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Abstract

Belief-based programs generalize knowledge-
based programs[Fagin et al., 1995] by allowing
for incorrect beliefs, unreliable observations,
and branching conditions that refer to implicit
graded beliefs, such as in “while my belief about
the direction to the railway station is not strong
enoughdo ask someone”. We show how to
reason off-line about the possible executions of a
belief-based program, which calls for introducing
second-order uncertainty in the model.

1 Introduction
Knowledge-based programs, or KBPs [Fagin et al., 1995]
are a powerful notion for expressing action policies in
which branching conditions refer to knowledge (an agent
acts according to what he knows), such as, typically,

if Kϕ then π else π′

whereK is an epistemic (usuallyS5) modality, andπ, π′

are subprograms. However, branching conditions in KBPs
cannot refer to possibly erroneous beliefs or to graded be-
lief, such as in “repeat ask to someone about the way to
the railway stationuntil my belief about the direction to
take is strong enough”. Recently,[Laverny and Lang, 2004]
made a first step towards reasoning withbelief-based pro-
grams(BBPs), where knowledge modalities of KBPs are re-
placed by graded belief modalities, whose semantics relies
on belief states defined as ranking functions, which can be
revised by observations and progressed by physical actions,
which enables the agent to maintain his current belief state
about the worldwhile executinga BBP. Note that BBPs ex-
tend a restricted class of KBPs, in which (a) there is a single
agent, (b) the agent has perfect recall and (c) branching con-
ditions concern the agent’s knowledge about the present state
of the world.

However,[Laverny and Lang, 2004] cannot deal withoff-
line reasoning about the effects of a belief-based program.
Assume for instance that agent A is looking for the way to
the railway station in a foreign town; her initial belief state is
void, and she follows a plan consisting in sequentially asking
to several pedestrians about the direction to follow, until she
has acquired a sufficient level of certainty. Assume moreover

that answers, although not fully reliable, are normally cor-
rect. Each time A gets a direction confirming (resp. contra-
dicting) her current belief, this belief becomes stronger (resp.
weaker). Now, the assumption that answers are normally cor-
rect implies, for instance, that if A has already got 3 “right”
and no “left” then the next answer is more likely to be “right”
again than “left”: the plausibility of getting an observation
depends on the current state.

Coping with this issue results in a natural way insecond-
order uncertaintywhen projecting a belief state by a BBP: in
our example, the agent is able to predict beforehand some-
thing like “after asking 5 pedestrians, normally I’ll have a
very firm belief about the direction to the station, although
I cannot totally exclude the possibility that I’ll have only a
weak, or even a totally void belief”. Such a complex belief
state is a belief state about (future) belief states, that is, a
second-order belief state. Thus, the main concern of this pa-
per is how to doa priori reasoning about the possible states of
belief produced by executing the program: uncertainty about
which of these states of belief will result is itself represented
as a ranking over states of belief.

After recalling some background in Section 2, belief-based
programs are introduced in Section 3. Section 4 deals with
complex belief statesand their progression by actions and
programs. In Section 5 we show how to compute progres-
sion syntactically. Related work is discussed in Section 6.

2 Background
In this Section we briefly recall some notions from[Laverny
and Lang, 2004]. LetPS be afiniteset of propositional sym-
bols. LPS is the (non-modal) propositional language gener-
ated fromPS, the usual connectives and the Boolean con-
stants> and⊥. S = 2PS is the set ofstatesassociated with
PS. Formulas ofLPS are saidobjective. If ϕ ∈ LPS

thenMod(ϕ) = {s ∈ S|s |= ϕ}. ForA ⊆ S, Form(A) is
the objective formula (unique up to logical equivalence) such
thatMod(Form(A)) = A.

