How hard is it to control sequential elections via the agenda
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Abstract catastrophic results as soon as some voters have pre&renti
_ _ _ _ _ dependencies among attribufescy and Niou, 200D
Voting on multiple related issues is an important 2. Ask voters to report their preferences in some compact
and difficult problem. The key difficulty is that the representation language, as[Xia et al, 2004. While this

number of alternatives is exponential in the number  may be practical in some cases, in the general case we are con-
of issues, and hence it is infeasible for the agents  fronted with two problems: the size of the input to be elidite
to rank all the alternatives. A simple approachis to  from the voters (exponentially large in the worst case) &ed t
vote on the issues one at a time, in sequence; how-  generally very high computational complexity of computing
ever, a drawback is that the outcome may depend  the outcome of the election.
on the order in which the issues are voted upon and 3. Have the voters vote on each of the attributes in sequence
decided, which gives the chairperson some control  (the approach studied in this paper). That is, we decide the
over the outcome of the election because she can  ya|ye of the attributes one after the other, usirigcal voting
strategically determine the order. While this is un- rule for each attribute. This solution has the nice features of
deniably a negative feature of sequential voting, in  peing elicitation-friendly and computationally easy (gcted
this paper we temper this judgment by showing that  the |ocal rules are computationally easy to run). However,
the chairperson’s control problem is, in most cases,  sequential voting has two severe drawbacks. First, votags m
computationally hard. feel ill at ease voting when their preferences for the curren
attribute depend on values of other attributes that have not
. been decided yet. Second, the outcome of the process may
1 Introduction depend on the order in which the attributes are voted on.
In many real-life group decision making problems, the space Some earlier worfLang, 2007; Xiaet al, 2007 avoids
of alternatives has a multiattribute (or combinatoriatust  these two pitfalls of sequential voting by requiring thatria
ture. In one examplEBramset al,, 1994, the inhabitants of exists some order over the attributes that is consistertit wit
a community have to make a common decision over severdhe preferences—that is, a voter's preferences for armatéi
related issues of local interest, such as which ones of aevernever depend on the values of attributes later in the order. |
public facilities to build. As another example, the memlmdrs this case, it is natural to vote over the attributes in thdeor
an association may have to elect a steering committee, conrecause then each voter will have a clear preference for each
posed of a president, a vice-president and a treasurer.ttn boattribute when it is voted on. (While in principle the chair-
cases, the space of alternatives has a combinatorialstetct person could still attempt to control the election by insigt
there are multiple issues (akatributesof the alternatives) to  on another order without this property, in practice this islou
decide on, and voters generally have preferential dependepresumably appear very suspect to the voters.) However, as-
cies among these attributes. For instance, a voter might wasuming the existence of such an order is very restrictive in
a tennis court to be built only if no swimming poolis built.  general: the number of preferences (linear orders overlthe a
In classical voting theory, voters submit their prefererme  ternatives) satisfying the restriction is exponentialyadler
linear ordersover the set of alternatives, and thevoding rule  than the number of possible preferenpéi et al., 2004.
is applied to select one alternative to be the widnédow- In this paper, we do not assume that there is such a natural
ever, when the set of alternatives has a multiattributesire,  order in which to vote. As mentioned above, this leads to
the number of alternatives is exponential in the number-of atseveral problems, which we now illustrate with an example.
tributes, and therefore it is not realistic to ask voterpecsy  eyample 1 A joint decision has to be made about whether or
their p_references as explicit linear (_)rders. We can conide 5t to build a new swimming poaf(or S) and a new tennis
following three ways to address this: _ court (I or T). We suppose that the preferences of voters 1
1. Decompose the vote into a setprallel, independent 5 10 areST - ST = ST > ST, those of voters 11 to 20
voting problems, one for each attribute. This may lead t0ye 57« ST « ST ST. and those of voters 21 to 30 are

—Y . _ ST - ST » ST - ST.
Alternatively, avoting correspondencean be applied to select
multiple winners. We onl focus on voting rules in this paper. The first problem is that, regardless of the order in which



the issues are decided on, voters 1 to 20 feel ill at ease wheang whether there exists an order that makes a given camdidat
asked to report their preference about the first issue. Theyin) is NP-complete, which answers our main question. In
preferS to S if and only if T is chosen, so they would like Section 4 we show that destructive control (deciding whethe
to know about the tennis court before deciding on the swimthere exists an order that ensures a given candidate does not
ming pool. However, deciding on the tennis court first leadswin) is alsoNP-complete. Lastly, we conclude in Section 5.
to similar issues, because they prefeto 7' if and only if S
is chosen. Only voters 21 to 30 can safely vote§averS.? 2 Formulating the problem

