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Abstract
In elections, an alternative is said to be a Condorcet
winner if it is preferred to any other alternative by
a majority of voters. While this is a very attrac-
tive solution concept, many elections do not have a
Condorcet winner. In this paper, we propose a set-
valued relaxation of this concept, which we call a
Condorcet winning set: such sets consist of alter-
natives that collectively dominate any other alter-
native. We also consider a more general version of
this concept, where instead of domination by a ma-
jority of voters we require domination by a given
fraction θ of voters; we refer to this concept as θ-
winning set. We explore social choice-theoretic and
algorithmic aspects of these solution concepts, both
theoretically and empirically.

1 Introduction
When a group of agents is trying to decide on a joint plan, it is
often the case that no single alternative is consensual enough
to be chosen as the collective decision. For instance, this is
the case if consensual alternatives are identified with Con-
dorcet winners, since some profiles do not have Condorcet
winners. Similarly, in approval voting, we might view an al-
ternative as consensual if it is approved by all voters: again,
in many cases there will be no consensual alternative.

For instance, consider a common practical problem,
namely, the choice of a time slot for a departamental semi-
nar. Each faculty member approves of some of the time slots,
and disapproves of others, based on their teaching schedule,
so it is natural to make this choice using approval voting.
Now, ideally, research seminars in a department should al-
ways be held on the same day of the week and at the same
time. However, this requirement (R) will have the unfortu-
nate consequence that some members of the department will
always miss the research seminar, just because they teach ev-
ery week at that time. In this case, rather than choosing the
time slot acceptable to the highest number of voters, we might
instead relax requirement (R) and allow two slots to be cho-
sen, i.e., ask whether there is a set of two slots {s, s′} such
that every voter approves either s or s′. If such a pair exists,
then by alternating between s and s′, we can ensure that ev-
eryone can attend at least some seminars. More generally, we

are interested in a set of slots of minimal cardinality such that
every voter approves at least one slot in this set.

In this paper, we extend this approach to the more tradi-
tional model of voting, where voters submit rankings of can-
didates, and to a weaker notion of collective acceptability.
That is, we consider the problem of finding a set of alterna-
tives such that collectively the voters are happy enough with
at least one alternative in the set. Sets of alternatives are thus
considered disjunctively: a set of alternatives Y is deemed
to satisfy property π if, in the profile obtained by (a) replac-
ing the top alternative in Y in each vote by a new alternative
merge(Y ) (b) removing all alternatives in Y from each vote,
the property π is satisfied by the new alternative merge(Y ).

Applied to approval voting, and taking π to be “being ap-
proved by every voter”, this approach reduces to finding a
subset of alternatives Y such that every voter approves at least
one alternative in Y , which is the well-known hitting set prob-
lem. If π relates to the Borda count or, more generally, some
scoring function, then we recover some approaches to pro-
portional representation (see Section 6). If we take π to be
the Condorcet criterion, we get the following: Y is a Con-
dorcet winning set if for any candidate z in X \Y , a majority
of agents prefer some candidate in Y to z; in particular, a
Condorcet winner is a Condorcet winning set of size 1. This
concept can be generalized by varying the quota: a set S is
a θ-winning set, θ ∈ [0, 1), for an n-voter profile if for any
alternative x not in S, more than θn voters prefer some alter-
native in S to x; Condorcet winning sets correspond to θ = 1

2 .
In this paper we give a detailed study of θ-winning sets,

and, in particular, Condorcet winning sets. In Section 2 we
provide the main definitions. In Section 3 we relate our so-
lution concept to standard tournament solution concepts, and
briefly discuss its social choice-theoretic properties. In Sec-
tion 4 we study the corresponding optimization problem, with
a particular focus on its computational aspects. We comple-
ment our theoretical results with empirical analysis in Sec-
tion 5. Section 6 provides an overview of related work.