Belief statesare identified withordinal conditional func-
tions (OCF) [Spohn, 1988]: a belief state is a functionκ :
S 7−→ N, whereN = N∪{+∞}, such thatmins∈S κ(s) = 0.
κ is lifted from S to LPS by κ(ϕ) = min {κ(s) | s |= ϕ},
with the conventionmin(∅) = +∞ (we will use this conven-
tion throughout the paper without recalling it).κ(s) can be
seen as theexceptionality degreeof s. In particular,κ(s) = 0



means thats is a normal state andκ(s) = +∞ thats is to-
tally impossible. For anyϕ ∈ LPS , the belief stateκϕ is

defined byκϕ(s) =
{

0 if s |= ϕ
+∞ if s |= ¬ϕ . In particular,κ>

is thevoid belief state: ∀s, κ>(s) = 0.
Beliefs are expressed syntactically in a graded extension

KD45G of KD45, whose languageLPS is defined as fol-
lows:

(a) if ϕ ∈ LPS thenB1ϕ, B2ϕ, . . . ,B∞ϕ are inLPS ;
(b) if Φ andΨ in LPS then¬Φ, Φ ∨Ψ, Φ ∧Ψ in LPS .
Note thatLPS considers onlysubjectiveandflat formulas1.

Formulas ofLPS are denoted by capital Greek lettersΦ,Ψ
etc. while objective formulas are denoted by small Greek let-
tersϕ,ψ etc.Biϕ intuitively means that the agent believesϕ
with strengthi. The largeri, the stronger the belief expressed
by Bi, andB∞ is aknowledge(true belief) modality.

The truth of a formula ofLPS in an belief stateκ is defined
by:

(a) forϕ objective andi ∈ N, κ |= Biϕ iff κ(¬ϕ) > i;
(b) κ |= Φ ∨Ψ iff κ |= Φ or κ |= Ψ;
(b) κ |= Φ ∧Ψ iff κ |= Φ andκ |= Ψ;
(c) κ |= ¬Φ iff κ 6|= Φ.
Thus,κ |= Biϕ holds as soon as any countermodel ofϕ

is exceptional at least to the degreei, or, equivalently, that
all states such thatκ(s) < i are models ofϕ. In particular,
B1ϕ is satisfied when all normal states satisfyϕ, andB∞ϕ is
satisfied when all possible states (to any degree) are models
of ϕ.

An observationis a belief stateκobs, representingall we
observewhen getting the observation. Observations can be
incomplete and partially unreliable (see[Laverny and Lang,
2004] for examples). The agent revises her current belief state
by an observation by combining both: the revision ofκ by
κobs is undefined whenminS(κ+ κobs) = ∞, and otherwise
is the belief state defined by

∀s ∈ S, (κ⊕ κobs)(s) = κ(s) + κobs(s)−min
S

(κ+ κobs)

In particular,κ> ⊕ κobs = κobs and (κ ⊕ κϕ) = κ(.|ϕ),
whereκ(.|ϕ) is Spohn’s conditioning[Spohn, 1988].

A physical actionα is a feedback-free action (that is, it
possibly changes the state of the world but does not give any
feedback), defined by a transition model consisting of a col-
lection of belief states{κα(.|s), s ∈ S}. κα(s′|s) is the ex-
ceptionality degree of the outcomes′ when performingα in
states. Theprogressionof a belief stateκ0 by α is the belief
stateκ � α = κ(.|κ0, α) defined (cf.[Boutilier, 1998]) by

∀s ∈ S, (κ � α)(s) = κ(s|κ0, α) = min
s′∈S

{κ(s′) + κα(s|s′)}

A positive formulaof LPS is a formula where noBi

appears in the scope of negation. Apositive conjunctive
(PC) formula ofLPS is a formula of the formB∞ϕ∞ ∧

1This restriction is made for the sake of simplicity; it would be
possible to consider nested modalities, and then prove, as it is the
case inKD45, that each formula is equivalent to a flat formula, but
this issue has no relevance to the issues dealt with in this paper.
Likewise, combinations of objective and subjective formulas do not
play any role either for expressing belief-based programs.

