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1. INTRODUCTION

In multiagent systems, a group of agents often has to make a common decision,
yet they have different preferences about which decision is made. In such settings,
it is of central importance to be able to aggregate the preferences, that is, to
make a socially desirable decision as to which candidate is chosen from a set of
candidates. Candidates could be potential presidents, joint plans, allocations of
goods or resources, etc. Voting is the most general preference aggregation scheme,
and has been used in several multiagent decision making problems in computer
science, such as collaborative filtering (e.g. [Pennock et al. 2000]) and planning
among multiple automated agents (e.g. [Ephrati and Rosenschein 1991; 1993]).

One key problem voting mechanisms are confronted with is that of manipulation
by the voters. An agent is said to manipulate or vote strategically when it does not
rank the alternatives according to its true preferences, but rather so as to make the
eventual outcome most favorable to itself. For example, if an agent prefers Nader
to Kerry to Bush, but knows that Nader has too few other supporters to win, while
Kerry and Bush are close to each other, the agent would be better off by declaring
Kerry as its top candidate. Manipulation is an undesirable phenomenon because
social choice schemes are tailored to aggregate preferences in a socially desirable
way, and if the agents reveal their preferences insincerely, a socially undesirable
candidate may be chosen.

The issue of strategic voting has been studied extensively. A seminal negative
result, the Gibbard-Satterthwaite theorem, shows that if there are three or more
candidates, then in any nondictatorial voting scheme, there are preferences under
which an agent is better off voting strategically [Gibbard 1973; Satterthwaite 1975].
(A voting scheme is called dictatorial if one of the voters dictates the social choice
no matter how the others vote.)

This is a significant problem in elections where voters are human. In automated
group decision making where the voters are software agents, the manipulability of
protocols is even more problematic, for at least three reasons. First, the algorithms
they use to decide how to vote must be coded explicitly. Given that the voting
algorithm needs to be designed only once (by an expert), and can be copied to
large numbers of agents (even ones representing unsophisticated human voters), it
is likely that rational strategic voting will increasingly become an issue, unmuddied
by irrationality, emotions, etc. Second, software agents have more computational
power and are more likely to find effective manipulations. Third, the settings
where software agents are used for voting are likely to be more anonymous, and
therefore the voters are likely to be less scrupulous. For example, they might not
worry about the norm that manipulation, in itself, is considered inapproriate (if
the voter’s neighbor knows his preferences on an issue and sees him vote differently,
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then the neighbor will consider him a liar). As another example, anonymous voters
are freed from the social pressures of voting in a particular way (e.g., voting for a
school rather than a cigar factory), so the space of viable votes—and thus viable
manipulations—is larger.

Nevertheless, there are several avenues for trying to avoid the possibility of manip-
ulation. First, social choice theorists and economists have studied settings where the
voters’ preferences are restricted. Under certain restrictions, such as single-peaked
preferences or quasilinear preferences, nonmanipulable protocols exist (e.g. [Mas-
Colell et al. 1995; Ephrati and Rosenschein 1991; 1993]). The weakness of this
approach is that in practice the protocol designer cannot be sure that the agents’
preferences fall within the restriction. If they do not, it is impossible to vote truth-
fully, so the protocol forces the agents to manipulate. A second approach to avoiding
manipulation is randomization. For example, a dictator could be chosen at ran-
dom among the voters, in which case there would be no incentive for manipulation.
The randomization approach is undesirable if it introduces too much noise into the
election process, and it turns out that almost complete randomization (as in the
example above) is required in order to obtain a nonmanipulable protocol [Gibbard
1977; 1978]. Furthermore, randomization can introduce manipulation possibilities
even when none would have existed (for the preferences that the agents happen to
have) under a deterministic protocol [Zeckhauser 1969).

We take a third tack toward avoiding manipulation: ensuring that finding a ben-
eficial manipulation is so hard computationally that it is unlikely that voters will
be able to manipulate. So, unlike in most of computer science, here high compu-
tational complexity is a desirable property. The harder it is to manipulate, the
better. Especially in the context of software agents, this computational complexity
is best measured with the usual tools from theoretical computer science. The ap-
proach of using computational complexity to avoid manipulation has not received
much attention and many problems are still open. Some hardness results have been
proven under the assumption that not only the number of voters but also the num-
ber of candidates is unbounded [Bartholdi et al. 1989a; Bartholdi and Orlin 1991;
Conitzer and Sandholm 2003].! Such hardness results lose relevance when the num-
ber of candidates is small, because manipulation algorithms that are exponential
only in the number of candidates (and only slightly so) might be available. In the
appendix, we give such an algorithm for an individual agent to manipulate the Sin-
gle Transferable Vote (STV) protocol, which has been shown hard to manipulate
in the above sense. The algorithm applies whether or not the voters are weighted.

This motivates the core of this paper, which studies the complexity of manip-

1For an unbounded number of candidates, voting rules can be made hard to manipulate by only
slightly tweaking them and thus preserving many of their desirable properties. Conitzer and
Sandholm [2003] showed that by adding a preround of pairwise elections (where the winner of
each pair proceeds to the original voting rule), a broad class of voting rules (including the most
common voting rules) become NP-hard, #P-hard, or PSPACE-hard to manipulate, depending on
whether the schedule of the preround is determined before the votes are collected, after the votes
are collected, or the scheduling and the vote collecting are interleaved, respectively. Elkind and
Lipmaa [2005] showed that many hybrid voting rules (where one rule is used to curtail the set of
candidates and another rule is used to select from among them) are NP-hard to manipulate, even
if each of the component rules is easy to manipulate.
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ulating elections where the number of candidates is a small constant. Restricting
the number of candidates to a constant reduces the number of possible votes for a
single voter to a constant. If the voters all have equal weight in the election, the
number of de facto possible combinations of votes that even a coalition can submit
is polynomial in the number of voters in the coalition (since the voters have equal
weight, it does not matter which agent in the coalition submitted which vote; only
the multiplicities of the votes from the coalition matter). We thus get the following
straightforward result.

PROPOSITION 1. Let there be a constant number of candidates, and suppose that
evaluating the result of a particular combination of votes by a coalition is in P.
If there is only one wvoter in the coalition, or if the voters are unweighted, the
manipulation problem is in P. (This holds for all the different variants of the
manipulation problem, discussed later.)

PRrROOF. The manipulators (an individual agent or a coalition) can simply enu-
merate and evaluate all possibilities for their votes (there is a polynomial number of
them). Specifically, when there are n voters in the coalition and m candidates, then
there are at most (n 4 1)™' possibilities, because for every one of the m! possible
orderings of the candidates there must be between 0 and n voters in the coalition
voting according to this ordering (and, because the voters are unweighted, it does
not matter which voters they are). This expression is polynomial in n. [

In particular, in the complete-information manipulation problem in which the
votes of the non-colluders are known, evaluating the result of a (coalitional) vote is
as easy as determining the winner of an election, which must be in P for practical
voting mechanisms.? This leaves open two avenues for deriving high complexity
results with few candidates. First, we may investigate the complete-information
coalitional manipulation problem when voters have different weights. While many
human elections are unweighted, the introduction of weights generalizes the usabil-
ity of voting schemes, and can be particularly important in multiagent systems
settings with very heterogenous agents. As a second avenue, we may ask whether
there are reasonable settings where evaluating a manipulation is NP-hard. For in-
stance, if we merely have probability distributions on the non-colluders’ votes, how
does the complexity of determining the probability that a given candidate wins
change?

We devote most of the paper to studying the first avenue. We study both con-
structive manipulation (making a given candidate win) and destructive manipu-
lation (making a given candidate not win). We characterize the exact number
of candidates for which manipulation becomes hard for plurality, Borda, STV,
Copeland, mazimin, veto, plurality with runoff, regular cup, and randomized cup
protocols. It turns out that the voting protocols under study become hard to ma-
nipulate at 3 candidates, 4 candidates, 7 candidates, or never. The remainder of
the paper is devoted to the second avenue, by showing that hardness results from

2However, there exist voting mechanisms where determining the winner is computationally
hard [Bartholdi et al. 1989b; Hemaspaandra et al. 1997; Cohen et al. 1999; Dwork et al. 2001;
Rothe et al. 2003; Davenport and Kalagnanam 2004; Conitzer et al. 2006; Conitzer 2006]—but
only for large numbers of candidates.
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the complete-information coalitional weighted manipulation problem imply similar
hardness results in the incomplete-information setting, even without the assump-
tions of multiple manipulators and weighted votes.

2. VOTING PROTOCOLS

We now define the voting setting. Let V = {v1,...,v,} be the finite set of voters.
Let X = {1,...,m} be the finite set of candidates. The preferences of voter v; are

given by a linear order O; on X. Such a linear order is represented as (c1, ¢a, . .., Cm),
meaning that c; is preferred to cs, co is preferred to cs, etc. A preference profile is
a vector P = (Oq,...,0,) of individual preferences.

A woting protocol is a function from the set of all preference profiles to the set of
candidates X.3 The following list reviews the most common voting protocols. In
the protocols that are based on scores, the candidate with the highest score wins.
In each of the listed protocols (even the ones that have multiple rounds), the voters
submit their preferences up front. That is, the voters are not allowed to change
their preference revelations during the execution of the protocol.

—positional scoring protocols. Let & = (aq,...,am) be a vector of integers such
that oy > as... > a,,. For each voter, a candidate receives a points if it is
ranked first by the voter, as if it is ranked second, etc. The score sg of a candidate
is the total number of points the candidate receives. The Borda protocol is the
scoring protocol with & = (m — 1,m — 2,...,0). The plurality protocol (aka.
majority rule) is the scoring protocol with & = (1,0,...,0). The veto protocol is
the scoring protocol with & = (1,1,...,1,0).

—mazimin (aka. Simpson). For any two distinct candidates ¢ and j, let N (3,
be the number of voters who prefer ¢ to j. The mazimin score of i is s(i)
Ininj#i N(i, ])

7)

—Copeland. For any two distinct candidates ¢ and j, let C(i,5) = +1 if N(4,5) >
N(j,4) (in this case we say that ¢ beats j in their pairwise election), C'(i,5) =0
if N(i,7) = N(j,i) and C(i,5) = —1 if N(4,5) < N(4,%). The Copeland score of
candidate i is s(i) = 3_;_, C(i, j).

—single transferable vote (STV). The protocol proceeds through a series of m —
1 rounds. In each round, the candidate with the lowest plurality score (that
is, the least number of voters ranking it first among the remaining candidates)
is eliminated (and each of the votes for that candidate “transfer” to the next
remaining candidate in the order given in that vote). The winner is the last
remaining candidate.

—vplurality with run-off. In this protocol, a first round eliminates all candidates
except the two with the highest plurality scores. Then votes are transferred to
these (as in the STV protocol), and a second round determines the winner from
these two.

