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Abstract. This paper briefly considers several research issues, some of
which are on-going and some others are for further research. The start-
ing point is that many AI topics, especially those related to the EC-
SQARU and KR conferences, can bring a lot to the representation and
the resolution of social choice problems. I surely do not claim to make an
exhaustive list of problems, but I rather list some problems that I find
important, give some relevant references and point out some potential
research issues1.

1 Introduction

For a few years, Artificial Intelligence has been taking more and more interest in
collective decision making. There are two main reasons for that, leading to two
different lines of research. Roughly speaking, the first one is concerned with im-
porting concepts and procedures from social choice theory for solving questions
that arise in AI application domains. This is typically the case for managing so-
cieties of autonomous agents, which calls for negotiation and voting procedures.
The second line of research, which is the focus of this position paper, goes the
other way round: it is concerned with importing notions and methods from AI
for solving questions originally stemming from social choice.

Social choice is concerned with designing and evaluating methods of collec-
tive decision making. However, it somewhat neglects computational issues: the
problem is generally considered to be solved when the existence (or the non-
existence) of a procedure meeting some requirements has been shown; more pre-
cisely, knowing that the procedure can be computed is generally enough; now,
how hard this computation is, and how the procedure should be implemented,
have deserved less attention in the social choice community. This is where AI
(and operations research, and more generally computer science) comes into play.
As often when bringing together two traditions, AI probably raises more new
questions pertaining to collective decision making than it solves old ones. One of
1 Writing a short survey is a difficult task, especially because it always leads to leaving

some relevant references aside. I’ll maintain a long version of this paper, accessible at
http://www.irit.fr/recherches/RPDMP/persos/JeromeLang/papers/ecsqaru05-long.pdf, and I’ll
express my gratitude to everyone who’ll point to me any missing relevant reference.



the most relevant of these issues consists in considering group decision making
problems when the set of alternative is finite and has a combinatorial structure.

This paper gives a brief overview of some research issues along this line.
Section 2 starts with the crucial problem of eliciting and representing the indi-
vidual’s preferences on the possible alternatives. Section 3 focuses on preference
aggregation, Section 4 on vote, and Section 5 on fair division. Section 6 evokes
other directions deliberately ignored in this short paper.

2 Elicitation and compact representation of preference

Throughout the paper, N = {1, . . . , n} is the (finite) set of agents involved in
the collective choice and X is the finite set of alternatives on which the decision
process bears.

Any individual or collective decision making problem needs some description
(at least partial) of the preferences of each of the agents involved over the possible
alternatives. A numerical preference structure is a utility function u : X → IR.
An ordinal preference structure is a preorder P on X, called preference relation.
R(x, y) is denoted alternatively by x � y. � denotes strict preference (x � y if
and only if x � y and not y � x) and ∼ denotes indifference (x ∼ y if and only
if x � y and y � x). An intermediate model between pure ordinality and pure
numerical models is that of qualitative preferences, consisting of (qualitative)
utility functions u : X → L, where L is a totally ordered (yet not numerical)
scale. Unlike ordinal preferences, qualitative preferences allow commensurability
between uncertainty and preference scales as well as interagent comparison of
preferences (see [22] for discussions on ordinality in decision making.)

The choice of a model, i.e. a mathematical structure, for preference, does not
tell how agents’ preferences are obtained from them, stored, and handled by al-
gorithms. Preference representation consists in choosing a language for encoding
preferences so as to spare computational resources. The choice of a language is
guided by two tasks: upstream, preference elicitation consists in interacting with
the agent so as to obtain her preferences over X, while optimization consists in
finding nondominated alternatives from a compactly represented input.

As long as the set of alternatives has a small size, the latter problems are
computationally easy. Unfortunately, in many concrete problems the set of al-
ternatives has a combinatorial structure. A combinatorial domain is a Cartesian
product of finite value domains for each one of a set of variables: an alternative
in such a domain is a tuple of values. Clearly, the size of such domains grows
exponentially with the set of variables and becomes quickly very large, which
makes explicit representations and straightforward elicitation and optimization
no longer reasonable. Logical or graphical compact representation languages al-
low for representing in as little space as possible a preference structure whose size
would be prohibitive if it were represented explicitly. The literature on prefer-
ence elicitation and representation for combinatorial domains has been growing
fastly for a few years, and due to the lack of space I omit giving references here.



