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whih exist between some sets of propositional symbols and/or formulas withina propositional formula �. Suh relationships are known under various names,inluding dependeny, relevane, novelty, ontrollability, and some of themhave been investigated, see among others [1,2℄.In this paper we fous on an additional form of dependeny, alled de�nability.De�nability aptures two di�erent intuitions: impliit de�nability and expliitde�nability. A propositional symbol y an be impliitly de�ned in a givenformula � in terms of a set X of propositional symbols if and only if theknowledge of the truth values of the propositional symbols ofX (whatever theyare) enables onluding about the truth value of y, while y an be expliitlyde�ned in � in terms of X when there exists a formula �X built up from Xonly, suh that �X is equivalent to y in �.De�nability is aknowledged as an important logial onept for deades. It islosely related to the Craig/Lyndon interpolation theorem [3℄. Many studies inlogi are about determining whether a given logi (standard or modal, propo-sitional or �rst-order) satis�es the \basi" Beth property (whenever a theoryimpliitly de�nes a symbol in terms of all others, there is an expliit de�nitionof that symbol in terms of all others), or even the (stronger) projetive Bethproperty, (when impliit de�nability and expliit de�nability oinide). Thuslassial �rst-order logi satis�es the \basi" Beth property (this is the famousBeth's theorem [4℄), while for instane �rst-order logi on �nite strutures doesnot (see e.g., [5℄).Standard propositional logi has been known to satisfy the projetive Bethproperty. In this paper, we onsider de�nability in standard propositional logifrom a omputational point of view. We present several haraterization andomplexity results whih prove useful for several AI appliations, inludinghypothesis disrimination and reasoning about ations and hange.From a omputational point of view, our results onern both time and spaeomplexity. As to time omplexity, we mainly onsidered the deision prob-lem definability whih onsists in determining whether a given formula �de�nes a given symbol y (or more generally a given set Y of symbols) in termsof a given set X of symbols. We identi�ed its omplexity both in the generalase and under restritions indued by a number of propositional fragments(formally de�ned in Setion 2) that proved of interest in many AI ontexts(see [6{9℄); the results are summarized in Table 1.While the table shows the de�nability problem intratable in the general ase(unless P = NP), it also shows that:� the main propositional fragments whih are tratable for sat are also tratablefor definability. Indeed, DNNF ontains (among others) all DNF formu-las and all OBDD \formulas", while q-HornCNF ontains all renamable2



Fragment C definabilityPROPPS (general ase) oNP-DNNF in Pq-HornCNF in PIP oNP-Table 1The omplexity of definability.Horn CNF formulas. The fat that large propositional fragments (inludingomplete ones, i.e., fragments into whih any propositional formula has anequivalent, as DNNF is) is of great value from a pratial perspetive.� nevertheless,tratability for sat is not enough for ensuring tratability fordefinability. Thus the Blake fragment IP is tratable for sat but likelynot for definability. We also identi�ed some suÆient onditions (referredto as stability onditions) under whih a propositional fragment is tratablefor sat if and only if it is tratable for definability.About spae omplexity, we foused on the size of de�nitions; we showedthat in the general ase, the size of any expliit de�nition of a symbol yin terms of a set of symbols X in � is not polynomially bounded in theinput size. We identi�ed some suÆient onditions (polytime onditioning andpolytime forgetting) on propositional fragments for ensuring that de�nitionsan be omputed in polynomial time (hene are of polynomial size) when suhde�nitions exist. Interestingly, the inuential DNNF fragment satis�es them,as well as the Blake fragment IP. The result for IP shows that it an be thease that omputing an expliit de�nition of y on X in � is easy when oneknows that suh a de�nition exists, while deiding whether it exists is hard.The rest of the paper is organized as follows. In Setion 2, we give some ne-essary bakground about propositional logi and omputational omplexity.In Setion 3 the notion of de�nability is presented, as well as a number ofrelated notions (inluding the notions of minimal de�ning family (or base),unde�nable symbol, neessary symbol and relevant symbol, as well as the no-tion of unambiguous de�nability). We also show how suh notions relate oneanother and are onneted to previous onepts, espeially variable forgetting(see [10,2℄) as well as the notions of weakest suÆient and strongest neessaryonditions [11℄. In Setion 4, we give a number of omplexity results for de�n-ability and the related notions. We identify a number of tratable restritionsof the deision problems under onsideration. We also report some omplex-ity results about the size of expliit de�nitions and present an algorithm foromputing a base. In Setion 5, we show that de�nability is losely relatedto hypothesis disriminability. In Setion 6, we explain how many importantissues in reasoning about ation and hange an be haraterized in terms of3



de�nability. In Setion 7, we briey sketh how de�nability an prove usefulto automated reasoning. In Setion 8, we relate our results to the literature.Finally, Setion 9 onludes the paper.2 Formal Preliminaries2.1 Propositional logiLet PS be a �nite set of propositional propositional symbols (also alled vari-ables). PROPPS is the propositional language built up from PS, the onne-tives :, _, ^, ), , and the Boolean onstants true and false in the usualway. Subsets of PS are denoted X, Y , et. For every X � PS, PROPX denotesthe sublanguage of PROPPS generated from the propositional symbols of Xonly.From now on, � denotes a �nite set of propositional formulas from PROPPS.Var(�) is the set of propositional symbols appearing in � and j�j is the size of�, i.e., the number of symbols used to write it. Elements of PS are denoted x,y, et. Spei� formulas from PROPPS are of interest: a literal is a symbol x ofPS (positive literal) or a negated one :x (negative literal). x and :x are twoomplementary literals. A lause (resp. term) is a disjuntion (resp. onjun-tion) of literals, or the onstant false (resp. true). A Conjuntive Normal Formformula (for short, a CNF formula) is a onjuntion of lauses. A DisjuntiveNormal Form formula (for short, a DNF formula) is a disjuntion of terms. ACNF formula is Krom [12℄ if and only if eah lause in it ontains at most twoliterals. A Krom formula is also said to be a 2-CNF formula or a quadratiformula. A CNF formula is Horn [13℄ if and only if eah lause in it ontainsat most one positive literal. A CNF formula � is renamable Horn [14℄ if andonly if there exists a Horn renaming for it, i.e., a set V of symbols v suh thatreplaing every ourrene of v 2 V (resp. :v) in � by the omplementaryliteral :v (resp. v) leads to a Horn CNF formula. A CNF formula � has aQH-partition [6℄ if and only if there exists a partition fQ;Hg of Var(�) s.t.for every lause Æ of �, the following onditions hold:� Æ ontains no more than two variables from Q;� Æ ontains at most one positive literal from H;� if Æ ontains a positive literal from H, then it ontains no variable from Q.A CNF formula � is q-Horn [6℄ if and only if there exists a q-Horn renamingfor it, i.e., a set V of symbols v suh that replaing in � every ourrene of apositive literal v (resp. a negative literal :v) by the omplementary literal :v(resp. v) leads to a CNF formula having a QH-partition fQ;Hg. The propo-4



sitional fragment q-HornCNF is the set all q-Horn formulas from PROPPS;it inludes both the Krom formulas (H = ;) and the renamable Horn CNFformulas (Q = ;) as proper subsets.A Negation Normal Form formula (for short, an NNF formula) is any formula� built up from PS, the onnetives :, _, ^ and the Boolean onstants true andfalse, suh that the sope of any ourrene of : in � is a symbol or a Booleanonstant. Thus, every CNF (resp. every DNF) formula also is an NNF formula.An NNF formula � is deomposable (i.e., a DNNF formula) [7,9℄ if and onlyif every subformula in � of the form ' ^  is suh that Var(') \ Var( ) = ;.Obviously, every DNF formula also is a DNNF formula, but the onverse doesnot hold. DNNF is the propositional fragment ontaining all DNNF formulasfrom PROPPS.Formulas from PROPPS are interpreted in the standard, usual way. Full in-stantiations of propositional symbols of PS on BOOL = f0; 1g (worlds) aredenoted by ~! and their set is denoted by 
. Any world satisfying a given for-mula ' is said to be a model of '. Full instantiations of propositional symbolsof X � PS are denoted by ~x and alled X-worlds; their set is denoted by 
X .We shall identify ~x with the orresponding anonial onjuntion of literalsover X in order to simplify the notations; for instane, if X = fa; bg and~x = (a = 1; b = 0) then we also write ~x = a^:b. We shall also identify any �-nite set of formulas with the onjuntion of all formulas from the set. j= denoteslogial entailment and � denotes logial equivalene. If �;�;	 2 PROPPS, �and 	 are said to be �-equivalent if and only if � j= �, 	.Assuming that worlds are represented by the subset of all variables they satisfy(i.e., ~! is given by fx 2 PS j ~!(x) = 1g), the Horn envelope of a Horn CNFformula � is the smallest set of models of � (over Var(�)) whose intersetionlosure 1 is the whole set of models of �. A q-Horn envelope of a q-Horn CNFformula � whih has a QH-partition is any smallest set of models of � (overVar(�)) whose QH-onvolution losure is the whole set of models of � (see[15℄ for details).In order to avoid heavy notations, we sometimes abuse notations and writex instead of fxg. For every formula � 2 PROPPS and every propositionalsymbol x 2 PS, �x 0 (resp. �x 1) is the formula obtained by replaing in �every ourene of x by the onstant false (resp. true). More generally, if  isa satis�able onjuntion of literals then the onditioning � of � by  is theformula obtained by replaing in � every ourrene of eah positive literal xof  by true and every ourrene of eah negative literal :x of  by false.An impliate (resp. impliant) of a formula � is a lause Æ (resp. a onjuntion1 The intersetion losure C of a set S is the smallest set w.r.t. � suh that S � Cand 8e1; e2 2 C; e1 \ e2 2 C. 5



of literals ) whih is a logial onsequene of � (resp. suh that � is a logialonsequene of ). A prime impliate (resp. prime impliant) of � is one ofits logially strongest impliates (resp. one of its logially weakest impliants).A formula � is in prime impliates normal form (or a Blake formula or aprime formula) [16℄ if and only if it is a CNF formula whose lauses are theprime impliates of � (one representative per equivalene lass, only). IP isthe propositional fragment ontaining all Blake formulas.Example 1� (a_ b)^ (a_ (:b^ )) is an NNF formula but neither a DNNF formula nora CNF formula.� (a _ b) ^ ( _ (: ^ d)) is a DNNF formula but neither a DNF formula nora CNF formula.� (a ^ b) _ (:a ^ d) is a DNF formula.� (a_ b_ )^ (:a_:b_:)^ (:a_d) is a CNF formula but neither a DNNFone nor a q-Horn CNF one nor a Blake one.� (a_ b_ )^ (:a_:b_:) is a Blake formula but neither a DNNF one nora q-Horn CNF one.� (:a_:b_ )^ (a_:b_:) ^(:a_ b_:)^ (:a_:d_:e) ^(:b_:d_e)^(: _ d _ :e) ^(d _ e _ :f) is a q-Horn CNF formula but neither a DNNFone nor a Blake one nor a renamable Horn CNF one nor a Krom one.� (a _ b) ^ (:a _ : _ d) is a renamable Horn CNF formula but neither aDNNF one nor a Horn CNF one nor a Krom one nor a Blake one.� (a _ :b) ^ (b _ : _ :d) is a Horn CNF formula but neither a DNNF onenor a Krom one nor a Blake one.� (a _ b) ^ (:b _ ) is a Krom formula but neither a DNNF one nor a HornCNF one nor a Blake one.For eah of the propositional fragments listed in this setion, the reognitionproblem is tratable (i.e., there exists a (deterministi) polynomial time al-gorithm for determining whether any given propositional formula belongs tothe fragment). This is obvious for most of those fragments, exept qHornCNF(and its subset onsisting of all renamable Horn CNF formulas) and to a lesserextent, IP. For qHornCNF, see [6,17℄; for IP, this omes from the orretnessof any resolution-based prime impliates algorithm (like Tison's one [18℄): aCNF formula � is Blake if and only if whenever two lauses of it have a resol-vent, there exists a lause in � whih implies it, and no lause of � is impliedby another lause of �.Unlike PROPPS and some of its subsets (as the set of all CNF formulas),qHornCNF, DNNF and IP are known as tratable for the satis�ability problemsat; this means that for eah of these fragments, there exists a (deterministi)polynomial time algorithm for determining whether any given formula fromthe fragment is satis�able. For instane, in order to determine whether a Blake6