3Some of the voting protocols require tie-breaking rules (at different stages of the execution of
the protocol). These rules are usually left undefined. The results in this paper do not depend on
tie-breaking rules.
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—cup (sequential binary comparisons). The cup is defined by a balanced* binary
tree 1" with one leaf per candidate, and a schedule, that is, an assignment of can-
didates to leaves (each leaf gets one candidate). Each non-leaf node is assigned
the winner of the pairwise election of the node’s children; the candidate assigned
to the root wins. The regular cup protocol assumes that the assignment of can-
didates to leaves is known by the voters before they vote. In the randomized
cup protocol, the assignment of candidates to leaves is chosen uniformly at ran-
dom after the voters have voted. Note that the randomized cup protocol differs
from all the other protocols under discussion in the sense that all the others are
deterministic.

In some settings, the voters are weighted. A weight function is a mapping w : V —
N. When voters are weighted, the above protocols are applied by simply considering
a voter of weight k to be k different voters.? Different possible interpretations can
be given to weights. They may represent the decision power of a given agent
in a voting setting where not all agents are considered equal. The weight may
correspond to the size of the community that the voter represents (such as the size
of the state). Or, when agents vote in partisan groups (e.g., in parliament), the
weights may correspond to the size of the group (each group acts as one voter).

3. MANIPULATING AN ELECTION

In this section we define our computational problem precisely. We lead into the
definition by discussing the different dimensions of the election manipulation prob-
lem:

I) What information do the manipulators have about the nonmanipulators’ votes?
In the incomplete information setting, the manipulators are uncertain about the
nonmanipulators’ votes. This uncertainty could be represented in a number of
ways, for example, as a joint probability distribution over the nonmanipulators’
votes. In the complete information setting, the manipulators know the nonmanip-
ulators’ votes exactly. We (initially) focus on the complete information case for
the following reasons: la. It is a special case of any uncertainty model. Therefore,
our hardness results directly imply hardness for the incomplete information setting.
1b. As we will demonstrate later in the paper, hardness results for manipulation by
coalitions in the complete information setting also imply hardness of manipulation
by individuals in the incomplete information setting. 2. Results in the complete
information setting measure only the inherent complexity of manipulation rather
than any potential complexity introduced by the model of uncertainty.

IT) Who is manipulating: an individual voter or a coalition of voters? Both
of these are important variants, but we focus on coalitional manipulation for the
following reasons: 1. In elections with many voters it is very unlikely that an in-
dividual voter can affect the outcome—even with unlimited computational power.
2. For any constant number of candidates (even with an unbounded number of

4“Balanced” means that the difference in depth between two leaves can be at most one.

5This is why we assume that weights are integers. The results also apply to all rational weights
because they can be converted to integers by multiplying all the weights by all the weights’
denominators.

Journal of the ACM, Vol. V, No. N, Month 20YY.



When Are Elections with Few Candidates Hard to Manipulate? : 7

voters), manipulation by individuals in the complete information setting is compu-
tationally easy because the manipulator can enumerate and evaluate all its possible
votes (rankings of candidates) in polynomial time, as we pointed out in the In-
troduction.® (Manipulation by individuals in the complete information setting is
hard for some voting protocols if one allows the number of voters and the number
of candidates to be unbounded [Bartholdi et al. 1989a; Bartholdi and Orlin 1991;
Conitzer and Sandholm 2003]. However, in the appendix of this paper, we give
a manipulation algorithm for such a protocol that scales to fairly large numbers
of candidates.) 3. Again, as we will demonstrate later in the paper, hardness re-
sults for manipulation by coalitions in the complete information setting also imply
hardness of manipulation by individuals in the incomplete information setting.

III) Are the voters weighted or unweighted? Both of these are important variants,
but we focus on weighted voters for the following reasons: 1. In the unweighted case,
for any constant number of candidates (even with an unbounded number of voters),
manipulation by a coalition in the complete information setting is computationally
easy because the coalition can enumerate and evaluate all its effectively different
vote vectors, as we pointed out in the Introduction. (We recall that the number
of effectively different vote vectors is polynomial due to the interchangeability of
the different equiweighted voters, see Proposition 1.) 2. As we will demonstrate
later in the paper, hardness results for manipulation by weighted coalitions in the
complete information setting also imply hardness of evaluating the probabilities
of different outcomes in the incomplete information setting with unweighted (but
correlated) voters. 3. In many real-world elections, voters are in fact weighted, for
example, by their ownership share in the company, by seniority, or by how many
other individuals they represent.

IV) What is the goal of manipulation? We study two alternative goals: trying
to make a given candidate win (we call this constructive manipulation), and trying
to make a given candidate not win (we call this destructive manipulation). Besides
these goals being elegantly crisp, there are fundamental theoretical reasons to focus
on these goals.

First, hardness results for these goals imply hardness of manipulation under any
game-theoretic notion of manipulation, because our manipulation goals are always
special cases. (This holds both for deterministic and randomized voting protocols.)
At one extreme, consider the setting where there is one candidate that would give
utility 1 to each of the manipulators, and all other candidates would give utility 0 to
each of the manipulators. In this case the only sensible game-theoretic goal for the
manipulators is to make the preferred candidate win. This is exactly our notion of
constructive manipulation. At the other extreme, consider the setting where there
is one candidate that would give utility 0 to each of the manipulators, and all other
candidates would give utility 1 to each of the manipulators. In this case the only
sensible game-theoretic goal for the manipulators is to make the disliked candidate
not win. This is exactly our notion of destructive manipulation.

Second, at least for deterministic voting protocols in the complete information
setting, the easiness results transfer from constructive manipulation to any game-

6This assumes that the voting protocol is easy to execute—as most protocols are (including all
the ones under study in this paper).
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theoretic definitions of manipulation that would come down to determining whether
the manipulators can make some candidate from a subset of candidates win. For
example, one can consider a manipulation successful if it causes some candidate to
win that is preferred by each one of the manipulators to the candidate who would
win if the manipulators voted truthfully. As another example, one can consider a
manipulation successful if it causes some candidate to win that gives a higher sum of
utilities to the manipulators than the candidate who would win if the manipulators
voted truthfully. (This definition is especially pertinent if the manipulators can
use side payments or some other form of restitution to divide the gains among
themselves.) Now, we can solve the problem of determining whether some candidate
in a given subset can be made to win simply by determining, for each candidate in
the subset in turn, whether that candidate can be made to win. So the complexity
exceeds that of constructive manipulation by at most a factor equal to the number
of candidates (which, in our setting, is a constant; however, the same argument
applies even when the number of candidates is not constant).

Third, the complexity of destructive manipulation is directly related to the com-
plexity of determining whether enough votes have been elicited to determine the
outcome of the election. Specifically, enough votes have been elicited if there
is no way to make the conjectured winner not win by casting the yet unknown
votes [Conitzer and Sandholm 2002].

In summary, we focus on coalitional weighted manipulation (CW-MANIPULATION),
in the complete information setting. We study both constructive and destructive
manipulation. Formally:

DEFINITION 1. (CONSTRUCTIVE COALITIONAL WEIGHTED (CW) MANIPULATION)
We are given a set of weighted votes S (the nonmanipulators’ votes), the weights
for a set of votes T which are still open (the manipulators’ votes), and a preferred
candidate p. For deterministic protocols, we are asked whether there is a way to
cast the votes in T so that p wins the election. For randomized protocols, we are
additionally given a distribution over instantiations of the wvoting protocol, and a
number r, where 0 < r < 1. We are asked whether there is a way to cast the votes
in T so that p wins with probability greater than r.

DEFINITION 2. (DESTRUCTIVE COALITIONAL WEIGHTED (CW) MANIPULATION)
We are given a set of weighted votes S (the nonmanipulators’ votes), the weights
for a set of votes T which are still open (the manipulators’ votes), and a disliked
candidate h. For deterministic protocols, we are asked whether there is a way to
cast the votes in T so that h does not win the election. For randomized protocols,
we are additionally given a distribution over instantiations of the wvoting protocol,
and a number v, where 0 < r < 1. We are asked whether there is a way to cast the
votes in T so that h wins with probability less than r.

For deterministic protocols, we do not consider a manipulation successful if it
leaves candidate p or h tied for the win.” One way of viewing this is as follows.
If ties are broken randomly, then technically, we are dealing with a randomized
protocol. Then, we can set r so that a tie for the win does not give p enough

7Our proofs do not depend on this specification, with the exception of Theorem 7.
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probability of winning (for example, 7 = 2/3), or so that a tie gives h too much
probability of winning (for example, » = 1/(m + 1)).

As additional justification for requiring hardness even with few candidates, in
the appendix, we present an algorithm for an individual voter to manipulate the
STV protocol that is exponential only in the number of candidates, and scales to
reasonably large numbers of candidates. (Reading this appendix is not necessary
to comprehend the rest of the paper.)

4. COMPLEXITY OF MANIPULATION

We are now ready to present our results on the hardness of coalitional manipulation
when there are few candidates and the votes are weighted. We will study not
only whether any given protocol is hard to manipulate with a constant number of
candidates, but also how many candidates are needed for the hardness to occur.
This number is important for evaluating the relative manipulability of different
voting protocols (the lower this number, the less manipulable the protocol). For
each protocol that we show is hard to manipulate with some constant number
of candidates, we show this for the smallest number of candidates for which the
hardness occurs, and we show that manipulation becomes easy if we reduce the
number of candidates by one. (Once we have identified this transition point, it is
easy to see that the manipulation problem remains hard for any greater number of
candidates, and remains easy for any smaller number of candidates, for example by
adding “dummy” candidates.)

4.1 Constructive Manipulation

We first present our results for constructive manipulation.

4.1.1 FEasiness results. We begin by laying out some cases where constructive
manipulation can be done in polynomial time. We start with some protocols that
are easy to manipulate constructively regardless of the number of candidates. For
the plurality protocol, showing this is straightforward:

THEOREM 1. For the plurality protocol, CONSTRUCTIVE CW-MANIPULATION can
be solved in polynomial time (for any number of candidates).

PROOF. The manipulators can simply check if p will win if all the manipulators
vote for p. If not, they cannot make p win. [

For the cup protocol, the proof is a little more involved:

THEOREM 2. For the cup protocol (given the assignment of candidates to leaves),
CONSTRUCTIVE CW-MANIPULATION can be solved in polynomial time (for any num-
ber of candidates).

