the first condition of Proposition 2
becomes strict but the second one should now read SK (PX , x) ≥

xi∈X
max(0, SK (PX , xi) − SK (PX , x) + 1). As for veto, all other

initial candidates need to be vetoed at least once. The hardness
proofs can also be readily adapted to the unique winner setting. A
more general treatment would require cumbersome expressions,
and is also somewhat problematic since the identities of the new
candidates are not known anyway (making it difficult to specify
easily a tie-breaking rule on these candidates).

As for future work, a first direction to follow would be to try
to obtain more general results for scoring rules, as those obtained
by Betzler and Dorn (2009) for the general version of the possible
winner problem. Extending the study to other families of voting
rules, such as rules based on the majority graph, is also worth
investigating.

Of course, identifying possible winners is not the end of the
story. In practice, asmentioned earlier, onemay for instance also be
interested in a refinement of this notion: knowing how likely it is
that a given candidate will win. Another interesting issue consists
of designing elicitation protocols when the preferences about the
‘old’ candidates are already known. In this case, a trade-off occurs
between the storage cost and communication cost, since keeping
track of more information is likely to help reduce the burden of
elicitation.
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