The criteria one can use for choosing a compact preference language include,
at least, the following ones:

– cognitive relevance: a language should be as close as possible to the way hu-
man agents “know” their preferences and express them in natural language;

– elicitation-friendliness: it should be easy to design algorithms to elicit pref-
erence from an agent so as to get an output expressed in a given language;

– expressivity: find out the set of preference relations or utility functions that
can be expressible in a given language;

– complexity: given an input consisting of a compactly represented preference
structure in a given language, determine the computational complexity of
finding a non-dominated alternative, checking whether an alternative is pre-
ferred to another one, whether an alternative is non-dominated etc.;

– comparative succinctness: given two languages L and L′, determine whether
every preference structure that can be expressed in L can also be expressed
in L′ without a significant (suprapolynomial) increase of size, in which case
L′ is said to be at least as succinct as L.

Cognitive relevance is somewhat hard to assess, due to its non-technical na-
ture, and has been rarely studied. Complexity has been studied in [35] for
logic-based languages. Expressivity and comparative succinctness have been sys-
tematically investigated in [19] for ordinal preference representation.

Although these languages have been designed for single agents, they can
be extended to multiple agents without much difficulty; [34] and [44] are two
examples of such extensions.

3 Preference aggregation

Preference aggregation, even on simple domains, raises challenging computa-
tional issues that have been recently investigated by AI researchers. Aggregating
preferences consist in mapping a collection 〈P1, . . . , Pn〉 of preference relations
(or profiles) into a collective preference relation P ∗ (which implies circumvening
Arrow’s impossibility theorem [2] by relaxing one of its applicability conditions.)

Now, even on simple domains, some aggregation functions raise computa-
tional difficulties. This is notably the case for Kemeny’s aggregation rule, con-
sisting in aggregating the profiles into a profile (called Kemeny consensus) being
closest to the n profiles, with respect to a distance which, roughly speaking, is
the sum, for all agents, of the numbers of pairs of alternatives on which the aggre-
gated profile disagrees with the agent’s profile. Computing a Kemeny consensus
is NP-hard; [21] addresses its practical computation.

When the set of alternatives has a combinatorial structure, things get much
worse. Moreover, since in that case preferences are often described in a com-
pact representation language, aggregation should ideally operate directly on this
language, without generating the individual nor the aggregated preferences ex-
plicitly. A common way of aggregating compactly represented preferences is
(logical) merging. The common point of logic-based merging approaches is that



the set of alternatives corresponds to a set of propositional worlds; the logic-
based representation of agent’s preferences (or beliefs) then induces a cardinal
function (using ranks or distances) on worlds and aggregates these cardinal pref-
erences. These functions are not necessarily on a numerical scale but the scale
has to be common to all agents. We do not have the space to give all relevant
references to logic-based merging here, but we give a few of them, which explic-
itly mention some social choice theoretic issues: [33, 40, 13, 39]. See also [34, 6]
for preference aggregation from logically expressed preferences. .

4 Vote

Voting is one of the most popular ways of reaching common decisions. Re-
searchers in social choice theory have studied extensively the properties of various
families of voting rules, but, again, have neglected computational issues. A voting
rule maps each collection of individual preference profiles, generally consisting
of linear orders over the set of candidates, to a nonempty subset of the set of
candidates; if the latter subset is always a singleton then the voting rule is said
to be deterministic2.

For a panorama of voting rules see for instance [10]. We just give here a few
of them. A positional scoring rule is defined from a scoring vector, i.e. a vector
s = (s1, . . . , sm) of integers such that s1 ≥ s2 ≥ . . . ≥ sm and s1 > sm. Let
ranki(x) be the rank of x in �i (1 if it is the favorite candidate for voter i, 2
if it is the second favorite etc.), then the score of x is S(x) =

∑N
i=1 sranki(x).