2 Definitions and Basic Properties
Throughout the paper, we consider elections with a set of can-
didates (alternatives) X = {x1, . . . , xm} and n voters. Each
voter i is associated with a linear order �i over X; the vector
〈�1, . . . ,�n〉 of all voters’ preferences is called a preference
profile and is usually denoted by P .



We say that an alternative x ∈ X beats another alternative
y ∈ X in a pairwise election if the majority of voters prefer
x to y; if exactly half of the voters prefer x to y, then x and
y are said to be tied. A candidate is said to be a Condorcet
winner if he wins all pairwise elections that he participates in.
Clearly, each election has at most one Condorcet winner, but
many elections have no Condorcet winners.

A voting correspondence is a mapping that given a prefer-
ence profile P over X outputs a non-empty subset X ′ ⊂ X;
the elements of X ′ are called the election winners.

We can now define the concepts that we intend to study.

Definition 1. Consider an n-voter election over X with a
preference profile P = 〈�1, . . . ,�n〉. A set Y ⊆ X is said
to θ-cover an alternative z ∈ X \ Y for θ ∈ [0, 1) if

#{i ∈ N | ∃y ∈ Y such that y �i z} > θn.

For θ = 1, we say that a set Y ⊆ X 1-covers an alternative
z ∈ X \ Y if #{i ∈ N | ∃y ∈ Y such that y �i z} = n.
Given a θ ∈ [0, 1], we say that Y is a θ-winning set if Y
θ-covers each alternative in z ∈ X \ Y .

A 1
2 -winning set is also called a Condorcet winning set.

Definition 1 can be rephrased as follows. Given a prefer-
ence profile P = 〈�1, . . . ,�n〉 over X and a set Y ⊆ X ,
consider a preference profile Pmerge(Y ) = 〈�′1, . . . ,�′n〉 over
the set of candidates (X \ Y ) ∪ {merge(Y )}, where for each
i = 1, . . . , n the preference order �′i is obtained from �i by
replacing the top candidate from Y with merge(Y ) and re-
moving all other candidates in Y . Then Y is a θ-winning set
for θ < 1 if and only if for each x ∈ X \ Y more than θn
voters prefer merge(Y ) to x. For θ = 1, this reformulation
is particularly convenient: Y is a 1-winning set if and only if
merge(Y ) is ranked first by all voters.

Given a θ ∈ [0, 1] and a k ∈ N, we will denote by
D(P, θ, k) the set of all θ-winning sets of size at most k in a
profile P ; also, we setD(P, θ) = ∪kD(P, θ, k). Observe that
the set family D(P, θ) is upwards-closed: if X ∈ D(P, θ)
and X ⊆ Y , then Y ∈ D(P, θ).

Typically, we are interested in winning sets that are as
small as possible and dominate all alternatives not in the set
as strongly as possible, i.e., we aim to minimize k and to
maximize θ. Thus, if we want to turn the mapping D(P, ·, ·)
into a voting correspondence, it is natural to do so by fix-
ing one of its arguments and optimizing over the other one.
That is, we can fix θ, let k(P, θ) be the smallest value of
k such that D(P, θ, k) 6= ∅, and output either a member
of D(P, θ, k(P, θ)) (chosen according to a pre-specified tie-
breaking rule) or the union of all sets in D(P, θ, k(P, θ)); the
latter option is particularly appealing if k(P, θ) = 1.

Optimizing over θ requires more care: while we can set
θ(P, k) = sup{θ | D(P, θ, k) 6= ∅}, since the defini-
tion of a θ-winning set involves a strict inequality, we have
D(P, θ(P, k), k) = ∅. Consequently, the voting correspon-
dence should output a set in D(P, θ(P, k) − ε, k) (or, just as
in the previous case, the union of all sets in D(P, θ(P, k) −
ε, k)), where ε is a sufficiently small parameter; for instance,
we can set ε = 1

n , where n is the number of voters in P .
The following examples illustrate the notions we have just

introduced.

θ = 1
2 , k = 1: If P has a Condorcet winner c, then
D(P, 12 , 1) = {{c}}, otherwise, D(P, 12 , 1) = ∅.