ProOF. We demonstrate a method for finding all the potential winners of the
election. In the binary tree representing the schedule, we can consider each node
to be a subelection, and compute the set of potential winners for each subelection.
(In such a subelection, we may say that the voters only order the candidates in
that subelection since the place of the other candidates in the order is irrelevant.)
Say a candidate can obtain a particular result in the election if it does so for some
coalitional vote. The key claim to the proof, then, is the following: a candidate can
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win a subelection if and only if it can win one of its children, and it can defeat one
of the potential winners of the sibling child in a pairwise election. It is easy to see
that the condition is necessary. To show that it is sufficient, let p be a candidate
satisfying the condition by being able to defeat h, a potential winner of the other
child (or half). Consider a coalitional vote that makes p win its half, and another
one that makes h win its half. We now let each coalitional voter vote as follows: it
ranks all the candidates in p’s half above all those in h’s half; the rest of the order
is the same as in the votes that make p and h win their halves. Clearly, this will
make p and h the finalists. Also, p will win the pairwise election against h since
it is always ranked above h by the colluders; and as we know that there is some
coalitional vote that makes p defeat h pairwise, this one must have the same result.
The obvious recursive algorithm has running time O(m?n) according to the Master
Theorem [Cormen et al. 1990]. O

The remaining easiness results that we show in this subsection only show easiness
up to a certain number of candidates. For each of these results, we later show that
adding one more candidate causes the problem to become NP-complete.

As a first observation, when there are only two candidates, all the protocols con-
sidered in this paper (and indeed all “reasonable” voting protocols) are equivalent
to the plurality protocol, and hence both types of manipulation (constructive and
destructive) are in P for all of the protocols. However, some protocols are still easy
to manipulate constructively with more than 2 candidates. In each of the following
cases, we prove easiness of manipulation by demonstrating that if there exists a
successful manipulation, there also exists one where all the manipulators vote the
same way. All such ways of voting can be easily enumerated: because the number
of candidates is constant, the number of different orderings of the candidates is
constant. Also, each way of voting is easy to evaluate in these protocols.

THEOREM 3. If the Copeland protocol with 3 candidates has a CONSTRUCTIVE
CW-MANIPULATION, then it has a CONSTRUCTIVE CW-MANIPULATION where all of
the manipulators vote identically. Therefore, CONSTRUCTIVE CW-MANIPULATION
is in P.

PROOF. Let the 3 candidates be p, a, and b. We are given the nonmanipulators’
votes S, and the weights for the manipulators’ votes T'. Let the total vote weight
inT be K.

For a set of weighted votes V' and two candidates x, y, we denote by Ny (x,y) the
cumulated weights of the votes in V' ranking x prior to y, and we let Dy (x,y) =
Ny (x,y)— Ny (y,z). Let us consider the following four cases which cover all possible
situations:

Case 1: K > Dg(a,p) and K > Dg(b,p).

In this case, any configuration of votes for T such that p is ranked first for all
votes makes p win the election.

Case 2. K > Dg(a,p) and K = Dg(b,p).

It can easily be shown that it is harmless to assume that all votes in T rank p
first. Therefore, what remains to be done in order to have p win is to find who
in T should vote (p,a,b) and who should vote (p,b,a). What we know so far
(before knowing how the votes in 7" will split between these two profiles) is: (1)
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Dsur(p,a) = K — Dg(p,a) > 0 and (2) Dsur(p,b) = K — Ds(p,b) = 0. (1) makes
p get +1 and a get —1 while (2) makes both p and b get 0. Therefore, the partial
Copeland scores (not taking account of the a vs. b pairwise election), are +1 for p
(which will not change after taking account of the a — b pairwise election), —1 for a
and 0 for b; hence, the only way for p to win (with certainty) is to avoid b getting
a point in the pairwise election against a, i.e., to ensure that Dgyr(a,b) > 0. It
can easily be shown that this is possible if and only if K > Dg(b,a). Therefore, we
have found that there exists a successful manipulation for p iff K > Dg(b,a), and
in this case a successful manipulation is the one where all voters in the coalition
vote (p,a,b).

Case 3: K = Dg(a,p) and K > Dg(b,p).

This is similar to Case 2, switching the roles of a and b; the condition then is
K > Dg(a,b) and the successful manipulation is the one where all vote (p, b, a).
Case 4: K < Dg(a,p) or K < Dg(b,p) or (K < Dg(a,p) and K < Dg(b,p)).

Here, whatever the votes in T', the Copeland score of p is smaller than or equal
to 0 and therefore p cannot be guaranteed to win, so there is no successful manip-
ulation. Thus, in every case, either there is no successful manipulation, or there is
a successful manipulation where all manipulators vote identically. [

THEOREM 4. If the maximin protocol with 3 candidates has a CONSTRUCTIVE
CW-MANIPULATION, then it has a CONSTRUCTIVE CW-MANIPULATION where all of
the manipulators vote identically. Therefore, CONSTRUCTIVE CW-MANIPULATION
is in P.

PROOF. Let the 3 candidates be p, a, and b. We are given the nonmanipulators’

votes S, and the weights for the manipulators’ votes T. Again, it is easy to show
that all the manipulators can rank p first without harm. Now, let us suppose that
there exists a way for the manipulators to make p win (where each manipulator
votes (p,a,b) or (p,b,a)). We will show that if this is so, then also, either it is the
case that all manipulators voting (p, a,b) will make p win, or it is the case that
all manipulators voting (p, b, a) will make p win. Let us consider two cases for the
outcome of the whole election when the manipulators cast their successful votes
(potentially including both (p,a,b) and (p, b, a) votes):
Case 1: the uniquely worst pairwise election for a is against b, and the uniquely
worst pairwise election for b is against a. One of @ and b must have got at least
half the vote weight in the pairwise election against the other (say, WLOG, a) and
therefore have a maximin score of at least half the vote weight. Since a did even
better against p, p received less than half the vote weight in their pairwise election
and therefore (contrary to assumption) p does not win. So this case cannot occur.
Case 2: One of a and b (say, WLOG, a) does at least as badly against p as against
the other (so, a’s worst opponent is p). Then all the voters in the coalition might
as well vote (p,a,b), because this will change neither a’s score nor p’s score, and
might decrease (but not increase) b’s score. [

THEOREM 5. If the randomized cup protocol with 6 candidates has a CONSTRUC-
TIVE CW-MANIPULATION, then it has a CONSTRUCTIVE CW-MANIPULATION where
all of the manipulators vote identically. (This holds regardless of which balanced
tree is chosen.) Therefore, CONSTRUCTIVE CW-MANIPULATION is in P.
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ProOOF. We show how to transform a successful manipulation into a successful
manipulation where all the manipulators cast the same vote, in a number of steps.
Observe that swapping two candidates that are ranked directly after one another
in a vote can only affect the outcome of their pairwise election, and not those of the
others. (Throughout the proof, when we talk about swapping two candidates in a
vote, this only means swapping two candidates ranked directly behind each other.)

If p is ranked directly behind another candidate ¢, the only effect that swapping
them can have is to make p the winner of their pairwise election where it was not
before; clearly this can never hurt p’s chances of winning. Repeated application of
this gives us a successful manipulation where all the manipulators rank p at the top.

We now divide the other candidates into two sets: B is the set of candidates that
defeat p in their pairwise election, G is that of candidates that are defeated by p.
We now claim that when a candidate g € G is ranked directly behind a candidate
b € B, swapping them cannot hurt p’s chances of winning. This is because of the
following reason. Again, the only effect that the swap can have is to make g the
winner of its pairwise election with b, where it was not before. We show that for
any schedule (assignment of candidates to leaves), if p wins when b defeats g, then
p also wins in the case where this pairwise election is changed to make g defeat b
(but nothing else is changed). For any schedule where g and b do not meet this is
obvious. If b and g face each other in the final, p of course does not win. If b and
g face each other in a semifinal, and b defeats g, then again p cannot win because
it cannot defeat b in the final. So the only case left to check is a schedule where
b and g meet in a quarterfinal (because the tree is balanced). If p wins with this
schedule when b defeats g, that means that b is defeated by some other ¢’ € G in
the semifinal (if b wins the semifinal, p could never defeat it in the final; if b loses
to some b’ € B, p could never defeat b’ in the final; and p itself cannot defeat b
in the semifinal either), and that p defeats this ¢’ in the final. Then if we change
the winner of the quarterfinal to g, regardless of whether g or ¢’ wins the semifinal,
p will win the final. Thus the claim is proven. Repeated application of this gives
a successful manipulation where all the manipulators rank p at the top, and all
candidates in G above all candidates in B.

All that remains is to get the manipulators to agree on the order of the candidates
within G and the order of the candidates within B. We will show how to do this for
G} the case of B is entirely analogous. If there are 0 or 1 candidates in G, there is
only one order for these candidates. If there are 2 candidates in G, then swapping
them whenever the winner of their pairwise election is ranked below the loser does
not affect the outcome of their pairwise election and hence nothing at all.

If there are 3 candidates in G, that means there are only 2 in B. Say B = {by, b2 }.
Divide the candidates in G into Gg, G}, Gy}, Gy, where a candidate in Gg
defeats all candidates in S but none in B —S. We first claim that it never hurts to
swap when a candidate gp € Gp is ranked directly below another candidate g € G.
Again we do so by showing that with any schedule where p wins when g defeats gp,
p also wins when gp defeats g (but everything else is unchanged). If g and gp never
meet this is obvious; if g and gp meet in a semifinal or the final, it does not matter
to p which one wins. If g defeats gp in a quarterfinal and p wins the election, then
one of the three following cases applies: 1. p defeats g in the semifinal, 2. g defeats
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some b € B in the semifinal and is defeated by p in the final, 3. g faces the third
candidate g3 € G in the semifinal, and p wins the final agaist the winner of this.
Now, if gp instead had defeated g, then in case 1 p defeats gp in the semifinal and
goes on to win the final as before; in case 2, gp defeats b as well in the semifinal
and then loses to p in the final; and in case 3, p faces either gp or gs in the final
and wins. Repeated application of this gets all the elements in G g ranked above
all the other elements in G in all the manipulators’ votes, and this rule also allows
us to get the elements in G g ordered among themselves in the same way in all the
manipulators’ votes. Similarly, we can show that we can always swap the elements
in Gy downwards, so that all the elements of this set are ranked below all other
elements in G, and ordered among themselves in a unique manner across all the
votes.

