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Abstract
In many practical contexts where a number of
agents have to find a common decision, the votes do
not come all together at the same time. In such situ-
ations, we may want to preprocess the information
given by the subelectorate (consisting of the voters
who have expressed their votes) so as to “compile”
the known votes for the time when the latecomers
have expressed their votes. We study the amount of
space necessary for such a compilation, as a func-
tion of the voting rule, the number of candidates,
and the number of votes already known. We relate
our results to existing work, especially on commu-
nication complexity.

1 Introduction
Voting is a general method for a group of agents to agree on
a common decision. Now, in many practical contexts where
a number of agents have to find a common decision via a vot-
ing process, the votes do not come all together at the same
time. For instance, in some political elections, the votes of
the citizens living abroad are known only a few days after the
rest of the votes. Or, when voting about a date of a meeting,
it often happens that some participants express their prefer-
ences later than others. In such situations, we may want to
preprocess the information given by the subelectorate (con-
sisting of those voters who have expressed their votes) so as
to prepare the ground for the time when the latecomers will
have expressed their votes. What does “preparing the ground”
exactly mean? We may think of two different criteria:
• space: synthesize the information contained in the votes

of the subelectorate, using as little space as possible,
while keeping enough information for computing the
outcome once the last votes are known;
• on-line time: compile the information, using as much

off-line time and space as needed, in such a way that
once the last votes are known, the outcome can be com-
puted as fast as possible.

These two criteria not only differ, but are, to some extent,
opposed, and lead to two very different lines of research. The
research area of knowledge compilation (e.g., [Cadoli et al.,
2002; Darwiche and Marquis, 2002]) lay the focus on on-line

time, and typically looks for worst-case exponentially large
rewritings of the “fixed part” of the input, enabling on-line
time complexity to fall down. While knowledge compilation
is definitely relevant to voting (the fixed part being the known
votes, and the varying part the votes of the latecomers), and
would surely deserve a paper on its own, in this paper, how-
ever, we focus on minimizing space.

Why should we care about synthesizing the votes of a sub-
electorate in as little space as possible in the first place? There
are two main reasons for that.

The first reason has to do with the practical acceptance of
the voting rule. Suppose the electorate is split into different
districts (generally, corresponding to geographical entities, or
clusters of agents in a system). Each district can count its bal-
lots separately and communicate the partial outcome to the
central authority, which, after gathering the outcomes from
all districts, determines the final outcome. The space needed
to synthesize the votes of a district (with respect to a given
voting rule) is precisely the amount of information that the
district has to send to the central authority. Now, it is impor-
tant that the voters should be able to check as easily as possi-
ble the outcome of the election. In other words, one property
that we would like to ensure is the possibility to perform an
easy distributed verification of the outcome. Take a simple
rule, such as plurality or Borda. Obviously, it is enough (and
almost necessary, as we see later) for each district to send
only its “local” plurality or Borda scores to the central au-
thority. If the district is small enough, it is not difficult for the
voters of this district to check that the local results are sound
(for instance, each political party may delegate someone for
checking the ballots). Note that this only requires these local
results to be made public (which is usually the case in real
life: in most countries, they are published in newspapers).
Every voter can then check the final outcome from these local
outcomes (in the case of plurality or Borda, simply by sum-
ming up the local scores). Clearly, if the information about
the votes of a district being necessary for computing the final
outcome is large (e.g., if one needs to know how many voters
have expressed every possible linear order on the candidate
set), it will be impractical to publish the results locally, and
therefore, difficult to check the final outcome, so that voters
may then be reluctant to accept the voting rule.

The second reason is foundational: the size of the mini-
mum information to be extracted from a subset of the votes,



and still guaranteeing that we will have enough information
to compute the outcome, is an important property of voting
rules that has not been studied yet. Even if this minimum
information is, in some cases, easy to determine (such as in
the case of plurality), in some other cases it is far from being
obvious (see for instance our results about STV).