Bnϕn ∧ . . . ∧ B1ϕ1; without loss of generality we can as-
sumeϕi |= ϕi+1, sinceB∞ϕ∞ ∧ Bnϕn ∧ . . . ∧ B1ϕ1 is
equivalent toB∞ϕ∞ ∧ Bn(ϕ∞ ∧ ϕn) ∧ . . . ∧ B1(ϕ∞ ∧
ϕn ∧ . . . ∧ ϕ1). There is a one-to-one correspondance be-
tween belief states and satisfiable PC formulas (modulo log-
ical equivalence): for eachκ, the PC formulaG(κ) = Φκ

is defined asB∞ϕ∞ ∧ Bnϕn ∧ . . . ∧ B1ϕ1, wheren =
max{k < ∞,∃s such thatκ(s) = k}, and for everyi ∈ N∗,
ϕi = Form({s, κ(s) < i}). (Note thatn is finite, because
S is finite andminκ = 0.) For instance, letκ([a, b]) = 0,
κ([a,¬b]) = 1, κ([¬a, b]) = 3 andκ([¬a,¬b]) = ∞, then
Φκ = B∞(a∨b)∧B3a∧B2a∧B1(a∧b) – which is equivalent
to B∞(a ∨ b) ∧ B3a ∧ B1b. Conversely, for each satisfiable
PC formulaΨ there is a belief stateκΨ = H(Ψ) such that
G(H(Ψ)) ≡ Ψ. G(κ) representsall the agent believesin κ2.
We will sometimes make the following slight abuse of nota-
tion: when a PC formulaΨ is equivalent to a shorter (but not
PC) formulaΨ′, we writeκΨ′ instead ofκΨ. For instance, the
PC formulaΨ = B∞ϕ∞>∧B3>∧B2r ∧B1r is equivalent
to B2r, therefore we writeκB2r instead ofκΨ.

3 Belief-based programs
Belief-based programs (BBP) are built up from a set of ac-
tionsACT and program constructors:

• the empty planλ is a BBP;

• for anyα ∈ ACT , α is a BBP;

• if π andπ′ are BBPs then(π;π′) is a BBP;

• if π and π′ are BBP and Φ ∈ LPS , then
(if Φ then π else π′) and (while Φ do π)
are BBPs.

Thus, a BBP is a programwhose branching conditions are
doxastically interpretable: the agent can decide whether she
believesto a given degree that a formula is true (whereas she
is generally unable to decide whether a given objective for-
mula is true in the actual world). For instance, the agent per-
forming the BPP

π = while ¬(B2r ∨ ¬B2¬r) do ask;
if B2r then goright else goleft

performs the sensing actionask until she has a belief
firm enough (namely of degree 2) about the way to follow
(whetherπ is guaranteed to stop is a good question!).

Progression and revision in[Laverny and Lang, 2004] are
used for maintaining the agent’s current belief statewhile the
program is being executed. However, predicting the future
possible states resulting from the execution of a BBPbeforeit
has started to be executed (off-lineevaluation) cannot be done
in a satisfactory way. Considerπ = ask; ask; ask; ask, con-
sisting in asking in sequence to 4 pedestrians about the way
to the station. Assume that each occurrence ofask can send

2This could be formalized by extending our language with
graded doxastic versionsO1, . . . ,O∞ of theonly knowingmodality
(e.g. [Levesque and Lakemeyer, 2000]), Oiϕ meaning thatall the
agent believes to the degreei is ϕ. Due to space limitations we must
omit the details.



backobs1 = κB1r or obs2 = κB1¬r, corresponding respec-
tively to a pedestrian telling that the station is on the right
(resp. left), taken with some limited reliability (for the sake
of simplicity we exclude “don’t know” answers). Then all
we can predict is that after doingπ the agent will be in one
of the 5 belief statesκB4r, κB4¬r, κB2r, κB2¬r, κ>3. The
point now is thatobs1 andobs2 cannot always be considered
as likely as each other: for instance, we may wish to express
that accurate observations are more frequent than inaccurate
ones. Therefore, observations should be ranked by their plau-
sibility of occurrence given the current state and the sensing
action performed. Then, the projection of an initial belief
state by a program results in asecond-order(or complex) be-
lief state: in our example, one would expect to obtain that
after asking to two persons, then normally the agent is the be-
lief stateκB2r or in the belief stateκB2¬r, and exceptionally
in the void belief stateκ>. This issue is developed in next
Section.

4 Complex belief states and progression
4.1 Complex belief states
Definition 1 Let BS be the set of all belief states onS. A
complex belief state(CBS) is an ordinal conditional func-
tion µ on BS , i.e., a functionµ : BS → N such that
minκ∈BS

µ(κ) = 0
µ is a second-order belief state expressing the beliefs, before
executing some given programπ, about the (future) possible
belief states resulting from its execution.
Example 1 LetS = {r,¬r}.