θ = 1: Let top(P ) be the set of all candidates ranked first by
some voter. Then D(P, 1) = {S ⊆ X | top(P ) ⊆ S}.

Interestingly, the voting correspondence that fixes k = 1
and optimizes over θ, i.e., maps P to ∪D(P, θ(P, 1)− 1

|P | , 1)

is well-known in the social choice literature under a different
name: namely, it is simply the Maximin correspondence. We
recall that under Maximin, a candidate’s score is the number
of votes he gets in his worst pairwise election, i.e., x’s score
equals miny∈X\{x}#{i | x �i y}; the Maximin winners are
the candidates with maximal score.
Proposition 1. Given an n-voter preference profile P , the set
D1(P ) = ∪D(P, θ(P, 1)− 1

n , 1) is exactly the set of Maximin
winners in P .

In the rest of the paper, we will focus on the case θ = 1
2 ,

i.e., the Condorcet winning sets. We will say that the Con-
dorcet dimension dimC(P ) of a given profile P is the size of
the smallest Condorcet winning set for P .

3 Social Choice-Theoretic Properties
In this section, we will discuss some social-choice theoretic
properties of Condorcet winning sets.

3.1 Condorcet Winning Sets and Tournament
Functions

Given a profile P , the majority graph G(P ) is the directed
graph (also called a weak tournament) with the vertex set X
that contains a directed edge from x to y if x beats y in a
pairwise election. If the number of voters is odd, then for
each pair (x, y) either (x, y) or (y, x) is present in the graph,
i.e., G(P ) is a tournament. A weighted majority graph labels
each edge (x, y) with the number of voters that prefer x to
y. A (weighted) tournament function is a mapping F defined
on preference profiles that satisfies F (P ) = F (Q) whenever
P and Q have the same (weighted) majority graph (see, e.g.,
[Laslier, 1997]). It turns out that the mapping that outputs all
Condorcet winning sets for a given profile is not a (weighted)
tournament function.
Proposition 2. The mapping P 7→ D(P, 12 ) is not a
(weighted) tournament function.

Proof. Consider the following 4-candidate, 3-voter profiles
P = 〈abcd, cdab, dabc〉 and Q = 〈acdb, bcda, dabc〉. The
weighted majority graphs for P and Q coincide: a beats b
and c, b beats c, c beats d, d beats a and b. However, {a, b} is
a Condorcet winning set for Q, but not for P .

There is, however, a certain similarity between Condorcet
winning sets and a classic tournament function, namely, the
dominating sets. Recall that a set of vertices S of a directed
graph G = (N,A) is called a dominating set if for every ver-
tex x ∈ N\S there exists a vertex y ∈ S such that the directed
edge (y, x) is in A. Now, clearly, if S is a dominating set for
G(P ), then S is a Condorcet winning set for P . However,
the proof of Proposition 2 shows that the converse is not true.
Another example, which illustrates that a minimal Condorcet



winning set for P can be very different from any dominating
set of G(P ), is provided by a preference profile P in which
all pairwise elections end in a tie, i.e., G(P ) consists of |X|
isolated vertices (for instance, a profile that contains a single
copy of each of the possible |X|! orderings of the candidates
has this property). Clearly, the only dominating set for G(P )
is X . In contrast, it is not hard to see that P has a Condorcet
winning set of size 2.
Proposition 3. If P is an n-voter preference profile over X
in which all pairwise elections are tied, then dimC(P ) = 2.

Proposition 3 shows that if we are looking for a small Con-
dorcet winning set, simply outputting the smallest dominating
set results in a very poor approximation factor. However, this
observation crucially relies on allowing ties among the candi-
dates. In Section 4, we will show that if there are no ties (this
happens, in particular, if the number of voters is odd), then
the dominating set-based approach works quite well.