formula is satis�able, it is enough to hek that it does not redue to false (theempty lause) (this is a diret onsequene of the de�nition of a Blake formula).For the qHornCNF and DNNF fragments, see respetively [6℄ and [7,9℄.
2.2 Computational omplexityWe assume that the reader is familiar with some basi notions of omputationalomplexity, espeially the omplexity lasses P, NP, and oNP, as well asthe basi deision problems sat and unsat (and their restritions to CNFformulas, noted CNF-sat and CNF-unsat) and the lasses �pk, �pk and �pkof the polynomial hierarhy PH = Sk�0�pk = Sk�0�pk = Sk�0�pk (see [19℄ fordetails).Let us reall that a deision problem is said to be at the kth level of PH if andonly if if it belongs to �pk+1, and is either �pk-hard or �pk-hard.It is well-known that if there exists i > 0 suh that �pi = �pi then for everyj > i, we have �pj = �pj = �pi : PH is said to ollapse to level i. It is stronglybelieved that PH does not ollapse (to any level), i.e., it is a truly in�nitehierarhy (for every integer k, PH 6= �pk).BH2 (also known as DP) is the lass of all languages L suh that L = L1 \L2,for some L1 in NP and L2 in oNP.The anonial BH2-omplete problem is sat-unsat: a pair of formulas h';  iis in sat-unsat if and only if ' is satis�able and  is not. This lass belongsto the Boolean hierarhy; unless NP = oNP, BH2 stritly ontains both NPand oNP.An advie-taking Turing mahine is a Turing mahine that has assoiated withit a speial \advie orale" A, whih an be any funtion (not neessarily areursive one). On input s, a speial \advie tape" is automatially loadedwith A(jsj) and from then on the omputation proeeds as normal, based onthe two inputs, s and A(jsj).An advie-taking Turing mahine uses polynomial advie if its advie oraleA satis�es jA(n)j � p(n) for some �xed polynomial p and all non-negativeintegers n; �nally, P/poly is the lass of all languages whih an be deided inpolynomial time by deterministi Turing mahines augmented by polynomialadvie. It is believed that NP \ oNP is not inluded in P/poly.7



3 De�nability: De�nitions, Properties and Charaterizations3.1 Impliit and expliit de�nabilityDe�nability is a strong form of dependene: while dependent propositionalsymbols interat in some situations, de�nability imposes that some proposi-tional symbols are �xed whenever some other propositional symbols are �xedas well.De�nition 2 ((impliit) de�nability) Let � 2 PROPPS, X; Y � PS andy 2 PS.� � de�nes y in terms of X (denoted by X v� y) if and only if 8~x 2
X ; ~x ^ � j= y or ~x ^ � j= :y.� X v� Y if and only if X v� y for every y 2 Y .Note that requiring ~x ^ � to be satis�able would be useless sine ~x ^ � j= yholds whenever ~x^� is unsatis�able. When no X-world onsistent with � anbe found, � is unsatis�able. In this ase, de�nability trivializes, i.e., X v� yholds for every X and y.Example 3 Let l stand for \leap year", and d4 (resp. d25, d100, d400) for\divisible by 4" (resp. by 25, 100, 400). Let � = fd400) l; (d100^:d400)):l; (d4 ^ :d100) ) l;:d4 ) :l; d100 , (d4 ^ d25); d400 ) d100g a set offormulas making preise some onnetions between those symbols.We have fd4; d25g v� d100; fd4; d100; d400g v� l; fd4; d25; d400g v� l;� does not de�ne l in terms of fd25; d100; d400g, beause the joint falsity ofthese three propositional symbols does not enable telling whether l is true orfalse, sine we do not know whether d4 holds or not.Other de�nability relations hold; in partiular, fl; d100; d400g v� d4;fl; d100g v� d4; fl; d100g v� fd4; d100; d400g.WhenX v� y holds, one an state equivalently that the funtional dependenyX ! y holds in �. This notion of funtional dependeny is the well-known onefrom the relational database theory restrited to binary domains (see [20,21℄).De�nability satis�es the following easy properties (whih we give withoutproofs):(1) v� is transitive.(2) If X 0 � X, then X v� X 0. In partiular, v� is reexive.(3) If X v� Y and X v� Y 0, then X v� Y [ Y 0.(4) If X v� Y and �0 j= �, then X v�0 Y .(5) If X v� Y and X 0 v� Y 0, then X [X 0 v� Y [ Y 0.8



(1), (2) and (3) orrespond to the famous Armstrong's rules of inferene (andknown respetively as the transitivity rule, the inlusion rule and the aug-mentation rule) [20℄. (4) is a monotoniity property; (5) is a derived rule ofinferene in Armstrong's system (and is known as the addition rule or theomposition rule).It is also easy to show that if � is satis�able and y 62 Var(�) [ X, thenX 6v� y. Similarly, if � is valid then X v� Y holds if and only if Y � X. 2Other properties that an be shown when fxg v� Y are reported in Lemma2.3 from [22℄.Now, another notion of de�nability an be easily de�ned, relating a set ofpropositional symbols X to a propositional symbol y given a formula �; itrequires the existene of an expliit de�nition of y in � using propositionalsymbols ofX, only. While the previous form of de�nability is typially referredto as impliit de�nability, the latter one is alled expliit de�nability.De�nition 4 (expliit de�nability; de�nition of a propositional symbol)Let � 2 PROPPS, X � PS and y 2 PS. � expliitly de�nes y in terms ofX if and only if there exists a formula �X 2 PROPX s.t. � j= �X , y. Insuh a ase, �X is alled a de�nition of y on X in �.As a orollary of Craig's interpolation theorem [3℄ (stated in the more generalframework of �rst-order logi), the equivalene between the impliit form ofde�nability (as given above) and the expliit form an be stated. This result isknown as the projetive Beth's theorem in propositional logi. We give a prooffor this basi result sine it enables for pointing out a �rst, simple (expliit)de�nition.Theorem 5 (propositional projetive Beth's theorem) Let � 2 PROPPS,X � PS and y 2 PS. � expliitly de�nes y in terms of X if and only if X v� y.Proof: The ()) diretion is obvious. As to the (() diretion, suppose �impliitly de�nes y in terms of X. For eah world ~x satisfying �, let '~x be theonjuntion of all literals over X true in ~x. Sine the truth value of y in a worldsatisfying � depends only on the truth value of X, we have that � ^ '~x j= y.It follows that the disjuntion � of all '~x's for ~x a world satisfying � ) y isan expliit de�nition of y on X. Similarly, the negation of the disjuntion 	of all '~x's for ~x a world satisfying �) :y is an expliit de�nition of y on X(indeed, we have � j= �, :	). 2In Lemma 5.1 from [15℄, one an �nd representations, based on the primeimpliates of �, of the two expliit de�nitions � and :	 given in the proof2 This shows the system of rules above omplete when � is valid sine every de�n-ability relation is an instane of axiom shema (3).9



of Theorem 5. The �rst one is noted f(X;y) and the seond one is noted �f(X;�y).Clearly enough, suh representations are not always the more suint onefrom the spatial eÆieny point of view (both of them an be exponential inthe size of �), and sine any formula �-equivalent to � (resp. 	) is an expliitde�nition of y on X in �, there is no spei� need to fous on prime impliatesrepresentations.Example 3 (ontinued) The following expliit de�nitions hold:� j= (d4 ^ (:d100 _ d400)), l;� j= (d4 ^ (:d25 _ d400)), l;� j= (l _ d100), d4;� j= (d100 ^ l), d400;� j= ((l ^ :d25) _ d100), d4.Theorem 5 shows that � de�nes y in terms of X if and only if there exists ade�nition �X of y in � suh that X = Var(�X). Now, what about the uniityof the de�nition of y on X in �, when � de�nes y in terms of X? As suggestedin the proof of Theorem 5, there are several possible de�nitions of y on X in�, whih are generally not logially equivalent, but whih are nevertheless �-equivalent: if � and 	 are both de�nitions of y in �, we have � j= �, 	, andadditionally, �_	 and �^	 are also de�nitions of y in �; thus, the set of allde�nitions of y on X in �, quotiented by logial equivalene, is a �nite lattie.The least (resp. uppest) element of this lattie is alled the strongest (resp.weakest) de�nition of y in �, and is denoted by DefX;l� (y) (resp. DefX;u� (y)).Note that DefX;l� (y) and DefX;u� (y) are de�ned only when X v� y holds.Now, the previous notion of de�nability of a propositional symbol an be easilyturned into a more general notion of formula de�nability. Formally:De�nition 6 (formula de�nability) Let �;	 2 PROPPS and X � PS. �de�nes 	 in terms of X (noted X v� 	) if and only if 8~x 2 
X ; ~x ^� j= 	or ~x ^ � j= :	.While formula de�nability extends propositional symbol de�nability (sineevery propositional symbol y an be also viewed as the formula y), it an bereovered from it easily:Lemma 7 Let �;	 2 PROPPS and X � PS. Let z be a (fresh) propositionalsymbol of PS n (X [Var(�) [Var(	)). X v� 	 if and only if X v�^(	,z) z.Proof: The proof omes straightforwardly from the following equivalene: forany ~x, ~x ^ � j= 	 or ~x ^ � j= :	 is equivalent to ~x ^ � ^ (	 , z) j= z or~x ^ � ^ (	, z) j= :z. 2Thus, there is no gap of generality between propositional symbol de�nabilityand formula de�nability; also, in the rest of the paper, for the sake of simpliity10