Two well-known examples of positional scoring procedures are the Borda rule,
defined by sk = m − k for all k = 1, . . . ,m, and the plurality rule, defined by
s1 = 1, and sk = 0 for all k > 1. Moreover, a Condorcet winner is a candidate
preferred to any other candidate by a strict majority of voters. (it is well-known
that there are some profiles for which no Condorcet winner exists.) Obviously,
when there exists a Condorcet winner then it is unique. A Condorcet-consistent
rule is a voting rule electing the Condorcet winner whenever there is one.

The first question that comes to mind is whether determining the outcome of
an election, for a given voting procedure, is computationally challenging (which
is all the more relevant as electronic voting becomes more and more popular.)

4.1 Computing the outcome of voting rules: small domains

Most voting rules among those that are practically used are computable in linear
or quadratic time in the number of candidates (and almost always linear in the
number of voters); thererefore, when the number of candidates is small (which is
typically the case for political elections where a single person has to be elected),
computing the outcome of a voting rule does not need any sophisticated algo-
rithm. However, a few voting rules are computationally complex. Here are three
2 The literature of social choice theory rather makes use of the terminology “voting

correspondances” and “deterministic voting rules” but for the sake of simplicity we
will make use of the terminology “voting rules” in a uniform way.



of them: Dodgson’s rule and Young’s rule both consist in electing candidates
that are closest to being a Condorcet winner: each candidate is given a score
that is the smallest number of exchanges of elementary changes in the voters’
preference orders needed to make the candidate a Condorcet winner. What-
ever candidate (or candidates, in the case of a tie) has the lowest score is the
winner. For Dodgson’s rule, an elementary change is an exchange of adjacent
candidates in a voter’s preference profile, while for Young’s rule it is the removal
of a voter. Lastly, Kemeny’s voting rule elects a candidate if and only if it is
the preferred candidate in some Kemeny consensus (see Section 3). Deciding
whether a given candidate is a winner for any of the latter three voting rules
is a ∆P

2 (O(log n))-complete (for Dodgson’s, NP-hardness was shown in [5] and
∆P

2 (O(log n))-completeness in [30]; ∆P
2 (O(log n))-completeness was shown in [45]

for Young’s and in [31] for Kemeny’s.

4.2 Computing the outcome of voting rules: combinatorial domains

Now, when the set of candidates has a combinatorial structure, even simple
procedures such as plurality and Borda become hard. Consider an example where
agents have to agree on a common menu to be composed of a first course dish,
a main course dish, a dessert and a wine, with a choice of 6 items for each. This
makes 64 candidates. This would not be a problem if the four items to be chosen
were independent from the other ones: in this case, this vote problem over a
set of 64 candidates would come down to four independent problems over sets
of 6 candidates each, and any standard voting rule could be applied without
difficulty. But things get complicated if voters express dependencies between
variables, such as “I prefer white wine if one of the courses is fish and none is
meat, red wine if one of the courses is meat and none is fish, and in the remaining
cases I would like equally red or white wine”, etc.

Obviously, the prohibitive number of candidates makes it hard, or even prac-
tically impossible, to apply voting rules in a straightforward way. The computa-
tional complexity of some voting procedures when applied to compactly repre-
sented preferences on a combinatorial set of candidates has been investigated in
[35]; however this paper does not address the question of how the outcome can
be computed in a reasonable amount of time.

When the domain is large enough, computing the outcome by first generating
the whole preference relations on the combinatorial domain from their compact
representation is unfeasible. A first way of coping with the problem consists in
contenting oneself with an approximation of the outcome of the election, using
incomplete and/or randomized algorithms making a possible use of heuristics.
This is an open research issue.