The second problem is that in this type of situation, the out- .
come of the election can depend on the order in which the a{-n the rest of .th's paper, there are a set of VO‘{dfﬁ o5 n}
tributes are decided on. For example, suppose that the swirﬁ*—nd ?s_et ofé)lnaré/ .'Ss?fsz xi,... ’Té'}' qu n0t|0nds and
ming pool is decided on first, and more than half of the first 1({)esu ts Introduced in this paper would easily extend to non-
voters vote (optimistically) fof; then,S will be chosen over
S. Subsequently, given that they know that the swimmin
pool will be built, 20 voters will vote against the tennis cpu
so that the final outcome will b87. However, if the tennis f " K by the chai): f i :
court is decided on first, then optimistic voting would regul ormation (known by the chair): for every votirevery issue

a final outcome o§T". As a consequence, if the chairperson ™/ afn_d every pO_SSIIblg_ tupléhof t\)/aLues_ assflgr?ed t0 a sub-
(chair) knows enough about the voters’ behavior, she will bi:t of issues not including;, the behavior of the voter (vote

able to predict the outcome for each order and thus she will b or/agal_nsixj). For instance, in Example 1, we assume that
tempted to choose the ord&r> T if she preferssT to ST e chair knows what every voter would say, were she asked
andT > S otherwisé " to vote for or against the swimming pool, in each of the fol-

. . T ... lowing three situations: the swimming pool is the first iskue
The fact that the chair has, in some situations, the ability t be decided; we have already decided to build a tennis court;

influence the outcome of the election by choosingagenda e have already decided not to build a tennis court. Sinyilarl
(that is, the order in which the issues are decided on) is %4 hair i y dtok h 's behavi .h rpuiar
definite drawback of sequential voting. However, we might e;:] airis assumed to nﬁwlf ﬁvor:ers € a\tl)llorvy en voting
wonderhow difficultit is for the chair to control the election °" the tennis court, in each o 5\?xt_}ree possible situations

in this way. There are various other ways in which a chair . FOfma"yz letZ; = {T, l_’“} '/ be the set of all pos-
might control an election, and the computational complexSiPI€ situations when asking a voter aboyt An element
ity of some of those types of control has been considered iff € Zi: alled ani-situation(or, for short, a situation), is de-

several places, starting wifBartholdiet al, 1992 and later noted by listing all variables; in I \ {x;} with their cor-

inary issues, but we focus on binary issues so that we do not
ave to discuss the choice of the local rule for each issue—fo
binary issues, the majority rule is the obvious choice.

The input of the problem should contain the following in-

on in [Faliszewskiet al, 2007: Hemaspaanded al, 2007b;  'esponding valueszz; (meaning that; has already been

2007a; Meiret al, 2008; Piniet al, 200d. In the control ~ 2ssigned to trueT) 7j (x; has already been assigned to

problems considered in these papers, the chair may add or Frg-lse_ (L), or u(x;) (x; has not been assigned a value yet).

move candidates or voters, or fix the competition tree wher©' Instance, ifl = {xi,x2,x3, x4} then thel-situation

applying the “cup” rule. However, the control problem we 75u(x3)r4 means thak, .has been aSS|gnQd b, x4 0 T,

study here is unique because of its multiattribute naturd, a andxs has not been aSS|gneq yet. The_ situation where none

in our opinion, also quite realistic. If we are able to prove©f these issues has been assigned yet is denotgd by

that this control problem is computationally hard, this fou A Voter behavior policyis a function : {(x;,2) | = €

be an argument in favor of sequential voting, because it miti Zz} _)_{T_’,l}' m(x;,?) = T (resp., 1) means that in the

gates the downside of agenda control. i-situationz, when asked to vote for or against, the voter
Before we can study the complexity of the control problem,VOteS forx; = T (resp.,x; = 1). In Example 1, those

we first need to formulate it. As we saw in the above example@M0Ng Voters 1 to 10 who behave optimistically would have