we restrit to propositional symbol de�nability without any loss of generality.3.2 Charaterizations of de�nabilityThe proof of Theorem 5 gives a �rst, semantial, expression of a de�nition ofy on X in � (when it makes sense, i.e., when X v� y holds), namely, anyformula from PROPX whose set of models is f~xj~x^� j= yg. The next resultsaim at giving more syntatial haraterizations, whih will provide us withsome pratial ways of omputing de�nitions.Before presenting them, we need to reall a few basi notions and results aboutindependene and forgetting (see [2℄ for more details). Let X be a subset ofPS. A formula � 2 PROPPS is independent of X if and only if there existsa formula � s.t. � � � holds and Var(�) \ X = ;. When X = fxg, we saythat � is independent of x. It an be easily shown ([2℄) that � is independentof X if and only if � is independent of eah propositional symbol of X. Theset of propositional symbols on whih a formula � depends is denoted byDepVar(�). For instane, if � = a ^ (b _ :b) then DepVar(�) = fag.Let � 2 PROPPS and X � PS. The forgetting of X in �, denoted 9X:�, isthe formula from PROPPS indutively de�ned as follows [10℄:� 9;:� = �,� 9fxg:� = �x 1 _ �x 0,� 9fxg [ Y:� = 9Y:(9fxg:�).For instane, with � = (:a _ b) ^ (a _ ), we have 9fag:� � b _ .Clearly enough, 9X:� orresponds to a quanti�ed Boolean formula, usuallywith free variables (9 is seond-order quanti�ation, i.e., it bears on proposi-tional atoms).It an be shown [2℄ that 9X:� is the logially strongest onsequene of � thatis independent of X (up to logial equivalene). Thus, if ' is independent ofX, then � j= ' if and only if 9X:� j= '. Aordingly, � is independent of Xif and only if � � 9X:� holds.Now, the projetion of a formula � on a set of propositional symbols X is theresult of forgetting everything in � exept X:Proj(�; X) = 9(Var(�) nX):�:Taking advantage of the notion of projetion, the following result gives aharaterization of the de�nitions of a propositional symbol y de�nable in11



terms of a set of propositional symbols X in a formula �.Theorem 8 Let � 2 PROPPS and X � PS. Let �X 2 PROPX and y 2 PS.�X is a de�nition of y on X in � if and only ifProj(� ^ y;X) j= �X j= :Proj(� ^ :y;X):Proof: We have � j= �X , y if and only if � j= �X ( y and � j= �X ) y ifand only if �^:y j= :�X and �^y j= �X if and only if 9(PSnX):(�^:y) j=:�X and 9(PS n X):(� ^ y) j= �X (sine �X is independent of PS n X) ifand only if Proj(� ^ y;X) j= �X j= :Proj(� ^ :y;X). 2As a diret orollary, we obtain the following haraterizations of the strongestand weakest de�nitions of y, as well as a further haraterization of de�nabil-ity:Corollary 9 Let � 2 PROPPS, X � PS and y 2 PS.� If X v� y then DefX;l� (y) � Proj(� ^ y;X).� If X v� y then DefX;u� (y) � :Proj(� ^ :y;X).� X v� y if and only if Proj(� ^ y;X) j= :Proj(� ^ :y;X).Example 3 (ontinued) Here are the weakest and the strongest de�nitions(up to logial equivalene) of d4 on fl; d25; d100g in �:� Deffl;d25;d100g;l� (d4) � (l _ d100).� Deffl;d25;d100g;u� (d4) � (d25 ^ d100) _ (l ^ :d25 _ :d100).Theorem 8 shows that de�nability is related to the notions of weakest suÆientondition and strongest neessary ondition from [11℄. Indeed, let X � PS andy 2 PS. A formula � of PROPX is a strongest neessary ondition (SNC) of yon X given � if � j= y ) � holds (i.e., � is a neessary ondition (NC) of yon X given �), and for any formula 	 of PROPX , if � j= y ) 	 holds, then� j= �) 	 holds. � 2 PROPX is a weakest suÆient ondition (WSC) of yon X given � if � j= � ) y holds (i.e., � is a suÆient ondition (SC) of yon X given �), and for any formula 	 of PROPX , if � j= 	) y holds, then� j= 	 ) � holds. Note that both the strongest neessary and the weakestsuÆient onditions of y on X are unique up to �-equivalene [11℄ (but notup to logial equivalene in the general ase).The following theorem shows how SNC and WSC an be haraterized usingthe notion of projetion. It extends Theorem 2 from [11℄ by relaxing the as-sumption that y 2 Var(�) and y 62 X, and fous on the logially strongest(resp. weakest) SNC (resp. WSC) of y on X w.r.t. �, up to logial equivalene:Theorem 10 Let � 2 PROPPS, X � PS and y 2 PS.12



� Proj(� ^ y;X) is (up to logial equivalene) the logially strongest SNC ofy on X given �.� :Proj(� ^ :y;X) is (up to logial equivalene) the logially weakest WSCof y on X given �.Proof: We just prove the �rst point (the seond one is similar by dualitybetween SNC and WSC). Let �X be an SNC of y on X given �. By de�nition,we have � j= y ) �X . This is equivalent to �^y j= �X , and equivalent againto Proj(� ^ y;X) j= �X sine Var(�X) � X. Hene every SNC of y on Xgiven � is a logial onsequene of Proj(� ^ y;X). It remains to show thatProj(�^y;X) is an NC of y on X given �, whih is easy sine by de�nition offorgetting, �^y j= Proj(�^y;X) for any X and Proj(�^y;X) is independentof every symbol whih does not belong to X. 2From this theorem, one an show that Theorem 8 generalizes Proposition 2from [11℄ by providing not only a haraterization of de�nability in terms ofSNC and WSC, but also a haraterization of all the de�nitions of y on Xw.r.t. � in terms of SNC and WSC.Finally, the following lemma shows that, when heking whether X v� Y ,every propositional symbol an be forgotten from � exept the de�niens Xand the de�niendum Y :Lemma 11 Let � 2 PROPPS and X; Y � PS. X v� Y if and only ifX vProj(�;X[Y ) Y .Proof:()) Let y 2 Y . We have X v� y if and only if there exists a formula 	 s.t.Var(	) � X and � j= (	 , y). Clearly enough, (	 , y) is independentof every propositional symbol whih does not our in X [ fyg. Espeially,(	 , y) is independent of Var(�) n (X [ fyg). Sine Proj(�; X [ fyg) =9(Var(�) n (X [ fyg)):� is the most general onsequene of � that is in-dependent of Var(�) n (X [ fyg), we have � j= (	 , y) if and only ifProj(�; X [ fyg) j= (	, y). Hene, X vProj(�;(X[fyg) fyg. This is true forany y 2 Y , hene we have X vProj(�;X[Y ) Y .(() As explained in Setion 3.1, v� is monotoni in � in the sense that, forevery X; Y;�;�0, if X v� Y and �0 j= �, then X v�0 Y . The fat that9(Var(�) n (X [ Y )):� is a logial onsequene of � ompletes the proof. 2A pratial interest of this lemma lies in the fat that Proj(�; X [Y ) may be-long to a fragment whih is omputationally easier than � for the de�nabilityissues. For instane, onsider � = (a_(:b^))^(a^(:a_d)), X = fb; g andY = fdg. While � belongs to the NNF fragment for whih definability is13



not tratable (unless P = NP) (see Theorem 22), Proj(�; X[Y ) = 9fag:� be-longs to the DNNF fragment for whih definability is tratable (see Lemma27).3.3 Minimal de�nabilityIn many AI appliations (some of them will be presented in Setions 6 and7), one is interested in pointing out a set of propositional symbols X in termsof whih � de�nes every symbol of a given formula �. Indeed, it is enough toassign truth values to the symbols from suh a set X to determine the truthvalue of �. Thus, one is espeially interested in the minimal sets X:De�nition 12 (base) Let � 2 PROPPS and X; Y � PS. X is a minimalde�ning family, or for short a base, for Y w.r.t. �, if and only if X v� Yholds and there is no proper subset X 0 of X suh that X 0 v� Y . The set of allbases for Y w.r.t. � is denoted by BS�(Y ).Example 3 (ontinued) � = fd400 ) l; (d100 ^ :d400) ) :l; (d4 ^:d100)) l;:d4) :l; d100, (d4 ^ d25)g.fd4; d25g is a base for d100; the two sets fd4; d100; d400g and fd4; d25; d400gare bases for l;� de�nes d4 in terms of fl; d100; d400g, but not minimally, sine fl; d100g isa base for d4; the latter also is a base for fd4; d100; d400g.The following results an be derived easily (we give them without proofs):(1) 9Y 2 BS�(X) suh that Y � X (and, a fortiori, we have BS�(X) 6= ;);(2) BS� is antimonotoni, i.e., 8X; Y � PS, if X � Y then BS�(X) �BS�(Y ), where � is the partial order de�ned by S1 � S2 if and only if8A 2 S2 9B 2 S1 suh that B � A.(3) BS�(X) = f;g if and only if for all x 2 X we have � j= x or � j= :x.(4) 8B 2 BS�(X), we have B � Var(�) [X.As to de�ning a set of propositional symbols, not only we know (from thede�nition) that X v� Y if and only if 8y 2 Y;X v� y, but the followingtheorem shows that the set of all bases for a set of propositional symbolsan be omputed from the set of all bases for propositional symbols takenindividually by performing pointwise unions and then minimizing the obtainedsets. 33 The operator � suh that BS�(fx; yg) = BS�(fxg) � BS�(fyg) is sometimesalled \unionist produt" [23℄; it is ommutative, assoiative and idempotent {and as a onsequene, it makes sense to write BS�(X) = �x2XBS�(fxg) =min(f[x2XBxjBx 2 BS�(fxg)g;�). 14



Theorem 13 Let � 2 PROPPS and Y = fy1; : : : ; ypg � PS.BS�(Y ) = min f p[i=1Bi j Bi 2 BS�(fyig)g;�! :Proof: Let X � PS; we prove that X v� Y if and only if 9X1; : : : ; Xp � PSs.t. X = X1[ : : :[Xp and Xi v� yi for every i 2 f1; : : : ; pg. Then the theoremfollows immediately.()) X v� fy1; : : : ; ypg means that X v� yi for every i 2 f1; : : : ; pg. There-fore, taking Xi = X for every i proves the result.(() Assume that 9X1; : : : ; Xp suh that X = X1 [ : : : [ Xp and Xi v� yifor every i 2 f1; : : : ; pg. Sine Xi v� yi and Xi � X, we have X v� yi forevery i 2 f1; : : : ; pg. Therefore X v� fy1; : : : ; ypg. 2Consequently, it will be enough to ompute sets of bases for single propo-sitional symbols only. Note however that a similar result does not hold forshortest bases (in terms of ardinality), i.e., a shortest base for fx; yg annotalways be written as the union of a shortest base for fxg and a shortest basefor fyg.Note also that it is not the ase in general that Var(DefVar(�)[fyg;l� (y)) (orVar(DefVar(�)[fyg;u� (y))) belongs to BS�(fyg); suh sets are de�ning sets butthey are not neessarily minimal w.r.t. � (just onsider � = a , b andy = b as a ounter-example). The onlusion still holds if we onsider only thevariables � is not independent of them (i.e., if we replae Var by DepVar inthe previous statement) (the same ounter-example works).Note �nally that there is no guarantee in the general ase that the numberof bases for fyg w.r.t. � is polynomial in j�j; for instane, for the followingformula � (equivalent to a Horn CNF formula), fyg has 2n + 1 bases: � =((Vni=1 xi), y) ^ Vni=1(xi , x0i).3.4 Unde�nable propositional symbolsBeause X v� X trivially holds, suh instanes of the de�nability relationare typially of little interest. In the theory of relational databases, funtionaldependenies of the form X ! X are said to be trivial. In the following, apropositional symbol for whih every de�nition in � is trivial as suh is saidto be unde�nable. 15