Although the compilation of the votes of a subelectorate
has not been considered before (as far as we know), several
related problems have been investigated:

• the complexity of vote elicitation [Conitzer and Sand-
holm, 2002; Walsh, 2008]: given a voting rule r, a set
of known votes S, and a set of t new voters, is the out-
come of the vote already determined from S?

• the computation of possible and necessary winners
[Konczak and Lang, 2005; Xia and Conitzer, 2008;
Pini et al., 2007]: given a voting rule r, a set of incom-
plete votes (that is, partial orders on the set of candi-
dates), who are the candidates who can still possibly win
the election, and is there a candidate who surely wins it?

• the communication complexity of voting rules [Conitzer
and Sandholm, 2005]: given a voting rule r and a set of
voters, what is the worst-case cost (measured in terms of
number of bits transmitted) of the best protocol allowing
to compute the outcome of the election?

In the first two cases, the connection is clear. In the most
favourable case where the outcome is already determined
from S (corresponding to the existence of a necessary win-
ner, or to a positive answer to the vote elicitation problem),
the space needed to synthesize the input is just the binary
encoding of the winner. The connection to communication
complexity will be discussed in Section 2, once communi-
cation complexity has been formally introduced. In Section
3, we determine the compilation complexity of some of the
most common voting rules. Lastly, in Section 4 we discuss
our results and mention further research issues.

2 Compilation complexity as one-round
communication complexity

Let X be a finite set of candidates, and p = |X|. A vote
is a linear order over X . We sometimes denote votes in the
following way: a � b � c is denoted by abc, etc. For any
m ≥ 0, am-profile is a tuple P = 〈V1, . . . , Vm〉 of votes. Let
Pm

X be the set of all m-profiles over X . We denote by P∗X
the set of all m-profiles for m ≥ 0, i.e., P∗X = ∪k≥0Pk

X . An
element of P∗X is called a partial profile.

LetN a finite set of voters, with n = |N |. A voting rule is a
function r from Pn

X toX . As the usual definition of most vot-
ing rules does not exclude the possibility of ties, we assume
these ties are broken by a fixed priority order on candidates.
A voting rule is anonymous if it insensitive to the identity of
voters.

For P ∈ Pm
X and x ∈ X , let n(P, i, x) be the number

of votes in P ranking x in position i, and ntop(P, x) =
n(P, 1, x) the number of votes in P ranking x first. Let
~s = 〈s1, . . . , sp〉 be a vector of integers such that s1 ≥ . . . ≥
sp. The scoring rule induced by ~s is defined by: r~s(P ) is

the candidate maximizing
∑p

i=1 si.n(P, i, x). Plurality (resp.
Borda) is the scoring rule rP (resp. rB) corresponding to the
vector 〈1, 0, . . . , 0〉 (resp. 〈p− 1, p− 2, . . . , 0〉).

We now consider situations where only some of the voters
(the “subelectorate”) have expressed their votes. Let m be
number of voters who have expressed their vote, and P ∈ Pm

X
the partial profile obtained from these m voters. We say that
two partial profiles are r-equivalent if no matter the remaining
unknown votes (and no matter how many they are), they will
lead to the same outcome1:

Definition 1 Let P,Q ∈ Pm
X be two m-voters X-profiles,

and r a voting rule. P and Q are r-equivalent if for every
k ≥ 0 and for every R ∈ Pk

X we have r(P ∪R) = r(Q∪R).

Example 1 Let rP be plurality and rB Borda,X = {a, b, c},
and m = 4. Let P1 = 〈abc, abc, abc, abc〉, P2 =
〈abc, abc, acb, acb〉, and P3 = 〈acb, acb, abc, abc〉.
• P2 and P3 are rP -equivalent and rB-equivalent. More

generally, they are r-equivalent for every anonymous
voting rule r.
• P1 and P2 are rP -equivalent. However they are not
rB-equivalent: take R = 〈bca, bca, bca〉, then we have
rB(P1 ∪R) = b while rB(P2 ∪R) = a.

