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Abstract
We investigate the computational complexity of testing dominance and consistency in CP-nets.

Previously, the complexity of dominance has been determined for restricted classes in which the
dependency graph of the CP-net is acyclic. However, there are preferences of interest that define
cyclic dependency graphs; these are modeled with general CP-nets. In our main results, we show
here that both dominance and consistency for general CP-nets are PSPACE-complete. We then
consider the concept of strong dominance, dominance equivalence and dominance incomparability,
and several notions of optimality, and identify the complexity of the corresponding decision prob-
lems. The reductions used in the proofs are from STRIPS planning, and thus reinforce the earlier
established connections between both areas.

1. Introduction

The problems of eliciting, representing and computing with preferences over a multi-attribute do-
main arise in many fields such as planning, design, and group decision making. However, in a
multi-attribute preference domain, such computations may be nontrivial, as we show here for the
CP-net representation. Natural questions that arise in a preference domain are, “Is this item pre-
ferred to that one?”, and “Is this set of preferences consistent?” More formally, a set of preferences
is consistent if and only if no item is preferred to itself. We assume that preferences aretransitive,
i.e., if α is preferred toβ, andβ is preferred toγ, thenα is preferred toγ.

An explicit representation of a preference ordering of elements, also called outcomes, of such
multi-variable domains is exponentially large in the number of attributes. Therefore, AI researchers
have developed languages for representing preference orderingsin a succinct way. The formalism
of CP-nets (Boutilier, Brafman, Hoos, & Poole, 1999) is among the most popular ones. A CP-net
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provides a succinct representation of preference ordering on outcomes in terms of local preference
statements of the formp : xi > x j , wherexi ,x j are values of a variableX andp is a logical condition.
Informally, a preference statementp : xi > x j means that givenp, xi is strictly preferred tox j ceteris
paribus, that is,all other things being equal. The meaning of a CP-net is given by a certain or-
dering relation, calleddominance, on the set of outcomes, derived from such reading of preference
statements. If one outcome dominates another, we say that the dominant one ispreferred.

Reasoning about the preference ordering (dominance relation) expressed by a CP-net is far from
easy. The key problems includedominance testingandconsistency testing. In the first problem,
given a CP-net and two outcomesα andβ, we want to decide whetherβ dominatesα. The second
problem asks whether there is a dominance cycle in the dominance ordering defined by an input
CP-net, that is, whether there is an outcome that dominates (is preferred to)itself.

We study the computational complexity of these two problems. The results obtained prior to this
work concerned only restricted classes of CP-nets, all requiring that the graph of variable depen-
dencies implied by preference statements in the CP-net beacyclic. Under certain assumptions, the
dominance-testing problem is inNP and, under some additional assumptions, even inP (Domshlak
& Brafman, 2002; Boutilier, Brafman, Domshlak, Hoos, & Poole, 2004a).We show that the com-
plexity in the general case isPSPACE-complete, and this holds even for the propositional case, by
exhibiting in Section 4 aPSPACE-hardness proof for dominance testing.

We then turn to consistency testing. While acyclic CP-nets are guaranteed to be consistent, this
is not the case with general CP-nets (Domshlak & Brafman, 2002; Brafman& Dimopoulos, 2004).
In Section 5, we show that consistency testing is as hard as dominance testing.

In the following two sections we study decision problems related to dominance and optimality
in CP-nets. First, we consider the complexity of deciding strict dominance, dominance equivalence
and dominance incomparability of outcomes in a CP-net. Then, we study the complexity of deciding
the optimality of outcomes, and the existence of optimal outcomes, for several notions of optimality.

To prove the hardness part of the results, we first establish thePSPACE-hardness of some prob-
lems related to propositional STRIPS planning. We then show that these problems can be reduced
to CP-net dominance and consistency testing by exploiting connections between actions in STRIPS
planning and preference statements in CP-nets.

The complexity results in this paper address CP-nets whose dominance relation may contain
cycles. Most earlier work has concentrated on the acyclic model. However, as argued earlier, for
instance by Domshlak and Brafman (2002), acyclic CP-nets are not sufficiently expressive to cap-
ture human preferences on even some simple domains.1 Consider, for instance, a diner who has
to choose either red or white wine, and either fish or meat. Given red wine, they prefer meat, and
conversely, given meat they prefer red wine. On the other hand, given white wine, they prefer fish,
and conversely, given fish they prefer white wine. This gives a consistent cyclic CP-net, and there is
no acyclic CP-net giving rise to the same preferences on outcomes. So, such cyclicity of preference
variables does not necessarily lead to a cyclic order on outcomes.

1. We do not mean to say that cyclic CP-nets are sufficient to captureall possible human preferences on simple domains
– this is obviously not true. However, we note that every preference relation extendsthe preference relation induced
by some CP-net with possibly cyclic dependencies. Not only is this property no longer true when cyclic dependencies
are precluded but, in the case of binary variables, the number of linear orders that extends some acyclic CP-net is
exponentially smaller than the number of all linear orders (Xia, Conitzer, &Lang, 2008).
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We assume some familiarity with the complexity classPSPACE. We refer to Papadimitriou
(1994) for details. In particular, we later use the identitiesNPSPACE = PSPACE = coPSPACE.

In several places, we will consider versions of decision problem, in which input instances are
assumed to have some additional property. Such problems are usually formulated in the following
way: “Q, givenR”2. We first note that “Q, givenR” is not the same problem as “Q andR”. Let
us recall the definition of a decision problem as presented by Ausiello et al.(1999). Adecision
problemis a pairP = 〈IP ,YP 〉 whereIP is a set of strings (formally, a subset ofΣ∗, whereΣ is a
finite alphabet), The decision problemP = 〈IP ,YP 〉 reads as follows: given a stringx∈ IP , decide
whetherx∈YP . A problem〈IP ,YP 〉 is in a complexity classC if the languageYP ⊆ Σ∗ is in C (this
does not depend onIP ). A problem〈IQ ,YQ 〉 is reducible to〈IP ,YP 〉 if there is a polynomial-time
functionF such that (1) for everyx ∈ IQ , F(x) ∈ IP , and (2) for everyx ∈ IQ , x ∈ YQ if and only
if F(x) ∈ YP . Thus, if P is the decision problem “Q, given R”, then IP is the set of all strings
satisfyingR, while YP is the set of all strings satisfyingR∩Q. For all such problems, it is granted
that the input belongs toR; to solve them we do not have to check that the input string is indeed
an element ofR. Such problems “Q, givenR” are widespread in the literature. However, in most
cases,R is a very simple property, that can be checked in polynomial (and often linear) time, such
as “decide whether a graph possesses a Hamiltonian cycle, given that every vertex has a degree at
most 3”. Here, however, we will consider several problems “Q, givenR” whereR itself is not in the
classP (unless the polynomial hierarchy collapses). However, as we said above, the complexity of
recognizing whether a given string is inR does not matter. In other words, the complexity of “Q,
givenR” is the same, whetherR can be recognized in unit time or isPSPACE-complete. We will
come back to this when the first such problem appears in the paper (cf. theproof of Proposition 5).
In no case that we consider is the complexity ofRgreater than the complexity ofQ.

A part of this paper (up to Section 5) is an extended version of our earlierconference publication
(Goldsmith, Lang, Truszczýnski, & Wilson, 2005). Sections 6 and 7 are entirely new.

2. Generalized Propositional CP-Nets

LetV = {x1, . . . ,xn} be a finite set ofvariables. For each variablex∈V, we assume a finitedomain
Dx of values. An outcomeis ann-tuple(d1, . . . ,dn) of Dx1 ×·· ·×Dxn.

In this paper, we focus onpropositionalvariables: variables withbinary domains. LetV be a
finite set of propositional variables. For everyx ∈ V, we setDx = {x,¬x} (thus, we overload the
notation and writex both for the variable and for one of its values). We refer tox and¬x as literals.
Given a literall we write¬l to denote the dual literal tol . The focus on binary variables makes the
presentation clearer and has no impact on our complexity results.

We also note that in the case of binary domains, we often identify an outcome withthe set of
its values (literals). In fact, we also often identify such sets with the conjunctions of their elements.
Sets (conjunctions) of literals corresponding to outcomes are consistent and complete.

A conditional preference rule(sometimes, apreference ruleor just arule) overV is an expres-
sion p : l > ¬l , wherel is a literal of some atomx∈V andp is a propositional formula overV that
does not involve variablex.

2. In the literature one often finds the following formulation: “Q, even if R”, which does not have exactly the same
meaning as “Q, givenR”. Specifically, when saying “Q is NP-complete, even ifR”, one means “Q is NP-complete,
and Q, givenR is NP-complete as well”.
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In the rest of the paper, we need to refer to two different languages: aconditional preference
language where for every (binary) variablex, the conditional preference table forx needs to specify
a preferred value ofx for every possible assignment of its parent variables, and a more general
language where the tables may be incomplete (for some values of its parents, the preferred value of
x may not be specified) and/or locally inconsistent (for some values of its parents, the table may both
contain the information thatx is preferred and the information that¬x is preferred). We call these
languages respectively CP-nets and GCP-nets (for “generalized CP-nets”). Note that GCP-nets are
not new, as similar structures have been discussed before (Domshlak, Rossi, Venable, & Walsh,
2003). The reason why we use this terminology (“CP-nets” and “GCP-nets”) is twofold. First, even
if the assumptions of completeness and local consistency for CP-nets are sometimes relaxed, most
papers on CP-nets do make them. Second, we could have used “CP-nets”and “locally consistent,
complete CP-nets” instead of “GCP-nets” and “CP-nets”, but we felt ournotation is simpler and
more transparent.

Definition 1 (Generalized CP-net) A generalized CP-netC (for short, aGCP-net) over V is a
set of conditional preference rules. For x∈ V we define p+C (x) and p−C (x), usually written just:
p+(x) and p−(x), as follows: p+C (x) is equal to the disjunction of all p such that there exists a rule
p : x > ¬x in C; p−C (x) is the disjunction of all p such that there exists a rule p: ¬x > x in C. We
define the associated directed graph GC (thedependency graph) over V to consist of all pairs(y,x)
of variables such that y appears in either p+(x) or p−(x).

In our complexity results we will also need the following representation of GCP-nets: a GCP-
netC is said to be inconjunctive formif C only contains rulesp : l > ¬l such thatp is a (possibly
empty) conjunction of literals. In this case all formulasp−(x), p+(x) are in disjunctive normal form,
that is, a disjunction of conjunctions of literals (including⊤ – the empty conjunction of literals).