De�nition 14 (unde�nable propositional symbols) Let � 2 PROPPSand y 2 PS. y is unde�nable in � if and only if Var(�) n fyg 6v� y. Other-wise, y is said to be de�nable in �.We have the following easy onnetion between unde�nable symbols and bases:Lemma 15 Let � 2 PROPPS and y 2 PS. y is unde�nable in � if and onlyif BS�(fyg) = ffygg.Proof:(1 ) 2) If y is unde�nable in �, then Var(�) n fyg 6v� y. As a onsequene,; 6v� y. Hene, fyg is a base for y w.r.t. �. Now, let B 2 BS�(fyg). We haveB � Var(�)[fyg. If y 62 B, then B � Var(�)nfyg, but this ontradits thefat that Var(�)nfyg 6v� y. Hene, y 2 B, and therefore BS�(fyg) = ffygg.(2 ) 1) If BS�(fyg) = ffygg, then for every X � PS, we have X v� y ifand only if y 2 X, whih onludes the proof. 23.5 Neessary and relevant propositional symbolsGiven a formula � and a set Y of propositional symbols, all propositionalsymbols in Var(�) an be lassi�ed aording to their usefulness for de�ningY . The most (resp. the least) important ones are the propositional symbolswhih are neessary (resp. irrelevant) for de�ning Y , de�ned as those symbolswhih belong to all bases for Y (resp. to none of the bases for Y ). Computingneessary propositional symbols in a preliminary step an also prove valuablefor improving the omputation of the set of all bases for Y w.r.t. �.De�nition 16 (neessary and relevant propositional symbols) Let � 2PROPPS, Y � PS and x 2 PS.� x is a neessary propositional symbol for Y w.r.t. � if and only if xbelongs to all bases for Y w.r.t. �.� x is a relevant propositional symbol for Y w.r.t. � if and only if xbelongs to at least one base for Y w.r.t. � (otherwise, x is an irrelevantsymbol for Y w.r.t. �).Sine both Y and � are �nite, the set of all bases for Y w.r.t. � is never empty(Y v� Y always holds). As a onsequene, any neessary propositional symbolfor Y is a relevant propositional symbol for Y . Moreover, it is obvious thatany propositional symbol x is relevant to itself whenever � 6j= x and � 6j= :x.The following results are simple haraterizations of neessary and relevant16



propositional symbols:Lemma 17 Let � 2 PROPPS, Y � PS and x 2 PS.(1) x is neessary for Y w.r.t. � if and only if x 2 Y and x is unde�nable in�.(2) x is relevant for Y w.r.t. � if and only if it is relevant for some y 2 Yw.r.t. �.(3) x is neessary for Y w.r.t. � if and only if it is neessary for some y 2 Yw.r.t. �.Proof:(1, )) Assume that x is neessary for Y w.r.t. �. Sine Y v� Y , thereexists a B 2 BS�(Y ) suh that B � Y . Therefore, sine x 2 B, we havex 2 Y . Now, suppose that x is de�nable in �, whih means that thereexists Z � Var(�) suh that x 62 Z and Z v� x. Let B 2 BS�(Y ) andB0 = (B n fxg)[Z. From what preedes, we have B0 v� Y , therefore thereis a B00 2 BS�(Y ) suh that B00 � B0, and sine x does not belong to B00, itannot be neessary for Y w.r.t. �.(1, () Assume that x 2 Y and x is unde�nable in �. x being unde�nablein � is equivalent to BS�(fxg) = ffxgg, therefore, as a onsequene ofTheorem 13 and the fat that x 2 Y , any B 2 BS�(Y ) ontains x, whihmeans that x is neessary for Y w.r.t. �.(2, )) If x is relevant for Y w.r.t. � then there is a B 2 BS�(Y ) ontainingx, and by Theorem 13, there is a y 2 Y and a B0 2 BS�(fyg) suh thaty 2 B0; hene x is relevant for y w.r.t. �.(2, () Immediate onsequene of Theorem 13.(3) Comes easily from point (1): x is neessary for Y = fy1; : : : ; ypg w.r.t. �if and only if 9i 2 1 : : : p, x = yi and x is unde�nable in � if and only if9i 2 1 : : : p, (x = yi and x is unde�nable in �) if and only if 9i 2 1 : : : p, xis neessary for yi w.r.t. �. 2Point (1) expresses that the propositional symbols neessary for Var(�) {hene the \key propositional symbols", by analogy with data bases, are allthose that annot be de�ned otherwise. Point (2) expresses that it is enoughto onsider the relation \being relevant for" between propositional symbolsinstead of sets of propositional symbols. Point (3) expresses the same resultfor the relation \being neessary for".As a diret orollary, we obtain the following easy onnetion between nees-sary symbols and unde�nable ones:Corollary 18 Let � 2 PROPPS and y 2 PS. y is unde�nable in � if and17



only if y is neessary for fyg w.r.t. �.Example 3 (ontinued)� BS�(Var(�)) = ffd4; d25; d400g; fl; d25; d100g; fl; d4; d25gg; therefore, onlyd25 is neessary for Var(�) w.r.t. �; furthermore, BS�(fd25g) = ffd25ggand d25 is unde�nable in �.� BS�(fl; d4; d100; d400g) = ffd4; d100; d400g, fd4; d25; d400g, fl; d100; d400g,fl; d4; d25g, fl; d4; d100gg; therefore, no propositional symbol is neessaryfor fl; d4; d100; d400g w.r.t. �, and all propositional symbols of Var(�) arerelevant for fl; d4; d100; d400g w.r.t. �.Note that the relation \being relevant for" between single propositional sym-bols is not symmetri. For instane, let � = (, (a _ b)). a is relevant for ,but  is not relevant for a. 43.6 Unambiguous de�nabilityIn the beginning of this setion we wrote that de�nability imposes that somepropositional symbols are �xed whenever some other propositional symbolsare �xed as well, or in other terms, that the value of y is a funtion of thevalues of the variables in X. Formally, this is not entirely true, as we an seeon the following example: let � = (a ) b) ^ ((a , b) , ), X = fa; bg,and y = . Clearly, X v� y. Is the value of  unambiguously de�ned from thevalues of a and b? No, beause of the situation ~x where a is true and b false.This situation being inonsistent with �, it trivially holds that � ^ ~x j= yand � ^ ~x j= :y, thus in this situation the value of y is not unambiguouslyde�ned, and we annot formally say that the value of y is a funtion of thevalues of a and b. However, in pratie, this makes little di�erene providedthat � is interpreted as a hard onstraint (that is, any ountermodel of � isan impossible world that does not need to be onsidered): in this ase, wean safely neglet those ~x-worlds that are inonsistent with �, and say thatin every possible situation, the value of y is a funtion of the values of a andb. Still, in some ontexts (espeially reasoning about ation and hange { seeSetion 6), it is important to know whether suh inonsistent X-assignmentsexist or not.De�nition 19 Let � 2 PROPPS and X � PS. We say that � is stronglyX-onsistent if and only if for every ~x 2 
X , ~x ^ � is onsistent. We say4 The relation \being neessary for" between single propositional symbols is of nointerest sine y 6= x is never neessary for x, and x is neessary for x if and only ifx is unde�nable. 18



that � unambiguously de�nes Y in terms of X if and only if � is stronglyX-onsistent and X v� Y .Requiring � to be strongly X-onsistent has a strong impat on the hara-terization of expliit de�nitions. Indeed, the strong X-onsisteny of � is aneessary and suÆient ondition for the uniity (up to logial equivalene) ofexpliit de�nitions on X in �:Theorem 20 Let � 2 PROPPS, X � PS and y 2 PS suh that X v� y.Then � is strongly X-onsistent if and only if for any two de�nitions ',  ofy on X in �, we have ' �  .Proof:()) Assume there exist two non-equivalent formulas ' and  of PROPX suhthat (a) � j= y , ' and (b) � j= y ,  . (a) and (b) imply () � j= ',  .Sine ' and  are not logially equivalent, there exists a ~x 2 
X suh that~x j= :(',  ), whih, together with (), implies that ~x^� is inonsistent,therefore � is not strongly X-onsistent.(() Assume � is not strongly X-onsistent. Let then be ~x 2 
X suh that~x ^ � is inonsistent. Let ' be a de�nition of y on X in �. If ~x j= '(respetively, ~x j= :'), then let  be the formula of PROPX , unique up tologial equivalene, whose set of models are exatly the models of ' exept~x (respetively, the models of ' plus ~x).  is also a de�nition of y on X in�, and  is not logially equivalent to '. 24 Computational Aspets4.1 De�nabilityThe following result is the restrition to propositional logi of a property, whihholds in �rst-order logi, and is due to Padoa [24℄. It onsists of an entailment-based haraterization of (impliit) de�nability and is useful for identifyingtratable restritions of de�nability in the propositional ase. We give a simpleproof whih holds for propositional logi: for any � and any X � PS, letrename(�; X) be the formula obtained by replaing in � in a uniform wayevery propositional symbol z from Var(�) nX by a new propositional symbolz0. We have:Theorem 21 (Padoa's method) [24℄If y 62 X, then X v� y if and only if (� ^ rename(�; X)) j= y ) y0.19



Proof: From Theorem 8, we get that X v� y if and only if Proj(�^ y;X) j=:Proj(� ^ :y;X): Equivalently, X v� y if and only if 9(PS nX):(� ^ y) ^9(PSnX):(�^:y) is unsatis�able. Sine quanti�ed variables are dummy ones,when y 62 X, 9(PS nX):(�^ y)^9(PS nX):(�^:y) is equivalent to 9(PS nX):(�^y)^9(PS 0nX 0):(rename(�; X)^:y0) where for any subset Z of PS wehave Z 0 = fx0 j x 2 Zg. This quanti�ed Boolean formula is also equivalent tothe following prenex one: 9(PS nX)[(PS 0nX 0):(�^y^rename(�; X)^:y0),whih is unsatis�able if and only if �^y^rename(�; X)^:y0 is unsatis�ableif and only if (� ^ rename(�; X)) j= y ) y0. 2Aordingly, whenever y does not belong to X, heking de�nability omesdown to a standard dedution hek. Sine X v� y trivially holds in theremaining ase (i.e., y 2 X), we an onlude that a set-membership test plusa dedution hek are always suÆient to deide de�nability.We now give the omplexity of de�nability in the general ase, as well as insome restrited ases:Theorem 22 definability is oNP-omplete even under the restrition when� is a Blake formula.Proof:� Membership: Membership of definability to oNP omes diretly fromTheorem 21 whih gives a polynomial redution from definability to un-sat, whih is in oNP and oNP is well-known as losed under suh redu-tions.� Hardness: As to hardness, let us exhibit a polynomial redution from CNF-unsat to the restrition of definability to the Blake fragment: let ' =Vmi=1 i be a CNF formula from PROPPS suh that Var(') = fx1; : : : ; xng;w.l.o.g., we assume that ' does not ontain any lause implied by anotherlause (if it is not the ase, we �rst remove every properly implied lausefrom it; this an be easily ahieved in polynomial time). To ' we assoiate inpolynomial time the formula � = Vmi=1(i_new_y)^(i_:new_:y) wherenew is a fresh variable from PS n (Var(')[ fyg). We take advantage of thefollowing property, whih results diretly from the orretness of resolution-based prime impliates algorithms (like Tison's one [18℄): a CNF formula �ontains all its prime impliates if and only if whenever two lauses from ithave a resolvent Æ, there exists a lause � 2 � s.t. � j= Æ. By onstrution,every binary resolvent from lauses of � is tautologous, hene implied byany lause of �. As a onsequene, � ontains all its prime impliates, andsine it does not ontain properly implied lauses, it is a prime impliatesformula. Now, from Theorem 8, we have that X v� y if and only if Proj(�^y;X) j= :Proj(� ^ :y;X) if and only if 9 �X:(� ^ y) ^ 9 �X:(� ^ :y) is20