A second way consists in decomposing the vote into local votes on individual
variables (or small sets of variables), and gathering the results. However, as soon
as variables are not preferentially independent, it is generally a bad idea: “multi-
ple election paradoxes” [11] show that such a decomposition leads to suboptimal
choices, and give real-life examples of such paradoxes, including simultaneous



referenda on related issues. We give here a very simple example of such a para-
dox. Suppose 100 voters have to decide whether to build a swimming pool or
not (S), and whether to build a tennis court or not (T). 49 voters would prefer a
swimming pool and no tennis court (ST̄ ), 49 voters prefer a tennis court and no
swimming pool (S̄T ) and 2 voters prefer to have both (ST ). Voting separately
on each of the issues gives the outcome ST , although it received only 2 votes
out of 100 – and it might even be the most disliked outcome by 98 of the voters
(for instance because building both raises local taxes too much). Now, the latter
example did not work because there is a preferential dependence between S and
T . A simple idea then consists in exploiting preferential independencies between
variables; this is all the more relevant as graphical languages, evoked in Section
2, are based on such structural properties. The question now is to what extent
we may use these preferential independencies to decompose the computation of
the outcome into smaller problems. However, again this does not work so easily:
several well-known voting rules (such as plurality or Borda) cannot be decom-
posed, even when the preferential structure is common to all voters. Most of
them fail to be decomposable even when all variables are mutually independent
for all voters. We give below an example of this phenomenon.

Consider 7 voters, a domain with two variables x and y, whose domains
are respectively {x, x̄} and {y, ȳ}, and the following preference relations, where
each agent expresses his preference relation by a CP-net [7] corresponding to
the following fixed preferential structure: preference on x is unconditional and
preference on y may depend on the value given to x.

3 voters 2 voters 2 voters

x̄ � x
x : ȳ � y
x̄ : y � ȳ

x � x̄
x : y � ȳ
x̄ : ȳ � y

x � x̄
x : ȳ � y
x̄ : y � ȳ

For instance, the first CP-net says that the voters prefer x̄ to x uncondition-
ally, prefer ȳ to y when x = x and y to ȳ when x = x̄. This corresponds to the
following preference relations:

3 voters 2 voters 2 voters

x̄y
x̄ȳ
xȳ
xy

xy
xȳ
x̄ȳ
x̄y

xȳ
xy
x̄y
x̄ȳ

The winner for the plurality rule is x̄y. Now, the sequential approach gives
the following outcome: first, because 4 agents out of 7 unconditionally prefer x
over x̄, applying plurality (as well as any other voting rule, since all reasonable
voting rules coincide with the majority rule when there are only 2 candidates)
locally on x leads to choose x = x. Now, given x = true, 5 agents out of 7 prefer
ȳ to y, which leads to choose y = ȳ. Thus, the sequential plurality winner is
(x, ȳ) – whereas the direct plurality winner is (x̄, y).



Such counterexamples can be found for many other voting rules. This raises
the question of finding voting rules which can be decomposed into local rules
(possibly under some domain restrictions), following the preferential indepen-
dence structure of the voters’ profiles – which is an open issue.

4.3 Manipulation

Manipulating a voting rule consists, for a given voter or coalition of voters, in
expressing an insincere preference profile so as to give more chance to a preferred
candidate to be elected. Gibbard and Satterthwaite’s theorem [29, 47] states that
if the number of candidates is at least 3, then any nondictatorial voting procedure
is manipulable for some profiles.

Consider again the example above with the 7 voters3, and the plurality rule,
whose outcome is x̄y. The two voters whose true preference is xy � xȳ � x̄ȳ � x̄y
have an interest to report an insincere preference profile with xȳ on top, that is,
to vote for xȳ – in that case, the winner is xȳ, which these two voters prefer to
the winner if they express their true preferences, namely x̄y.

Since it is theoretically not possible to make manipulation impossible, one can
try to make it less efficient or more difficult. Making manipulation less efficient
can consist in making as little as possible of the others’ votes known to the
would-be manipulating voter – which may be difficult in some contexts. Making
it more difficult to compute is a way followed recently by [4, 3, 15, 14, 17]. The line
of argumentation is that if finding a successful manipulation is extremely hard
computationally, then the voters will give up trying to manipulate and express
sincere preferences. Note that, for once, the higher the complexity, the better.
Randomization can play a role not only in making manipulation less efficient
but also more complex to compute [17].