GCP-nets determine a transitive relation on outcomes, interpreted in terms of preference. A
preference rulep : l > ¬l represents the statement “given thatp holds,l is preferred to¬l ceteris
paribus”. Its intended meaning is as follows. If outcomeβ satisfiesp andl , thenβ is preferred to
the outcomeα which differs fromβ only in that it assigns¬l to variablex. In this situation we say
that there isan improving flipfrom α to β sanctionedby the rulep : l > ¬l .

Definition 2 If α0, . . . ,αm is a sequence of outcomes with m≥ 1 and each next outcome in the
sequence is obtained from the previous one by an improving flip, then we say thatα0, . . . ,αm is an
improvingsequence fromα0 to αm for the GCP-net, and thatαm dominatesα0, writtenα0 ≺ αm.

Finally, a GCP-net isconsistentif there is no outcomeα which is strictly preferred to itself, that
is, such thatα ≺ α.

The main objective of the paper is to establish the complexity of the following two problems
concerning the notion of dominance associated with GCP-nets (sometimes under restrictions on the
class of input GCP-nets).

Definition 3
GCP-DOMINANCE: given a GCP-net C and two outcomesα andβ, decide whetherα ≺ β in C, that
is, whetherβ dominatesα in C.
GCP-CONSISTENCY: given a GCP-net C, decide whether C is consistent.
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GCP-nets extend the notion of CP-nets (Boutilier et al., 1999). There are two properties of
GCP-nets that are essential in linking the two notions.

Definition 4
A GCP-net C over V islocally consistentif for every x∈V, the formula p−C (x)∧ p+

C (x) is unsatisfi-
able. It islocally completeif for every x∈V, the formula p−C (x)∨ p+

C (x) is a tautology.

Informally, local consistency means that there is no outcome in which bothx is preferred over
¬x and¬x is preferred overx. Local completeness means that, for every variablex, in every outcome
eitherx is preferred over¬x or¬x is preferred overx.

Definition 5 (Propositional CP-net) A CP-netover the set V of (propositional) variables is a lo-
cally consistent and locally complete GCP-net over V .

It is not easy to decide whether a GCP-net is actually a CP-net. In fact, thetask is coNP-
complete.

Proposition 1 The problem of deciding, given a GCP-net C, whether C is a CP-net iscoNP-
complete.

Proof: Deciding whether a GCP-netC is a CP-net consists of checking local consistency and local
completeness. Each of these tasks amounts ton validity tests (one for each variable). It follows that
deciding whether a GCP-net is a CP-net is the intersection of 2n problems fromcoNP. Hence, it is
in coNP, itself. Hardness comes from the following reduction fromUNSAT. To any propositional
formulaϕ we assign the CP-netC(ϕ), defined by its set of variablesVar(ϕ)∪{z}, wherez 6∈Var(ϕ),
and the following tables:

• for any variablex 6= z: p+
C(ϕ)(x) = ⊤; p−C(ϕ)(x) = ⊥;

• p+
C(ϕ)(z) = ¬ϕ; p−C(ϕ)(z) = ⊥.

For any variablex 6= z, we havep+
C(ϕ)(x)∧ p−C(ϕ)(x) =⊥; moreover,p+

C(ϕ)(z)∧ p−C(ϕ)(z) =⊥. There-

fore, C(ϕ) is locally consistent. Now, for any variablex 6= z, we havep+
C(ϕ)(x)∨ p−C(ϕ)(x) = ⊤.

Moreover,p+
C(ϕ)(z)∨ p−C(ϕ)(z) = ¬ϕ. Thus,C(ϕ) is locally complete if and only ifϕ is unsatisfiable.

It follows thatC(ϕ) is a CP-net if and only ifϕ is unsatisfiable. �

Many works on CP-nets make use of explicit conditional preference tables that listeverycom-
bination of values of parent variables (variables on whichx depends)exactlyonce, each such com-
bination designating eitherx or ¬x as preferred.3 Clearly, CP-nets in this restricted sense can be
regarded as CP-nets in our sense that, for every variablex, satisfy the following condition:

if y1, . . . ,yk are all the atoms appearing inp+(x) and p−(x) theneverycomplete and
consistent conjunction of literals over{y1, . . . ,yn} appears as a disjunct in exactly one
of p+(x) andp−(x).

3. There are exceptions. Some are discussed for instance by Boutilier et al. (2004a) in Section 6 of their paper.
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Under this embedding, the concepts of dominance and consistency we introduced here for GCP-nets
generalize the ones considered for CP-nets as defined by Boutilier et al.(2004a).

ProblemsCP-DOMINANCE andCP-CONSISTENCYare defined analogously to Definition 3. In
the paper we are interested in the complexity of dominance and consistency problems for both GCP-
nets and CP-nets. Therefore, the matter of the way in which these nets (especially CP-nets, as for
GCP-nets there are no alternative proposals) are represented is important. Our representation of
CP-nets is often more compact than the one proposed by Boutilier et al. (2004a), as the formulas
p+(x) and p−(x) implied by the conditional preference tables can often be given equivalent, but
exponentially smaller, disjunctive normal form representations. Thus, when defining a decision
problem, it is critical to specify the way to represent its input instances, as the representation may
affect the complexity of the problem. Unless stated otherwise, we assume thatGCP-nets (and thus,
CP-nets) are represented as a set of preference rules, as described in Definition 1. Therefore, the
size of a GCP-net is given by the total size of the formulasp−(x), p+(x), x∈V.

We now note a key property of consistent GCP-nets, which we will use several times later in the
paper.

Proposition 2 If a GCP-net C is consistent then it is locally consistent.

Proof: If C is not locally consistent then there exists a variablex and an outcomeα satisfying
p−C (x)∧ p+

C (x). Thenα ≺ α can be shown by flippingx from its current value inα to the dual value
and then flipping it back: sinceα satisfiesp−C (x)∧ p+

C (x), and sincep−C (x)∧ p+
C (x) does not involve

any occurrences ofx, both flips are allowed. �

Finally, we conclude this section with an example illustrating the notions discussedabove.

Example 1 Consider a GCP-net C on variables V= {x,y} with four rules, defined as follows:
x : y> ¬y; ¬x : ¬y> y; y : ¬x > x; ¬y : x > ¬x. We have p+(y) = x, p−(y) = ¬x, p+(x) = ¬y and
p−(x) = y. Therefore C is locally consistent and locally complete, and so is a CP-net.

There is a cycle of dominance between outcomes: x∧ y ≺ ¬x∧ y ≺ ¬x∧¬y ≺ x∧¬y ≺ x∧ y,
and so C is inconsistent. This shows that consistency is a strictly stronger property than local
consistency.

3. Propositional STRIPS Planning

In this section we derive some technical results on propositional STRIPS planning which form the
basis of our complexity results in Sections 4 and 5. We establish the complexity ofplan existence
problems for propositional STRIPS planning under restrictions on input instances that make the
problem of use in the studies of dominance and consistency in GCP-nets.

Let V be a finite set of variables. AstateoverV is a complete and consistent set of literals over
V, which we often view as the conjunction of its members. A state is therefore equivalent to an
outcome, defined in a CP-nets context.

Definition 6 (Propositional STRIPS planning) By a propositional STRIPS instancewe mean a
tuple〈V,α0,γ,ACT〉, where

1. V is a finite set of propositional variables;
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2. α0 is a state over V , called theinitial state;

3. γ is a state called thegoal;4

4. ACT is a finite set ofactions, where each action a∈ ACT is described by a consistent con-
junction of literals pre(a) (a precondition) and a consistent conjunction of literals post(a) (a
postcondition, or effect).5

An action a isexecutablein a stateα if α |= pre(a). Theeffectof a in stateα, denoted by eff(a,α),
is the stateα′ containing the same literals asα for all variables not mentioned in post(a), and
the literals of post(a). We assume that an action can beappliedto any state, but that it does not
change the state if its preconditions do not hold: ifα 6|= pre(a) (given that states are complete,
this is equivalent toα |= ¬pre(a)) then eff(a,α) = α. This assumption has no influence as far as
complexity results are concerned.

ThePROPOSITIONAL STRIPS PLAN EXISTENCEproblem, orSTRIPS PLANfor short, is to de-
cide whether for a given propositional STRIPS instance〈V,α0,γ,ACT〉 there is a finite sequence
of actions leading from the initial stateα0 to the final stateγ. Each such sequence is aplan for
〈V,α0,γ,ACT〉. A plan isirreducibleif every one of its actions changes the state.

We assume, without loss of generality, that for any actiona, no literal inpost(a) appears also
in pre(a); otherwise we can omit the literal frompost(a) without changing the effect of the action;
if post(a) then becomes an empty conjunction, the actiona can be omitted fromACT as it has no
effect.

We have the following result due to Bylander (1994).

Proposition 3 (Bylander, 1994) STRIPS PLANis PSPACE-complete.

Typically, propositional STRIPS instances do not require that goals be states. Instead, goals are
defined as consistent conjunctions of literals that do not need to be complete. In such a setting, a
plan is a sequence of actions that leads from the start state to a state in which the goal holds. We
restrict consideration tocompletegoals. This restriction has no effect on the complexity of the plan
existence problem: it remainsPSPACE-complete under the goal-completeness restriction (Lang,
2004).

3.1 Acyclic STRIPS

Definition 7 (Acyclic sets of actions)A set of actions ACT (we use the same notation as in Defi-
nition 6) isacyclic if there is no stateα such that〈V,α,α,ACT〉 has a non-empty irreducible plan,
that is to say, if there are no non-trivial directed cycles in the graph on states induced by ACT.

We will now establish the complexity of the following problem:

ACTION-SET ACYCLICITY: given a setACTof actions, decide whetherACT is acyclic.

Proposition 4
ACTION-SET ACYCLICITY is PSPACE-complete.

4. Note that in standardSTRIPSthe goal can be a partial state. This point is discussed just after Proposition 3.
5. We emphasize that we allow negative literals in preconditions and goals. Some definitions ofSTRIPSdo not allow

this. This particular variant ofSTRIPSis sometimes called PSN (propositionalSTRIPSwith negation) in the literature.
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Proof: The argument for the membership inPSPACE is standard; we nevertheless give some details.
We will omit such details for further proofs of membership inPSPACE. The following nondeter-
ministic algorithm decides thatACT has a cycle:

guessα0;
α := α0;
repeat

guess an actiona∈ ACT;
α′ := eff(a,α);
α := α′

until α = α0.