Now, if indeed there is some element in Gp or Gy, then there are at most two
candidates left in G whose order might differ across manipulators’ votes. As in the
case of 2 candidates, we can simply always swap the winner of their pairwise election
up without changing anything, and we are done. On the other hand suppose there
is no element in Gg or G{}, so that all the remaining elements are in G{bl} or
G{p,3- We claim that either it does not hurt to swap all the candidates from G 3,
below all those of Gy, or vice versa. In the case where either G,y or G,y is
empty, this claim is vacuous: so suppose WLOG that Gy, has two elements g;
and g2, and Gp,} one element, g3. Now suppose the contrary, that is, that always
swapping g3 above g; and go decreases p’s chances of winning the election, but
that always swapping g3 below g; and go also decreases p’s chances of winning the
election. It follows that always swapping g3 above g; and go causes g3 to win both
pairwise elections, and that always swapping gs below g; and gs causes g3 to lose
both pairwise elections. (For otherwise, the manipulators cannot change the winner
of one of these pairwise elections, and because the other pairwise election must have
a winner in the current state, either always swapping gs up or always swapping gs
down will not affect any pairwise election at all, and hence the probability of p
winning would remain unchanged.) Hence in the current state gs must be winning
exactly one of these pairwise elections (WLOG, the one against g1). Now, because
always swapping g3 below g; and go only has the effect of making it lose against
g1 as well, and because this reduces the probability of p winning, it follows that
the number of schedules where p wins now is strictly greater than the number of
schedules where p wins if g3 lost to g1 in its pairwise election but everything else
remained the same. Thus, the number of schedules where p wins now but would
not win if gs lost to g; in their pairwise election (call this set of schedules L(g1)), is
strictly greater than the number of schedules where p does not win now but would
win if g3 lost to g1 in their pairwise election (call this set of schedules W(gy)).
Similarly we can show that the number of schedules where p wins now but would
not win if g3 defeated g in their pairwise election (call this set of schedules W (g2)),
is strictly greater than the number of schedules where p does not win now but would
win if g3 defeated go in their pairwise election (call this set of schedules L(g2)). So,
[W(g1)| < |L(g1)|, and |[W(g2)| > |L(g2)|- We now derive the desired contradiction
by showing W (g1)| > |W(gz2)| and |L(g1)| < |L(g2)|- Consider the mapping f from
schedules to schedules that simply swaps the position of g; and g, in the schedule.
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This mapping is one-to-one. We now claim that if ¢ € W(g2), then f(o) € W(g1),
thereby demonstrating |W(g1)| > |W(g2)[; the case for |L(g1)| < |L(g2)| is similar.
o € W(g2) means that p wins in o now but would not win if g3 defeated go in
their pairwise election. It is straightforward to check that this only happens if g
and g3 meet in a quarterfinal, and the winner goes on to meet b; in the semifinal
(whom g5 would defeat but gs would not), while p goes on to the final in the other
half of the cup. Now we must show f(o) € W(g1). In f(o), g1 and g3 face each
other in a quarterfinal. The semifinal after this quarterfinal will certainly have by
in it (if b; plays a quarterfinal before this, by must have the same opponent in this
quarterfinal as in o, because b; cannot face g; in the quarterfinal in o and still
move on to the semifinal in o; hence b; will defeat its quarterfinal opponent in
f(o) as well). Also, the final will certainly have p in it (even if g; was in p’s half,
since the sets of candidates within p’s half that g; and go defeat are identical, this
half will proceed exactly as in o). Now, in the current state of the votes, gz will
defeat g; in the quarterfinal, upon which b; will defeat g3 in the semifinal and p in
the final. On the other hand, if g; defeated gs, it would defeat b; in the semifinal
and p would win the final against g1, and hence win the entire election. It follows
that f(o) € W(g1), as was to be shown. So either it does not hurt to swap all
the candidates from G,y below all those of G}, or vice versa. It remains to be
shown that the manipulators’ rankings of the candidates within G} and within
G 1p,) can be made to coincide. Given (WLOG) g1, g2 € Gy, it is straightforward
to check that it does not matter to p which of them would win if they faced each
other in the final or semifinal. In case they face each other in a quarterfinal, then
if p is in the same half of the cup it does not matter which of g; and g, wins the
quarterfinal, because p (if it reaches the semifinal) would defeat either one. If p
is in the other half, the only thing that matters is whether this half’s finalist is
in B or in GG. Thus, if the winner of the quarterfinal between g; and go faces the
last remaining candidate from G the finalist will certainly be in G, so who won the
quarterfinal does not matter; on the other hand, if the winner of the quarterfinal
between g, and g5 faces a candidate in B, then again it does not matter who wins
the quarterfinal, because g; and go defeat the same set of candidates from B. It
follows that it is irrelevant to p’s chances of winning what the outcome of a pairwise
election between candidates in G',} or between candidates in Gy, is, so we can
order them among themselves in whichever way we like. Hence we can make the
manipulators’ votes coincide on the order of the 3 candidates in G.

If there are 4 candidates in GG, that means there is only one in B. Hence we can
partition GG into Gp and Gyy. With techniques similar to the case of 3 candidates
in G, we can show that we can always swap candidates in Gp above those in
G(y; and we can show that a vote’s order of the candidates within G (or Gyy) is
irrelevant. Hence we can make the manipulators’ votes coincide on the order of the
4 candidates in G.

Finally, if there are 5 candidates in G, then p defeats all other candidates in
pairwise elections, so p is guaranteed to win regardless of how the candidates in G
are ranked. [

4.1.2 Hardness results. We are now ready to prove hardness results that match
the bounds given by the easiness results above. (That is, for every protocol which
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we showed is easy to manipulate with up to [ candidates, we now show that it is
hard to manipulate with [ 4+ 1 candidates.) In many of the proofs of NP-hardness,
we use a reduction from the PARTITION problem, which is NP-complete [Karp 1972]:

DEFINITION 3. PARTITION. We are given a set of integers {k;}1<i<i (possibly
with multiplicities) summing to 2K, and are asked whether a subset of these integers
sums to K.

THEOREM 6. For any positional scoring protocol other than the plurality proto-
col, CONSTRUCTIVE CW-MANIPULATION is NP-complete for 3 candidates.

PRrOOF. First, note that when there are only 3 candidates, a positional scoring
protocol is defined by a vector of integers & = (o, as, a3) such that ay > as > as.
Without loss of generality, we can assume that az = 0 (since translating the «;’s
by a constant has no effect on the outcome of the election). We can also assume
that s > 2. (If ag = 0 then the protocol is either meaningless (if @3 = 0) or
equivalent to the plurality protocol, so we can assume ag > 0. Then, we can scale
the «; appropriately, which will not affect the protocol.) Showing the problem is
in NP is easy. To show NP-hardness, we reduce an arbitrary PARTITION instance to
the following CONSTRUCTIVE MANIPULATION instance. The 3 candidates are a, b,
and p. In S there are (2a7 — ag) K — 1 voters voting (a,b,p) and (207 — ) K — 1
voters voting (b,a,p). In T, for each k; there is a vote of weight (a1 + ag)k;.
Suppose there is a partition of the k;. Then, let the votes in T corresponding
to the one half of the partition be (p,a,b) and the votes corresponding to the
other half be (p,b,a). Then the score of p is 2(a; + as)a; K while the scores
of both a and b are (a1 + a2)(2a7 K — 1), therefore p is the winner and there
is a manipulation. Conversely, suppose there exists a manipulation. Then, since
positional scoring procedures satisfy monotonicity, we can assume without loss of
generality that the voters in the coalition T rank p first. Let = (resp. y) be the
total weight of voters in T' of the voters who vote (p,a,b) (resp. (p,b,a)). Note
that we have x + y = 2K. Then the score of p is 2(a; + ag)ay K, the score of a is
(a1+a2)((2a1 —ag) K —1+zas), and the score of bis (a1 +a) (201 —ag) K —14yas).
Since p is the winner, its score must be at least that of a, which is equivalent to
ras < Kasg + 1. Because as > 0, the latter condition is equivalent to v < K + a%’
which is equivalent to © < K (because ay > 2). Similarly, we get y < K, which
together with x +y = 2K enables us to conclude that x = y = K, so there exists a
partition. O

COROLLARY 1. For the veto and Borda protocols, CONSTRUCTIVE CW-
MANIPULATION is NP-complete for 3 candidates.

(On a historical note, we actually proved Corollary 1 before we discovered its
generalization to Theorem 6; the generalization was independently discovered by us,
Hemaspaandra and Hemaspaandra [2005], and Procaccia and Rosenschein [2006].)

THEOREM 7. For the Copeland protocol, CONSTRUCTIVE CW-MANIPULATION 38
NP-complete for 4 candidates.

PRrROOF. Showing the problem is in NP is easy. To show it is NP-hard, we reduce
an arbitrary PARTITION instance to the following CONSTRUCTIVE CW-MANIPULATION
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instance. There are 4 candidates, a, b, ¢ and p. In S there are 2K + 2 voters vot-
ing (p,a,b,c), 2K + 2 voting (c,p,b,a), K + 1 voting (a,b,c,p), and K + 1 voting
(b,a,c,p). In T, for every k; there is a vote of weight k;. We show the instances are
equivalent. First, every pairwise election is already determined without T, except
for the one between a and b. p defeats a and b; a and b each defeat c; ¢ defeats p.
If there is a winner in the pairwise election between a and b, that winner will tie
with p. So p wins the Copeland election if and only if @ and b tie in their pairwise
election. But, after the votes in S alone, a and b are tied. Thus, the votes in T
maintain this tie if and only if the combined weight of the votes in T' preferring a
to b is the same as the combined weight of the votes in T preferring b to a. This
can happen if and only if there is a partition. O

THEOREM 8. For the maximin protocol, CONSTRUCTIVE CW-MANIPULATION i$
NP-complete for 4 candidates.

PRrROOF. Showing the problem is in NP is easy. To show it is NP-hard, we reduce
an arbitrary PARTITION instance to the following CONSTRUCTIVE CW-MANIPULATION
instance. There are 4 candidates, a, b, ¢ and p. In S there are 7K — 1 voters vot-
ing (a,b,c,p), 7K — 1 voting (b, ¢,a,p), 4K — 1 voting (c,a,b,p), and 5K voting
(p,c,a,b). In T, for every k; there is a vote of weight 2k;. We show the instances
are equivalent. Suppose there is a partition. Then, let the votes in T" corresponding
to the k; in one half of the partition vote (p,a,b,c), and let the other ones vote
(p,b,c,a). Then, p does equally well in each pairwise election: it always gets 9K
pairwise points. a’s worst pairwise election is against ¢, getting 9K — 1. b’s worst
is against a, getting 9K — 1. Finally ¢’s worst is against b, getting 9K — 1. Hence,
p wins the election. So there is a manipulation. Conversely, suppose there is a
manipulation. Then, since moving p to the top of each vote in T' will never hurt
p in this protocol, there must exist a manipulation in which all the votes in T put
p at the top, and p thus gets 9K as its worst pairwise score. Also, the votes in T
cannot change which each other candidate’s worst pairwise election is: a’s worst
is against ¢, b’s worst is against a, and ¢’s worst is against b. Since ¢ already has
9K — 1 points in its pairwise election against b, no vote in 7" can put ¢ ahead of
b. Additionally, if any vote in T puts a right above ¢, swapping their positions
has no effect other than to decrease a’s final score, so we may also assume this
does not occur. Similarly we can show it safe to also assume no vote in T puts b
right above a. Combining all of this, we may assume that all the votes in T" vote
either (p,a,b,c) or (p,b,c,a). Since a already has 7K — 1 points in the pairwise
election against ¢, the votes in T of the first kind can have a total weight of at most
2K; hence the corresponding k; can sum to at most K. The same holds for the k;
corresponding to the second kind of vote on the basis of b’s score. Hence, in both
cases, they must sum to exactly K. But then, this is a partition. [

THEOREM 9. For the STV protocol, CONSTRUCTIVE CW-MANIPULATION is NP-
complete for 3 candidates.