the behavior of a voter can generally not be determined fronth€ following behavior policy: _

her preferences alone. We assume that the chair knows whaf (5, 0)(=7(S,u(T))) =T «(S8,7)=1 «(S,7)=T

every voter would do in every situation, whersituationcon- m(T,0)(=m(T,u(S))) =L «(T,S)=L «(T,5)=T

sists of a list of decisions made on some of the issues, and We may ask for @onsistency conditigwhich we will de-

another issue which is currently being voted on. In Section 2scribe shortly. First, we have to introduce the following no

we formulate the problem precisely and discuss possiblewaytion: letx; be an issue and consider tisituationss, s’ sat-

of representing this knowledge in a compact way. In Sectionsfying the following condition: there exists an issugsuch

3, we prove that in this setting, constructive control (deci that (a)s, s’ coincide on all issues except (b) s assigns

- . / H i i P
Experimental studies suggest that mostdvoters tend to trepo%—ez?jf(éoﬁ?udgé?ézn?:l\? r;lsjd;r?o):éé J}g?;ifjé;or? I:[?];[aé%i;o_

their preferences optimistically in such situatia®$ott and Levine, : . .

1978?for instance,r\)/oters 1—1)6 would likely report a preferefare cides W'ths (ands’) for all issues other tha_nj_, and I_eaves

S overs. X; unaSS|gn_ed. Now, a voter behavior po_lbcys consistent
%Incidentally, if the issues are voted on in parallel ratteant i the followmg conqmpn IS met: flor_ any 1SSue; alnd any

sequentially, then the chair has no influence over the outanithe @il Of x;-conjugatei-situationss, s', if 7(s) = 7(s') then

election—but, again under the realistic assumption thegredend ~ 7(s V s') = m(s)(= «(s")). The intuition behind consistency

to vote optimistically, the outcome would 54", which is the worst  is the following. Suppose we know that a voter will vote for

outcome for two thirds of the electorate! the swimming pool both in the case where it has already been



decided that the tennis court will be buitt(S,7") = T), and e for every2 < i < p, v; = z; (resp.,z;) if for a majority of

in the case where it has already been decided that it will nototers; € {1,...,n} we haver;(x;,Z;_1) = T (resp.,L),

be built r(S,T") = T). Then this voter should also vote for wherez;_i = (v1,...,vi—1, u(Xit1), . .., u(xp)).

the swimming pool in the situation where nothing has been We now define the control problems that we study. We dis-

decided about the tennis court(S, u(T")) = T). While con-  tinguish betweetocal control where the chair tries to deter-

sistency is intuitively a desirable condition, psychotagiex-  mine the outcome of a single issue, agidbal contro| where

periments show that it is sometimes violated by individualsthe chair tries to determine the winning alternative (tbathie

[Tversky and Shafir, 1992 value of all issues). We also distinguish betweenstructive
Representing a behavior policy explicitly, by listing @l e control, where the chair tries to ensure that a particular alter-

ements ofZ; for everyi, would require exponential space (to native or a particular value for an issue wins, ategtructive

be precise, exactly- 37! values have to be specified) and is control, where the chair tries to ensure that a particular alter-

therefore infeasible for all but the smallgst In most cases, nhative or a particular value for an issue doeswin. Thus, a

however, a voter's behavior on an issue depends on only lcal control instancés defined by a CB-net for every voter,

small subset of the other issues—just as in CP-fisitilier ~ a distinguished issug;, and a valuey € {T, L }. The chair

et al, 2004, a voter’s preference for an issue may depenctan constructively (destructively) control the instarfddére

on only a small subset of the other issues. We definere  exists an ordering) such that(Seq(O,#)); = v (such that

ditional behavior net(CB-net) over a set of binary issues (Seq(O,7)); # v). A global control instancés defined by a

I by a directed grapl&? over I, and, for everyx; € I, a  CB-netfor every voter, and a distinguished alternative 2'.

conditional behavior tabl€CBT) mapping every element of The chair can constructively (destructively) control time i

{T, L,u}Pere(xi) (where Parg(x;) denotes the set of par- stance if there exists an orderiagsuch thatSeq(O, ©) = &

ents ofx; in G), to T or L. The main technical difference (such thatSeq(O, ) # ).