We denote r-equivalence by ∼r. Obviously, ∼r is an
equivalence relation. Informally, the compilation complexity
of r is the minimum space needed to compile a m-voter par-
tial profile P without knowing the remaining profile R. This
notion does not take into account the off-line time needed to
compute σ, nor the off-line time needed to compute ρ.

Definition 2 Given a voting rule r, we say that a function σ
from Pm

X to {0, 1}∗ is a compilation function for r if there
exists a function ρ : {0, 1}∗ × P∗X → X , such that for every
P ∈ Pm

X , every k ≥ 0, and every R ∈ Pk
X , ρ(σ(P ), R) =

r(P ∪R). The compilation complexity of r is defined by

C(r) = min{Size(σ) | σ is a compilation function for r}

Up to minor details, compilation complexity coincides
with one-round communication complexity (even if their in-
tuitive interpretations differ). We start by recalling standard
communication complexity. When n agents have to compute
a function f , each of them knowing only a part of the input,
the deterministic communication complexity (see [Kushile-
vitz and Nisan, 1997]) of f is the worst-case number of bits
that the agents must exchange so as to be able to know the out-
come. A one-round protocol for two agents A and B is a pro-
tocol whereA sends only one message toB, and thenB sends
the output to A (see Section 4.2 of [Kushilevitz and Nisan,
1997]). The one-round communication complexity (ORCC)
of f is the worst-case number of bits of the best one-round
protocol for f . Note that while standard communication com-
plexity does not impose any restriction on the protocol that
the agents may use to compute f , ORCC imposes a severe
restriction, so that these two notions differ significantly.

The only difference between compilation complexity and
ORCC is that compilation complexity does not care about B

1We could write a similar definition for a fixed number of re-
maining votes, but we leave it out due to space limitations.



sending back the output to A. Here, A represents the set of
voters having already expressed their votes, and B the re-
maining voters; the space needed to synthesize the votes of A
is the amount of information that A must send to B so that B
can be able to compute the final outcome.

Since one-round communication complexity is never
smaller than standard communication complexity, we could
expect the communication complexity of a voting rule is al-
ways smaller than its compilation complexity. However, this
is not so simple, because in [Conitzer and Sandholm, 2005]
(a) there is no partition between two subelectorates: their re-
sults mention only the total number of candidates, whereas
ours mention the number of candidates who have already ex-
pressed their votes, and (b) they count the bits sent by each of
the voters, while we do not count the bits sent by ourm voters
to communicate their votes – we only count the bits needed
to communicate the synthesis of those votes.

We have the following characterization of C(r). Up to mi-
nor details, this is a reformulation (in our own terms) of Ex-
ercise 4.18 in [Kushilevitz and Nisan, 1997], and we omit the
proof.

Proposition 1 Let r be a voting rule, m be the number of
initial voters, and p the number of candidates. If the number
of equivalence classes for ∼r is g(m, p) then the compilation
complexity of C(r) = dlog g(m, p)e.
Proposition 2 Let r be a voting rule, and r′ an anonymous
voting rule.
• C(r) ≤ m log(p!)
• C(r′) ≤ p! log

{
1 + m

p!

}
+m log

{
1 + p!

m

}
≤ min(m log(p!), p! logm)

The proof is easy. For any r, the number of equivalence
classes cannot be larger than the number of profiles, and there
are (p!)m possible profiles. For any anonymous voting rule r,
the number of equivalence classes corresponds to the number
of ways to choose a set of m orders among the set of all pos-
sible linear orders on X , which is equal to Mm

p! . The bound
is then the logarithm of the latter number.

Importantly, these bounds are tight: it is possible to de-
sign a voting rule (resp. an anonymous voting rule) yielding
these bounds. At the other extremity of the spectrum, the
compilation complexity of a dictatorship is log p, and that the
compilation complexity of r is 0 if and only if r is constant.

3 Some case studies
We now consider a few specific families of voting rules. For
each rule r we adopt the following methodology: we first give
a characterization of the equivalence classes for ∼r, which
we use to count the number of equivalence classes. In simple
cases, it will be easy to enumerate exactly these classes, and
Proposition 1 will give us the exact compilation complexity
of the rule. In more complex cases, we will exhibit a simple
upper bound and provide a lower bound of the same order.