PROOF. Showing the problem is in NP is easy. To show it is NP-hard, we reduce
an arbitrary PARTITION instance to the following CONSTRUCTIVE CW-MANIPULATION
instance. There are 3 candidates, a, b and p. In S there are 6K — 1 voters voting
(b,p,a), 4K voting (a,b,p), and 4K voting (p, a,b). In T, for every k; there is a vote
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of weight 2k;. We show the instances are equivalent. Suppose there is a partition.
Then, let the votes in T' corresponding to the k; in one half of the partition vote
(a,p,b), and let the other ones vote (p,a,b). Then in the first round, b has 6K — 1
points, a has 6K, and p has 6K. So b drops out; all its votes transfer to p, so that
p wins the final round. So there is a manipulation. Conversely, suppose there is
a manipulation. Clearly, p cannot drop out in the first round; but also, a cannot
drop out in the first round, since all its votes in S would transfer to b, and b would
have at least 10/ — 1 points in the final round, enough to guarantee it victory. So,
b must drop out in the first round. Hence, from the votes in T', both a and p must
get at least 2K weight that puts them in the top spot. The corresponding k; in
either case must thus sum to at least K. Hence, in both cases, they must sum to
exactly K. But then, this is a partition. [

This also allows us to show that constructively manipulating the plurality with
runoff protocol is hard:

THEOREM 10. For the plurality with runoff protocol, CONSTRUCTIVE CW-
MANIPULATION is NP-complete for 8 candidates.

PROOF. Showing the problem is in NP is easy. To show it is NP-hard, we observe
that with 3 candidates, the plurality with runoff protocol coincides with the STV
protocol, and CONSTRUCTIVE MANIPULATION for STV with 3 candidates is NP-
hard. O

THEOREM 11. For the randomized cup protocol, CONSTRUCTIVE CW-
MANIPULATION is NP-complete for 7 candidates.

PROOF. The problem is in NP because for any vector of votes, we can check for
every one of the possible schedules for the cup whether p wins (because the number
of candidates is constant, so is the number of possible schedules). To show it is NP-
hard, we reduce an arbitrary PARTITION instance to the following CONSTRUCTIVE
CW-MANIPULATION instance. There are 7 candidates, a, b, ¢, d, e, f, and p. In
T, for every k; there is a vote of weight 2k;. Let W = 4K. Let the votes in
S be as follows: there are gW votes (d,e,c,p, f,a,b), W votes (d,e,c,p, f,b,a),
%W votes (f,d,b,p, e, c,a), %W votes (f,d,b,p,e,a,c), sW votes (e, f,a,p,d,b,c),
W votes (e, f,a,p,d,c,b), 2W votes (p,a,c,b,d,e, f), W votes (p,c,b,a, f,d,e),
W votes (¢, b, a, f,d, e, p), 2W votes (b,a,c, e, f,d,p), and 4K — 1 votes that we will
specify shortly. Since it takes only 8%W votes to win a pairwise election, it follows
that the outcomes of the following pairwise elections are already determined: p
defeats each of a,b,c (it has 9 votes in each of these pairwise elections from the
given votes); each of d, e, f defeats p (9W in each case); d defeats e, e defeats f, f
defeats d (10W in each case); a defeats d, b defeats e, ¢ defeats f (9W in each case);
d defeats b and ¢, e defeats a and ¢, f defeats a and b (9W in each case). So, the
only pairwise elections left to be determined are the ones between a, b and c¢. We
now specify the remaining 8 K —1 votes in S: there are 2K —1 votes (¢, b, a,p,d, e, f)
and 2K — 1 votes (b,a,c,p,d, e, f), and 1 vote (b,c,a,p,d, e, f). As a result, given
all the votes in S, b is 4K — 1 votes ahead of a in their pairwise election, b is 1 vote
ahead of ¢, and c is 1 vote ahead of a. We claim that the votes in 7' can be cast so
as to make a defeat b, b defeat ¢, and c¢ defeat a, if and only if a partition of the k;
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exists. If a partition exists, let the votes corresponding to one half of the partition
be (a,b,c,p,d, e, f), and those corresponding to the other half be (¢, a,b,p,d, e, f);
this is easily verified to yield the desired result. Conversely, suppose there is a way
to cast the votes in T so as to yield the desired result. Then, since each vote in
T has even weight, all the votes in T" rank a above b; at least half the vote weight
ranks b above ¢; and at least half the vote weight ranks ¢ above a. Since, if a is
ranked above b, it is impossible to have ¢ be ranked simultaneously both below b
and above a, it follows that precisely half the vote weight ranks b above ¢ (and the
other half, ¢ above a); and hence, we have a partition. To complete the proof of
the theorem, we claim that making a defeat b, b defeat ¢, and ¢ defeat a strictly
maximizes the probability that p wins. From this claim it follows that if we set r to
a number slightly smaller than the probability that p wins if a defeats b, b defeats c,
and c defeats a, then it is possible for the votes in T' to make p win with probability
at least 7, if and only if there is a partition of the k;. To prove the claim, we do a
careful case-by-case analysis on the structure of the cup.

"bye" position

Quarterfinal 1{q1)  Quarteifina 2 (q2)  Quarterfinal 3 (q3)
Fig. 1. The cup used in the proof.

For each situation in which two of a, b and ¢ face each other in a round, we
analyze whose winning would be most favorable to p. If p does not get the ”bye”
position, it can only win by facing each of a, b and ¢ in some round, which is
impossible if any two of those ever face each other; so in this case the results of the
pairwise elections between them are irrelevant as far as p’s chances of winning are
concerned. So let us assume p gets the bye position. If two of a, b and ¢ face each
other in s;, then the outcome of this round is irrelevant as p would defeat either
one in the final. If two of a, b and ¢ face each other in g3, then the outcome of
this round is irrelevant as p would defeat either one in s3. Now suppose a and b
face each other in g;. Then the only way for p to make it to the final is if ¢ faces
f in qs3, so let us assume this happens. Then, d and e face each other in g5, which
confrontation d will win. If a defeats b in ¢, it will win s; against d, and p will
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defeat it in the final. On the other hand, if b defeats a in ¢1, it will lose s; against
d, and d will defeat p in the final.. It follows that in this case, if we want p to win,
we would (strictly) prefer a to defeat b in their pairwise election. Symmetrically,
we also prefer a to defeat b if they face each other in ¢o. Since we have analyzed
all possibilities where a may face b, and in these is always favorable to p for a to
defeat b, sometimes strictly so; it follows that it is strictly favorable to p’s chances
of winning if a defeats b in their pairwise election. Analogously (or by symmetry),
it can be shown that it is strictly favorable to p’s chances of winning if b defeats c,
and c defeats b in their pairwise elections. Hence achieving these pairwise results
simultaneously strictly maximizes p’s chance of winning the election. [

Recall that the cup protocol (without randomization) is easy to manipulate con-
structively for any number of candidates. Thus, the previous result shows that
randomizing over instantiations of the protocols (such as schedules of a cup) can be
used to make manipulation hard.

4.2 Destructive Manipulation

We now present our results for destructive manipulation.

4.2.1 Fasiness results. We begin by laying out some cases where destructive
manipulation can be done in polynomial time. It is easy to see that destructive
manipulation can never be harder than constructive manipulation (except by a
factor m) because in order to solve the former, we may simply solve the latter once
for each candidate besides h. Thus, we immediately know that the plurality and
cup protocols can be destructively manipulated in polynomial time, for any number
of candidates. Interestingly, for most of the other protocols under study, destructive
manipulation turns out to be drastically easier than constructive manipulation! The
following theorem shows a sufficient condition for protocols to be easy to manipulate
destructively.

THEOREM 12. Consider any voting protocol where each candidate receives a nu-
merical score based on the votes, and the candidate with the highest score wins.
Suppose that the score function is monotone, that is, if voter i changes its vote so
that {b:a =" b} C{b:a =7 b} (here, a =; b means that voter i prefers a tob),
a’s score will not decrease. Finally, assume that the winner can be determined in
polynomial time. Then for this protocol, destructive manipulation can be done in
polynomial time.

PRrOOF. Consider the following algorithm: for each candidate a besides h, we
determine what the outcome of the election would be for the following coalitional
vote. All the colluders place a at the top of their votes, h at the bottom, and order
the other candidates in whichever way. We claim there is a vote for the colluders
with which h does not win if and only if A does not win in one of these m — 1
elections. The if part is trivial. For the only if part, suppose there is a coalitional
vote that makes a # h win the election. Then, in the coalitional vote we examine
where a is always placed on top and h always at the bottom, by monotonicity, a’s
score cannot be lower (because for each manipulator ¢, {b : @ >; b} is maximal)
and h’s cannot be higher (because for each manipulator 4, {b: h >; b} is minimal)
than in the successful coalitional vote. It follows that here, too, a’s score is higher
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than h’s, and hence h does not win the election. The algorithm is in P since we do
m — 1 winner determinations, and winner determination is in P. [

COROLLARY 2. Destructive manipulation can be done in polynomial time for the
veto, Borda, Copeland, and mazximin protocols.

4.2.2 Hardness results. Theorem 12 does not apply to the STV and plurality
with runoff protocols. We now show that destructive manipulation is in fact hard
for these protocols, even with only 3 candidates.

THEOREM 13. For the STV protocol with 3 candidates, DESTRUCTIVE CW-
MANIPULATION s NP-complete.

PRrROOF. Showing the problem is in NP is easy. To show it is NP-hard, we reduce
an arbitrary PARTITION instance to the following DESTRUCTIVE CW-MANIPULATION
instance. The 3 candidates are a, b and h. In S there are 6K voters voting (a, h, b),
6K voters voting (b, h,a), and 8K — 1 voters voting (h,a,b). In T, for every k;
there is a vote of weight 2k;. We show the instances are equivalent.

We first observe that h will not win if and only if it gets eliminated in the first
round: for if it survives the first round, either a or b gets eliminated in the first
round. Hence either all the votes in S that ranked a at the top or all those that
ranked b at the top will transfer to h, leaving h with at least 14K — 1 votes in the
final round out of a total of 24K —1, so that & is guaranteed to win the final round.

Now, if a partition of the k; exists, let the votes in T' corresponding to one half
of the partition vote (a, b, h), and let the other ones vote (b, a, h). Then in the first
round, a and b each have 8K votes, and h only has 8K — 1 votes, so that h gets
eliminated. So there exists a manipulation.