between a CB-net and a CP-net over propositional variables In two of our reductions, we make use of the following re-

are that in a CB-net, the conditional table for specifies a  sult, which states that we can simulate any (consistent9r no

value even if some of the parentsxfare unassigned. Here weighted CB-net (that is, a CB-net with an integer weight on

is an example of a CB-net (with= {x;,x5, x3}): each entry) whose weights are all even with a collection of
consistent CB-nets — thus the result we give below is a kind of
/\i McGarvey theoreniMcGarvey, 1958 (which states that for
xi X2 3 every tournamerif, there is a profile of whicH’ is the major-
0:73 ity graph) for CB-nets. Ifr is the behavior policy correspond-
0: Tiu(x2) 1 T3 TIT2 1 T3 ing to CB-nefl’, andz € {T, L,u}"%(xi) js a valuation for
D: 2 T1: T2 Tiu(x2) 1 T3 2177 : T3 the parents ok;, then letl'|,.> = 7(x;, ') whereZ” is any
L1 T2 u(x1)as Pra Tid i valuation for all issues other thay that agrees witt. That
u(xl) 2 :T3 Tr1T2 T3

is, T'|,.z is the CBT entry forx; given parent valuationg

CBT(x1) CBT(x2) CBT(xs) Proposition 1 For any CB-nefl” (with binary issues, consis-
_ _ . . tent or not), in which any issue; and any valuatiort’ of the
Every CB-nefl’ induces a behavior policyr, defined as  parents ofx; in the dependency graph Bfis associated with
follows: for every issuex; and every? € Zi, 7r(xi,73')_’= T aneveAw:; (which must be positive If|,,.- = T and neg-
(resp., 1) if CBT(x;) contains anentry : z; (resp.,t : ;)  ative if '|,,. = L), there exists a collection of consistent

such that C Z. . . _ CB-netsI' = (T'y,...,Tx), whereK is the maximum sum
The behavior policy associated with the example CB-nebf the absolute values of the weights associated with ar issu
above is consistent; it would not be if, insteadz9fu(x2) :  (summing over the parents’ valuations), such that

T3, We _hadxlu(_xz) : Tz—because then we would have two o for anyj < K, the dependency graph Bf is the same as
x2-conjugate situationsy; z» andz; 73, such that the voter  the dependency graph bf

votes forzs in both, and yet votes faf; in situationz u(x2). e foranyi < p,anyz € {T, L,u}fore™) wo; = |{j <
Let® = (m1,...,m,), Wheren; is the voter behavior policy [ - Tjlx;z = T = [{j < K : Tj|x,.2 = L}|. Thatis, the

for voteri. Finally, letO be an ordering od. The outcome weights in the weighted CB-n&tcorrespond exactly to the

associated Wlt.fO and#, denoted bySeq(O,n), is defined  weights of the majority relation fafl';, ..., ['x).

as follows. Without loss of generality, assule= x; > Proof of Proposition 1: For anyi < p, we let'¥; be the

d d> X”B Fofr thte sake do:h3|{11pI|C|t3|/, aslsurlne_ Vf[’r? have atnsum of the absolute values of the weights over all valuations
0cd number ot voters, and that every local rule 1S the MOt o the parents ok, in the dependency graph 6t Because
rule*. Seq(O,7) = (v1,...,v,) where

Y —itf ority of voters: 1 the orderingx, ..., x, of the issues is arbitrary (the CB-net
° Ulh_ 71 (respt})xl_) |Tor a majlorltyo votersj € {1,....n} 4y be cyclic), we can without loss of generality assume that
we haver;(x;,0) = T (resp.,L); K = W,, thatis, foranyi <p, W, > W,. Letxy,...,x; be

“Recall that the issues are binary, hence the obvious chbtbe o the parents _Ok’_’.' We next show ,hOW to constru€tBT (x;)
majority rule, with some tie-breaking mechanism; the agion ~ for eachl’; in I'. For any1 <@ < p-—1, CBT(x;) for
that we have an odd number of voters allows us to ignore the tieeachl’; can be constructed similarly. We now prove a lemma

breaking mechanism. If issues were not binary, then we woale¢
r1,...,rp be local voting rules, one for each issue. SAlternatively, all the weights can be odd.



whose purpose is to construct a CBT such that the consisten& Constructive control

condition does not cause us problems. _ We now investigate the complexity of constructive contiol.
Lemmal Letx,,...,x; be the parents af,. There existsa turns out that both the local and global versions of construc
CBT forx, such that for any < k, any pair ofx;-conjugate tive control are computationally hard.