unsatis�able. With X = Var(') [ fnewg, we have that X v� y if andonly if 9 �X:(Vmi=1(i _ new _ y) ^ (i _ :new _ :y) ^ y) ^ 9 �X:(Vmi=1(i _new _ y) ^ (i _ :new _ :y) ^ :y) is unsatis�able. The latter formula isequivalent to 9 �X:(Vmi=1((i_:new)^y))^9 �X:(Vmi=1((i_new)^:y)), whihis itself equivalent to Vmi=1(i _ :new) ^ Vmi=1(i _ new) sine �X = fyg andy 62 Var(') [ fnewg. But this formula is also equivalent to ' (it is enoughto ompute all its resolvents over new and remove the implied lauses toget '). Hene ' is unsatis�able if and only if X v� y and this ompletesthe proof. 2This theorem generalizes Theorem 2.2 from [22℄: we relax here the (useless)assumption that � is a CNF formula for proving the membership to oNP andonstrain � to belong to the Blake fragment for the hardness part.Interestingly, it shows that onstraining � to belong to a propositional frag-ment that is tratable for sat (as it it the ase for IP) does not neessarilylead a tratable restrition of definability.We also identi�ed the omplexity of the minimal de�nability problem:Theorem 23 Let � 2 PROPPS, X � PS and y 2 PS. Cheking whether Xis a minimal de�ning family for y (minimal defining family) w.r.t. � isBH2-omplete.Proof:� Membership: X is a minimal de�ning family for y w.r.t. � if and only ifX v� y and 8X 0 � X, X 0 6v� y. Now, 8X 0 � X,X 0 6v� y holds if and only if8x 2 X, X nfxg 6v� y. Thus minimal defining family is the intersetionof a language in oNP and of a language in NP (sine the intersetion of alinear number of a languages in NP is in NP), whih proves membership toBH2.� Hardness: let ' and  be two propositional formulas; we assoiate to themin polynomial time the tuple L(h';  i) = h�; X; yi where� � = ((: ^ x)) y) ^ ((: ^ :x)) :y) ^ ((:')) y);� X = fxg;� x and y are new propositional symbols, not appearing in ' or  .It is easy to hek that fxg v� y if and only if  is unsatis�able or 'is unsatis�able. Now, ; v� y if and only if ' is unsatis�able. This meansthat fxg is a minimal de�ning family for y w.r.t. � if and only if  isunsatis�able and ' is satis�able, i.e., if and only if h';  i is an instane ofsat-unsat. Thus L is a polynomial (Karp) redution from sat-unsat tominimal defining family. 21



2When � is suh that deiding whether X v� y holds for any X � PS andy 2 PS is tratable, deiding whether X is a minimal de�ning family for yw.r.t. � for any X � PS and y 2 PS is tratable as well (sine X is a minimalde�ning family for y w.r.t. � if and only ifX v� y and 8x 2 X, Xnfxg 6v� y).On the other hand, as Theorem 23 suggests it, when X v� y is known tohold, deiding whether X is a minimal de�ning family for y w.r.t. � remainsomputationally hard (unless P = NP):Theorem 24 Let � 2 PROPPS, X � PS and y 2 PS suh that X v� y.Cheking whether X is a minimal de�ning family for y w.r.t. � is NP-omplete.Proof:� Membership: Membership onsists in heking that 8x 2 X, X n fxg 6v� y,whih requires to solve Card(X) (independent) instanes of definability.Sine definability is in NP, this is also the ase of the problem underonsideration.� Hardness: By redution from sat. Let ' 2 PROPPS suh that Var(') =fx1; : : : ; xng a non-empty set. To ' we assoiate in polynomial time � =('^ Vni=1(xi , x0i)) , y (where x01; : : : ; x0n are fresh atoms from PS nfx1; : : : ; xn; yg) andX = fx1; : : : ; xn; x01; : : : ; x0ng. By onstrution '^Vni=1(xi ,x0i) is a de�nition of y on X in �, hene X v� y. Now, ' is satis�able if andonly if X is a minimal de�ning family for y w.r.t. �. Indeed if ' satis�ablethen depends on all its variables X (i.e., there does not exist a formula  suh that  � ' ^ Vni=1(xi , x0i) and Var( ) � X). This means that theredoes not exist a de�nition of y on a proper subset of X in �, hene X isa minimal de�ning family for y w.r.t. �. If ' is unsatis�able, then � � :yand ; v� y, hene X does not minimally de�nes y w.r.t. �. 2Sine the transformation from formula de�nability to propositional symbolde�nability given by Lemma 7 an be ahieved in polynomial time and sinepropositional symbol de�nability is a restrition of formula de�nability, theseomplexity results apply as well to formula de�nability.Now, some tratable restritions for definability (hene forminimal defin-ing family) an be easily derived from Theorem 21. We �rst need to makepreise the onditions under whih suh restritions are based:De�nition 25 (stability onditions) Let C be a propositional fragment, i.e.,a subset of PROPPS. 22



� C is stable by expansion for partial renaming if and only if for every� 2 C and for every X � PS, we have � ^ rename(�; X) 2 C.� C is stable by onditioning if and only if for every � 2 C and  is asatis�able onjuntion of literals, then the onditioning � of � by  alsobelongs to C.Theorem 26 Let C be a propositional fragment satisfying the stability ondi-tions listed in De�nition 25. C is tratable for sat if and only if the restritionof definability when � belongs to C is tratable.Proof: Let us �rst show that if C is tratable for sat then the restritionof definability is tratable. The key is Theorem 21; there are two ases:if y 2 X (whih an be obviously deided in polynomial time), then any �de�nes y in terms of X; otherwise, Theorem 21 shows that X v� y if andonly if � ^ rename(�; X) j= y ) y0. This is equivalent to determine whether(�^rename(�; X)) is inonsistent where  is y^:y0. By onstrution, suh aformula (� ^ rename(�; X)) belongs to C whenever � belongs to C, beauseC is stable by onditioning and expansion by partial renaming; hene thesatis�ability of it an be deided in polynomial time.Conversely, if the restrition of definability when � belongs to C is tratablethen deiding whether ; v� new (with new 2 Ps n Var(�)) an be ahievedin polynomial time. But ; v� new if and only if � is unsatis�able. Hene thesatis�ability of � an be deided in polynomial time. 2Note that stability by expansion with partial renaming is stritly less de-manding than stability by (bounded) onjuntion; for instane, the lass ofrenamable Horn CNF formulas is stable by expansion for partial renaming,but it is not stable by bounded onjuntion.Interestingly, some quite general propositional fragments satisfy the stabil-ity onditions given in De�nition 25. This is the ase for the lass of q-Hornformulas (whih inludes both Krom CNF formulas, Horn CNF formulas andrenamable Horn CNF formulas as spei� ases) [6℄ and the lass of Deompos-able Negation Normal Form (DNNF) formulas (whih inludes several otherimportant fragments, namely the DNF formulas and the Ordered Binary De-ision Diagrams, OBDD<) [7,9℄.Lemma 27 The restritions of definability for whih � is a q-Horn CNFformula or a DNNF formula are in P.Proof: It is known that the lass of q-Horn CNF formulas is tratable forsat [6℄; and it is obvious that it is stable by onditioning; now, stability byexpansion with partial renaming omes from the fat that if V is a q-Hornrenaming for �, then the set of symbols V [ frename(x; ;) j x 2 V n Xg isa q-Horn renaming for � ^ rename(�; X). Finally, as to the DNNF lass, the23



result omes immediately from Propositions 4.1 and 5.1 from [25℄. 2Lemma 27 generalizes Theorem 3.1 and Corollary 3.2 from [22℄, whih on-ern Horn CNF formulas, as well as Theorem 7.1 and Corollary 7.2 from [15℄,whih onern q-Horn CNF formulas. It does not generalize Theorem 3.5 andCorollary 3.6 from [22℄ (resp. Theorem 7.3 and Corollary 7.4 from [15℄), show-ing the tratability of the restritions of definability when � is equivalentto a Horn CNF formula (resp. a q-Horn CNF formula) but is given by its(disjuntively interpreted) Horn (resp. q-Horn) envelope.Note that Theorem 21 an prove helpful for deiding in polynomial timewhether X v� y under restritions on � that are outside the sope of Lemma27. For instane, if � = (') y)^(y )  ) where ';  are Horn CNF formulassuh that y 62 Var(') [ Var( ), then X v� y an be deided in polynomialtime sine it amounts to determining whether ' j=  holds. However, � isneither a q-Horn CNF formula, nor a DNNF one.It is interesting to observe that the stability onditions given in De�nition 25are not satis�ed by every propositional fragment that is tratable for sat (forinstane the Blake fragment (formulas in prime impliates normal form) doesnot satisfy any of them).Now, what about the omplexity of unambiguous de�nability? Cheking that� is stronglyX-onsistent being signi�antly harder than heking de�nability,this arries over to unambiguous de�nability:Theorem 28 Let � 2 PROPPS, X � PS and y 2 PS.� Deiding whether � is strongly X-onsistent is �p2-omplete.� Deiding whether � unambiguously de�nes y in terms of X is �p2-omplete.Proof: Membership is easy in both ases. For deiding whether � is stronglyX-onsistent, hardness omes from this trivial redution from qbf2;8: 9A8B�is a valid instane of qbf2;8 if and only if � is strongly A-onsistent. Asfor deiding whether � unambiguously de�nes y in terms of X, it suÆes toremark that � unambiguously de�nes X in terms of X if and only if � isstrongly X-onsistent. 2Finally, knowing that � is strongly X-onsistent does not hange the om-plexity of de�nability:Theorem 29 Let � 2 PROPPS, X � PS and y 2 PS. Given that � isstrongly X-onsistent, deiding whether X v� y is oNP-omplete.Proof: Membership is obvious. Hardness omes from the following redutionfrom unsat: let ' be a propositional formula and z a fresh variable, not24



appearing in '; then ' 2 unsat if and only if ' _ z j= z, that is, if ; v'_z z,and learly, ' _ z is strongly ;-onsistent, beause ' _ z is onsistent. 24.2 Unde�nability, neessity and relevaneFrom Theorem 21, we an easily derive the following haraterization of un-de�nable propositional symbols, whih is surprisingly simple:Lemma 30 Let � 2 PROPPS and y 2 PS. y is unde�nable in � if and onlyif �y 0 ^ �y 1 is satis�able.Proof: By de�nition, we have that y is unde�nable in � if and only if Var(�)nfyg 6v� y. Sine y 62 Var(�) n fyg, from Theorem 21, we get that y is unde�n-able in � if and only if (�^rename(�;Var(�)nfyg)) 6j= (y_:y0). This is equiv-alent to state that (�^rename(�;Var(�)nfyg))^:y^y0 is satis�able. This isagain equivalent to state that the onditioning of �^rename(�;Var(�)nfyg)by the satis�able onjuntion of literals :y^y0 is satis�able. Now sine y0 (resp.y) does not our in � (resp. rename(�;Var(�) n fyg)), this onditioning isequivalent to �:y^rename(�;Var(�)nfyg)y0. Sine rename(�;Var(�)nfyg)y0is equivalent to �y (sine y is the unique symbol that has been renamed), weobtain that y is unde�nable in � if and only if �:y ^ �y is satis�able. 2Neessary propositional symbols an be haraterized by means of prime im-pliants in this simple and elegant way:Lemma 31 Let � 2 PROPPS and x 2 PS. x is de�nable in � if and only ifevery prime impliant of � ontains x or :x.Proof: The prime impliants of �, or equivalently of (:x^�x 0)_(x^�x 1),that ontain neither x nor :x, are the prime impliants of �x 0 ^ �x 1, seee.g., [8℄. Sine the latter formula is unsatis�able whenever x is de�nable in �(f. Lemma 30), every prime impliant of � ontains x or :x in this situation(and only if x is de�nable in �). 2We have also derived the following omplexity results:Theorem 32 Let � 2 PROPPS, X; Y � PS, and x; y 2 PS.(1) Deiding whether y is unde�nable in � (undefinability) is NP-omplete.(2) Deiding whether x is neessary for Y w.r.t. � (neessity) is NP-omplete. Hardness still holds if Y is a singleton.(3) Deiding whether x is relevant to Y w.r.t. � (relevane) is in �p2 and25