In a logical merging context (see Section 3), [27] investigate the manipulation
of merging processes in propositional logic. The notion of a manipulation is
however more complex to define (and several competing notions are discussed
indeed), since the outcome of the process is a full preference relation.

4.4 Incomplete knowledge and communication complexity

Given some incomplete description of the voters’ preferences, is the outcome of
the vote determined? If not, whose preferences are to be elicited and what is
relevant so as to compute the outcome? Assume, for example, that we have 4
candidates A,B,C, D and 9 voters, 4 of which vote C � D � A � B, 2 of which
vote A � B � D � C and 2 of which vote B � A � C � D, the last vote
being still unknown. If the plurality rule is chosen then the outcome is already
known (the winner is C) and there is no need to elicit the last voter’s profile. If
the Borda rule is used then the partial scores are A : 14, B : 10, C : 14, D : 10,
therefore the outcome is not determined; however, we do not need to know the
totality of the last vote, but we only need to know whether the last voter prefers
3 I thank Patrice Perny, from whom I borrowed this example.



A to C or C to A. This vote elicitation problem is investigated from the point
of view of computational complexity in [16].

More generally, communication complexity is concerned with the amount of
information to be communicated so that the outcome of the vote procedure is
determined: since the outcome of a voting rule is sometimes determined even if
not all votes are known, this raises the question in designing protocols for gath-
ering the information needed so as to communicate as little info as possible [18].
For example, plurality needs only to know top ranked candidates, while plurality
with run-off needs the top-ranked candidates and then, after communicating the
names of two finalists to the voters, which one they prefer between these two.

5 Fair division

Resource allocation of indivisible goods aims at assigning, to each of a set of
agents N , some items from a finite set R to each of a set of agents N , given their
preferences over all possible combination of objects. For the sake of simplicity,
we assume here that each resource must be given to one and only one agent4.

In centralized allocation problems, the assignment is determined by a cen-
tral authority to which the agents have given their preferences beforehand. As
it stands, a centralized fair division problem is clearly a group decision mak-
ing problem on a combinatorial domain, since the number of allocations grows
exponentially with the number of resources. Since the description of a fair divi-
sion problem needs the specification of the agents’ preferences over the set of all
possible combinations of objects, elicitation and compact representation issues
are highly relevant here as well. Now, is a fair division problem a vote problem,
where candidates are possible allocations? Not quite, because a usual assumption
is made, stating that the primary preferences expressed by agents depends only
of their share, that is, agent i is indifferent between two allocations as soon as
they give her the same share. Furthermore, as seen below, some specific notions
for fair division problems, such as envy-freeness, have no counterpart in terms
of voting.

Two classes of criteria are considered in centralized resource allocation, namely
efficiency and equity (or fairness). At one extremity, combinatorial auctions con-
sist in finding an allocation maximizing the revenue of the seller, where this rev-
enue is the sum, over all agents, of the price that the agent is willing to pay for
the combination of objects he receives in the allocation (given that these price
functions are not necessarily additive.) Combinatorial auctions are a very spe-
cific, purely utilitarianistic class of allocation problems, in which considerations
such as equity and fairness are not relevant. They have received an enormous at-

4 More generally, an object could be allocated to zero, one, or more agents of N . Even
if most applications require the allocation to be preemptive (an object cannot be
allocated to more than one agent), some problems do not require it. An example
of such preemption-free problems is the exploitation of shared Earth observation
satellites described in [36, 8].



tention since a few years (see [20]). Here we rather focus on allocation problems
where fairness is involved – in which case we speak of fair division.

The weakest efficiency requirement is that allocations should not be Pareto-
dominated: an allocation π : N → 2X is Pareto-efficient if and only if there is
no allocation π′ such that (a) for all i, π′(i) �i π(i) and (b) there exists an i
such that π′(i) �i π(i). Pareto-efficiency is purely ordinal, unlike the utilitar-
ianistic criterion, applicable only when preference are numerical, under which
an allocation π is preferred to an allocation π′ if and only if

∑
i∈N ui(π(i)) >∑

i∈N ui(π′(i)).