On the other hand, if a manipulation exists, we know by the above that with
this manipulation, h is eliminated in the first round. Hence at least 2K — 1 of
the vote weight in 7" ranks a at the top, and at least 2K — 1 of the vote weight
in T ranks b at the top. Let A be the set of all the k; corresponding to votes in

T ranking a at the top; then > k; > K — %, and since the k; are integers this
implies Y k; > K. If we let %ege the set of all the k; corresponding to votes in
T rankir]iigeg at the top, then similarly, >  k; > K. Since A and B are disjoint, it
follows that > k; = > k; =K. So Efleefe exists a partition. [

k€A ki€B

This result also allows us to establish the hardness of destructive manipulation
in the plurality with runoff protocol:

THEOREM 14. For the plurality with runoff protocol with &8 candidates, DE-
STRUCTIVE CW-MANIPULATION is NP-complete.

PROOF. Showing the problem is in NP is easy. To show it is NP-hard, we ob-
serve that with 3 candidates, plurality with runoff coincides with STV, and DE-
STRUCTIVE MANIPULATION for STV with 3 candidates is NP-hard, as we proved in
Theorem 13. [J
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5. EFFECT OF UNCERTAINTY ABOUT OTHERS' VOTES

So far we have discussed the complexity of coalitional manipulation when the others’
votes are known. We now show how those results can be related to the complexity of
manipulation by an individual voter when only a distribution over the others’ votes
is known. If we allow for arbitrary distributions, we need to specify a probability
for each possible combination of votes by the others, that is, exponentially many
probabilities (even with just two candidates). It is impractical to specify so many
probabilities.® Therefore, we should acknowledge that it is likely that the language
used for specifying these probabilities would not be fully expressive (or would at
least not be very convenient for specifying complex distributions). We derive the
complexity results of this section for extremely restricted probability distributions,
which any reasonable language should allow for. Thus our results apply to any
reasonable language. We only present results on constructive manipulations, but
all results apply to the destructive cases as well and the proofs are analogous. We
restrict our attention to deterministic protocols.

5.1 Weighted voters

First we show that with weighted voters, in protocols where coalitional manipula-
tion is hard in the complete-information case, even evaluating a candidate’s winning
probability is hard when there is uncertainty about the votes (even when there is
no manipulator).

DEFINITION 4. (WEIGHTED EVALUATION) We are given a weight for each voter,
a distribution over all possible vectors of votes, a candidate p, and a number r,
where 0 < r < 1. We are asked whether the probability of p winning is greater than
r.

THEOREM 15. If CONSTRUCTIVE CW-MANIPULATION is NP-hard for a deter-
ministic protocol (even with k candidates), then WEIGHTED EVALUATION is also
NP-hard for it (even with k candidates), even if r = 0, the votes are drawn inde-
pendently, and only the following types of (marginal) distributions are allowed: 1)
the vote’s distribution is uniform over all possible votes, or 2) the vote’s distribution
puts all of the probability mass on a single vote.

PRrOOF. For the reduction from CONSTRUCTIVE CW-MANIPULATION to WEIGHTED
EVALUATION, we use exactly the same voters, and p remains the same as well. If
a voter was not a colluder in the CONSTRUCTIVE CW-MANIPULATION instance and
we were thus given its vote, in the WEIGHTED EVALUATION instance its distribution
places all of the probability mass on that vote. If the voter was in the collusion,
its distribution is now uniform. We set » = 0. Now, clearly, in the WEIGHTED
EVALUATION instance there is a chance of p winning if and only if there exists some
way for the latter votes to be cast so as to make p win - that is, if and only if there
is an effective collusion in the CONSTRUCTIVE CW-MANIPULATION problem. [

Next we show that if evaluating the winning probability is hard, individual ma-
nipulation is also hard.

8Furthermore, if the input is exponential in the number of voters, an algorithm that is exponential
in the number of voters is not necessarily complex in the usual sense of input complexity.
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DEFINITION 5. (CONSTRUCTIVE INDIVIDUAL WEIGHTED (IW)-MANIPULATION
UNDER UNCERTAINTY) We are given a single manipulative voter with a weight,
weights for all the other voters, a distribution over all the others’ votes, a candi-
date p, and a number r, where 0 < r < 1. We are asked whether the manipulator
can cast its vote so that p wins with probability greater than r.

While this definition appears natural and is easy to work with, one may wonder
whether the following scenario is possible: it is always easy for the manipulator to
determine its strategically optimal vote (or at least just a vote that is better than a
truthful vote, if such a vote exists), but hard to determine whether this vote (or any
other vote) makes p’s probability of winning greater than . If this were so, then the
protocol would be hard to manipulate in the sense of the above definition, but would
still always be manipulated. However, it seems that determining the strategically
optimal vote (or even just a vote that is better than a truthful vote) would generally
be hard if manipulation in the sense of the above definition is hard. For example,
suppose that the manipulator has a utility of r for some candidate a, a utility of 1
for p, and a utility of 0 for any other candidate that has any possibility of winning.
Additionally, suppose that the manipulator has the choice only between casting
votes (including the truthful vote) that make a win with probability 1, or casting
votes that make a win with probability 0. (For example, under STV, there can be
a situation where, if the manipulator (truthfully) votes for some third candidate b
(that has no possibility of winning), this would rescue b from elimination in the first
round, after which a is guaranteed to win due to how the votes transfer; but if the
manipulator does not vote for b, then b is eliminated, after which a is immediately
eliminated.) If this is the case, then the question of whether the manipulator
can beneficially manipulate comes down to whether the manipulator can make
p win with probability greater than r (the above definition). We note that this
argument /proof sketch takes us beyond constructive and destructive manipulation
(there are at least three different utilities for the manipulator); covering this in
more detail would take us too far afield. Instead, we return to the above definition.

THEOREM 16. If WEIGHTED EVALUATION is NP-hard for a protocol (even with
k candidates and restrictions on the distribution), then CONSTRUCTIVE IW-
MANIPULATION UNDER UNCERTAINTY is also NP-hard for it (even with k candidates
and the same restrictions).

PRrROOF. For the reduction from WEIGHTED EVALUATION to CONSTRUCTIVE IW-
MANIPULATION UNDER UNCERTAINTY, simply add a manipulator with weight 0. [

Combining Theorems 15 and 16, we find that with weighted voters, if in some
protocol coalitional manipulation is hard in the complete-information setting, then
even individual manipulation is hard if others’ votes are uncertain. Applying this
to the hardness results from Section 4, this means that all of the protocols of this
paper other than plurality and cup are hard to manipulate by individuals in the
weighted case when the manipulator is uncertain about the others’ votes.

Finally, we show that WEIGHTED EVALUATION can be hard even if CONSTRUCTIVE
CW-MANIPULATION is not. If we relax the requirement that a vote is represented
by a total order over the candidates, we can also allow for the following common
voting protocol:
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—approval. Each voter labels each candidate as either approved or disapproved.
The candidate that is approved by the largest number of voters wins.

For the approval protocol, CONSTRUCTIVE CW-MANIPULATION is trivial: the uni-
versally most potent manipulation is for all of the manipulators to approve the
preferred candidate p, and to disapprove all other candidates. However, WEIGHTED
EVALUATION is hard:

THEOREM 17. In the approval protocol, WEIGHTED EVALUATION is NP-hard,
even if r = 0, the votes are drawn independently, and the distribution over each
vote has positive probability for at most 2 of the votes.

PRrROOF. We reduce an arbitrary PARTITION instance to the following WEIGHTED
EVALUATION instance. There are 3 candidates, p, a, and b. There are 2K + 1 votes
approving {p}. Additionally, for each k; in the PARTITION instance, there is a vote
of weight 2k; that approves {a} with probability 3, and {b} with probability 5. We
set r = 0. Clearly, p wins if and only if a and b are each approved by precisely 2K
of the vote weight. But this is possible (and happens with positive probability) if
and only if there is a partition. [J

5.2 Unweighted voters

Finally, we study what implications can be derived for the hardness of manipulation
in settings with unweighted voters.

DEFINITION 6. UNWEIGHTED EVALUATION is the special case of WEIGHTED EVAL-
UATION where all the weights are 1. CONSTRUCTIVE INDIVIDUAL UNWEIGHTED
(IU)-MANIPULATION UNDER UNCERTAINTY is the special case of CONSTRUCTIVE
INDIVIDUAL WEIGHTED (IW)-MANIPULATION UNDER UNCERTAINTY where all the
weights are 1.

First, we show that for protocols for which WEIGHTED EVALUATION is hard, UN-
WEIGHTED EVALUATION is also hard. This assumes that the language for specifying
the probability distribution is rich enough to allow for perfect correlations between
votes (that is, some votes are identical with probability one?).

In this subsection, we will assume that the manipulation instance is represented
in a somewhat concise manner, namely, that if there are k perfectly correlated votes,
then this is represented by a single description of the distribution of such a vote,
plus the number & in binary representation. If k is given in unary representation, or
a separate description is given for each vote, then the proofs do not work. Whether
this assumption is reasonable presumably depends on the application setting.

THEOREM 18. If WEIGHTED EVALUATION is NP-hard for a protocol (even with
k candidates and restrictions on the distribution), then UNWEIGHTED EVALUATION
is also NP-hard for it if we allow for perfect correlations (even with k candidates
and the same restrictions—except those conflicting with perfect correlations).

PRrROOF. For the reduction from WEIGHTED EVALUATION to its unweighted ver-

sion, we replace each vote of weight & with k& unweighted votes; we then make these

9Representation of such distributions can still be concise.
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k votes perfectly correlated. Subsequently we pick a representative vote from each
perfectly correlated group, and we impose a joint distribution on this vote identical
to the one on the corresponding vote in the WEIGHTED EVALUATION problem. This
determines a joint distribution over all votes. It is easy to see that the distribution
over outcomes is the same as in the instance from which we reduced; hence, the
decision questions are equivalent. [

We would like to have an analog of Theorem 16 here, to show that UNWEIGHTED
EVALUATION being hard also implies that CONSTRUCTIVE IU-MANIPULATION UN-
DER UNCERTAINTY is hard. Unfortunately, the strategy used in the proof of Theo-
rem 16—setting the manipulator’s weight to 0—does not work, because the weight
of the manipulator must now be 1. (One may perhaps have felt uncomfortable with
our use of a manipulator of weight 0 in the proof of Theorem 16; the below can
also be used to avoid using such a manipulator in that setting.) Instead, we rely
on the following two theorems, which each require an additional precondition. The
first one shows that if the WEIGHTED EVALUATION problem is hard even when we
restrict our attention to instances where no ties can occur, then the CONSTRUCTIVE
IU-MANIPULATION UNDER UNCERTAINTY problem is also hard. (Formally, we say
that a tie occurs if a voter of arbitrarily small weight (not necessarily an integer)
can change the outcome of the election (i.e. whether p wins).)