3.2 Properties of Condorcet Winning Sets
Condorcet winning sets have several desirable social choice
properties. For instance, it is easy to see that they satisfy
monotonicity (we omit the proof due to lack of space).
Proposition 4. If an alternative x belongs to some minimal
Condorcet winning set, and some voter moves it up in her
preference ranking without changing the relative order of the
remaining alternatives, then x is contained in some minimal
Condorcet winning set in the resulting profile.
Further, Condorcet winning sets satisfy a weak form of con-
sistency, a.k.a. reinforcement (again we omit the proof).
Proposition 5. Let P1 and P2 be two profiles over a set of
candidates X . If Y is a Condorcet winning set for both P1

and P2, then it is also a Condorcet winning set for P1 ∪ P2.
However, minimal Condorcet winning sets do not satisfy
reinforcement: Let P1 = 〈abc, abc, bca, bca, cab, cab〉 and
P2 = 〈acb, acb, bac, bac, cba, cba, cba〉. Then {a, b} is a
minimal Condorcet winning set for P1 and P2, but not for
P1 ∪ P2, which has c as its Condorcet winner. Also, minimal
Condorcet winning sets do not satisfy efficiency: there ex-
ist profiles for which some minimal Condorcet winning set
contains a Pareto-dominated alternative. For instance, for
P = 〈abcd, cdab, dabc〉, the set {b, d} is a minimal Con-
dorcet winning set, although b is dominated by a.

4 Computing Condorcet Winning Sets
In this section, we focus on the problem of finding small Con-
dorcet winning sets. Since we limit ourselves to the case of
θ = 1

2 , we use the term “cover” instead of “ 1
2 -cover” through-

out this section. Also, we assume that the number of voters is
odd and hence no pairwise election ends in a tie.

The first issue we consider, which turns out to be surpris-
ingly difficult, is constructing a profile with high Condorcet
dimension. To start, observe that the Condorcet dimension
of a given profile P is 1 if and only if P has a Condorcet
winner. Thus, it is easy to construct a profile whose di-
mension exceeds 1: consider, for instance, a Condorcet cy-
cle of size m, m ≥ 3, i.e., an m-voter, m-candidate pref-
erence profile, where the i-th voter places the j-th candi-
date in position i + j − 1 mod m (e.g., for m = 3 the

Condorcet cycle over the candidate set X = {1, 2, 3} is
given by P = 〈123, 231, 312〉). P has no Condorcet win-
ner, so dimC(P ) ≥ 2. In fact, it is not hard to see that
dimC(P ) = 2: indeed, candidates 1 and dm/2e form a dom-
inating set in G(P ) (and hence a Condorcet winning set).

To exhibit a profile of Condorcet dimension 3. we borrow
some terminology from linear algebra. Let A = (aij) be a
p-by-q matrix and let B = (bk`) be a p′-by-q′ matrix. Recall
that the Kronecker product of A and B is a pp′-by-qq′ matrix
A⊗B of the form(

a11B . . . a1qB
. . . . . . . . .
ap1B . . . apqB

)
.

Now, any n-voter, m-candidate preference profile P can be
associated with an m-by-n matrix M(P ): the i-th entry in
the j-th column of M(P ) is the name of the candidate that
is ranked in the i-th position by the j-th voter. Thus, given a
preference profile P over a set of candidates X and a prefer-
ence profileQ over a set of candidates Y , we can define P⊗Q
as a preference profile over the set of candidates X × Y (i.e.,
pairs of the form (xi, yj), where xi ∈ X , yj ∈ Y ) that corre-
sponds to the matrix M(P ) ⊗M(Q), where we identify the
product xiyj with the pair (xi, yj).

For instance, if P = 〈321, 231〉 is a preference profile over
X = {1, 2, 3} and Q = 〈12, 21〉 is a preference profile over
Y = {1, 2}, then the first voter in P ⊗ Q has the preference
ordering (3, 1)(3, 2)(2, 1)(2, 2)(1, 1)(1, 2) over the candidate
set {(i, j) | i = 1, 2, 3, j = 1, 2}.