This algorithm works in nondeterministic polynomial space (because we only need to storeα0,
α andα′), which shows thatACTION-SET ACYCLICITY is in NPSPACE, and therefore inPSPACE,
sinceNPSPACE = PSPACE. Thus,ACTION-SET ACYCLICITY is in coPSPACE, hence inPSPACE,
sincecoPSPACE = PSPACE.

We will now show that thecomplementof theACTION-SET ACYCLICITY problem isPSPACE-
hard by reducing theACYCLIC STRIPS PLANproblem to it.

Let PE = 〈V,α0,γ,ACT〉 be an instance of theACYCLIC STRIPS PLANproblem. In particular,
we have thatACT is acyclic. Leta be a new action defined bypre(a) = γ andpost(a) = α0. It is easy
to see thatACT∪{a} is not acyclic if and only if there exists a plan forPE. Thus, thePSPACE-
hardness of thecomplementof the ACTION-SET ACYCLICITY problem follows from Proposition
5. Consequently, theACTION-SET ACYCLICITY problem iscoPSPACE-hard. SincePSPACE =
coPSPACE, theACTION-SET ACYCLICITY problem isPSPACE-hard, as well. �

Next, we consider the STRIPS planning problem restricted to instances thathave acyclic sets of
actions. Formally, we consider the following problem:

ACYCLIC STRIPS PLAN: Given a propositional STRIPS instance〈V,α0,γ,ACT〉 such
thatACT is acyclic andα0 6= γ, decide whether there is a plan for〈V,α0,γ,ACT〉

This is the first of our problems of the form “Q, givenR” that we encounter and it illustrates
well the concerns we discussed at the end of the introduction. Here,R is the set of all propositional
STRIPS instances〈V,α0,γ,ACT〉 such thatACT is acyclic, andQ is the set of all such instances for
which there is a plan for〈V,α0,γ,ACT〉. Checking whether a given propositional STRIPS instance
is actually acyclic is itselfPSPACE-complete (this is what Proposition 4 states), but this does not
matter when it comes to solvingACYCLIC STRIPS PLAN: when considering an instance ofACYCLIC

STRIPS PLAN, we already know that it is acyclic (and this is reflected in the reduction below).

Proposition 5
ACYCLIC STRIPS PLANis PSPACE-complete.

Proof: The argument for the membership inPSPACE is standard (cf. the proof of Proposition 4). To
provePSPACE-hardness, we first exhibit a polynomial-time reductionF from STRIPS PLAN. Let
PE= 〈V,α0,γ,ACT〉 be an instance ofSTRIPS PLAN. The idea behind the reduction is to introduce
a counter, so that each time an action is executed, the counter is incremented. The counter may
count up to 2n, wheren = |V|, making use ofn additional variables. The counter is initialized to
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0. Once it reaches 2n−1 it can no longer be incremented and no action can be executed. Hence,
the set of actions in the resulting instance ofSTRIPS PLANis acyclic: we are guaranteed to produce
an instance ofR. To describe the reduction, we writeV as{x1, . . . ,xn}. We defineF(PE) = PE′ =
〈V ′,α′

0,γ′,ACT′〉 as follows:

• V ′ = {x1, . . . ,xn,z1, . . . ,zn}, wherezi are new variables we will use to implement the counter;

• α′
0 = α0∧¬z1∧·· ·∧¬zn;

• γ′ = γ∧z1∧·· ·∧zn;

• for each actiona∈ ACT, we include inACT′ n actionsai , 1≤ i ≤ n, such that:

– for i ≤ n−1 :

{

pre(ai) = pre(a)∧¬zi ∧zi+1∧·· ·∧zn

post(ai) = post(a)∧zi ∧¬zi+1∧·· ·∧¬zn, and

– for i = n :

{

pre(an) = pre(a)∧¬zn

post(an) = post(a)∧zn.

• Furthermore, we include inACT′ n actionsbi , 1≤ i ≤ n, such that:

– for i ≤ n−1 :

{

pre(bi) = ¬zi ∧zi+1∧·· ·∧zn

post(bi) = zi ∧¬zi+1∧·· ·∧¬zn, and

– for i = n :

{

pre(bn) = ¬zn

post(bn) = zn.

We will denote states overV ′ by pairs(α,k), whereα is a state overV andk is an integer, 0≤
k≤ 2n−1. We viewk as a compact representation of a state over variablesz1, . . . ,zn: assuming that
the binary representation ofk is d1 . . .dn (with dn being the least significant digit),k represents the
state which containszi if di = 1 and¬zi , otherwise. For instance, letV = {x1,x2,x3}. Then we have
V ′ = {x1,x2,x3,z1,z2,z3}, and the state¬x1∧x2∧x3∧z1∧¬z2∧z3 is denoted by(¬x1∧x2∧x3,5).

We note that the effect ofai or bi on state(α,k) is either void, or increments the counter:

eff(ai ,(α,k)) =

{

(eff(a,α),k+1) if ai is executable in(α,k)
(α,k) otherwise

eff(bi ,(α,k)) =

{

(α,k+1) if bi is executable in(α,k)
(α,k) otherwise

Next, we remark that at most oneai and at most onebi are executable in a given state(α,k).
More precisely,

• if k< 2n−1, then exactly onebi is executable in(α,k); denote byi(k) the index such thatbi(k)

is executable in(α,k) (this index depends only onk). We also have thatai(k) is executable in
(α,k), provided thata is executable inα.

• if k = 2n−1, then noai and nobi is executable in(α,k).
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Now we show thatPE′ is acyclic. Assumeπ is an irreducible plan for〈V ′,α′,α′,ACT′〉. Let
α′ = (α,k). If k < 2n − 1, thenπ is empty, since any action inACT′ in any state either is non-
executable or increments the counter, and an irreducible plan contains onlyactions whose effect is
non-void. Ifk = 2n−1, then no action ofACT′ is executable inα′ and againπ is empty. Thus, there
exists no non-empty irreducible plan for〈V ′,α′,α′,ACT′〉, and this holds for allα′. ThereforePE′

is acyclic.
We now claim that there is a plan forPE if and only if there is a plan forPE′. First, assume that

there is a plan inPE. Let π be a shortest plan inPE and letm be its length (the number of actions
used). We havem≤ 2n−1, since no state alongπ repeats (otherwise, shorter plans thanπ for PE
would exist). Letα0,α1, . . . ,αm = γ be the sequence of states obtained by executingπ. Let a be the
action used in the transition fromαk to αk+1. Sincek < 2n−1 (becausem≤ 2n−1 andk≤ m−1),
there is exactly onei, 1≤ i ≤ n, such that the actionai applies at the state(α,k) overV ′. Replacing
a with ai in π yields a plan that when started at(α0,0) leads to(αm,m) = (γ,m). Appending that
plan with appropriate actionsbi to increment the counter to 2n−1 yields a plan forPE′. Conversely,
if τ is a plan forPE′, the plan obtained fromτ by removing all actions of the formb j and replacing
each actionai with a is a plan forPE, sinceai has the same effect onV asa does. Thus, the claim
follows. �

We emphasize that this reductionF from STRIPS PLANto ACYCLIC STRIPS PLAN (or, equiv-
alently, toSTRIPS PLANgiven ACTION-SET ACYCLICITY) works because it satisfies the following
two conditions:

1. for every instancePE of STRIPS PLAN, F(PE) is an instance ofACYCLIC STRIPS PLAN(this
holds because for everyPE, F(PE) is acyclic);

2. for everyPE of STRIPS PLAN, F(PE) is a positive instance ofACYCLIC STRIPS PLANif and
only if PE is a positive instance ofSTRIPS PLAN.

3.2 Mapping STRIPS Plans to Single-Effect STRIPS Plans

Versions of theSTRIPS PLANand ACYCLIC STRIPS PLAN problems that are important for us al-
low only actions with exactly one literal in their postconditions in their input propositional STRIPS

instances. We call such actionssingle-effect actions.6 We refer to the restricted problems asSE

STRIPS PLANandACYCLIC SE STRIPS PLAN, respectively.
To provePSPACE-hardness of both problems, we describe a mapping fromSTRIPSinstances to

single-effectSTRIPSinstances.7

Consider an instancePE= 〈V,α0,γ,ACT〉 of theSTRIPS PLANproblem, whereACT is not nec-
essarily acyclic. For each actiona∈ ACT we introduce anewvariablexa, whose intuitive meaning
is that actiona is currently being executed.

We setX =
V

a∈ACT¬xa. That is,X is the conjunction of negative literals of all the additional
variables. In addition, for eacha ∈ ACT we setXa = xa ∧

V

b∈ACT−{a}¬xb. We now define an
instancePE′ = 〈V ′,α′

0,γ′,S(ACT)〉 of theSE STRIPS PLANproblem as follows:

6. Such actions are also called “unary” actions in the planning literature. Westick to the terminology “single-effect”
although it is less commonly used, simply because it is more explicit.

7. PSPACE-completeness of propositionalSTRIPSplanning with single-effect actions was proved already by Bylander
(1994). However, to deal with acyclicity we need to give a different reduction than the one used in that paper.
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• Set of variables:V ′ = V ∪{xa : a∈ ACT};

• initial state:α′
0 = α0∧X;

• goal state:γ′ = γ∧X;

• set of actions:S(ACT) = {ai : a∈ ACT, i = 1, . . . ,2|post(a)|+1}.
Let a be an action inACT such thatpost(a) = l1∧·· ·∧ lq, wherel1, . . . , lq are literals.

– For i = 1, . . . ,q, we define an actionai by setting:

pre(ai) = pre(a)∧X∧¬l i ; post(ai) = xa.

The role ofai is to enforce thatXa holds afterai is successfully applied, and in this
way to enable “starting the execution ofa”, provided that no action is currently being
executed, that theith effect ofa is not already true, and that the precondition ofa is true.

– For i = q+1, . . . ,2q, we define actionai by setting:

pre(ai) = Xa; post(ai) = l i .

The role ofai is to make theith effect ofa true.

– Finally, we definea2q+1 by setting:

pre(a2q+1) = Xa∧ l1∧·· ·∧ lq; post(a2q+1) = ¬xa.

Thus,a2q+1 is designed so thatX holds aftera2q+1 is successfully applied; that is,a2q+1

“closes” the execution ofa, thus allowing for the next action to be executed.

Let π be a sequence of actions inACT. We defineS(π) to be the sequence of actions inS(ACT)
obtained by replacing each actiona in π by a1, . . . ,a2q+1, whereq = |post(a)|. Now consider a
sequenceτ of actions fromS(ACT). Remove fromτ every actionai such thati 6= 2|post(a)|+ 1,
and replace actions of the forma2|post(a)|+1 by a. We denote the resulting sequence of actions from
ACT by S′(τ). We note thatS′(S(π)) = π. The following properties then hold.