THEOREM 19. If WEIGHTED EVALUATION is NP-hard for a protocol even when
restricting our attention to instances where ties cannot occur (even with k candi-
dates and restrictions on the distribution of the wvotes), then CONSTRUCTIVE IU-
MANIPULATION UNDER UNCERTAINTY is also NP-hard (with the same r) if we al-
low for perfect correlations (even with k candidates and the same restrictions on
the distribution of the nonmanipulators’ votes—except those conflicting with perfect
correlations).

PROOF. We reduce the EVALUATION instance to a MANIPULATION instance by
first adding a single manipulator. Because ties cannot occur, there must exist a
(rational) weight w > 0 such that if the manipulator’s vote has this weight, then
the manipulator’s vote will never affect the outcome. Without loss of generality,
we can assume that this weight can be written as w = % for some sufficiently large
integer M. Now, multiply all the weights by M so that the manipulator’s vote has
weight 1 and all the weights are integers again. Then, replace each voter of weight
k by k perfectly correlated, unweighted voters. Clearly, the manipulator will still
not affect the outcome, and thus the distribution over outcomes is the same as in

the instance we reduced from; hence, the decision questions are equivalent. []
Theorem 19 applies to most of the protocols under study:

COROLLARY 3. For each one of the following protocols, CONSTRUCTIVE IU-
MANIPULATION UNDER UNCERTAINTY 4s NP-hard: Borda (even with 3 candidates),
veto (even with 3 candidates), STV (even with 3 candidates), plurality with runoff
(even with 3 candidates), and mazimin (even with 4 candidates). This holds even if
r =0, the votes are either drawn independently or perfectly correlated, and only the
following types of (marginal) distributions are allowed: 1) the vote’s distribution is
uniform over all possible votes, or 2) the vote’s distribution puts all of the probability
mass on a single vote.
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ProOF. To show that we can apply Theorem 19 to each of these protocols, we
first make the following observation. For each of these protocols, the reduction that
we gave to show that CONSTRUCTIVE CW-MANIPULATION is hard has the property
that if there exists no successful manipulation, candidate p cannot even be tied for
winning the election (and, of course, if there is a successful manipulation, no other
candidate will tie with p for winning the election). Because of this, when we apply
the reduction from Theorem 15 to these instances, there is no chance that a tie for
winning the election between p and another candidate will occur, and we can apply
Theorem 19. [

Unfortunately, for the Copeland protocol, in the reduction given in Theorem 7,
an unsuccessful manipulation may still leave p tied for winning the election. To
show that CONSTRUCTIVE IU-MANIPULATION UNDER UNCERTAINTY is hard for this
protocol as well, we need the following theorem:

THEOREM 20. If WEIGHTED EVALUATION is NP-hard for a protocol even in set-
tings where r = 0 and one of the voters with a uniform distribution over votes has
weight 1 (even with k candidates and restrictions on the distribution of the votes),
then CONSTRUCTIVE IU-MANIPULATION UNDER UNCERTAINTY 4s also NP-hard even
in settings where r = 0 if we allow for perfect correlations (even with k candidates
and the same restrictions on the distribution of the nonmanipulators’ votes—ezcept
those conflicting with perfect correlations).

PROOF. We reduce the EVALUATION instance to a MANIPULATION instance by
replacing the voter with a uniform distribution over votes and weight 1 by the
manipulator, and keeping the distributions over the other voters’ votes the same.
If there is nonzero probability of p winning in the EVALUATION instance, then
there must exists some vector of votes with nonzero probability for which p wins
with nonzero probability. Then, in the MANIPULATION instance, consider the vote
in this vote vector cast by the voter that was replaced by the manipulator. If
the manipulator places this vote, then with nonzero probability, the same vector
will occur and p will win with nonzero probability. Conversely, suppose that in
the MANIPULATION instance there exists a vote for the manipulator such that p
wins with nonzero probability. Then, in the EVALUATION instance, there is some
nonzero probability that the voter replaced by the manipulator casts this vote
(because that voter’s distribution over votes is uniform). It follows that there is
nonzero probability that p will win in the EVALUATION instance. Hence, the decision
questions are equivalent. [

COROLLARY 4. For the Copeland protocol (even with 4 candidates), CONSTRUC-
TIVE IU-MANIPULATION UNDER UNCERTAINTY is NP-hard. This holds even if r =0,
the votes are either drawn independently or perfectly correlated, and only the fol-
lowing types of (marginal) distributions are allowed: 1) the vote’s distribution is
uniform over all possible votes, or 2) the vote’s distribution puts all of the proba-
bility mass on a single vote.

PROOF. Because PARTITION is hard even when one of the integers to be parti-
tioned is 1, we can assume that one of the manipulators in the proof of Theorem 7
has weight 1, which allows us to apply Theorem 20. [
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As a final remark, we observe that the manipulation questions discussed in this
section are not necessarily even in NP. However, when r = 0, the manipulation
question can also be phrased as saying “does there exist a manipulation that has
some chance of succeeding?” We note that this question is in fact in NP.

The following figure summarizes the flow of the theorems presented in this section.

CONSTRUCTIVE CONSTRUCTIVE CONSTRUCTIVE
CW-MANIPULATION IW-MANIPULATION IU-MANIPULATION
UNDER CERTAINTY UNDER UNCERTAINTY UNDER UNCERTAINTY

Thm. 16 Thm. 17 Thms. 20, 21

WEIGHTED UNWEIGHTED
EVALUATION 1y 19 > EVALUATION
Fig. 2. The flow of the theorems in this section.

6. CONCLUSIONS AND FUTURE RESEARCH

In multiagent settings where the agents have different preferences, preference ag-
gregation is a central issue. Voting is a general method for preference aggregation,
but seminal results have shown that all general voting protocols are manipulable.
One could try to avoid manipulation by using voting protocols where determining
a beneficial manipulation is hard. Especially among computational agents, it is
reasonable to measure this hardness by computational complexity. Some earlier
work has been done in this area, but it was assumed that the number of voters and
candidates is unbounded. Such hardness results lose relevance when the number
of candidates is small, because manipulation algorithms that are exponential only
in the number of candidates (and only slightly so) might be available. In the ap-
pendix, we give such an algorithm for an individual agent to manipulate the Single
Transferable Vote (STV) protocol, which has been shown hard to manipulate in
the above sense. The algorithm applies whether or not the voters are weighted.

This motivated the core of this paper, which studied the complexity of manipu-
lating realistic elections where the number of candidates is a small constant. We
showed that with complete information about the others’ votes, individual manipu-
lation is easy, and coalitional manipulation is easy with unweighted voters. This left
open two avenues for deriving high complexity results with few candidates. The first
avenue is to investigate the complete-information coalitional manipulation problem
when voters have different weights. While many human elections are unweighted,
the introduction of weights generalizes the usability of voting schemes, and can
be particularly important in multiagent systems settings with very heterogenous
agents. The second avenue is to ask whether there are reasonable settings where
evaluating a manipulation is NP-hard. For instance, if we merely have probability
distributions on the non-colluders’ votes, how does the complexity of determining
the probability that a given candidate wins change?
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We devoted most of the paper to studying the first avenue. We studied both
constructive manipulation (making a given candidate win) and destructive manipu-
lation (making a given candidate not win). We studied not only whether any given
protocol is hard to manipulate with a constant number of candidates, but also how
many candidates are needed for the hardness to occur. This number is important
for evaluating the relative manipulability of different voting protocols (the lower
this number, the less manipulable the protocol). These results are summarized in
the following tables:

] Number of candidates | 2 | 3 | 4,5,6 | > 7 |
Borda P | NP-complete | NP-complete | NP-complete
veto P | NP-complete | NP-complete | NP-complete
STV P | NP-complete | NP-complete | NP-complete
plurality with runoff P | NP-complete | NP-complete | NP-complete
Copeland PP NP-complete | NP-complete
mazximin P|P NP-complete | NP-complete
randomized cup P|P P NP-complete
reqular cup P|P P P
plurality PP P P

Complexity of CONSTRUCTIVE CW-MANIPULATION
| Number of candidates ‘ 2 | >3 ’
STV P | NP-complete
plurality with runoff P | NP-complete

Borda PP
veto PP
Copeland PP
maziman PP
reqular cup P|P
plurality PP

Complexity of DESTRUCTIVE CW-MANIPULATION

We devoted the remainder of the paper to the second avenue. We showed that
under weak assumptions, if weighted coalitional manipulation with complete infor-
mation about the others’ votes is hard in some voting protocol, then individual
unweighted manipulation is hard when there is uncertainty (allowing for corre-
lations) about the others’ votes. We also showed that the converse is not true,
that is, there exist protocols (such as approval) where weighted coalitional manip-
ulation with complete information about the others’ votes is easy, but individual
unweighted manipulation is hard when there is uncertainty (allowing for correla-
tions) about the others’ votes. To our knowledge, these are the first results on the
hardness of manipulation when there is uncertainty about the others’ votes.

In summary, our results give a comparison of the relative hardness of manipula-
tion in well-known voting protocols. Interestingly, the best-known protocol, plural-
ity, is (together with the cup protocol) the easiest to manipulate (both constructive
and destructive manipulation are in P for any number of candidates). In contrast,
STV and plurality with runoff are the hardest to manipulate (both constructive and
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destructive manipulation are NP-complete, even with only 3 candidates). We also
showed that randomizing over the instantiations of a protocol, after the votes are
collected, can make manipulation harder (randomized cup is harder to manipulate
than regular cup). Our results may also lead one to be generally less concerned
about the possibility of manipulation as it is hard in the common case where not
too much is known about how others will vote.

The results on complexity of manipulation to date (including ours) use NP-
hardness as the complexity measure.'?11 This is only a weak guarantee of hardness
of manipulation. It means that there are infinitely many hard instances, but many
instances may be easy to manipulate. Ideally, we would like to make all, or at least
most, instances hard to manipulate. Future work includes studying other notions of
hardness in the manipulation context, such as average-case completeness [Gurevich
1991] and instance complexity [Orponen et al. 1994]. Another interesting avenue
is to try to embed a practically hard problem (e.g., factoring) in the manipula-
tion problem. Future work also includes proving hardness of manipulation in more
restricted protocols such as auctions, and with more restricted preferences.

6.1 Subsequent work: Can manipulation be made hard for most instances?

Since the conference papers corresponding to this paper were published, there has
already been follow-on work on studying whether it is possible to make most in-
stances hard to manipulate.

Ideally, one would like a voting rule where every instance is hard to manipulate.
However, this is too much to ask for: a manipulation algorithm could have a small
database of instances with precomputed solutions, and it would merely need to
check against this database to successfully manipulate some instances. Still, we
may ask whether it is possible to make (say) 99% of instances hard to manipulate.