3.1 Plurality
Lemma 1 P ∼rP

P ′ holds if and only if for every x,
ntop(P, x) = ntop(P ′, x).

Proof: (⇐) is straightforward. For (⇒), suppose there is
an x ∈ X such that ntop(P, x) 6= ntop(P ′, x). Without
loss of generality, assume ntop(P, x) > ntop(P ′, x). Now,∑

x∈P ntop(P, x) =
∑

x∈P ′ ntop(P
′, x) = m, therefore

there must be an y 6= x such that ntop(P, y) < ntop(P ′, y).
Take a profileQwith 2m−ntop(P, x)−ntop(P, y)+1 votes,
withm−ntop(P, x)+1 votes having x on top (and whatever
below), and m − ntop(P, y) votes having y on top (and
whatever below). We have ntop(P ∪ Q, x) = m + 1,
ntop(P ∪ Q, y) = m, and for every z 6= x, y,
ntop(P ∪ Q, z) ≤ m. Therefore, rP (P ∪ Q) = x. Now,
ntop(P ′ ∪Q, x) = ntop(P ′, x)−ntop(P, x) +m+ 1 ≤ m,
ntop(P ′ ∪Q, y) = ntop(P ′, y)− ntop(P, y) +m ≥ m+ 1,
and for every z 6= x, y, ntop(P ′ ∪ Q, z) ≤ m. Therefore,
rP (P ∪Q) = y. This shows that P 6∼rP

P ′. �

This characterization together with Proposition 1 tells
us that the compilation complexity of rP is exactly
dlogL(m, p)e, where L(m, p) be the number of vectors of
positive integers 〈α1, . . . , αp〉 such that

∑p
i=1 αp = m. The

number of such vectors is exactly Mm
p , from which we get:

Corollary 1 C(rP ) = Θ
(
p log(1 + m

p ) +m log(1 + p
m )
)

Observe that this result yields an upper bound in O(m +
p), to be compared with the “naive” upper bound that can be
derived from the fact that it is sufficient to record the plurality
scores of each candidate, which needs O(p logm) bits.

3.2 Borda
We get the following characterization of ∼B , similar to
Lemma 1 for plurality (note that more generally, a similar
result holds for any scoring rule). For P ∈ Pm

X and x ∈ X ,
let scoreB(x, P ) be the Borda score of x obtained from the
partial profile P .

Lemma 2 P ∼rB
P ′ holds if and only if for every x,

scoreB(x, P ) = scoreB(x, P ′).

Now, let B(m, p) be the number of vectors of positive in-
tegers 〈α1, . . . , αp〉 corresponding to Borda scores once m
votes have been expressed. Note that

∑p
i=1 αp = mp(p−1)

2 ,
since each voter distributes p(p−1)

2 points among the candi-
dates. However, this alone does not suffice to characterize the
set of realizable Borda scores (for instance, if a candidate gets
a score of 0, then no other candidate can get less than m).
Proposition 3 C(rB) ≤ (p− 1) logm(p− 1)

This upper bound is easily obtained by observing that is
possible to simply record the scores of p− 1 candidates, and
that this score can be at most m(p− 1).2

Now we try to exhibit a lower bound approaching this up-
per bound. The general idea is to focus on a specific subset of
vectors of Borda scores. For example, for those vectors where
the candidate with the lowest score gets between 0 andm, the
second one between m and 2m, and so on until the penulti-
mate voter, the score of the last candidate can be chosen so as

2Note that more generally, for any scoring rule rS , we have
C(rS) ≤ (p− 1) logm.s1.



to make a realizable vector of Borda scores. (Observe that by
taking these intervals, the scores of the first p− 1 candidates
can really be chosen independently).

In what follows, we show how to construct profiles that
result in such a subset of vectors of Borda scores.