Lemma 1 With the above definitions,

(i) if π is a plan for PE then S(π) is a plan for PE′;

(ii) if τ is an irreducible plan for PE′ then S′(τ) is an irreducible plan for PE;

(iii) ACT is acyclic if and only if S(ACT) is acyclic.

Proof: (i) Let a ∈ ACT be an action, letα be a state and letβ be the state obtained fromα by
applying a. Let θ be theV ′-state obtained by applying the sequence of actions〈a1, . . . ,a2q+1〉
(whereq = |post(a)|) to the stateα∧X of PE′. We will show thatθ = β∧X.

We note that if for eachi = 1, . . . ,q, stateα∧X does not satisfypre(ai) then the sequence of
actions〈a1, . . . ,a2q+1〉 has no effect, so the state is stillα∧X. For this to happen, eitherα doesn’t
satisfypre(a), or all of l1, . . . , lq already hold inα sopost(a) holds inα. In either case,α = β, and
soθ = β∧X.
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Suppose now that for somei ∈ {1, . . . ,q}, α does satisfypre(ai). Then the first such action
ai causesxa and henceXa to hold. After applying actionsaq+1, . . . ,a2q, l1∧ ·· · ∧ lq holds, and so
post(a) holds. After applyinga2q+1 bothpost(a) andX hold. No other variable inV has changed,
soθ = β∧X, as required.

Applying this result iteratively implies that ifπ is a plan forPE thenS(π) is a plan forPE′.

(ii) Let τ be an irreducible plan forPE′, so that every action inτ changes the state, which implies
that every action inτ is performed in a state where its precondition is true. We will show thatS′(τ)
is a plan forPE. We will assume thatτ 6= /0. Whenτ = /0, S′(τ) = /0, too, and the assertion follows.

Write the first action inτ asa j , wherea∈ ACT, and letτ′ be the maximal initial subsequence of
τ consisting of all actions of the formai . We must havej ≤ |post(a)|, sinceX holds inα′

0 (by our
assumption above, actiona j does apply) andX is inconsistent with the precondition ofai for each
i > |post(a)|. Also, pre(a j) and¬l j hold in α′

0 and so, inα0 as well. Thus,α0 satisfiespre(a), and
applyinga changes the state, since¬l j holds inα0 andpost(a) |= l j . Let us denote byβ the state
resulting from applyinga to α0. As we noted,β 6= α0,

Let β′ be the state resulting after applyingτ′ to α′
0. If β′ is the goal stateγ′ thenX holds inβ′. If

β′ is not the goal state thenτ 6= τ′. Let bi be the action inτ directly following the last action inτ′.
By the definition ofτ′, a 6= b. After applyinga j , Xa holds, so inβ′ eitherXa holds orX holds. Thus,
Xb does not hold, asa 6= b. Sincebi changes the state,i must be in{1, . . . , |post(b)|}, soX holds in
β′ in this case, too.

Hence the last action inτ′ is a2q+1, whereq= |post(a)|. Since the only variables inV which can
be affected by actionsai are those that appear in the literals inpost(a) and since the actiona2q+1

can be executed (otherwise it would not belong toτ), it follows thatβ′ = β∧X.
Applying this reasoning repeatedly, we show that applyingS′(τ) to α0 yields γ, and that each

action inS′(τ) changes the state, soS′(τ) is an irreducible plan forPE, which is non-empty if and
only if τ is non-empty.

(iii) SupposeACT is not acyclic, so that there exists stateα and a non-empty irreducible planπ for
PEα = 〈V,α,α,ACT〉. Then, by (i),S(π) is a plan forPE′

α = 〈V ′,α∧X,α∧X,S(ACT)〉. Because
π is non-empty and irreducible, it changes some state, soS(π) also changes some state, and hence
can be reduced to a non-empty irreducible plan forPE′

α. ThereforeS(ACT) is not acyclic.
Conversely, suppose thatS(ACT) is not acyclic. Then there exists a stateα′ and a non-empty

irreducible planτ for 〈V ′,α′,α′,S(ACT)〉. We will first prove thatX holds at some state obtained
during the execution of this plan.

Suppose thatX holds at no such state, and leta j be the first action inτ. We note thatτ 6= /0. By
our assumption,X does not hold either before or after applyinga j . Thereforeq+1≤ j ≤ 2q, where
q = |post(a)|. Sinceτ is irreducible,a j changes the state. Thus,¬l j holds inα′ andl j holds in the
state resulting fromα′ after applyinga j .

By our assumption,Xa holds before and after applyinga j . Thus, the next action, if there is one,
must also be of the formai for q+1≤ i ≤ 2q. Repeating this argument implies that all actions in
τ are of the formai whereq+ 1 ≤ i ≤ 2q. Since the set of literals inpost(a) is consistent,l j is
never reset back to¬l j . Thus, the state resulting fromα′ after applyingτ is different fromα′, a
contradiction.

Thus,X holds at some state reached during the execution ofτ. Let us consider one such state.
It can be written asβ∧X, for some stateβ over V. We can cyclically permuteτ to generate a
non-empty irreducible planτ′ for 〈V ′,β∧X,β∧X,S(ACT)〉. By part (ii), S′(τ′) is a non-empty
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irreducible plan for〈V,β,β,ACT〉. ThereforeACT is not acyclic. �

Proposition 6
SE STRIPS PLANandACYCLIC SE STRIPS PLANare PSPACE-complete.

Proof: Again, the argument for the membership inPSPACE is standard. PSPACE-hardness of
ACYCLIC SE STRIPS PLANis shown by reduction fromACYCLIC STRIPS PLAN. The same con-
struction shows thatSTRIPS PLAN is reducible toSE STRIPS PLAN, and thusSE STRIPS PLANis
PSPACE-complete.

Let us consider an instancePE= 〈V,α0,γ,ACT〉 of ACYCLIC STRIPS PLAN. We definePE′ =
〈V ′,α′

0,γ′,S(ACT)〉, which by Lemma 1(iii) is an instance of theACYCLIC SE STRIPS PLANprob-
lem. By Lemma 1(i) and (ii) there exists a plan forPE if and only if there exists a plan forPE′. This
implies thatACYCLIC SE STRIPS PLANis PSPACE-hard. �

4. Dominance

The goal of this section is to prove that theGCP-DOMINANCE problem isPSPACE-complete, and
that the complexity does not go down even when we restrict the class of inputs to CP-nets. We
use the results on propositional STRIPS planning from Section 3 to prove that the generalGCP-
DOMINANCE problem isPSPACE-complete. We then show that the complexity does not change if
we require the input GCP-net to be locally consistent and locally complete.

The similarities between dominance testing in CP-nets and propositional STRIPSplanning were
first noted by Boutilier et al. (1999). They presented a reduction, discussed later in more detail by
Boutilier et al. (2004a), from the dominance problem to the plan existence problem for a class
of propositional STRIPS planning specifications consisting ofunary actions (actions with single
effects). We prove our results for theGCP-DOMINANCE andGCP-CONSISTENCYproblems by con-
structing a reduction in the other direction.

This reduction is much more complex than the one used by Boutilier et al. (1999), due to the
fact that CP-nets impose more restrictions than STRIPS planning. Firstly, STRIPS planning allows
multiple effects, but GCP-nets only allow flipsx > ¬x or ¬x > x that change the value of one
variable; this is why we constructed the reduction from STRIPS planning to single-effect STRIPS
planning in the last section. Secondly, CP-nets impose two more restrictions, local consistency and
local completeness, which do not have natural counterparts in the context of STRIPS planning.

For all dominance and consistency problems we consider, the membership inPSPACE can be
demonstrated similarly to the membership proof of Proposition 4, namely by considering nondeter-
ministic polynomial space algorithms consisting of repeatedly guessing appropriate improving flips
and making use of the fact thatPSPACE = NPSPACE = coPSPACE. Therefore, from now on we
only provide arguments for thePSPACE-hardness of problems we consider.

4.1 Dominance for Generalized CP-Nets

We will prove that theGCP-DOMINANCE problem isPSPACE-complete by a reduction from the
problemSE STRIPS PLAN, which we now know to bePSPACE-complete.
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4.1.1 MAPPING SINGLE-EFFECTSTRIPS PROBLEMS TOGCP-NETS DOMINANCE

PROBLEMS

Let 〈V,α0,γ,ACT〉 be an instance of theSE STRIPS PLANproblem. For every actiona ∈ ACT
we denote byla the unique literal in the postcondition ofa, that is,post(a) = la. We denote by
pre′(a) the conjunction of all literals inpre(a) different from¬la (we recall that by a convention we
adopted earlier,pre′(a) does not containla). We then defineca to be the conditional preference rule
pre′(a) : la >¬la and defineM(ACT) to be the GCP-netC= {ca : a∈ACT}, which is in conjunctive
form.

A sequence of states in a plan corresponds to an improving sequence from α0 to γ, which leads
to the following result.

Lemma 2 With the above notation,

(i) there is a non-empty irreducible plan for〈V,α0,γ,ACT〉 if and only if γ dominatesα0 in
M(ACT);

(ii) ACT is acyclic if and only if M(ACT) is consistent.

Proof: We first note the following equivalence. Leta be an action inACT, and letα and β be
different outcomes (or, in the STRIPS setting, states). The actiona applied toα yieldsβ if and only
if the ruleca sanctions an improving flip fromα to β. This is becausea applied toα yieldsβ if and
only if α satisfiespre(a) andα andβ differ only on literalla, with β satisfyingla andα satisfying
¬la. This is if and only ifα satisfiespre′(a) andα andβ differ only on literalla, with β satisfying
la, andα satisfying¬la. This, in turn, is equivalent to say that ruleca sanctions an improving flip
from α to β.

Proof of (i): Suppose first that there exists a non-empty irreducible plana1, . . . ,am for 〈V,α0,γ,ACT〉.
Let α0,α1, . . . ,αm = γ be the corresponding sequence of outcomes, and, for eachi = 1, . . . ,m, ac-
tion ai , when applied in stateαi−1, yields different stateαi . By the above equivalence, for each
i = 1, . . . ,m, cai sanctions an improving flip fromαi−1 to αi , which implies thatα0,α1, . . . ,αm is an
improving flipping sequence inM(ACT), and thereforeγ dominatesα0 in M(ACT).