None of the latter criteria deals with fairness or equity. The most usual way
of measuring equity is egalitarianism, which compares allocations with respect to
the leximin ordering which, informally, works by comparing first the utilities of
the least satisfied agents, and when these utilities coincide, compares the utilities
of the next least satisfied agents and so on (see for instance Chapter 1 of [41]).

The leximin ordering does not need preferences to be numerical but only
interpersonally comparable, that is, expressed on common scale. A purely ordinal
fairness criterion is envy-freeness : an allocation π is envy-free if and only if
π(i) �i π(j) holds for all i and all j 6= i, or in informal terms, each agent is at
least as happy with his share than with any other one’s share. It is well-known
that there exist allocation problems for which no there exists no allocation being
both Pareto-efficient and envy-free.

In distributed allocation problems, agents negotiate, communicate, exchange
or trade goods, in a multilateral way. Works along this line have addressed the
convergence conditions towards allocations being optimal from a social point
of view, depending on the acceptability criteria used by agents when deciding
whether or not to agree on a propose exchange of resources, and some constraints
allowed on deals – see e.g. [46, 26, 24, 23, 12]. The notion of communication com-
plexity is revisited in [25] and reinterpreted as the minimal (with respect to some
criteria) sequence of deals between agents (where minimality is with respect to
a criterion that may vary, and which takes into account the number of deals and
the number of objects exchanged in deals). See [38] for a survey on these issues.

Whereas social choice theory has developed an important literature on fair
division, and artificial intelligence has devoted much work on the computational
aspects of combinatorial auctions, computational issues in fair division have
only started recently to be investigated. Two works addressing envy-freeness
from a computational prespective are [37], who compute approximately envy-
free solutions (by first making it a graded notion, suitable to optimization),
and [9] who relate the search of envy-freeness and efficient allocations to some
well-known problems in knowledge representation. A more general review of
complexity results for centralized allocation problems in in [8]. Complexity
issues for distributed allocation problems are addressed in [24].

Clearly, many models developed in the AI community should have an impact
on modelling, representing compactly and solving fair division problems. More-
over, some issues addressed for voting problems and/or combinatorial auctions,



such as the computational aspects of elicitation and manipulation and the role
of incomplete knowledge, are still to be investigated for fair division problems.

6 Conclusion

There are many more issues for further research than those that we have briefly
evoked. Models and techniques from artificial intelligence should play an im-
portant role, for (at least) the following reasons:

– the importance of ordinal and qualitative models in preference aggregation,
vote and fair division (no need to recall that the AI research community
has contributed a lot to the study of these models.) Ordinality is perhaps
even more relevant in social choice than in decision under uncertainty and
multicriteria decision making, due to equity criteria and the difficulty of
interpersonal comparison of preference.

– the role of incomplete knowledge, and the need to reason about agents’ be-
liefs, especially in utility elicitation and communication complexity issues.
Research issues include various ways of applying voting and allocation pro-
cedures under incomplete knowledge, and the study of communication pro-
tocols for these issues, which may call for multiagent models of beliefs, in-
cluding mutual and common belief (see e.g. [28]). Models and algorithms for
group decision under uncertainty is a promising topic as well.

– the need for compact (logical and graphical) languages for preference elicita-
tion and representation and measure their spatial efficiency. These languages
need to be extended to multiple agents (such as in [44]), and aggregation
should be performed directly in the language (e.g., aggregating CP-nets into
a new CP-net without generating the preference relations explicitly).

– the high complexity of the tasks involved leads to interesting algorithmic
problems such as finding tractable subclasses, efficient algorithms and ap-
proximation methods,using classical AI and OR techniques.

– one more relevant issue is sequential group decision making and planning with
multiple agents. For instance, [42] address the search for an optimal path for
several agents (or criteria), with respect to an egalitarianistic aggregation
policy.

– measuring and localizing inconsistency among a group of agents – especially
when preferences are represented under a logical form – could be investigated
by extending inconsistency measures (see [32]) to multiple agents.
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