L ; . / .
p-situationss, ', we have thak, is assignedr in exactly one  pgnqsition 2 Local constructive control islP-complete.
of {s,s'}, and_L in the other.

Proof of Lemma 1: The “parity CB-net.” which returng Proposition 3 Global constructive control isIP-complete.

when an even number of parents are st tand.L otherwise, In both casesNP-hardness holds even if every issue is bi-

satisfies this condition. O nary and the local rules are majority rules, and either of the
For any valuatiors’ of Parg(x,), let f,(s') be the value following conditions holds: there is only one voter all the

that the CBT from Lemma 1 returns. For any valuatioof =~ CB-nets are consistent and have the same dependency graphs.

Parg(x,), we assumev, , > 0 (the case where,, < 0  While neither of these hardness results directly implies th

is similar). LetI(s) be the set of issues that, undefare as- ~ other, we use a single reduction to prove both results.

signed a value if{ T, L} (that is, notu). We define two CB-  Proof sketch of Propositions 2 and B both cases, mem-

nets for every valuation of Parq(x,), namely,CBT}(x,)  bership inNP is straightforward. As for hardness, we use

andCBT?(x,). Let CBT!(x,)(s') be T if I(s') C I(s), a reduction from the restriction ¢fAMILTONIAN CYCLE to

and letC BT! (x,)(s") be f,(s') otherwise C BT?(x,) is al- graphs where each node has degree at most 3; this restriction

. : : is still NP-complete[Gareyet al, 1976. LetG = (V,E)
mostthe opposite: leC' BT2(x,)(s') be L if I(s') C I(s) 'S SU comp ’
ands’ # s, letit be T if s (:I;),(arzd let it beif,?(s’) o(th)- be an undirected graph, wheve = {0,...,n}. We denote

erwise. Next, we show (1) that these CBTs do not violatef998S b¥j (wherei, j € V, i # j) rather than(s, j}; ij and

: ; 49 represent the same edge. We first define the CB-nets used

g?;\hselsstee %Cglrgnt?] G(}f])vtlréaé,égv\\,/veeiaggr]]gt]é(ejggtBeTsfgnble.comblnatlolfrﬁ our control problem. Rather than listing the individu&-C

For (1): for anyi < k, any pair ofi-conjugate valuations NetS explicitly, we give the majority CB-net, which can cor-
51,85 Of Parg(x,), if I’(Sl)(: I(s2)) ¢ 1(s), then con- respond either to a single not-necessarily-consistenh€3-
sis,tency is m:ainfai,ned in botli BT (x,) and éBT2(x ) or, by Proposition 1, to a collection of consistent CB-néits.
because f, (s1), f,(s2)} = {—f( S) IJ)” (32)) = {§|_ f}' the construction we assume the degree of each vertex is 3 for
Jp\51), Jpi82 TpiS), plS2 ) implicity; it is simple to adapt the construction to the &as
so consistency does not impose any constraint. I(?\/here some vertices have degree less than 3.
I(s1)(= I(s2)) C I(s), and neithers; nor s, is 1. there is an issuig for every{i, j} € E (withi < j); an
equal tos, thenI(si v s2) C I(s). Because of this, issuedone(i) for everyi = 0 n; and an issudone
CBT(x,)(s1) = CBTX(x,)(s2) = CBT(x,)(s1 V s2) 2. let0i € E: 0j, Ok are the other two edges withas ex-
andCBTZ(x,)(s1) = CBTZ(xp)(s2) = CBTZ(%,)(51V  tremity; andil, im are the other two edges wittas extremity.
s2), SO consistency is also maintained in this case. Finally, iffhen the parents dfi in the dependency graph &g, 0k, il,
one ofs; ands, is equal tos, then, forC BT} (x,), the situ-  im anddone, and the table for issu® is:

ation is the same as in the previous case, (@77 (x,), we 0 ,, £0 | 0f u(0K) il u(im) u(done) : 04
haveCBT?(x,)(s1) # CBT2(x,)(s2), SO consistency does | wios\’0) uli) im uldone) for | %o st dome ) 10" 0;
not impose any COﬂStI’aII’It.1 ) all other situations : 04