We are now ready to present our example. Let P be the
Condorcet cycle over X = {0, 1, 2} and let Q be the Con-
dorcet cycle over Y = {0, 1, 2, 3, 4}; the preference profile
P ⊗ Q over Z = X × Y is given in the table below, where
we identify the element (i, j) with 5i+ j + 1.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 3 4 5 1 7 8 9 10 6 12 13 14 15 11
3 4 5 1 2 8 9 10 6 7 13 14 15 11 12
4 5 1 2 3 9 10 6 7 8 14 15 11 12 13
5 1 2 3 4 10 6 7 8 9 15 11 12 13 14
6 7 8 9 10 11 12 13 14 15 1 2 3 4 5
7 8 9 10 6 12 13 14 15 11 2 3 4 5 1
8 9 10 6 7 13 14 15 11 12 3 4 5 1 2
9 10 6 7 8 14 15 11 12 13 4 5 1 2 3
10 6 7 8 9 15 11 12 13 14 5 1 2 3 4
11 12 13 14 15 1 2 3 4 5 6 7 8 9 10
12 13 14 15 11 2 3 4 5 1 7 8 9 10 6
13 14 15 11 12 3 4 5 1 2 8 9 10 6 7
14 15 11 12 13 4 5 1 2 3 9 10 6 7 8
15 11 12 13 14 5 1 2 3 4 10 6 7 8 9

Proposition 6. dimC(P ⊗Q) = 3.

Proof. It is immediate that P ⊗Q does not have a Condorcet
winner. Now, suppose that S is a Condorcet winning set of
size 2 for P ⊗ Q, and set Zi = {(i, j)} for i = 0, 1, 2. As-
sume first that S ⊆ Zi for some i = 0, 1, 2; by symmetry
we can assume that S ⊆ Z0. Then the candidates in Z2 are
not covered, a contradiction. Thus, we have |S ∩ Zi| = 1,
|S ∩ Zj | = 1 for some i 6= j; again, by symmetry we can as-
sume that |S ∩Z0| = 1, |S ∩Z1| = 1, i.e., S ∩Z1 = {(0, k)}



S ∩ Z1 = {(1, `)} for some k, ` = 0, . . . , 4. Now, consider
the candidate (0, k′), where k′ = k − 1 mod 5. This can-
didate is ranked below (0, k) in 3 votes and below (1, `) in 5
votes; however, there is 1 vote where (0, k′) is ranked below
both (0, k) and (1, `), so altogether (0, k′) is ranked below
(0, k) or (1, `) in 7 votes, i.e., (0, k′) is not covered.

Finally, it is easy to see that P⊗Q has a Condorcet winning
set of size 3: for instance, take any set S such that S∩Zi 6= ∅
for i = 0, 1, 2 or, e.g., the set {(0, 0), (0, 2), (1, 0)}.

We do not know whether there exists a profile of dimen-
sion 3 with less than 15 candidates; finding a profile with the
smallest number of candidates that admits a profile of dimen-
sion 3 or more is an interesting research question.

One might think that by taking a Kronecker product of s
sufficiently long Condorcet cycles, we always get a profile of
Condorcet dimension s+ 1. However, it turns out that this is
not the case: a product of a Condorcet cycle and any profile
has Condorcet dimension that does not exceed 3.

Proposition 7. Let P be a Condorcet cycle over a set of can-
didates X = {x1, . . . , xm}, m ≥ 2, and let Q be some other
profile over a set of candidates Y = {y1, . . . , yk}. Then
dimC(P ⊗Q) ≤ 3.

Proof. The set {(x1, y1), (xi, y1), (xm, y1)}, where i =
bm2 c + 1, is a Condorcet winning set for P ⊗ Q. Indeed,
consider any z = (xk, y`) ∈ X × Y . If 1 < k ≤ i, then z
is covered by (x1, y1), if i < k ≤ m, then z is covered by
(xi, y1), and if k = 1, then z is covered by (xm, y1).

In fact, we do not have any examples of preference profiles
of Condorcet dimension 4 or higher: while we do believe that
profiles of arbitrarily high dimension exist, we were not able
to construct them. Finding such profiles is perhaps the most
important open question suggested by this work.