both NP-hard and oNP-hard, hene not in NP [ oNP (unless the poly-nomial hierarhy ollapses to the �rst level). Hardness still holds if Y isa singleton. 5Proof:(1) Membership is a orollary of Lemma 30. Hardness omes from the fol-lowing polynomial redution from sat: for any propositional formula ',let � = ' _ y where y 62 Var('); now, ' is satis�able if and only if y isunde�nable in �.(2) Membership is a orollary of Point (1) above and Point (2) of Lemma17. Hardness is a onsequene of Point (1) above and the equivalenebetween (1) and (4) in Corollary 18.(3) Membership is easy: guess B � Var(�) [ Y and hek using a linearnumber of alls to an NP orale that B is a minimal de�ning family forY w.r.t. �. NP-hardness omes from the following polynomial redutionfrom sat: for any propositional formula ', let � = '^y where y 62 Var(')and let Y = fyg; now, ' is satis�able if and only if y is relevant to Yw.r.t. �. oNP-hardness omes from the following polynomial redutionfrom unsat: for any propositional formula ' over X = fx1; : : : ; xng, let� = (z , y)^ (((z ^')_x), y); if ' is unsatis�able, then x is relevantto Y = fyg w.r.t. � sine fxg is a base for Y w.r.t. � in suh a ase;if ' is satis�able, then x is not relevant to Y w.r.t. �; indeed, � doesnot de�ne Y in terms of X [ fxg: let ~x be any X-model of '; we have~x^ :x^� � (z , y) showing that instantiating z is neessary to derivethe truth value of y. Hene, every base for Y w.r.t. � must ontain z;sine, by onstrution, fzg is a base for Y w.r.t. �, we onlude that fzgis the unique base for Y w.r.t. � when ' is satis�able, and this is enoughto onlude the proof. 2From the de�nition of unde�nable symbols and Lemma 17, it immediatelyfollows that the restritions of undefinability and of neessity for whih� satis�es the stability onditions listed in De�nition 25 are also in P. Suhrestritions also make the omplexity of relevane belonging to NP.4.3 Computing expliit de�nitionsTheorem 8 and its orollary give us several ways of omputing expliit de�-nitions. In partiular, they show that when X v� y, then the strongest def-inition of y on X in � is Proj(� ^ y;X), or equivalently in the ase y 62 X,5 We onjeture that this problem is �p2-omplete.26



Proj(�y 1; X).Suh a haraterization proves partiularly helpful when � is from a propo-sitional fragment allowing polytime forgetting and onditioning [26℄. As aonsequene of Theorem 8, we get:Lemma 33 Let C be any propositional fragment, whih is stable by ondition-ing and enables polytime forgetting (i.e., there exists a polytime algorithm forderiving a formula from C equivalent to Proj(�; X) for any formula � 2 Cand a set of symbols X). Then for any � 2 C, X � PS and y 2 PS suh thatX v� y, an expliit de�nition �X of y on X in � an be omputed in timepolynomial in j�j+ jXj.Proof: If y 2 X then y , y is an expliit de�nition of y onX in �. Otherwise,from Theorem 8, we have that Proj(�y 1; X) is an expliit de�nition of y onXin �. Under the assumptions of the lemma, a propositional formula equivalentto Proj(�y 1; X) an be omputed in polynomial time. 2Among the inuential propositional fragments enabling both operations inpolynomial time are the DNNF one [7,9℄ and the prime impliates one (see[26℄). For instane, Proj(� ^ y;X) an be omputed eÆiently by seletingfrom the set IP (�) of prime impliates of � ^ y those belonging to PROPX(see e.g., Lemma 8 from [27℄). One this formula has been omputed, the truthvalue of y for any ~x 2 
X an be omputed in linear time as the truth value ofProj(� ^ y;X)y 1. It is interesting to note that, while both fragments enablethe omputation of de�nitions of polynomial size when � is known to de�ney in terms of X, the restritions of definability they indue do not havethe same omplexity (unless P = NP). Thus determining whether X v� y istratable when � is a DNNF formula and oNP-omplete when � is a primeimpliates formula (see Lemma 27 and Theorem 22).The OBDD< fragment [28,29℄, a famous subset of DNNF, an also be onsid-ered, provided that the variables to be forgotten (i.e., all the variables exeptthose of X) are the �nal variables w.r.t. the total, strit ordering < on vari-ables, assoiated to the fragment [30,31℄. Aordingly, the previous orollaryompletes some results reported in [22℄ (resp. in [15℄), showing that when �is a Horn CNF formula (resp. a q-Horn CNF formula), then every variable yhas an expliit de�nition in � that is equivalent to a positive onjuntion ofliterals (resp. a onjuntion of literals or a lause) (hene, is of polynomial sizew.r.t. the input).While the possibility to ompute an expliit de�nition �X of y on X in �in polynomial time in some restrited ases (and to determine in polynomialtime that no suh de�nition exists otherwise), ensures that the size of thisde�nition is polynomially bounded, this annot be guaranteed in the generalase, unless P = NP (this is a diret onsequene of Theorem 22).27



Atually, the situation is even omputationally worse in the general ase, sinewe an prove that there is no way to ompute de�nitions in polynomial spaein the general ase (under the usual assumptions of omplexity theory).Theorem 34 Let � be a formula from PROPPS. Let X � PS and let y 2 PS.In the general ase, the size of any expliit de�nition �X of y in � is notpolynomially bounded in j�j+ jXj unless NP \ oNP � P/poly.Proof: We exploit a lose onnetion between the de�nability problem andthe interpolation one.Let ',  be two formulas from PROPPS. A formula � from PROPPS is aninterpolant of h';  i if and only if Var(�) � Var(') \ Var( ) and ' j= � and� j=  hold.Indeed, it is known that in the general ase the size of any interpolant � ofh';  i is not polynomially bounded in j'j + j j unless NP \ oNP � P/poly[32℄.To every pair h';  i, we an assoiate in polynomial time the pair h�; newiwhere � = ( ) new) ^ (new ) '), new 2 PS n (Var(') [ Var( )). Thepoint is that ' j=  if and only if X v� new. Moreover, every interpolantof h';  i is a de�nition of new on Var(') \ Var( ) w.r.t. � and the onversealso holds. Indeed, from Craig's interpolation theorem in propositional logi,' j=  holds if and only if there exists an interpolant of h';  i. Now:� If way. Let �X be any expliit de�nition of new on X = Var(') \ Var( )w.r.t. �. We have � j= new , �X . This is equivalent to state that (1)( ) new) ^ (new ) ') j= new ) �X , and (2) ( ) new) ^ (new )') j= �X ) new. (1) is equivalent to ( ) new)^ (new ) ')^new^:�Xis unsatis�able, or equivalently to new ^ ' ^ :�X is unsatis�able. Sinenew 62 Var( ) [ Var('), we have new 62 X. Aordingly, (1) is equivalentto '^:�X is unsatis�able, i.e., ' j= �X . From (2), it is easy to derive in asimilar way that �X j=  . Hene, any �X is an interpolant of h';  i.� Only-if way. Let �X be any interpolant of h';  i. By de�nition, we havej= (' ) �X) ^ (�X )  ). Subsequently, � � ( ) new) ^ (new )') ^ (') �X) ^ (�X )  ). We immediately obtain that � j= new , �X .Thus, X v� new and every interpolant of h';  i is an expliit de�nition ofnew on X = Var(') \ Var( ) w.r.t. �. 228



4.4 Computing a baseIn this setion, we present an algorithm for generating a base X for a proposi-tional symbol y w.r.t. a formula �, if any. X will be required to be ontainedin a �xed set of \aeptable" propositional symbols V �. We alled suh a basea V �- base. The role of V � is to fous on interesting bases, only; for instane,in a disriminability problem, V � will be the set of testable propositional sym-bols. In partiular, if one wants to know whether y is unde�nable or not in �,then V � is set to Var(�) n fyg.This algorithm (desribed by the funtion Find-A-Base below) is a greedyalgorithm whih onsiders all the propositional symbols of V � in any order(nevertheless the use of heuristis for determining this order may redue thesearh time) and throw them away when they are not neessary for forming abase from the urrent set of aeptable propositional symbols. The inputs ofFind-A-Base are V �, y and � and its output is a subset of V � or \failure".This algorithm alls a funtion Defines whih heks whether a given subsetof propositional symbols de�nes y w.r.t. �. How � is represented and how thefuntion Defines is implemented will be disussed separately.if not Defines(V �, y, �) thenreturn \failure"elseX  V �for x 2 V � doif Defines(X n fxg, y, �) thenX  X n fxgend ifend forreturn Xend ifThe following easy lemma states that the algorithm Find-A-Base is orret:Lemma 35 Provided that Defines(X; y;�) returns true if and only if X v�y, Find-A-Base returns a V �-base for y w.r.t. � if there exists suh a base,\failure" otherwise.Proof: Straightforward. 2This algorithm an readily be extended to an algorithm for generating a baseX for a set Y of propositional symbols w.r.t. a formula �. It suÆes to replaey by Y within eah all to Defines, and to extend the latter funtion to suhsets Y (this is obvious given the de�nition of impliit de�nability).29



It an also be extended to an algorithm for deriving all V �-bases for a setY , through a judiious way to searh the whole set 2V � (see the set enu-meration tree algorithm in [33℄). This task is learly more omputationallyexpensive than omputing a single base, espeially due to the number of suhbases (whih an be exponential, as explained before); however, as Theorem22 suggests it, its omputational ost is not solely due to the number of bases:Theorem 36 Unless P = NP, there exists no polynomial time algorithm foromputing a V �-base for a propositional symbol y w.r.t. a CNF formula �.Proof: Let ' be a CNF formula and let y 62 Var('); let V � = Var(') [ fyg;let � = ' ^ y. If ' is unsatis�able (resp. satis�able), then ; (resp. fyg) is theunique V �-base for y w.r.t. �. If a polynomial time algorithm for omputinga V �-base for y would exist, then after running it on y and �, there are twopossibilities: either the omputed base is ; and in this ase, ' is unsatis�able,or it is fyg and in this ase ' is satis�able. But this would be a polynomialtime algorithm for deiding whether a CNF formula ' is satis�able. Hene,sat would belong to P. 2Sine Theorem 36 also holds when y has a single V �-base w.r.t. �, it strength-ens Theorem 3.1 from [34℄ showing that there exists no polynomial total time(i.e., polynomial in the size of the input plus the size of the output) for om-puting all the minimal funtional dependenies whih hold in �, unless P =NP when � is a CNF formula. 6In pratie, the task of deriving all V �-bases for a set Y w.r.t. � an be im-proved in some situations by omputing �rst the set of all neessary variablesand the set of all relevant variables for Y w.r.t. �; all irrelevant variables anbe removed from V � before running the algorithm, and subsets of 2V � whihdo not ontain all neessary variables an be skipped during the searh.Clearly enough, the simple algorithm Find-A-Base above does not run inpolynomial time in the worst ase (sine this is not the ase for the funtionDefines, unless P = NP). This oheres with Theorem 36 showing that no suhalgorithm exists, unless P = NP.Now, there are several possible ways to implement the funtion Defines de-pending on the propositional fragment � belongs to. If � is a CNF formula,then one an easily implement Defines by taking advantage of a sat solver(and many suh solvers with impressive performanes are available nowadays).6 In the same paper, the authors also showed that, when � is given by the setof its models (over Var(�)) this task is polynomially equivalent to the problemof dualizing a positive theory (or, equivalently, of omputing the transversals ofa hypergraph), for whih no polynomial time algorithm is known but a pseudo-polynomial algorithm exists. 30