For (2): we haveCBT; (xp)(s) = CBT;(xp)(s) = The x notation refers to any possible statds (L or unas-

T, and for everys' # s, we haveCBT[(x,)(s') #  signed) of the issuelj, Ok, il andim, so, it is a shorthand for
CBTZ(x,)(s'). Thus, they cancel each other out except on16 conditional behaviors. “All other situations” is an a&br

s, where they have a combined weightan s. Hence, if we  viation referring to all tuples not explicitly mentioned tine

take =52 copies of each, we have a weightiof , ons (and  table. Using these abbreviations or not does not change any-
0 everywhere else). If we do this for every vals®f x,'s  thing regarding the polynomial size of the reduction, beeau
parents, then we obtain the weighted CBTIofor x,. The  each issue has at most three parents in the dependency graph.
total number of CBTs that we create in this procesk isWe 3.letij € E,i #0,j #0; letik, il be the other two edges

use the same approach for the issues otherthaand each  with i as extremity, andm, jq the other two edges withas

of them requires at most’ CBTs. Moreover, we can take a €xtremity. Then the parents of in the dependency graph are
CBT for each issue and combine them into a single CB-netik. il, jm, jq anddone, and the table for issug is

so that the total number of CB-nets we createigfor the ik u(il) u(jm) u(jq) u(done): ij
issues that require fewer thati CBTs, we can create some u(ik) il u(jm) u(jq) u(done): ij
pairs of CBTs that cancel out exactly with each other). “(’,’]z) “(’,? jm u(jq) “(g‘me) 4

Of course, in Proposition 1, all the weights ; may have Z(lx )Xuild)ose(lm) jq u(done) : Z
the same absolute values., w, ; = 2 orw, ; = —2, so thatl’ all other situations 5

is effectively an unweighted CB-net. Hence, we can simulate
a single inconsistent CB-net by a collection of consisteBt C - .
nets. In this case, the number of consistent CB-nets nesded .er(;];[he g?ﬁer}tsb?t‘?nz(o) '% the dependency graph abé
at most2F+1, wherek is the maximum in-degree of vertices in J: ?n - ¢ table fodone( ,) 1S -

the dependency graph Bf This number is polynomial when 0i 0j u(Ok): done(0) | 0i u(07) Ok : done(0)
k is bounded, as it will be in our reductions. u(0i) 0j Ok : done(0) | all other situations done(0)

4. let0i, 07, Ok be the three edges @& with 0 as extremity;




) o o done is assigned tar iff everydone(i) has been assigned to
~ 5.forl <i <nmn,letij, ik, il be the three edges @ with T \which, by Lemma 5, implies that for eveiyexactly two
i as extremity; then, the parentsdfne(i) in the dependency sy egj have been assignedTa Let 2 be the current assign-
graph arej, ik, il, done(i — 1), and the table fodone(i) is  ment. From point 4 of Lemma (Z) is a cycle containing
37 ik w(il) done(i — 1) : done(i) | ij u(ik) il done(i—1): done(3) every vertex ofGG, therefore this subgraph is a Hamiltonian
cycle. Proposition 2 follows from Lemma 6, and Proposition
3 from Lemmas 2 and 6 End of proof of Prop. 2, 3. O
6. the only parent ofone is done(n), and its table is We can also show an inapproximability result for global
control: unles = NP, there does not exist a polynomial-
time algorithm that, whenever the global control instanas h

Finally, the goal of the chair depends on the version (locaR solution, returns a solution that disagrees with the ddsir
or global) of the constructive control problem. In the glbba outcome on only a small number of issues. This result is eas-
version (Proposition 3), it is to get the outcomfewhere ev-  ily obtained by modifying the reduction used in the proof of
ery issue is assigned . In the local version (Proposition Proposition 3 by adding an arbitrary large number of dummy
2), it is to get the issudone assigned tor. issues that can be assignedntdff done is assigned ta.