Proposition 4 Let {δ1, . . . , δp−1} be a collection of non-
negative integers such that

∑p−1
i=1 δi ≤

m
2 . The vector of

Borda scores ~α = 〈δ1,m+ δ2, 2m+ δ3, . . . ,m(p− 1) + δp〉,
where δp = −

∑p−1
i=1 δi, can result from a m-voter profile.

Proof sketch: We only show that for any i < p, the vector
of Borda scores 〈α1, α2, . . . , αi + 1, . . . , αp − 1〉 of the
candidates, where ∀j ≤ p, αj = 2(j − 1), can result from
a two-voter profile. Denote by 〈αv

1, α
v
2, . . . , α

v
n〉 the vector

corresponding to the ballot of voter v. We initially assign to
voters 1 and 2 the basic vectors 〈0, 1, . . . , p − 1〉. Now we
construct the modified vectors of the two voters as follows:
take the scores α1

i and α1
i+1 of voter 1 and swap them; then

take the scores α2
i+1 and α2

i+2 of voter 2 and swap them;
then move back to voter 1 and swap the scores α1

i+2 and
α1

i+3, and so on until the last score of voter 1 or voter 2
is reached, in which case no more swap is possible. Now,
for any j ∈ [i + 1, p − 1], α1

j + α2
j = α′1j + α′2j because

the swaps of voters 1 and 2 compensate each other, so the
scores of these candidates remain unaffected. On the other
hand, the Borda scores of candidates i and p are modified
as required (resp. +1 and −1). Now, the same principle
can be applied to m voters: it is possible to distribute up
to m/2 points among the first p − 2 candidates to improve
their score obtained from the basic vectors only (with the last
candidate compensating by seeing its score decreased by the
same amount of points). �

Corollary 2 C(rB) = Θ(p logmp)
Proof: From Proposition 4, V p−1

m/2 is the number of profiles

with increasing scores. We have V p−1
m/2 ≥

1
2 ×

(
m
2

)p−1
. The

total number of profiles is at least (p − 1)!mp−12−p, and
we get the lower bound (p − 1)(log2(p − 1) + log2m − 2).
Together with the upper bound, the result holds. �

3.3 Rules based on the weighted majority graph
Let NP (x, y) be the number of voters in the profile P pre-
ferring x to y. The majority graph MP is the directed graph
whose set of vertices isX and containing an edge from x to y
if and only if NP (x, y) > NP (y, x). The weighted majority
graph MP is the same as MP , where each edge from x to
y is weighted by N(x, y) (note that there is no edge inMP

between x and y if and only if NP (x, y) = NP (y, x).) A
voting rule r is based on the majority graph (abridged into
“MG-rule” ) if for any profile P , r(P ) can be computed from
MP , and based on the weighted majority graph (abridged into
“WMG-rule” ) if for any profile P , r(P ) can be computed
fromMP . Obviously, a MG-rule is a fortiori a WMG-rule.
A candidate x is the Condorcet winner for a profile P if it

dominates every other candidate in MP . A voting rule r is
Condorcet-consistent if it elects the Condorcet winner when-
ever there exists one.

Lemma 3 Let r be a WMG-rule rule. IfMP = MP ′ then
P ∼r P

′.

Proof: for any Q,MP∪Q is fully determined fromMP and
MQ, because NP∪Q(x, y) = NP (x, y) + NQ(x, y). Since
r is WMG, r(P ∪ Q) is determined fromMP∪Q, therefore
fromMP andMQ, and a fortiori fromMP and Q. �

Note that for rules based on the (non-weighted) majority
graph, we still need the weighted majority graph of P and
P ′ to coincide – having only the majority graph coinciding is
not sufficient for P ∼r P

′, sinceMP∪Q is generally not fully
determined from MP and MQ.

Lemma 3 gives an upper bound on the compilation com-
plexity of a WMG-rule. Let T (m, p) be the number of
weighted tournaments on X that can be obtained as the
weighted majority graph of some m-voter profile.

Proposition 5 If r is a WMG-rule then C(r) ≤ log T (m, p).