Conversely, suppose thatγ dominatesα0 in M(ACT), so that there exists an improving flipping
sequenceα0,α1, . . . ,αm with αm = γ, andm≥ 1. For eachi = 1, . . . ,m, let cai be an element of
M(ACT) which sanctions the improving flip fromαi−1 to αi . Then, by the above equivalence,
actionai , when applied to stateαi−1 yieldsαi (which is different fromαi−1), and soa1, . . . ,am is a
non-empty irreducible plan for〈V,α0,γ,ACT〉.

Proof of (ii): ACT is not acyclic if and only if there exists a stateα and a non-empty irreducible
plan for〈V,α,α,ACT〉. By (i) this is if and only if there exists an outcomeα which dominates itself
in M(ACT), which is if and only ifM(ACT) is not consistent. �

Theorem 1 TheGCP-DOMINANCE problem isPSPACE-complete. Moreover, this remains so under
the restrictions that the GCP-net is consistent and is in conjunctive form.

Proof: PSPACE-hardness is shown by reduction fromACYCLIC SE STRIPS PLAN(Proposition 6).
Let 〈V,α0,γ,ACT〉 be an instance of theACYCLIC SE STRIPS PLANproblem. By Lemma 2(ii),
M(ACT) is a consistent GCP-net in conjunctive form. Sinceα0 6= γ (imposed in the definition of
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the problemACYCLIC SE STRIPS PLAN), there is a plan for〈V,α0,γ,ACT〉 if and only if there is a
non-empty irreducible plan for〈V,α0,γ,ACT〉, which, by Lemma 2(i), is if and only ifγ dominates
α0 in C. �

Theorem 1 implies thePSPACE-completeness of dominance in the more general conditional
preference language introduced by Wilson (2004b), where the conditional preference rules are writ-
ten in conjunctive form.

4.2 Dominance in CP-Nets

In this section we show thatGCP-DOMINANCE remainsPSPACE-complete under the restriction to
locally consistent and locally complete GCP-nets, that is, CP-nets. We referto this restriction of
GCP-DOMINANCE asCP-DOMINANCE.

Consistency of a GCP-net implies local consistency (Proposition 2). Therefore, the reduc-
tion in the proof of Theorem 1 (fromACYCLIC SE STRIPS PLANto GCP-DOMINANCE restricted
to consistent GCP-nets) is also a reduction toGCP-DOMINANCE restricted to locally consistent
GCP-nets.PSPACE-hardness ofACYCLIC SE STRIPS PLAN(Proposition 6) then implies thatGCP-
DOMINANCE restricted to locally consistent GCP-nets isPSPACE-hard, and, in fact,PSPACE-
complete since membership inPSPACE is easily obtained with the usual line of argumentation.

We will show PSPACE-hardness forCP-DOMINANCE by a reduction fromGCP-DOMINANCE

for consistent GCP-nets.

4.2.1 MAPPING LOCALLY CONSISTENTGCP-NETS TOCP-NETS

Let C be a locally consistent GCP-net. LetV = {x1, . . . ,xn} be the set of variables ofC. We define
V ′ = V ∪ {y1, . . . ,yn}, where{y1, . . . ,yn} ∩V = /0. We define a GCP-netC′ over V ′, which we
will show is a CP-net. To this end, for everyz∈ V ′ we will define conditional preference rules
q+(z) : z> ¬zandq−(z) : ¬z> z to be included inC′ by specifying formulasq+(z) andq−(z).

First, for each variablexi ∈V, we set

q+(xi) = yi and q−(xi) = ¬yi .

Thus,xi depends only onyi . We also note that the formulasq+(xi) andq−(xi) satisfy local consis-
tency and local completeness requirements.

Next, for each variableyi , 1≤ i ≤ n, we define

ei = (x1 ↔ y1)∧·· ·∧ (xi−1 ↔ yi−1)∧ (xi+1 ↔ yi+1)∧·· ·∧ (xn ↔ yn),

f +
i = ei ∧ p+(xi) and f−i = ei ∧ p−(xi).

Finally, we define
q+(yi) = f +

i ∨ (¬ f−i ∧xi)

and
q−(yi) = f−i ∨ (¬ f +

i ∧¬xi).

Thus,yi depends on every variable inV ′ but itself.
We note that by the local consistency ofC, formulas f +

i ∧ f−i , 1 ≤ i ≤ n, are unsatisfiable.
Consequently, formulasq+(yi)∧q−(yi), 1≤ i ≤ n, are unsatisfiable. Thus,C′ is locally consistent.
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Finally, q+(yi)∨ q−(yi) is equivalent tof +
i ∨¬xi ∨ f−i ∨ xi , so is a tautology. Thus,C′ is locally

complete and hence a CP-net overV ′.
Let α andβ be outcomes over{x1, . . . ,xn} and{y1, . . . ,yn}, respectively. Byαβ we denote the

outcome overV ′ obtained by concatenatingn-tuplesα andβ. Conversely, every outcome forC′ can
be written in this way.

Let α be an outcome overV. We defineα to be the outcome over{y1, . . . ,yn} obtained by
replacing inα every component of the formxi with yi and every component¬xi with ¬yi . Then for
everyi, 1≤ i ≤ n, αα |= ei .

Let s be a sequenceα0, . . . ,αm of outcomes overV. DefineL(s) to be the sequence ofV ′-
outcomes:α0α0,α0α1,α1α1,α1α2, . . . ,αmαm. Further, lett be a sequenceε0,ε1, . . . ,εm of V ′-
outcomes withε0 = αα andεm = ββ. DefineL′(t) to be the sequence obtained fromt by projecting
each element int toV and iteratively removing elements in the sequence which are the same as their
predecessor (until any two consecutive outcomes are different).

Lemma 3 With the above definitions,

(i) if s is an improving sequence for C fromα to β then L(s) is an improving sequence for C′ from
αα to ββ;

(ii) if t is an improving sequence fromαα to ββ then L′(t) is an improving sequence fromα to β;

(iii) C is consistent if and only if C′ is consistent.

Proof: Let e=
Vn

i=1(xi ↔ yi). The definitions have been arranged so that the GCP-netC and the
CP-netC′ have the following properties:
(a) If edoes not hold in an outcomeγ overV ′, then every improving flip applicable toγ changes the
value of some variablexi or yi so thatxi ↔ yi holds after the flip.

Indeed, let us assume that there is an improving flip fromγ to some outcomeγ′ overV ′. If the
flip concerns a variablexi , thenxi ↔¬yi holds inγ. Consequently,xi ↔ yi holds inγ′.

Thus, let us assume that the flip concerns a variableyi . If ei holds inγ then, sincee does not,
xi ↔¬yi holds inγ. Thus,xi ↔ yi holds inγ′. If ei does not hold inγ then neitherf +

i nor f−i does.
Thus, ifxi (¬xi , respectively) holds inγ, yi (¬yi , respectively) holds inγ′. Since the flip concernsyi ,
it follows thatxi ↔ yi holds inγ′.
(b) No improving flip fromαα changes any variablexi .

Indeed, for any variablexi , sincee holds inαα, xi ↔ yi holds inαα, too. Thus, no improving
flip changesxi .
(c) There is an improving flip inC′ that changes variableyi in an outcomeαα if and only if there is
an improving flip for the GCP-netC from outcomeα that changes variablexi . After applying the
improving flip (changing variableyi) to αα, there is exactly one improving flip possible. It changes
xi and results in an outcomeββ, whereβ is the outcome overV resulting from applying toα the
improving flip changing the variablexi .

To prove (c), let us first assume that¬yi holds inαα and observe that in such case¬xi holds in
αα, too. It follows thatq+(yi) holds inαα if and only if p+(xi) holds inα. Consequently, changing
yi in αα is an improving flip inC′ if and only if changingxi in α is an improving flip inC. The
argument in the case whenyi holds inαα is analogous (but involvesq−(yi) andp−(xi)). Thus, the
first part of (c) follows.
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Let β be the outcome obtained by applying an improving flip toxi in α. It follows that the
improving flip changing the value ofyi in αα results in the outcomeαβ. In this outcome, by (a),
an improving flip must concernx j or y j such thatx j ↔ y j holds after the flip. Since for everyj 6= i,
x j ↔ y j holds inαβ, the only improving flips inαβ concern eitherxi or yi . By the local consistency
of C′, yi cannot be flipped right back. Clearly, changingxi is an improving flip that can be applied
to αβ. By our discussion, it is theonly improving flip applicable inαβ and it results in the outcome
ββ. This proves the second part of (c).

Proof of (i): The assertion follows by iterative application of (c).

Proof of (ii): Suppose thatt is an improving sequenceε0,ε1, . . . ,εm of V ′-outcomes withε0 = αα
andεm = ββ. Sincee holds inε0, (b) implies that the first flip changes some variableyi , and (c)
implies that the second flip changes variablexi to makexi ↔ yi hold again. Henceε2 can be written
asδδ. By (c) there is an improving flip inC from outcomeα changing variablexi , that is, leading
from α to δ. Iterating this process shows thatL′(t) is an improving sequence fromα to β.

Proof of (iii): Suppose thatC is inconsistent. Then there exists some outcomeα and an improving
sequences in C from α to α. By (i), L(s) is an improving sequence fromαα to αα, proving thatC′

is inconsistent.
Conversely, suppose thatC′ is inconsistent, so there exists an improving sequencet for C′ from

some outcome to itself. By (a), any improving flip applied to an outcome in whiche does not hold
increases (by one) the number ofi such thatxi ↔ yi holds. This implies thate must hold in some
outcome int, becauset is not acyclic. Write this outcome asαα. We can cyclically permutet to
form an improving sequencet2 from αα to itself. Part (ii) then implies thatL′(t2) is an improving
flipping sequence forC from α to itself, showing thatC is inconsistent. �

Theorem 2 CP-DOMINANCE is PSPACE-complete. This holds even if we restrict the CP-nets to
being consistent.

Proof: We use a reduction fromPSPACE-hardness of theGCP-DOMINANCE problem when the
GCP-nets are restricted to being consistent (Theorem 1). LetC be a consistent, and hence locally
consistent, GCP-net overV, and letα and β be outcomes overV. Consider the CP-netC′ over
variablesV ′ constructed above. Lemma 3(i) and (ii) imply thatβ dominatesα in C if and only if ββ
dominatesαα in C′. Moreover,C′ is consistent by Lemma 3(iii). Consequently, the hardness part
of the assertion follows. �

Note thatPSPACE-hardness obviously remains if we require input outcomes to be different,
because the reduction for Theorem 1 uses a pair of different outcomes.