Procaccia and Rosenschein [2006] show that a specific subclass of voting rules
is usually easy to manipulate when the number of candidates is constant and a
specific distribution over instances is used. (The distribution is chosen to have
certain properties that would appear to make manipulation more difficult.)

Conitzer and Sandholm [2006] provide an impossibility result that does not re-
quire any restriction on the voting rule, number of candidates, or distribution over
instances. It states that a voting rule/instance distribution pair cannot simultane-
ously be usually hard to manipulate, and have certain natural properties.

THEOREM 21 [CONITZER AND SANDHOLM 2006]. For any p € [0,1], there does
not exist any combination of an efficiently executable voting rule and a distribution
over instances such that

100ne exception, which was published after the conference papers corresponding to this paper, is
the work by Conitzer and Sandholm on universal voting protocol tweaks [Conitzer and Sandholm
2003]. It uses not only NP-hardness, but also #P-hardness and PSPACE-hardness, as complexity
measures. All of those measures are still worst-case complexity measures and the criticisms below
apply.

' The same is true of studies of other complexity issues in voting settings, such as how
complex it is for an election chairperson to influence the result by voter/candidate addi-
tion/suppression/partition [Bartholdi et al. 1992; Hemaspaandra et al. 2005], and how hard it
is to bribe voters effectively and with minimal cost [Faliszewski et al. 2006].
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(1) the probability of drawing an instance that is both a) weakly monotone, and b)
such that either of exactly two candidates can be made to win, is at least p; and

(2) for any computationally efficient manipulation algorithm, the probability that
an instance is drawn on which the algorithm succeeds is smaller than p.

Here, weak monotonicity is a very weak condition: A manipulation instance is
weakly monotone if for every pair of candidates ¢1, ¢, we have A) ¢o does not win
for any manipulator votes, or B) if all the manipulators rank cq first and ¢; last,
then ¢; does not win. Weak monotonocity on most (if not all) instances is certainly
a desirable property for a voting rule. A direct argument can also be made for why
the remainder of Condition 1 (that is, part b) corresponds to a desirable property
for a voting rule, but this argument is perhaps less convincing. Hence, the paper
proceeds to show that Condition 1 of the theorem is usually satisfied in practice.

The above impossibility result sheds negative light on the agenda of trying to
construct voting rules that are usually hard to manipulate. Nevertheless, the paper
offers three possible directions for future work down this avenue:

—Circumventing Property 1b in the theorem by allowing low-ranked candidates to
win with some probability. Gibbard has shown that in order to make beneficial
manipulation impossible by using randomization in a voting rule, quite extreme
(undesirable) randomization is required [Gibbard 1977]. In contrast, here the
idea is to combine a moderate amount of randomization with computational
complexity to thwart manipulation.

—Expanding the definition of a voting rule. For example, if the pivotal voters
are banished in such a way that they will not enjoy or suffer from the chosen
candidate, then truthful voting is a weakly dominant strategy. On the downside,
for any responsive voting rule, more than half of the voters can be pivotal and
hence may need to be banished. Future research could study expanding the
definition of a voting rule less than what is needed to make truthful voting a
dominant strategy, but enough to circumvent the theorem above. This way,
computational complexity may yet have the potential to thwart manipulation.

—Using voting rules that are hard to execute. Manipulation algorithms usually
use (and in particular, the one used to prove the theorem above uses) simulation
of the voting rule to determine what outcome would come about under different
insincere votes of the manipulators. If the voting rule itself is computationally
hard to execute, these simulations may become prohibitively complex and thus
complexity would thwart manipulation. On the downside, determining the elec-
tion winner will become hard as a side effect. On the bright side, the winner
needs to be determined only once, while the manipulation algorithm needs to
simulate the voting rule multiple times.

APPENDIX: ALGORITHM FOR INDIVIDUALLY MANIPULATING THE SINGLE
TRANSFERABLE VOTE PROTOCOL

When the number of candidates is unbounded, the STV protocol is known to be
NP-complete to constructively manipulate, even by a single manipulator when the
votes are not weighted [Bartholdi and Orlin 1991]. In this appendix we present an
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algorithm for manipulating STV as a single voter, when the votes of the others are
known. Votes may be weighted.

To study the complexity fundamental to manipulating STV, rather than com-
plexities introduced by tie-breaking rules, for this algorithm we make the following
assumption. We assume that the STV protocol uses some deterministic method
for breaking ties (when choosing the loser to be eliminated at the end of a round),
where the tie-breaking does not depend on aspects of the votes that the STV pro-
tocol has not considered so far (such as who has been ranked lowest by the largest
number of voters). However, the tie-breaking can depend on the number of the
round, candidates still in the running, etc. In the algorithm, the tie-breaking rule
is used in the arg min function.

The algorithm simulates the various ways in which the elimination of candidates
may proceed given various votes by the manipulator. It follows the principle of
least commitment in deciding which manipulative votes to consider. It returns the
set of candidates that win for some vote by the manipulator. (It is easy to extend
the algorithm so that it also provides a vote to effect such a victory.) Again, let
there be n voters,where we index the manipulator n. Let C' be the set of remaining
candidates. Let v; be the vote of voter i (1 < i < n) and let w; be the weight of
voter ¢ (1 <4 <n). Let s; be the weight of the voters that rank candidate j first
among the remaining candidates.

Some stages of the simulation can be reached only if the manipulator has a
certain candidate f ranked first among the remaining candidates. At such stages,
we will know precisely how the elimination will proceed, until f is eliminated and
the manipulator’s vote is freed up again. We say that f = 0 when there is no
constraint on how the manipulator ranks the remaining candidates in the current
stage of the simulation.

The function TRANSFERVOTES takes as input a candidate ¢, the remaining
set of candidates C, the vector (si,..., $m), and the votes and weights. It returns
what would be the new vector (si,...,S,,) if ¢ were eliminated in this round.

Now, we are ready to present the manipulation algorithm, which, when called
with the original set of candidates C' and f = 0, returns the set of all candidates
that will win for some vote by the manipulator.

MANIPULATE(C, (81, 8m), (U1, .., Up—1), (W1, ..., wn), f)
if C = {c}
// we have eliminated all but a single candidate

return {c}

else if (f #0)

// the manipulator’s vote is already committed to a candidate at this
stage

¢ «— argmin ec(s;)

(t1,...,tm) <« TRANSFERVOTES(c, C, (81, .-, 8m), (U1, -, Upn_1),
(wi,...,wy))

ifc=f
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// the manipulator’s vote is freed up
return MANTPULATE(C — {c}, (t1,.--,tm), (U1, .., Un_1),
(w1, ..., wy),0)
else
// the manipulator’s vote remains committed
return MANTIPULATE(C — {c}, (t1,.--,tm), (V1,...,0n_1),
(wi,...,wn), f)
else
// the manipulator’s vote is not committed at this stage
€1 «— argmin;jec(s;)
// which candidate is losing before the manipulator assigns his vote?
Scy €= 8¢y T Wn
¢ +— argminjec(s;)
// which candidate loses if the manipulator supports ¢;?
(t1,. .. tm) < TRANSFERVOTES(c1,C, ($1,---,8m), (V1, -+, Vn—1),
(wi,...,wy))
ifc; = co
// the manipulator cannot rescue c; at this stage
return MANTPULATE(C — {c1}, (t1, -+, tm)s (01, -+, Un—1),
(w1, ..., wy),0)
else
// the manipulator can choose to rescue c¢; at this stage
S1 — MANIPULATE(C — {c1}, (t1, -+ -y tm), (V15 ++« y Un—1),
(Wi, ..., wp),0)
// case I: do not rescue c;
(t1,. .. tm) <« TRANSFERVOTES(co, C, ($1,---,8m), (U1, -+, Vn—1),

(wi,...,wy))
SQ — MANIPULATE(C - {CQ}, (tl, [N ,tm)7 (’Ul, . ,’Unfl),
(w1, ..., wp),c1)

// case II: do rescue ¢,
return S; U Sy

We now analyze how many recursive calls we will make to this algorithm. Let
T'(k) be the maximal number of calls we need for a set of remaining candidates of
size k. Let Ty(k) be the maximal number of calls we need when the first call has
f # 0. Then we have the following recurrences:

T(k) < 1+T(k—1)+ To(k — 1) (1)
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To(k) < 1+T(k-1) (2)

Combining the two we get
Tk)<24+T(k-1)+T(k-2) (3)
The asymptotic bound that we derive from this recurrence is indeed tight for
the running time of MANIPULATE, as the following example shows. In the ex-

ample, candidates are eliminated sequentially, but the manipulator can postpone
the elimination of any candidate for exactly one round. Let the candidates be

(c1,...,¢m). For candidate 4, let there be exactly ¢ voters that rank it first, for a
m

total of Y i = W voters other than the manipulator, of weight 1 each. All
i=1

the voters other than the manipulator that do not rank candidate m first, rank it
second. The manipulator has weight 1 4 €.12 We claim that the arguments passed
to MANIPULATE always satisfy one of the following two properties:
—(1) C ={e,Cig1,-..,cm} and f = 0.
—(2) C ={ci,Ciy2,Cit3,..-,cm} and f = ¢;.
The initial call is of type (1). If the current call is of type (1), this will lead to two
recursive calls: one of type (1) (the manipulator does not rescue candidate c;), and
one of type (2) (the manipulator does rescue ¢;). (The exception is when ¢ > m —1
but this is irrelevant to the asymptotic analysis.) This makes the recurrence in
Equation 1 tight. If the current call is of type (2), this will lead to one recursive
call of type (1) because ¢; gets eliminated in spite of the fact that the manipulator
is ranking it first. This makes the recurrence in Equation 2 tight. Because the
recurrences in Equations 1 and 2 are tight, the recurrence in Equation 3 is tight.
The solution to the recurrence is O((%)k) Observing that one call to MA-
NIPULATE (not counting the recursive calls to MANIPULATE, but counting the
calls to TRANSFERVOTES) can be done in O(m + n) time, we have the following
result.

THEOREM 22. The algorithm MANIPULATE runs in time O((m+n)(1Jr2—\/g)m),
where m is the number of candidates and n is the number of voters.

So, MANIPULATE runs in O((m + n) - 1.62™) time. While this function is
exponential in m (which is to be expected given that the problem is NP-complete),
it is nevertheless not exceedingly large for realistic numbers of candidates. For
instance, with 10 candidates, (1"’2—‘/5)10 < 123. Furthermore, on most instances, the
algorithm is likely to terminate much faster than this, since we make two recursive
calls only when the manipulator can rescue a candidate from elimination in a given
round. In large elections where the manipulator’s weight is relatively insignificant,
it is unlikely that this would happen even more than once.
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