Getting a lower bound is not possible without a further as-
sumption on r. After all, constant rules are based on the ma-
jority graph, yet they have a compilation complexity of 0.
We say that a WMG-rule r is proper if P ∼r P ′ implies
MP = MP ′ . It is easy to find a natural sufficient condition
for a WMG-rule to be proper:

Lemma 4 If r is a Condorcet-consistent rule then P ∼r P
′

impliesMP =MP ′ .

Proof: assume r is Condorcet-consistent and MP 6= MP ′ ,
i.e., there exists (x, y) ∈ X with NP (x, y) 6= NP ′(x, y).
Without loss of generality, NP (x, y) = NP ′(x, y) + k
(and NP (y, x) = NP ′(y, x) − k), with k > 0. Let Q be
a set of m + 1 votes, of which m + 1 − NP (x, y) votes
prefer x to y and y to anyone else and NP (x, y) votes
prefer y to x and x to anyone else. From NP∪Q(x, y) =
NP (x, y) + NQ(x, y) = m + 1, we get for any z 6= x, y,
NP∪Q(x, z) = NP (x, z) + m + 1 ≥ m + 1, and x is Con-
dorcet winner in P ∪ Q (which contains 2m + 1 voters) and
r(P ∪Q) = x. ButNP ′∪Q(y, x) = NP ′(y, x)+NQ(y, x) =
NP (y, x) + k + NP (x, y) = m + k, and for any z 6= x, y,
NP ′∪Q(y, z) = NP ′(y, z) + m + 1 ≥ m + 1, so y is
Condorcet winner in P ′ ∪ Q and r(P ′ ∪ Q) = y. Hence
P 6∼r P

′. �

This gives us the following lower bound.

Proposition 6 If r is a Condorcet-consistent rule then
C(r) ≥ log T (m, p).

From Propositions 5 and 6 we finally get that:

Proposition 7 If r is a Condorcet-consistent WMG-rule,
then C(r) = log T (m, p).

Corollary 3 The compilation complexity of the following
rules is exactly log T (m, p): Copeland, Simpson (maximin),
Slater, Banks, uncovered set, Schwartz.



We now have to compute T (m, p). We easily get the fol-
lowing upper bound.

Proposition 8 log T (m, p) ≤ p(p−1)
2 log(m+ 2).

Proof: From Lemma 3 we know that it is enough to store
MP . Let > be a fixed ordering on the candidates. Storing
MP can be done by storing NP (x, y) for every pair (x, y) of
distinct candidates such that x > y. We have p(p−1)

2 such
pairs, and 0 ≤ NP (x, y) ≤ m, hence the result. �

It is easy to observe that this bound is not necessarily
reached: for any x, y, z ∈ X and any profile P we have
NP (x, z) ≥ NP (x, y) + NP (y, z) − m (e.g, if m = 3 and
NP (x, y) = NP (y, z) = 2, then NP (x, z) cannot be 0).

Lemma 5 T (m, p) ≥
∣∣∣∣V p(p−1)

2
m
2

∣∣∣∣
Proof: Assume m is even. Let {ci,j | 1 ≤ i < j ≤ p} be
any set non-negative integers such that

∑
i<j ci,j ≤

m
2 . We

will show how to build a profile such that N(i, j) = 2ci,j ,
where N(i, j) indicates how many voters prefer i to j. Let us
divide voters into p(p−1)

2 groups gi,j with 1 ≤ i < j ≤ p and
a final group g0, such that each group gi,j contains exactly
2ci,j voters and g0 contains the remaining m −

∑
i<j 2ci,j

voters. In each group gi,j , set the profile of half of the voters
to i � j � x1 � x2 � . . . � xp−2, and the other half to
xp−2 � . . . � x1 � i � j, where x1 . . . xp−2 refer to the
candidates other than i and j in an arbitrary order. In group
g0 set half of the voters to x1 � . . . � xp and the other half
to xp � . . . � x1. Let Ng(x, y) denote the number of voters
in group g preferring x to y. Clearly, Ngij (x, y) = N(x, y)
if x = i and y = j; and 0 otherwise; and Ng0(x, y) = 0.
Thus, N(x, y) =

∑
Ngi,j (x, y) = 2ci,j . �

From Lemma 5, it directly follows that:

Corollary 4 If r is a Condorcet-consistent WMG-rule then
C(r) = Θ(p2 logm).