One could try to solve this problem using the probabilis-
tic method [Alon and Spencer, 1992], i.e., generate a prefer-
ence profile randomly and argue that it has high Condorcet
dimension with non-zero probability. However, the following
proposition shows that a direct application of the probabilistic
method fails in our case.

Proposition 8. Let P be an n-voter preference profile over
a set of candidates X , |X| = m, obtained by drawing each
of the n votes uniformly at random from all permutations of
X , and let S = {a, b} be an arbitrary 2-element subset of X .
With probability at least 1−me−n/24 the set S is a Condorcet
winning set for P .

Proof. Consider an arbitrary candidate c ∈ X \ {a, b}. Any
given vote is equally likely to contain any of the six possi-
ble permutations of a, b, and c. Therefore, with probability 2

3
in any given vote either a or b is ranked above c. Hence, the
expected number of votes where a or b beats c is 2n

3 . By Cher-
noff bound (see, e.g., [Alon and Spencer, 1992]), the proba-
bility that c is ranked above a and b in at least n2 votes is at
most e−n/24. Thus, by the union bound, the probability that
{a, b} is not a Condorcet winning set is at mostme−n/24.

Thus, for a random profile, every pair of alternatives is
likely to be a Condorcet winning set; a fortiori, with high
probability every alternative is contained in some minimal
Condorcet winning set; this includes Pareto-dominated alter-
natives and Condorcet losers1. Therefore, the voting corre-
spondence that returns all alternatives contained in a minimal
Condorcet winning set is not particularly attractive; we will
return to this issue at the end of Section 5.

The probability distribution used in the proof of Proposi-
tion 8 is known as the impartial culture, and is standard in the
probabilistic analysis of elections. Thus, Proposition 8 shows
that when the number of voters is large, under the impar-
tial culture assumption a random preference profile has Con-
dorcet dimension 2 or lower with very high probability; this
is also confirmed by our empirical analysis (see Section 5). In
fact, applying the union bound once again, we see that with
probability at least 1 −m3e−n/24 any set of size 2 is a Con-
dorcet winning set. Note also that our argument can be gen-
eralized to θ-winning sets, giving us the following corollary.
Corollary 1. Let P be a random n-voter preference profile
over a setX , |X| = m, generated under the impartial culture
assumption, and let S be a k-element subset of X . Then S
is a ( k

k+1 − ε)-winning set for P with probability at least

1−m · exp(− kε2

(k+1)n ).

To upper-bound the Condorcet dimension of a given pro-
file, we will exploit the connection between Condorcet win-
ning sets and dominating sets in tournaments that was estab-
lished in the previous section. [Megiddo and Vishkin, 1988]
show that any tournament on m vertices has a dominating set
of size dlog2me: the proof proceeds by selecting the vertex
with the highest outdegree, which by the pigeonhole principle
dominates at least half of the other vertices, deleting this ver-
tex and all vertices dominated by it, and recursively applying
the same procedure to the remaining graph. This implies the
following result.
Proposition 9. For any profile P with n = 2r+1 voters and
m candidates, we have dimC(P ) ≤ dlog2me.

From the algorithmic perspective, it is natural to ask if we
can efficiently compute the Condorcet dimension of a given
profile; we will refer to this problem as CONDORCET DI-
MENSION. Now, if, contrary to our hypothesis, there exists
a constant K such that dimC(P ) ≤ K for every profile P ,
CONDORCET DIMENSION can be solved in polynomial time
by direct enumeration. However, even if this is not the case,
CONDORCET DIMENSION is nevertheless unlikely to be too
hard for profiles with an odd number of voters. Indeed, by
Proposition 9, if no pairwise election is tied, we can find a
Condorcet winning set by enumerating all subsets of candi-
dates of size logm. Thus, CONDORCET DIMENSION can
be solved in time poly(n,m)mlogm, i.e., it is in the class
QP of quasi-polynomial problems, exactly like the minimum
dominating set problem [Megiddo and Vishkin, 1988]. It is
strongly believed that QP is strictly contained in NP. There-
fore, for elections with an odd number of candidates CON-
DORCET DIMENSION is unlikely to be NP-complete2.