Note that this CB-net is not consistent. Take isgug, j # We finish this section by giving a subclass of problems
0). In situation ¢k, il, u(jm), u(jq)), the decision igj. In where constructive control (both local and global) is easy.
situation ¢k, il, u(jm), u(jq)), it is ij too. But, in situation ~ Proposition 4 If the voters’ CB-nets share the same depen-
(ik, u(il), u(jm), u(jq)), the decision igj. However, we dency graph’, and every node igr has at most one parent.
note that an inconsistent CB can be obtained as the majorithen constructive control, both local and global, isAn

w(ij) ik il done(i — 1) :done(i) | all other situations : done(i)

‘ done(n) :  done ‘ all other situations done ‘

CB-net of a set of consistent CB-nets (Proposition 1). Proof sketchFor the global version, assume w.l.0.g. tifat=
The proof goes along the following lemmas. z1...z,. Let N be the majority CB-net obtained from the

Lemma 2 If there exists a Hamiltonian cycle, then there ex-individual CB-nets. For each issug, we create a simple

ists an order leading ta®. precedence constraint betweenand its parenk; in G. For

instance, ifN contains the entry; : z;, u(x;) : Z;, then the
control ofx; will succeedff x; is decided aftex;. Itis then

easy to check if there exists an order on the issues such that
all of thesep constraints can be satisfied. Local constructive
control can be solved in a similar way. O

Lemma 3 For any partial assignmerit of the issues, lef ()
be the following subgraph d¥: ij € S(%) if and only ifij
has been assigned underz. Then, as long adone has not
been assigned td, the following properties are true:
1. for every vertex, S(Z) contains zero, one or two edges
adjacent tai (never three); ;
2. if S(Z) contains no edge adjacent fy then S(2) is 4. DeStrUCtIYe control ) )
empty; Finally, we consider destructive control. For the locakien,
3. if S(2) contains one edge adjacent tip then there is NP-completeness is a straightforward consequence of Propo
exactly one # 0 such thatS(Z) contains one edge adjacent Sition 2: being able to make sure thatis assigned tor is
toi, andS(Z) is a single path going frorfi to i. the same thing as being able to avoid thals assigned td..
4. if $(Z) contains two edges adjacent(pthen for every ~ This trivially gives us:
i, S(Z) contains zero or two edges adjacenitandS(Z)isa  Proposition 5 Local destructive control islP-complete.
cycle including exactly the verticésuch thatS(2) contains ~ However, we cannot use such an argument for the global ver-

two edges adjacent to sion; it requires a separate reductfon.
Lemma 4 done(0) can be assigned t@ if and only if there ~ Proposition 6 Global destructive control islP-complete.
are exactly two issuej, 0k that have been assigned1a NP-hardness holds even if every issue is binary and the local

Lemma 5 Forany1 < i < n, done(i) can be assigned @ rules are majority rules, and all the CB-nets are consistent

if and only ifdone(i — 1) has been assigned 1, and there Proof sketch. Membership inNP is straightforward. Hard-

are exactly two issue, ik that have been assigned Ta ness is by reduction from tii¢P-complete restriction of x-
ACT COVER BY 3-SETS(X3C) where no element occurs in

Lemma 6 done can be assigned to if and only if thereisa  more than 3 subsef&arey and Johnson, 197Qjiven X =
Hamiltonian cycle. {vi,...,v,},S ={S1,..., S}, where for every < t, S; C
We only sketch the proofs of the lemmas. ForX and|S;| =3, andforallj <gq,|[{S; € 5:v; € S;}| <3,
Lemma 2, suppose w.l.o.g. that the Hamiltonian cycle isdecide whether there exist8 C S such thafS'| = , and
(0,1,2,...,n,0). Consider the following order on issuex, siesr Oi = X.
12,...,n — 1 n, On, done(0), done(1), ...,done(n), done, < - . )
and then all remaining issues in any order afterwards. The an,, CCnVersely, Proposition 6 also does not seem to directly im-
- J = . ply Proposition 3. In settings with a small number of alté¢ives,
SWer given by the majority CB-net at each .steEFISThe f9“r constructive control cannot be (significantly) easier tastructive
points of Lemma 3 follow from the conditional behavior ta- control, because one approach for destructive controhiglsi to
bles (points 3 and 4 are proven by induction on the number oy constructive control on every other alternative. Hoerethis ar-

issues assigned ). Lemmas 4 and 5 follow directly from gument does not work in multiattribute settings with expuisly
the behavior tables fafone(i), i = 0,...,n. ForLemma 6, many alternatives.
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