3.4 Plurality with runoff
Plurality with runoff (denoted by r2) consists of two (virtual)
rounds: the first round keeps the two candidates with max-
imum plurality scores (with some tie-breaking mechanism),
and the second round is the majority rule.

Proposition 9 P ∼r2 Q holds if and only if the following
two conditions hold:

1. for every x, ntop(P, x) = ntop(Q, x);

2. for every x and y 6= x, NP (x, y) = NQ(x, y).

Due to space limitations, we give only a very quick sketch
of the proof. The (⇐) direction (if the two conditions are
met then P ∼r2 Q) is straightforward. Next, we show that
if for some x, ntop(P, x) 6= ntop(Q, x), then P 6∼r2 Q; we
do so by taking, without loss of generality, an x such that
ntop(P, x) > ntop(Q, x), and then we construct a profile R
such that in P ∪ R, the finalists are x and z, and the winner

is x, while in Q ∪ R, the finalists are y and z (therefore
the winner cannot be x). Lastly, we show that if for some
x, y ∈ X , N(P, x, y) 6= N(Q, x, y) then P 6∼r2 Q. Assum-
ing without loss of generality that N(P, x, y) > N(Q, x, y),
we complete P and Q such that in both P ∪ R and Q ∪ R,
the finalists are x and y, with x winning in P ∪ R and y in
Q ∪R.

Observe that the two conditions are not independent, so
that the previous proposition only tells us that log T (m, p) ≤
C(r2) ≤ logL(m, p) + log T (m, p). It follows that:

Corollary 5 C(r2) = Θ
(
p2 logm

)
.

In words, compiling the votes in the context of plurality
with runoff or of a Condorcet-consistent WMG rule requires
an asymptotically equivalent number of bits.

3.5 Single Transferable Vote (STV)
We recall that single transferable vote performs in successive
rounds: at each round, the candidate with the lowest plurality
score gets eliminated, and its votes are transferred to the next
preferred candidate in each ballot. Given a collection P of
votes, and a subset Z ⊆ X of candidates, we denote by P−Z

the collection of votes obtained from P by removing those
candidates in Z, leaving the rest unchanged. For instance,
〈abcde, bcade, beadc〉−bc = 〈ade, ade, ead〉.
Proposition 10 P ∼STV Q holds if and only if for all Z and
x /∈ Z, ntop(P−Z , x) = ntop(Q−Z , x).

Proof: The (⇐) part is straightforward. As for the ⇒ part,
suppose that for the partial profiles P and Q, there exist Z
and x1 /∈ Z such that ntop(P−Z , x1) 6= ntop(Q−Z , x1).
Without loss of generality, suppose ntop(P−Z , x1) <
ntop(Q−Z , x1). Note that if Z had contained all candidates
but one, then these two scores would have necessarily been
equal. Thus, there exist candidates not in Z and different
from x1. Among these candidates, there exist at least two
candidates such that ntop(P−Z , x) > ntop(Q−Z , x), and we
will refer to one of them as x2. Let ε = ntop(P−Z , x1) −
ntop(P−Z , x2) + 1. Let {e1, . . . , ek} = Z and {e1, . . . , el}
be the candidates not in Z∪{x1, x2}. We now add the profile
R to P and to Q:
• 3m votes : x1 � x2 � e1 � . . . � el � e1 � . . . � ek