In the ase when the syntati restritions on � makes de�nability polynomial,then the searh for a V �-base is itself polynomial beause it onsists in jV �j+1de�nability tests. Additionally, when � belongs to a propositional fragmentsatisfying the onditions listed in De�nition 25, and X is a base for y w.r.t.�, the truth value of y of an be omputed in time polynomial in j�j+ jXj forevery X-world ~x. Indeed, heking whether �~x;:y is satis�able an be done inpolynomial time and the truth value of this test gives the truth value of y.5 De�nability and Hypothesis DisriminabilityIn this setion, we investigate a notion whih is losely related to de�nabilityand whih also has many pratial appliations ranging from fault isolationin diagnosis to deision under partial observability. Intuitively, given a set ofpropositional formulas H = fh1 : : : hng, whih represent mutually exlusiveand exhaustive hypotheses w.r.t. a knowledge base � (i.e., 8h; h0 2 H, ifh 6= h0 then � j= :(h ^ h0) and � j= Wni=1 hi) and a set X of available binarytests (enoded as propositional symbols), X disriminates H w.r.t. � if theknowledge of the truth values of propositional symbols of X helps �nding outwhih one of the hi is true.De�nition 37 (disrimination)� An input of a disrimination problem is a triple h�; X;Hi whih onsistsof a onsistent formula �, a set of test variables X s.t. X � Var(�) and aset H = fh1; : : : hng of formulas whih are mutually exlusive and exhaustivew.r.t. �.� X disriminates H w.r.t. � if and only if 8~x 2 
X 9h 2 H s.t. ~x^� j= h.� X disriminates minimally H w.r.t. � if and only if X disriminates Hw.r.t. � and no proper subset of X does it.There are many ativities (inluding diagnosis and deision under unertainty)where one wishes to disriminate among a set of hypotheses hi; i = 1; : : : ; ngiven a set of available tests. Let us illustrate it, fousing on the onsisteny-based diagnosis setting [35℄ (things are similar in the abdutive diagnosis set-ting with respet to the disrimination issue).De�nition 38 (minimal diagnosis) [35℄ Let hSD;COMPS;OBSi be theinput of a diagnosis problem (SD is a onjuntion of propositional formulasrepresenting the system desription, COMPS is a set of symbols denotingthe omponents of the system and OBS is a onjuntion of literals repre-senting the initial observations). A minimal onsisteny-based diagno-sis for hSD;COMPS;OBSi is a minimal subset � of COMPS suh thatSD ^OBS ^AB(�) is onsistent, where AB(�) is the formula V2�AB ^31



V2COMPSn�:AB  (eah AB  is a propositional symbol meaning that thatthe orresponding omponent  is \abnormal", i.e., it does not work properly).De�nition 39 (fault isolation) Let hSD;COMPS;OBSi be the input of adiagnosis problem, and TB = ft1; : : : tng a test base over some of the propo-sitional symbols of the system (set of available measures); we have TB �Var(SD[OBS). The input hSD;COMPS;OBS; TBi of the fault isolationproblem is the input h�; TB;HY P i of the disrimination problem de�ned by� = SD ^ OBS, TB, and HY P = fAB(�) j � is a minimal onsisteny-based diagnosis for hSD;COMPS;OBSig [ fV� :AB(�) j � is a minimalonsisteny-based diagnosis for hSD;COMPS;OBSig.By onstrution, HYP is a set of mutually exlusive and exhaustive hypothesesw.r.t. �.Interestingly, there is a diret link between hypothesis disriminability andde�nability:Theorem 40 Let h�; X;H = fh1; : : : ; hngi be a disrimination problem. Let�0 = � ^ Vni=1(hi , hinew), where eah hinew 2 PS n Var(f�g [ H) is a newsymbol. Then X disriminates H w.r.t. � if and only if �0 de�nes Hnew =fhinew j i 2 1 : : : ng in terms of X.Proof:()) If 8~x 2 
X 9h~x 2 H s.t. ~x^� j= h~x, then 8~x 2 
X (9h~x 2 H s.t. ~x^� j= h~xand 8h 2 H n fh~xg, we have ~x ^ � j= :h; indeed, � j= :h~x_ 6= h for everyh 2 H nfh~xg sine H ontains mutually exlusive hypotheses given �. Thus,8~x 2 
X 8h 2 H (~x ^ � j= h or ~x ^ � j= :h) holds. Hene �0 de�nes Hnewin terms of X.(() If �0 de�nes Hnew in terms of X then 8h 2 H 8~x 2 
X (~x ^ � j= hor ~x ^ � j= :h) holds. Equivalently, 8~x 2 
X 8h 2 H (~x ^ � j= h or~x ^ � j= :h) holds. Assume that 8~x 2 
X 8h 2 H ~x ^ � j= :h. Sine H isexhaustive given �, this is possible only if � is unsatis�able. In suh a ase,X trivially disriminates H w.r.t. �. In the remaining ase, we have that8~x 2 
X 9h 2 H ~x ^ � j= h. Hene X trivially disriminates H w.r.t. �. 2Clearly enough, one an take advantage of this polynomial redution and theresults reported in the previous setions to ompute disriminating sets andminimal disriminating sets. Thus, when dealing with mutually exlusive andexhaustive sets of hypotheses, bases an be used to design minimal test inputs([36℄ [37℄) in order to isolate faulty omponents in model-based diagnosis (inthis ase hypotheses orrespond to andidate diagnoses, and testable proposi-tional symbols orrespond most often to available measurements). Note that32



MIlraith's notions of relevant or neessary tests [37℄ have some ounterpartsin our framework (for instane, a neessary test orresponds to a propositionalsymbol without whih the hypothesis spae annot be disriminated). Lastly,the algorithm for omputing bases desribed before an be used to design on-ditional test poliies (where tests are performed sequentially and onditionedby the outomes of previous tests { see [38℄ for the ase of mutually exlusivehypotheses).Conversely, the de�nability problem an be also redued to the hypothesis dis-riminability problem (in presene of mutually exlusive hypotheses). Indeed,a onsistent formula � de�nes y in terms of X if and only if X disriminatesH = fy;:yg w.r.t. �. Sine both redutions are polytime ones, this is enoughto show that deiding whether X disriminates H w.r.t. � (hypothesis dis-riminability) is a oNP-omplete problem.6 Propositional De�nability and Reasoning about Ation and Change6.1 Determinism, exeutability, and suessor state axiomsIn this setion, we show that de�nability is also losely related to several issuespertaining to reasoning about ation and hange.Let F be a �nite set of uents (i.e., a subset of PS). De�ne Ft = fft j f 2 Fgand Ft+1 = fft+1 j f 2 Fg, two sets of uents indexed by time points. Let�� be a propositional ation theory desribing ation �, that is, a formula ofPROPFt[Ft+1, suh that (~ft; ~f 0t+1) j= �� holds if and only if ~f 0 is a possiblesuessor state of ~f by �. The transition funtion for � is the binary relationR� on 
F de�ned by R�(~f; ~f 0) i� (~ft; ~f 0t+1) j= ��. Then:� � is deterministi if for every ~f 2 
F there is at most one ~f 0 2 
F suhthat R�(~f; ~f 0).� � is fully exeutable if for every ~f 2 
F there is a ~f 0 2 
F suh thatR�(~f; ~f 0).Now, it is easy to hek that determinism and full exeutability are expressedsimply within the notions of de�nability and strong onsisteny:Lemma 41� � is deterministi if and only if Ft v�� Ft+1.� � is fully exeutable if and only if �� is strongly Ft-onsistent.Proof: Straightforward. 233



Putting these two points together, � is deterministi and fully exeutable ifand only if Ft+1 is unambiguously de�ned from Ft w.r.t. ��.Furthermore, even when an ation � is not \fully" deterministi, it may bedeterministi for some uents. Let us say that � is deterministi for f if andonly if for any ~f 2 
F and any two states ~f 01; ~f 02 2 
F suh that R�(~f; ~f 01) andR�(~f; ~f 02) then ~f 01 and ~f 02 give the same truth value to f . Clearly, de�nabilityallows for identifying the uents for whih � is deterministi. Moreover, when� is deterministi for f , any de�nition of ft+1 on Ft in �� orresponds to asuessor state axiom [39℄. (See also the �nal example of [11℄).Example 42 Let �, � and  be the ations de�ned by the following theories:�� = (at+1 , :at) ^ (at ) bt+1) ^ (bt ) bt+1) ^ ((:at ^ :bt)) :bt+1),�� = (at+1 , :at)^ (at ) bt+1)^ (bt ) (at+1^ bt+1))^ ((:at^:bt)) :bt+1),� = (at+1 , :at) ^ (at ) bt+1) ^ (bt ) bt+1).fat; btg v�� fat+1; bt+1g holds, therefore � is deterministi, and �� is stronglyfat; btg-onsistent, therefore � is fully exeutable. The suessor state axiomof q orresponds to the de�nition of q (it is unique up to logial equivalene,due to Theorem 20): bt+1 � (at _ bt).�� is not strongly fat; btg-onsistent, beause at ^ bt ^ �� is inonsistent.Therefore, � is not fully exeutable (but it is deterministi). There are twonon-equivalent de�nitions of uents at time t + 1, hene two suessor stateaxioms: bt+1 � (at _ bt) and bt+1 � (at , :bt).fat; btg v� fat+1; bt+1g does not hold, therefore  is not deterministi (but itis fully exeutable). However, it is deterministi as far as uent a is onerned,sine fat; btg v� at+1 holds.Note that usually, we are given initially a set of ausal rules from whih, usingsome ompletion proess (e.g., [40,41℄), we ompute suessor state axiomsand then �nally ��. Computing suessor state axioms as de�nitions is thereverse proess of the latter ompletion proess: from an ation theory alreadyompiled in its propositional form ��, we �nd the suessor state axioms (andthen possibly a ompat desription of the e�ets of � by ausal rules).Due to the onnetions made preise by Lemma 41, many notions and resultsof the paper apply to reasoning about ation.For instane, as a diret onsequene of Theorem 20 and Lemma 41, whenan ation is fully exeutable and deterministi for f , there exists only onesuessor state axiom for f (up to logial equivalene) { it is indeed the asefor �, but not for � in Example 42.De�nability proves also useful for haraterizing regression. Given a proposi-tional formula  2 PROPPS, the (dedutive) regression of  by � is the for-mula reg( ; �) (unique up to logial equivalene) suh that Mod(reg( ; �)) =34