Notice the huge complexity gap with the problem of deciding whether there existsa non-
dominated outcome, which is “only”NP-complete (Domshlak et al., 2003, 2006).

5. Consistency of GCP-Nets

In this section we show that theGCP-CONSISTENCYproblem isPSPACE-complete, using results
from Sections 3 and 4.
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Theorem 3
GCP-CONSISTENCY is PSPACE-complete. This holds even under the restriction to GCP-nets in
conjunctive form.

Proof: PSPACE-hardness is shown by reduction fromACTION-SET ACYCLICITY. We apply func-
tion S from Section 3.2 followed byM from Section 4.1. This maps instances ofACTION-SET

ACYCLICITY to instances ofGCP-CONSISTENCYin conjunctive form. By Lemma 1(iii) and Lemma
2 (ii), an instance ofACTION-SET ACYCLICITY is acyclic if and only if the corresponding instance
of GCP-CONSISTENCYis consistent, proving the result. �

We now show that consistency testing remainsPSPACE-complete for CP-nets (GCP-nets that
are both locally consistent and locally complete).

Theorem 4 CP-CONSISTENCYis PSPACE-complete.

Proof: We use a reduction fromGCP-CONSISTENCYunder the restriction that the GCP-net is in
conjunctive form. LetC be a GCP-net in conjunctive form. We define a CP-netC′ as follows. Be-
causeC is in conjunctive form, local consistency can be decided in polynomial time, asit amounts
to checking the consistency of a conjunction of conjunctions of literals. IfC is not locally consistent
we setC′ to be a predetermined inconsistent but locally consistent CP-net, such as inthe example
in Section 2. Otherwise,C is locally consistent and forC′ we take the CP-net we constructed in
Section 4.2. The mapping from locally consistent GCP-nets to CP-nets, described in Section 4.2,
preserves consistency (Lemma 3 (iii)). Since local inconsistency implies inconsistency (Proposi-
tion 2), we have that the GCP-netC is consistent if and only if the CP-netC′ is consistent. Thus,
PSPACE-hardness of theCP-CONSISTENCYproblem follows from Theorem 3. �

6. Additional Problems Related to Dominance in GCP-Nets

Having proved our main results on consistency of and dominance in GCP-nets, we move on to
additional questions concerning the dominance relation. Before we state them, we introduce more
terminology.

Let α andβ be outcomes in a GCP-netC. We say thatα andβ aredominance-equivalentin C,
written α ≈C β, if α = β, or α ≺C β andβ ≺C α. Next,α andβ aredominance-incomparablein C
if α 6= β, α⊀Cβ andβ⊀Cα. Finally, α strictly dominatesβ if β ≺C α andα 6≺Cβ.

Definition 8
We define the following decision problems:
SELF-DOMINANCE: given a GCP-net C and an outcomeα, decide whetherα ≺C α, that is, whether
α dominates itself in C.
STRICT DOMINANCE: given a GCP-net C and outcomesα andβ, decide whetherα strictly domi-
natesβ in C.
DOMINANCE EQUIVALENCE: given a GCP-net C and outcomesα andβ, decide whetherα andβ
are dominance-equivalent in C.
DOMINANCE INCOMPARABILITY : given a GCP-net C and outcomesα and β, decide whetherα
andβ are dominance-incomparable in C.
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When establishing the complexity of these problems, we will use polynomial-time reductions
from the problemGCP-DOMINANCE. LetH be a GCP-net with the set of variablesV = {x1, . . . ,xn},
and letβ be an outcome. We define a GCP-netG = Θ1(H,β) with the set of variablesW = V ∪{y}
by setting the conditions for flips on variablesxi , i = 1, . . . ,n, andy as follows:

1. if xi ∈ β:
p+

G(xi) = p+
H(xi)∨¬y

p−G(xi) = p−H(xi)∧y

2. if ¬xi ∈ β:
p+

G(xi) = p+
H(xi)∧y

p−G(xi) = p−H(xi)∨¬y

3. p+
G(y) = β

4. p−G(y) = ¬β.

The mappingΘ1 can be computed in polynomial time. Moreover, one can check that ifH is a
locally consistent GCP-net,Θ1(H,β) is also locally consistent. Finally, ifH is a CP-net,Θ1(H,β)
is a CP-net, as well.

For everyV-outcomeγ, we letγ+ = γ∧y andγ− = γ∧¬y. We note that everyW-outcome is of
the formγ+ or γ−. To explain the structure of the GCP-netG, we point out that there is an improving
flip in G from γ+ into δ+ if and only if there is an improving flip inH from γ to δ (thus,G restricted
to outcomes of the formγ+ forms a copy of the GCP-netH). Moreover, there is an improving flip
in G from γ− into δ− if and only if δ agrees withβ on exactly one more variablexi thanγ does.
Finally, an improving flip moves between outcomes of different type if and onlyif it transformsβ−

to β+, or γ+ to γ− for someγ 6= β.
We now formalize some useful properties of the GCP-netG = Θ1(H,β). We use the notation

introduced above.

Lemma 4 For every V-outcomeγ, γ− ≺G β+ and, ifγ 6= β, γ+ ≺G β+ (in other words,β+ dominates
every other W-outcome).

Proof: Consider anyV-outcomeγ 6= β. Thenγ∧¬y≺C β∧¬y since, given¬y, changing a literal
to the form it has inβ is an improving flip. By the definition, we also haveβ∧¬y ≺C β∧ y and
γ∧ y ≺G γ∧¬y (asγ 6= β). It follows that β− ≺G β+ andγ+ ≺G γ− ≺G β+. Thus, the assertion
follows. �

Lemma 5 For arbitrary V-outcomeα different fromβ, the following statements are equivalent:

1. β ≺H α;

2. β+ ≺G α+;

3. β+ ≈G α+.
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Proof: By Lemma 4,α+ ≺G β+. Thus, the conditions (2) and (3) are equivalent.
[(1)⇒(2)] Clearly (recall our discussion about the structure ofG), if there is an improving flip from
γ to δ in H, then there is an improving flip fromγ+ to δ+ in G. Thus, if there is an improving
sequence inH from β to α, there is an improving sequence inG from β+ to α+.
[(2)⇒(1)] Let us assumeβ+ ≺G α+, and let us consider an improving sequence of minimum length
from β+ to α+. By the minimality, no internal element in such a sequence isβ+. Thus, no internal
element equalsβ− either (as the only improving flip fromβ− leads toβ+). Since an improving flip
from γ− to γ+ requires thatγ = β, all outcomes in the sequence are of the formγ+. By dropping
y from each outcome in this sequence, we get an improving flipping sequencefrom α to β in H.
Thus,β ≺H α. �

Lemma 6 Let H be consistent and letα and β be different V-outcomes. Then,α+ ≺G α+ if and
only if β ≺H α.

Proof: Suppose there exists an improving sequence fromα+ to itself. There must be an outcome
in the sequence of the formγ∧¬y (otherwise, droppingy in every outcome yields an improving
sequence fromα to α in H, contradicting the consistency ofH). To perform an improving flip from
¬y to y we needβ to hold, which implies thatβ+ appears in the sequence. Thus,β+ ≺G α+. By
Lemma 5,β ≺H α.

Conversely, let us assume thatβ≺H α. Again by Lemma 5,β+ ≺G α+. By Lemma 4,α+ ≺G β+.
Thus,α+ ≺G α+. �

The next construction is similar. LetH be a GCP-net on variablesV = {x1, . . . ,xn}, and letα
be an outcome. We define a GCP-netF = Θ2(H,α) as follows. As before, we setW = V ∪{y} to
be the set of variables ofF . We define the conditions for flips on variablesxi , i = 1, . . . ,n, andy as
follows:

1. p+
G(xi) = p+

H(xi)∧y

2. p−G(xi) = p−H(xi)∧y

3. p+
G(y) = ¬α

4. p−G(y) = α.

Informally, outcomes of the formγ+ form in F a copy ofH. There are no improving flips between
outcomes of the formγ−. There is an improving flip fromα+ to α− and, for everyγ 6= α, from γ− to
γ+. In particular, ifF is consistent thenΘ2(H,α) is consistent, The mappingΘ2 can be computed
in polynomial time and we also have the following property.

Lemma 7 Let β be a V-outcome different fromα. Then the following conditions are equivalent:

1. β ≺H α

2. α− strictly dominatesβ− in F

3. α− andβ− are not dominance-incomparable in F.
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Proof: If there exists an improving sequence fromβ− to α− then the first improving flip in the se-
quence changesβ− to β+. Moreover, there is an improving flip fromγ+ to γ− if and only if γ = α.
Thus,β− ≺F α− if and only if β ≺H α. Sinceα− ⊀F β− all three conditions are equivalent. �

Proposition 7 The following problems arePSPACE-complete:SELF-DOMINANCE, STRICT DOM-
INANCE, DOMINANCE EQUIVALENCE, andDOMINANCE INCOMPARABILITY .

Proof: For all four problems, membership is proven easily as for the problems in earlier sections.
For thePSPACE-hardness proofs, we use the problemCP-DOMINANCE in a version when we

required that the input CP-net be consistent and the two input outcomes different. The problem is
PSPACE-hard by Theorem 2.

LetH be a consistent CP-net on a setV of variables, and letα andβ be two differentV-outcomes.
By Lemma 5,β ≺H α can be decided by deciding the problemDOMINANCE EQUIVALENCE for α+

and β+ in the GCP-netΘ1(H,β). Thus, thePSPACE-hardness ofDOMINANCE EQUIVALENCE

follows.
Next, the equivalence of Lemma 6,α+ ≺G α+ ⇔ β ≺H α, which holds due to consistency ofH,

shows that the problemSELF-DOMINANCE is PSPACE-hard.
Finally, by Lemma 7,β ≺H α can be decided either by deciding the problemSTRICT DOMI-

NANCE for outcomesα− andβ− in Θ2(H,α), or by deciding the complement of the problemDOM-
INANCE INCOMPARABILITY for α− andβ− in the GCP-netΘ2(H,α). It follows thatSTRICT DOM-
INANCE andDOMINANCE INCOMPARABILITY (the latter by the fact thatcoPSPACE=PSPACE) are
PSPACE-complete.8 �

Corollary 1 The problemsSELF-DOMINANCE andDOMINANCE EQUIVALENCE arePSPACE-com-
plete under the restriction to CP-nets. The problemsSTRICT DOMINANCE and DOMINANCE IN-
COMPARABILITY remainPSPACE-complete under the restriction to consistent CP-nets.