• 3m+ ε votes : x2 � x1 � e1 � . . . � el � e1 � . . . � ek

• 4m+ 2 votes: ē1 � x1 � x2 � e2 � . . . � el � e1 � . . . � ek

• 4m+ 2 votes: e2 � x1 � x2 � e3 � . . . � e1 � e1 � . . . � ek

• 4m+ 2 votes: e3 � x1 � x2 � e4 � . . . � e2 � e1 � . . . � ek

• etc.
After the first k rounds of STV have been applied to P ∪R

and Q ∪ R, all the candidates in Z are eliminated. Then,
the score of ei is between 4m + 2 and 5m + 2. Note that
ntop((P ∪ R)−Z , x2) = ntop((P ∪ R)−Z , x1) + 1, and
ntop((Q ∪ R)−Z , x2) < ntop((Q ∪ R)−Z , x1). Thus, the
scores of x1 and x2 are no larger than 4m + 1 in P ∪ R and
Q ∪R. Moreover, candidate x1 is removed from P ∪R, and
x2 is removed from Q ∪ R. After this round, the candidate
that remains among {x1, x2} gets at least 6m votes. Thus, all
candidates {e1, . . . , el} will be removed one after the other,
and x1 will win in Q ∪ R, and x2 will win in P ∪ R. This



proves that Q ∪R and P ∪R are not STV-equivalent. �

In other words, the previous proposition shows that the
number of STV-equivalence classes is exactly the number of
ways to define ntop(P−Z , x) for the p candidates.
Lemma 6 For a given candidate x, the number of score func-
tions ntop(P−Z , x) realizable with a partial profile P of m
voters and p candidates is exactly Mm

2p−1 .
Proof: Observe that it is required and sufficient, for each can-
didate x and possible subset of candidates Z (not containing
x), to record how many voters among m prefers x over any
candidate in Z. �

Proposition 11 The compilation complexity of STV is:
• Ω

(
2p log

{
1 + m

2p

}
+m log

{
1 + 2p

m

})
• O

(
p2p log

{
1 + m

2p

}
+mp log

{
1 + 2p

m

})
Proof: For a given x, Lemma 6 shows that there are exactly
Mm

2p−1 score functions ntop(P−Z , x). �

Note that the score functions of the p candidates are not in-
dependent (knowing the score of some candidate(s) may con-
strain the score of other candidates). Therefore, the number
of equivalence classes lies somewhere between Mm

2p−1 and
(Mm

2p−1)p.

4 Conclusion
This paper has introduced a notion that we believe to be of
primary importance in many practical situations, especially
in large systems where it is unlikely that all the votes will
come together at the same time: the compilation of incom-
plete profiles. In particular, the amount of information that a
given polling station (or cluster of agents) needs to transmit
to the central authority is a good indicator of the difficulty of
the verification process. We have introduced a general tech-
nique for determining the compilation complexity of a voting
rule, have related it to communication complexity, and have
derived results for most of the “common” voting rules.

Our results allow us to clearly rank most of the different
voting rules wrt. the quantity of information required to en-
code the known profiles and still guarantee the correct out-
comes when new voters come in. It is noteworthy to ob-
serve that the rules are ranked quite differently under the cri-
teria of their communication complexity [Conitzer and Sand-
holm, 2005]. Consider for instance plurality with runoff: its
compilation complexity is higher than Borda, although it ex-
hibits a lower communication complexity. As another exam-
ple, Borda is less costly to compile than Condorcet-consistent
WMG-rules, but its communication complexity is higher.

A question that we plan to consider more carefully con-
cerns the situations where the number k of remaining voters is
fixed. In this case, a different approach can be taken: instead
of compiling the partial profiles provided by the m voters, it
may be more efficient to compile the possible completions of
this partial profile together with the associated outcome, or, in
other words, to compile the function that takes the remaining

k profiles as input (there are (p!)k such inputs) and returns
the outcome. As there are (p!)k possible profiles, the num-
ber of such functions is p(p!)k

. Therefore, a general upper
bound for C(r, k) is ≤ (p!)k. log p. Hence, overall we have
C(r, k) ≤ min(m. log(p!), (p!)k. log p) (the second term be-
comes interesting only when m is big enough, and p and k
small enough).

More generally, the problem of dealing with incomplete
profiles in this sense opens a host of related questions, e.g.
the probability that a voting process could be stopped after
m voters, or the probability that the central authority would
make a mistake were it forced to commit on a winner in situ-
ations when no candidate is guaranteed to prevail yet.
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