1We thank an anonymous reviewer for this remark.
2We thank Bruno Escoffier for pointing this out.



Observe also that Proposition 8 shows that our problem ad-
mits an algorithm whose running time is polynomial in ex-
pectation under the impartial culture assumption when n is
sufficiently large relative to m. Indeed, given a profile P ,
we pick an arbitrary set of candidates of size 2, and check if
it is a Condorcet winning set for P . If this is not the case,
we perform the same check for all 2m subsets of candidates.
The probability that we execute the second stage is at most
me−n/24, so the expected running time of this algorithm is
polynomial in n and m as long as n ≥ 24m. In fact, if the
number of voters is odd, we can restrict ourselves to sets of
size at most logm during the second stage of the algorithm.

We can use the same technique to find θ-winning sets for
θ 6= 1

2 . However, as θ increases, we may have to search larger
sets during the first step of the algorithm; indeed, Corollary 1
suggests that one should search all sets of size d θ

1−θ e.

5 Empirical Analysis
In this section, we provide an empirical analysis of θ-winning
sets under the impartial culture assumption.

In our first experiment, we generate r preference profiles
with m voters and n candidates, for various values of r, m,
and n, and compute the Condorcet dimension of each pro-
file. In all of our experiments, the Condorcet dimension was
either 1 or 2. While this is consistent with Proposition 8, it
is remarkable that not even a single profile of a higher di-
mension has been discovered. The results of our experiments
are summarized in Table 1. Note that the probability that the
Condorcet dimension of a given profile exceeds 1 is simply
the probability of the Condorcet paradox, which has been
extensively studied in the social choice literature (see, e.g.,
[Jones et al., 1995]). Our results are consistent with those re-
sults, lending credence to our implementation. Observe also
the drastic difference between the columns that correspond to
odd and even values of n, which is especially pronounced for
larger values of m.

dimC n = 10 n = 11 n = 20 n = 21 n = 100 n = 101

m = 15, 1 14.5 43.4 19.0 41.3 28.0 39.6
r = 106 2 85.5 56.6 81.0 58.7 72.0 60.4

m = 50, 1 4.3 19.7 6.0 17.6 10.0 16.0
r = 106 2 95.7 80.3 94.0 82.4 90.0 84.0

m = 100, 1 2.2 11.9 3.1 10.2 5.3 9.1
r = 105 2 97.8 88.1 96.9 89.8 94.7 90.9

Table 1: Proportion of profiles with Condorcet dimension≤ 2

Figure 1 maps the probability that a fixed set of candidates
of size k, k = 1, 2, 3, 4, is a Condorcet winning set for a 30-
candidate election, as a function of the number of voters. We
see that for k > 1 this probability quickly reaches 1.

Figure 2 plots the empirical distribution of θ(k) for m =
30, n = 100 and k = 1, 2, 3, 4. Our results agree with Corol-
lary 1: the values of θ(k) are clustered around k

k+1 .
Figure 3 shows the distribution of the number of 2

3 -winning
sets of size 2 for 20 candidates and a varying number of vot-
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Figure 1: Probability that a fixed set of size k is a Condorcet
winning set as a function of n
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Figure 2: Empirical distribution of θ(k)
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Figure 3: Empirical distribution of the number of 2
3 -winning

sets of size 2

ers. We see that out of (19 · 20)/2 pairs of candidates, with a
high probability, only a few of them are 2

3 -winning sets, with
a peak at 1. Therefore, using θ = 2

3 , we are likely to get
an output consisting of a unique winning set of size 2. For
other values of k, the situation is similar; we simply need to
replace 2

3 by k
k+1 . Therefore, if we search for a Condorcet

set of minimal size k, and among those, one that maximizes
θ(P, k), then, in most cases, k = 2 and θ = 2

3 will give us a
solution. This analysis suggests an appealing way of turning
θ-winning sets into a voting correspondence (though this is
not the primary focus of our work): if we list all candidates
contained in some smallest 2

3 -winning set, with high proba-
bility, we output a set of size 2.