Proof: Since in the proof of Proposition 7 we have thatH is a CP-net, the claim for the first two
problems follows by our remarks that the mappingΘ1 preserves the property of being a CP-net.

For the last two problems, we observe that sinceH in the proof of Proposition 7 is assumed to
be consistent,F = Θ2(H,α) is consistent, too. Thus, it is also locally consistent and the mapping
F to F ′ we used for the proof of Theorem 2 applies. In particular,F ′ is a consistent CP-net and has
the following properties (implied by Lemma 3):

1. α strictly dominatesβ in F if and only if αα strictly dominatesββ in F ′

2. α andβ are dominance-incomparable inF if and only if αα andββ are dominance-incompa-
rable inF ′.

SinceF ′ is a consistent CP-net, the claim for the last two problems follows, too. �

8. For STRICT DOMINANCE, the result could have been also obtained as a simple corollary of Theorem 2, since in
consistent GCP-nets dominance is equivalent to strict dominance.

423



GOLDSMITH, LANG, TRUSZCZYŃSKI & W ILSON

7. Problems Concerning Optimality in GCP-Nets

The dominance relation≺C of a GCP-netC determines a certain order relation, which gives rise to
several notions of optimality. We will introduce them and study the complexity of corresponding
decision problems.

We first observe that the dominance equivalence relation is indeed an equivalence relation (re-
flexive, symmetric and transitive). Thus, it partitions the set of all outcomesinto non-empty equiv-
alence classes, which we calldominanceclasses. We denote the dominance class of an outcomeα
in a GCP-netC by [α]C.

The relation≺C induces on the set of dominance classes astrict orderrelation (a relation that is
irreflexive and transitive). Namely, we define[α]C ≺dc

C [β]C if [α]C 6= [β]C (equivalently,α 6≈C β) and
α ≺C β. One can check that the definition of the relation≺dc

C on dominance classes is independent
of the choice of representatives of the classes.

Definition 9 (Non-dominated class, optimality in GCP-nets)Let C be a GCP-net. A dominance
class[α]C is non-dominatedif it is maximal in the strict order≺dc

C (there is no dominance class
[β]C such that[α]C ≺dc

C [β]C). A dominance class isdominatingif for every dominance class[β]C,
[α]C = [β]C or [β]C ≺dc

C [α]C.
An outcomeα is weakly non-dominatedif it belongs to a non-dominated class. Ifα is weakly

non-dominated and is the only element in its dominance class, thenα is non-dominated.
An outcomeα is dominatingif it belongs to a dominating class. An outcomeα is strongly

dominatingif it is dominating and non-dominated.

Outcomes that are weakly non-dominated, non-dominated, dominating and strongly dominating
capture some notions of optimality. In the context of CP-nets, weakly non-dominated and non-
dominated outcomes were proposed and studied before (Brafman & Dimopoulos, 2004). They were
referred to as weakly and strongly optimal there. Similar notions of optimality were also studied
earlier for the problem of defining winners in partial tournaments (Brandt,Fischer, & Harrenstein,
2007). We will study here the complexity of problems to decide whether a given outcome is optimal
and whether optimal outcomes exist.

First, we note the following general properties (simple consequences of properties of finite strict
orders).

Lemma 8 Let C be a GCP-net.

1. There exist non-dominated classes and so, weakly non-dominated outcomes.

2. Dominating outcomes and nondominated outcomes are weakly non-dominated.

3. A strongly dominating outcome is dominating and non-dominated.

4. The following conditions are equivalent:

(a) C has a unique non-dominated class;

(b) C has a dominating outcome;

(c) weakly non-dominated and dominating outcomes in C coincide.

For consistent GCP-nets only two different notions of optimality remain.

424



THE COMPUTATIONAL COMPLEXITY OF DOMINANCE AND CONSISTENCY INCP-NETS

Lemma 9 Let C be a consistent GCP-net. Then:

1. Each dominance class is a singleton,≺C is a strict order, and≺C and≺dc
C coincide (modulo

the one-to-one and onto correspondenceα 7→ [α]C)

2. If α is a weakly non-dominated outcome,α is non-dominated (weakly non-dominated and
non-dominated outcomes coincide)

3. If α is a dominating outcome,α is strongly dominating (strongly dominating and dominating
outcomes coincide).

4. Finally,α is a unique (weakly) non-dominated outcome if and only ifα is strongly dominating.

Next, we observe that all concepts of optimality we introduced are different. To this end, we will
show GCP-nets with a single non-dominated class that is a singleton, with multiple non-dominated
classes, each being a singleton, with a single non-dominated class that is nota singleton, and with
multiple non-dominated classes, each containing more than one element. We will also show a GCP-
net with two non-dominated classes, one of them a singleton and the other oneconsisting of several
outcomes.

Example 2 Consider the following GCP-net C with two binary variables a and b

: a > ā
: b > b̄

This GCP-net determines a strict preorder on the dominance classes, inwhich {ab} is the only
maximal class (in fact, all dominance classes are singletons). Thus, ab isboth non-dominated and
dominating and so, it is strongly dominating.

Example 3 Consider the following GCP-net C with two binary variables a and b

b : a > ā
b̄ : ā > a
a : b > b̄
ā : b̄ > b

This GCP-net determines a strict preorder, in which{ab} and{āb̄} are two different non-dominated
classes. Thus, ab and̄ab̄ are non-dominated and there is no dominating outcome.

Example 4 Consider a GCP-net with variables a,b and c, defined as follows:

a : b > b̄
ā : b̄ > b
b̄ : a > ā
b : ā > a
ab : c > c̄
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There are two dominance classes: Sc = {abc,ab̄c, ābc, āb̄c} and S̄c = {abc̄,ab̄c̄, ābc̄, āb̄c̄}. Every
outcome in Sc strictly dominates every outcome in Sc̄, therefore, Sc is the unique non-dominated
class and every outcome in Sc is dominating. Because Sc is not a singleton, there are no non-
dominated outcomes (and so, no strongly dominating outcome, either).

Example 5 Let us remove from the GCP-net of Example 4 the preference statement ab : c> c̄. Then
Sc and S̄c are still the two dominance classes, but now every outcome is Sc is incomparable with
any outcome in S̄c. Thus, Sc and S̄c are both non-dominated. Since there are two non-dominated
classes, there is no dominating outcome. Since each class has more than one element, there are no
non-dominated outcomes. All outcomes are weakly non-dominated, though.

Example 6 Let us modify the GCP-net of Example 4 by changing the preference statementb̄ : a> ā
into b̄c : a > ā. The dominance relation≺ of this GCP-net satisfies the following properties: (i)
the four outcomes in Sc dominate each other; (ii)̄ab̄c̄≻ ābc̄≻ abc̄≻ ab̄c̄; (iii) any outcome in Sc
dominates ab̄c (and,a fortiori, ab̄c̄). One can check that there are five dominance classes: Sc, {abc̄},
{ābc̄}, {ab̄c̄} and{āb̄c̄}. Two of them are non-dominated: Sc and{āb̄c̄}. Since there are two non-
dominated classes, there is no dominating outcome. On the other hand,{āb̄c̄} is a non-dominated
outcome (a unique one).

We will consider the following decision problems corresponding to the notionsof optimality we
introduced.

Definition 10
For a given GCP-net C:
WEAKLY NON -DOMINATED OUTCOME: given an outcomeα, decide whetherα is weakly non-
dominated in C
NON-DOMINATED OUTCOME: given an outcomeα, decide whetherα is non-dominated in C
DOMINATING OUTCOME: given an outcomeα, decide whetherα is dominating in C
STRONGLY DOMINATING OUTCOME: given an outcomeα, decide whetherα is strongly dominat-
ing in C
EXISTENCE OF A NON-DOMINATED OUTCOME: decide whether C has a non-dominated outcome
EXISTENCE OF A DOMINATING OUTCOME: decide whether C has a dominating outcome
EXISTENCE OF A STRONGLY DOMINATING OUTCOME: decide whether C has a strongly dominat-
ing outcome.

In some of the hardness proofs, we will again use the reductionsΘ1 andΘ2, described in the
previous section. We note the following additional useful properties of theGCP-netG = Θ1(H,β).

Lemma 10 For arbitrary V-outcomeα different fromβ, the following statements are equivalent:

1. β+ ≺G α+

2. α+ is weakly non-dominated in G

3. α+ is a dominating outcome in G.
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Proof: Sinceβ+ is dominating inG (Lemma 4), weakly non-dominated outcomes and dominating
outcomes coincide (Lemma 8). It follows that the conditions (1)-(3) are equivalent to each other.�

Proposition 8 The following problems arePSPACE-complete:WEAKLY NON -DOMINATED OUT-
COME andDOMINATING OUTCOME. The result holds also for the problems restricted to CP-nets.

Proof: The membership is easy to prove by techniques similar to those we used earlier.
For thePSPACE-hardness proofs, we use reductions fromCP-DOMINANCE for consistent CP-

nets (in the version where the two input outcomes are different). LetH be a CP-net, andα and
β two differentV-outcomes. By Lemmas 5 and 10,β ≺H α can be decided by deciding either of
the problemsWEAKLY NON -DOMINATED OUTCOME and DOMINATING OUTCOME for the GCP-
net G = Θ1(H,β) and the outcomeα+. We observed earlier, that ifH is a CP-net, then so is
G = Θ1(H,β). Thus, the second part of the assertion follows. �

Next, we will consider the problemSTRONGLY DOMINATING OUTCOME. We will exploit the
reductionF = Θ2(H,α), which we discussed in the previous section. We observe the following
property ofF .

Lemma 11 Let H be a GCP-net and F= Θ2(H,α). Thenα− is strongly dominating in F if and
only if α is dominating in H.

Proof: Let us assume thatα is dominating inH. From the definition ofF , it follows that for every
V-outcomeγ 6= α, γ+ ≺F α+ andγ− ≺F γ+. Sinceα+ ≺F α−, α− is dominating inF . Since there
is no improving flip leading out ofα−, α− is strongly dominating.

Conversely, let us assume thatα− is strongly dominating inF and letγ be aV-outcome differ-
ent fromα. Let us consider an improving sequence fromγ+ to α−. All outcomes in the sequence
other than the last one,α−, are of the formδ+. Moreover, the outcome directly precedingα− is
α+. Droppingy from every outcome in the segment of the sequence betweenγ+ andα+ yields an
improving sequence fromγ to α in H. �

We now have the following consequence of this result.

Proposition 9 The problemSTRONGLY DOMINATING OUTCOME is PSPACE-complete, even if re-
stricted to CP-nets.