S~f 0j= R�1� (~f 0). The abdutive regression of  by � is the formula Reg( ; �)(unique up to logial equivalene) suh that Mod(Reg( ; �)) = f~f j R�(~f) �Mod( )g. While we have Reg( ; �) j= reg( ; �) in the general ase, reg( ; �)and Reg( ; �) are equivalent when � is deterministi [41℄.For any formula ' from PROPF , let us note 't the formula from PROPFtobtained by substituting in a uniform way in ' every symbol a by at; we have:Theorem 43 Let � be a deterministi and fully exeutable ation. For anyuent f 2 F and any formula  2 PROPF , reg( ; �)t (or equivalently Reg( ; �)t)is equivalent to any de�nition of zt+1 on Ft in �� ^ ( t+1 , zt+1), where z isa fresh symbol (not in F ).Proof: First observe that from Theorem 20 and Lemma 41, it makes senseto onsider any de�nition (sine all of them are equivalent). Now, we havereg( ; �)t � Proj(��^ t+1; Ft) (see Proposition 5 in [41℄). The latter formulais also equivalent to Proj(�� ^ ( t+1 , zt+1) ^ zt+1; Ft). Finally, Theorem 8onludes the proof. 2This result an be generalized to ations that are not fully exeutable. We omitit for the sake of brevity, as well as appliations of de�nability to progressionand planning.6.2 Rami�ationAnother role of de�nability in reasoning about hange is in the handling oframi�ation, or indiret ation e�ets. A way to address the well-known prob-lem onsists in �nding out uents that an be derived from primitive ones(alled a frame) within the knowledge base, and to apply hange on reduedworld desriptions (omposed of primitive uents, only) [42℄. Many formalismsfor reasoning about hange, adhere to this approah that has been imple-mented in various planning systems (e.g., in the early system build [43℄).Let us desribe more formally the role of de�nability for dealing with therami�ation problem. Let F be a set of uents, and � be a propositionalformula expressing some onstraints on the values that uents may take (atany time point). Finding a partition of F between a set FP of primary uentsand a set FD of derived uents omes down to �nd a base for F with respetto �. Clearly, several hoies are generally possible, sine BS�(F ) is generallynot a singleton. The goal being to ome up with ation desriptions that areas onise as possible, a good heuristis onsists in hoosing a base of F ofminimum ardinality. 35



7 Yet Another Appliation to AI: Automated Reasoning
The notion of de�nability proves valuable in automated reasoning for severaltasks. For instane, identifying funtionally dependent propositional symbolsis a way for �nding out variable orderings that may prevent the OBDD rep-resentation of a formula from an exponential size blowup [44℄.
Identifying de�nability relations between variables an also prove useful forthe satis�ability issue. [45℄ have shown how de�nability an be exploited inloal searh for the satis�ability problem. The idea is to onentrate the searhon unde�nable variables, and to handle the remaining ones by exploiting de�n-ability relations. They reported some empirial results showing their algorithmdagsat valuable. [46℄ onsidered the role of de�nability relations (what theyalled gates) to redue the searh spae explored by omplete DPLL-like al-gorithms for sat. In a nutshell, the idea is that a de�nable variable shouldnot be eleted by a branhing rule before the variables from a base for ithave been assigned. Aordingly, the unde�nable variables of the input CNFformula � should be onsidered �rst. Sine deiding de�nability relations isa oNP-omplete problem, they onsidered only those relations that an bedisovered through (linear time) unit propagation of literals (suh relationsinlude equivalent literals whih have been onsidered in several other papers,see e.g., [47℄); in [46℄, the expliit de�nitions of variables whih are disov-ered take the form of a onjuntion of literals or a lause (depending on thesign of the propagated literal); interestingly, one the variables ourring inan expliit de�nition of y have been assigned, unit propagation in � provesenough to get y assigned as well. The resulting set of funtional dependeniesindues a \relevane" graph whose set of verties is Var(�) and the set ofars ontains (x; z) whenever one of the found de�nitions of variable z bearson variable x. When no unde�nable variables our in � (or the CNF for-mulas obtained by onditioning and simplifying � at subsequent steps of thealgorithm), the orresponding \relevane graph" ontains no soure (i.e., anode of inoming degree 0); then polynomial time heuristis for approximat-ing a minimal yle utset of the graph are used, and the variables from theresulting set (also known as a strong bakdoor) are assigned �rst. This ap-proah exhibited interesting performanes on some benhmarks used duringthe SAT'02 and SAT'03 ompetitions, and appeared as the best performeron hand-made instanes at the SAT'03 ompetition. [48℄ also reported on thepossible advantages and drawbaks of taking advantage of suh \independent(i.e., unde�nable) variable seletion" heuristis.36



8 Other Related WorkAs evoked previously, propositional de�nability is losely related to the notionsof strongest neessary and weakest suÆient onditions and to the notion offuntional dependenies in propositional logi. In this setion, we make preisethe main di�erenes between the ontribution of the present paper and the(losest) related ones from the literature. Before onluding the paper, wealso briey present some other related work, where de�nability is onsideredin more omplex logial settings than lassial propositional logi.8.1 Funtional dependeniesThe losest work to our own one is desribed in three papers by Ibaraki, Koganand Makino [22,15,34℄. In those papers, Ibaraki, Kogan and Makino presenteda number of results related to funtional dependenies.In [22,15℄, they reported many very interesting results about issues that wemainly ignored here. Among them is the ondensation issue: the basi ideaomes from the observation that when X v� y and y 62 X, then � an besimpli�ed by \removing" y (i.e., forgetting y in �), while keeping trak of anexpliit de�nition of y onX in �; at the semantial level, no loss of informationresults from suh a proess; ondensing � onsists in repeating it in an iterativeway, unless reahing a formula without any non-trivial funtional dependeny.While the result of the ondensing proedure is not unique in general (it de-pends on the funtional dependeny hosen at eah step), Ibaraki, Kogan andMakino have shown that it is unique when � is a Horn CNF formula or moregenerally a q-Horn CNF formula (given as suh or by its orresponding enve-lope), and that the ondensing proess an be ahieved in polynomial time insuh a ase. In [34℄, the authors onsidered the problem of omputing all theminimal funtional dependenies whih hold in �. Among other things, theyshowed that there exists an inrementally polynomial algorithm for ahievingthis goal when � is a Horn CNF formula, or more generally, a q-Horn CNFformula, while the problem is equivalent to the problem of dualizing a posi-tive theory when � is equivalent to a Horn CNF formula (resp. q-Horn CNFformula) but is given by the Horn (resp. q-Horn) envelope of its models.A major di�erene with our present work is that Ibaraki, Kogan and Makinomainly foused on Horn and q-Horn formulas, while our results are mainlyabout (unonstrained) propositional formulas. Atually, the few results from[22,15,34℄ whih are related to unonstrained propositional formulas have beenexhaustively listed in Setions 3.1, 4.1, and 4.3. Some of our results generalizetheir results (e.g., our Theorem 26 gives more tratable lasses for the (mini-37



mal) de�nability problem than just the Horn or q-Horn one), and some otherresults omplete them (e.g., the results presented in Setion 4.3 { about theomputation of expliit de�nitions { address the general ase and, again, giveother tratable lasses for this issue than just the Horn or q-Horn one).8.2 Strongest neessary and weakest suÆient onditionsThe work by Lin [11℄ is onerned with strongest neessary and weakest suf-�ient onditions.In Setion 3.2, we have shown lose onnetions between de�nability andstrongest neessary (SNC) / weakest suÆient onditions (WSC). While Propo-sition 2 from [11℄ haraterizes de�nability in terms of WSC and SNC, we haveshown how to haraterize all the de�nitions of y on X in � in terms of SNCand WSC.First, Theorem 10 shows how SNC and WSC an be haraterized using thenotion of projetion. It extends Theorem 2 from [11℄ by relaxing the assump-tion that y 2 Var(�) and y 62 X, and fous on the logially strongest (resp.weakest) SNC Proj(�^ y;X) (resp. WSC) :Proj(�^:y;X) of y on X w.r.t.�, up to logial equivalene. Then Theorem 8 shows that �X is a de�nitionof y on X in � if and only if Proj(� ^ y;X) j= �X j= :Proj(� ^ :y;X).8.3 De�nability in other logial settingsSine Padoa and Beth, there has been a onsiderable amount of work on de-�nability and interpolation in various lasses of logis. A logi is said to hasthe projetive Beth de�nability property if and only if impliit de�nabilityequals expliit de�nability. As pointed out in [5℄, impliit de�nability being asemantial (model-theoreti) onept whereas expliit de�nability is a synta-ti (proof-theoreti) onept, to say that both forms of de�nability oinide ina given logi is a good indiation that there is a good balane between syntaxand semantis in the logi. There are two main streams of works: de�nabilityin fragments of �rst-order logi, and de�nability in propositional modal log-is. We briey disuss these two streams of work, by pointing to some of themost relevant referenes. A omprehensive review an be found in Chapter2 of [5℄. See also the exellent book [49℄ for onnetions with seond orderquanti�ation in many propositional logis.De�nability in prediate logi starts with Padoa's work and, later on, Beth'stheorem. The latter [4℄ shows that �rst-order logi has the de�nability prop-erty. The question is now whether given fragments of �rst-order logi still have38



the property. For instane, the k-variable fragment of �rst-order logi fails tosatisfy it [?,?℄, as well as in a large number of �rst-order modal logis (e.g.,[?℄), while it holds in intuitionisti prediate logi [?,?℄. De�nability in frag-ments of �rst-order logi also has an impat on the database ommunity (e.g.,[50℄.)As for propositional logis, a large number thereof satisfy the de�nabilityproperty. For instane, Kreisel [?℄ proves that this is the ase for any logibetween lassial propositional logi and intuitionisti propositional logi. Alarge number of works has onentrated on modal logis (e.g. [?,51,52℄), andespeially (and more AI related) on desription logis [53,54℄ (the latter paperfouses on omputational issues; espeially, they give bounds on the size ofexpliit de�nitions).Our work, fousing on lassial propositional logi, is not of the same natureas most of the abovementioned works (apart of the works about desriptionlogis). Our fous is on the omputational issues of the problems related tode�nability, as well as on the appliations to arti�ial intelligene problems.9 ConlusionThis paper is entered on de�nability in standard propositional logi and re-ports a number of results issued from our omputation-oriented investigationof this notion. Espeially, we gave several haraterization results, and om-plexity results for de�nability and related notions. We also presented a numberof appliations of suh results in several AI problems, inluding hypothesis dis-rimination, reasoning about ations and automated reasoning.This work alls for a number of perspetives. First, an alternative way ofharaterizing logial de�nability (and related notions) would onsist in ex-pressing it in epistemi logi, remarking that for any propositional formula� 2 PROPPS, X � PS, and y 2 PS, we have X v� y holds if and only if(K�^Vx2X(Kx_K:x))) (Ky_K:y) is a theorem of S5. From this we anderive haraterizations for other notions, suh as minimal de�ning families,unde�nable variables, et. The results stated in the paper would then be easilyreformulated (in di�erent terms) in this setting.Seond, the notion of de�nability studied in this paper is rather strong, andit would be worth to relaxing the notion of de�nability. Doing so is not easyif the bakground knowledge � is still expressed by a mere propositional for-mula; now, if instead of � we have a probability distribution over 
, expressedsuintly for instane by a Bayesian network N whose indued probabilitydistribution is pN , then de�nability beomes itself a probabilisti, deision-39



theoreti notion: de�ning Æ(N;X; y) = P~x2
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