6 Related Work
There are two streams of research that are closely related to
the problem we consider. The first stream deals with the prob-



lem of proportional representation, where each voter speci-
fies a subset of candidates that would represent her, and the
goal is to build a committee of a given cardinality that repre-
sents every voter. There are approaches to this problem that
select a subset of candidates in a disjunctive manner. Specifi-
cally, [Chamberlin and Courant, 1983] propose a method that
chooses the highest-ranking alternative from the given set in
each vote, but uses the Borda score as a basis: a set Y receives
maxy∈Y sB(y, i) points from a voter i, where sB(y, i) is the
number of candidates that i ranks below y, and the winning
committee of size k is the k-element set of candidates with the
highest score. Note that, unlike in our work, the committee
size k is determined exogenously. This method is discussed
in several subsequent papers, such as [Monroe, 1995]. [Pro-
caccia et al., 2008] show that computing a winning commitee
of size k is NP-hard. A relaxation of this approach which
allows for tradeoffs between committee size and quality of
representation is proposed by [Lu and Boutilier, 2010], who
also address the computation of optimal sets and show exper-
imental results on real-world data sets.

A second stream of research has the same starting point
as we do, namely, finding a generalization of the notion
of a Condorcet winner to committees, or, more generally,
sets of alternatives. There are two possible ways to do so:
[Gerhrlein, 1985] assumes, like us, that individual prefer-
ences are given by rankings of the alternatives, and defines
a Condorcet committee as a set of alternatives Y ⊆ X such
that every alternative in Y beats every alternative in X \ Y .
This method has a conjunctive interpretation, as opposed to
the disjunctive interpretation of Condorcet winning sets: Y is
a Condorcet committee if for every alternative x ∈ X\Y , and
for every alternative y ∈ Y , a majority of voters prefers al-
ternative y to x. Thus, a Condorcet committee is a Condorcet
winning set, but the converse is not necessarily true.

As Condorcet committees of size k do not always exist,
except for the trivial case k = m, [Ratliff, 2003] suggests
to generalize the Dodgson and Kemeny voting rules to sets
of alternatives. For instance, the extension of Dodgson com-
putes, for a given subset Y , the minimal number of elemen-
tary swaps in the votes needed to make Y a Condorcet com-
mittee. The second approach, taken by [Fishburn, 1981] pro-
ceeds by defining a preference relation on sets of alternatives
and looks for a subset that beats any other subset in a pairwise
election. The two ways are bridged by [Kaymak and San-
ver, 2003], who examine under which condition a Condorcet
committee in the sense of Fishburn can be derived from pref-
erences over single alternatives. [Ratliff, 2003] gives further
discussion on committee selection. It is not immediately clear
whether a Condorcet committee in the sense of [Fishburn,
1981] and [Kaymak and Sanver, 2003] is also a Condorcet
winning set: the answer depends on the extension function
used for lifting the preference relation from single alterna-
tives to subsets; for standard extension functions (e.g., ones
that compare the sets lexicographically or according to their
best element) this is not the case.

In a sense, we reconciliate both approaches discussed
above: Condorcet winning sets treat the alternatives disjunc-
tively, yet satisfy the Condorcet criterion for sets of alterna-
tives of size 1.

7 Conclusions
We have defined a framework for defining collectively pre-
ferred sets of alternatives that is based on generalizing the
Condorcet principle. Such a framework is useful whenever it
makes sense to output several alternatives, such as committee
elections, multiple recommendations to groups of users (as
in [Lu and Boutilier, 2010]), choices of time slots for regular
events, etc. A number of questions remain open for future
work; perhaps the most pressing of them is whether there ex-
ist profiles of Condorcet dimension 4 or higher.
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