Proof: Let H be a CP-net (over the setV of variables) andα an outcome. By Lemma 11, the prob-
lem DOMINATING OUTCOME can be decided by deciding the problemSTRONGLY DOMINATING

OUTCOME for F = Θ2(H,α) andα−. Thus, thePSPACE-hardness ofSTRONGLY DOMINATING

OUTCOME follows by Proposition 8. The membership inPSPACE is, as in other cases, standard and
is omitted.

SinceH is a CP-net, it is locally consistent and so,F is locally consistent, too. As in the proof
of Corollary 1 we use the mapping from GCP-netF to CP-netF ′ defined in Section 4.2. By Lemma
3, α is a strongly dominating outcome inF if and only if αα dominates every outcome of the form
γγ, which is if and only ifαα is a strongly dominating outcome inF ′, since anyF ′-outcome is
dominated by an outcome of the formγγ (using the rulesq+(xi) = yi andq−(xi) = ¬yi). Therefore
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STRONGLY DOMINATING OUTCOME for F andα can be decided by decidingSTRONGLY DOMI-
NATING OUTCOME for F ′ andαα. Thus, the second part of the claim follows. �

The problemNON-DOMINATED OUTCOME is easier. It is known to be in P for CP-nets (Brafman
& Dimopoulos, 2004). The result extends to GCP-nets. Indeed, ifH is a GCP-net andα an outcome,
α is non-dominated if and only if there is no improving flip that applies toα. The latter holds if and
only if for every variablex in H, if x (respectively,¬x) holds inα, thenp−(x) (respectively,p+(x))
does not hold inα. Since the conditions can be checked in polynomial the claim holds and we have
the following result.

Proposition 10 The problemNON-DOMINATED OUTCOME for GCP-nets is inP.

Next, we will consider the problems concerning the existence of optimal outcomes. LetH be a
GCP-net on the set of variablesV = {x1, . . . ,xn}, and letα andβ be two differentV-outcomes. For
every i = 1,2, . . . ,n, we define formulasαi as follows. Ifxi ∈ α, thenαi is the conjunction of all
literals inα, except that instead ofxi we take¬xi . Similarly, if ¬xi ∈ α, thenαi is the conjunction of
all literals inα, except that instead of¬xi we takexi . Thus,αi is the outcome that results inα when
the literal in corresponding toxi is flipped into its dual.

We now define a GCP-netE = Θ3(H,α,β) by takingW = V ∪{y} as the set of variables ofE
and by defining the flipping conditions as follows:

1. p+
E (xi) = (p+

H(xi)∧y)∨ (¬y∧¬α∧¬αi)
p−E (xi) = p−H(xi)∧y

2. p+
E (y) = β

3. p−E (y) = ¬β.

The GCP-netΘ3(H,α,β) has the following properties. The outcomes of the formγ+ (= γ∧y)
form a copy ofH. There is no improving flip for the outcomeα− (= α∧¬y). Next, there is no
improving flip intoα− from an outcome of the formγ−. To see this, let us assume that such a flip
exists and concerns a variable, say,xi . It follows thatγ = αi . By the definition of flipping conditions,
an improving flip forγ− that involvesxi is impossible, a contradiction. Thus, the only improving
flip that leads toα− originates inα+.

We also have that for every outcomeγ other thanα andβ, γ− ≺E β−. It follows from the fact
that for every outcomeγ other thanα andβ, γ− has an improving flip. Indeed, for each suchγ there
is a variablexi such that (i)xi is false inγ, and (ii) flipping the literal ofxi to its dual does not lead to
α (that is,γ is notαi). (For even ifγ = αi for somei, then, becauseγ,α 6= β, there existsi′ 6= i such
thatγ andβ differ on xi′ , so thatxi′ satisfies (i) and (ii).) Thus, a flip on that variable is improving.
As all improving flips between outcomes containing¬y result in one more variablexi assigned to
true, thus having the same status as it has inβ, γ− ≺E β− follows.

Finally, we haveβ− ≺E β+ and, for every outcomeγ other thanβ, γ+ ≺E γ−. This leads to the
following property ofE = Θ3(H,α,β).

Lemma 12 Let H be a GCP-net and letα and β be two different outcomes. Thenβ ≺H α if and
only if Θ3(H,α,β) has a (strongly) dominating outcome.
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Proof: (Only if) Based on our earlier remarks,α+ ≺E α−. Moreover, sinceβ ≺H α, we have
β+ ≺E α+. In addition, for everyγ different fromα andβ, γ+ ≺E γ− ≺E β− ≺E β+. Thus,α− is
both dominating and strongly dominating (the latter follows from the fact that no improving flips
lead out ofα−).
(If) Let us assume thatα− is dominating (and so, the argument applies also whenα− is strongly
dominating). Then there is an improving sequence fromβ+ to α−. Let us consider a shortest such
sequence. Clearly,α+ is the outcome just beforeα− in that sequence (as we pointed out, no im-
proving flip from an outcome of the formγ− to α− is possible). Moreover, by the definition of
Θ3(H,α,β) and the fact that we are considering a shortest sequence fromβ+ to α−, every outcome
in the sequence betweenβ+ andα+ is of the formγ+. By droppingy from each of these outcomes,
we get an improving sequence fromβ to α. �

Proposition 11 The problemEXISTENCE OF DOMINATING OUTCOMEand the problemEXISTENCE

OF STRONGLY DOMINATING OUTCOMEare PSPACE-complete, even if restricted to CP-nets.

Proof: We show the hardness part only, as the membership part is straightforward. To prove hard-
ness we notice that by Lemma 12, given a consistent CP-netH and two outcomesα andβ, β ≺H α
can be decided by deciding either of the problemsEXISTENCE OF DOMINATING OUTCOMEand
EXISTENCE OF STRONGLY DOMINATING OUTCOMEfor Θ3(H,α,β). To prove the second part of
the assertion, we note that ifH is consistent,E = Θ3(H,α,β) is consistent, too and so, the mapping
from locally consistent GCP nets to CP-nets applies. Let us denote the result of applying the map-
ping toE by E′. Then, using the same argument as in the proof of Proposition 9,E has a (strongly)
dominating outcome if and only ifE′ has a strongly dominating outcome. Thus, one can decide
whetherβ ≺H α in a consistent CP-netH by deciding either of the problemsEXISTENCE OF DOM-
INATING OUTCOME andEXISTENCE OF STRONGLY DOMINATING OUTCOMEfor E′. �

We also note that the problemEXISTENCE OF NON-DOMINATED OUTCOME is easier (under
standard complexity theory assumptions).

Proposition 12 The problemEXISTENCE OF NON-DOMINATED OUTCOME is NP-complete.

Proof: We note that in the case of GCP-nets in conjunctive form the problem is known to beNP-hard
(Domshlak et al., 2003, 2006). Thus, the problem isNP-hard for GCP-nets. The membership in the
classNP follows from Proposition 10. �

If we restrict to consistent GCP-nets, the situation simplifies. First, we recall(Lemma 9) that if
a GCP-net is consistent then weakly non-dominated and non-dominated outcomes coincide, and the
same is true for dominating and strongly dominating outcomes. Moreover, for consistent GCP-nets,
non-dominated outcomes exist (and so, the corresponding decision problem is trivially in P). Thus,
for consistent GCP-nets we will only consider problemsDOMINATING OUTCOME andEXISTENCE

OF DOMINATING OUTCOME.

Proposition 13 The problemsDOMINATING OUTCOME and EXISTENCE OF DOMINATING OUT-
COME restricted to consistent GCP-nets are incoNP.
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Proof: Using Lemmas 8 and 9,α is not a dominating outcome if and only if there exists an outcome
β 6= α which is non-dominated. Similarly, there is no dominating outcome in a consistent GCP-net
if and only if there are at least two non-dominated outcomes. Thus, guessing non-deterministically
an outcomeβ 6= α, and verifying thatβ is non-dominated, is a non-deterministic polynomial-time
algorithm deciding the complement of the problemDOMINATING OUTCOME. The argument for the
other problem is similar. �

We do not know if the bounds in Proposition 13 are tight, that is, whether these two problems
arecoNP-complete. We conjecture they are.

8. Concluding Remarks

We have shown that dominance and consistency testing in CP-nets are bothPSPACE-complete. Also
several related problems related to dominance and optimality in CP-nets arePSPACE-complete, too.

The repeated use of reductions from planning problems confirms the importance of the struc-
tural similarity between STRIPS planning and reasoning with CP-nets. This suggests that the well-
developed field of planning algorithms for STRIPS representations, especially for unary operators
(Brafman & Domshlak, 2003), could be useful for implementing algorithms fordominance and
consistency in CP-nets.

Our theorems extend to CP-nets with non-binary domains, and to extensions and variations of
CP-nets, such as TCP-nets (Brafman & Domshlak, 2002; Brafman, Domshlak, & Shimony, 2006)
that allow for explicit priority of some variables over others, and the more general language for
conditional preferences (Wilson, 2004a, 2004b), where the conditional preference rules are written
in conjunctive form.

The complexity result for dominance is also relevant for the following constrained optimisation
problem: given a CP-net and a constraint satisfaction problem (CSP), find an optimal solution (a
solution of the CSP which is not dominated by any other solution of the CSP). This is computa-
tionally complex, intuitively because a complete algorithm involves many dominancechecks when
the definition of dominance under constraints allows for dominance paths to gothrough outcomes
violating the constraints (Boutilier, Brafman, Domshlak, Hoos, & Poole, 2004b).9 The problem of
checking whether a given solution of a CSP is non-dominated can be seen tobePSPACE-complete
by a reduction from CP-dominance that uses a CSP that has exactly two solutions.

Our results reinforce the need for work on finding special classes of problems where dominance
and consistency can be tested efficiently (Domshlak & Brafman, 2002; Boutilier et al., 2004a),
and for incomplete methods for checking consistency and constrained optimisation (Wilson, 2004a,
2006).

Several open problems remain. We do not know the complexity of deciding whether the prefer-
ence relation induced by a CP-net is complete. We do not know whether dominance and consistency
testing remainPSPACE-complete when the number of parents in the dependency graph is bounded
by a constant. We also do not know whether these two problems remainPSPACE-complete for
CP-nets in conjunctive form (the reduction used to prove Theorems 2 and4 yields CP-nets that are
not in conjunctive form). Two additional open problems are listed at the endof Section 7.

9. With another possible definition, where going through outcomes violating the constraints is not allowed (Prestwich,
Rossi, Venable, & Walsh, 2005), dominance testing is not needed to check whether a given solution is non-dominated.
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