µ :



κ0 :

[
r : 0
¬r : 0

]
: µ(κ0) = 1

κ3 :

[
r : 0
¬r : 2

]
: µ(κ3) = 0

κ4 :

[
r : 2
¬r : 0

]
: µ(κ4) = 0


is a CBS (by convention, for any belief stateκ not mentioned
we haveµ(κ) = +∞); it intuitively represents a situation
where the agent expects the resulting belief state to be either
κ0, κ3 or κ4, these last two beingnormalresults andκ0 being
exceptional. Note thatκ0 = κ>, κ3 = κB2r andκ4 = κB2¬r.

We define µκ as the (degenerated) CBS defined by
µκ(κ) = 0 andµκ(κ′) = ∞ for all κ′ 6= κ.

Note that since, unlikeS,BS is not finite, some CBSs can-
not be finitely represented. We say thatµ has afinite support
iff only a finite number of belief states have a finite plau-
sibility, i.e., {κ ∈ BS |µ(κ) < ∞} is finite; in this case
we definenµ (or simply n where there is no ambiguity) as
max{i <∞ | ∃κ such thatµ(κ) = i}.

4.2 Progression by sensing actions
Consider a finite setACTS of sensing actions, that send feed-
back to the agent, under the form ofobservations. Each sens-
ing action is defined by a state-dependent plausibility assign-
ment on possible observations.

3The notationκΦ has been introduced at the end of Section 2.

Definition 2 LetOBS ⊆ BS be afinite set of possible ob-
servations (recall that observations are belief states). Anob-
servation modelis a collection of functions

κOBS(.|s, α) : OBS → N
for everyα ∈ ACTS and everys ∈ S, such that:

1. for everyα ∈ ACTS and everys ∈ S,
minobs∈OBS κOBS(obs|s, α) = 0

2. for everyobs ∈ OBS, if obs(s) = ∞ then for every
α ∈ ACTS , κOBS(obs|s, α) = ∞.

κOBS(obs|s, α) is the exceptionality degree of getting ob-
servationobs as feedback when executing the sensing action
α in states. This definition first appears in[Boutilier et al.,
1998], and is similar in spirit to correlation probabilities be-
tween states and observations in partially observable Markov
decision processes. Condition 1 expresses that there is always
at least one normal observation; Condition 2 is a weak con-
sistency condition between states and observations (an obser-
vation totally excluding a state cannot occur in that state).

Example 2
LetS = {r,¬r}, obs1 = κB1r, obs2 = κB1¬r, and let

κOBS(obs1|r, ask) = 0 κOBS(obs2|r, ask) = 1
κOBS(obs2|¬r, ask) = 0 κOBS(obs1|¬r, ask) = 1

(all other observations being impossible, i.e., forobs 6=
obs1, obs2, κ(obs|s, α) = ∞; by convention we omit these
when specifyingκ(.|s, α)). This means that accurate obser-
vations are the normal ones, whereas incorrect obervations
are 1-exceptional.

Definition 3 Letκ0 be a belief state andα ∈ ACTS . Given
obs ∈ OBS, the plausibility of obtainingobs afterα in belief
stateκ0 is defined by

κOBS(obs|κ0, α) = min
s∈S

[κ0(s) + κOBS(obs|s, α)]

The progressionof κ0 by α is the complex belief state
prog(κ0, α) = µ(.|κ0, α) defined by: for allκ ∈ BS ,

µ(κ|κ0, α)
= min{κOBS(obs|κ0, α) | obs ∈ OBS and κ = κ0 ⊕ obs}
Thus, κ is all the more normal in the projected CBS

µ(.|κ0, α) as there exists a normal states and a normal ob-
servationobs (given s) such thatκ is the revision ofκ0 by
obs. Condition 2 in Definition 2 guarantees thatκ0 ⊕ obs is
defined wheneverκOBS(obs|κ0, α) <∞, which ensures that
µ(.|κ0, α) is a CBS.

Example 3 The figure on the left (resp. right) shows the pro-
gression ofκ0 (resp.κ1) byask.

κ0 :
[

r : 0
¬r : 0

]
κ1 :

[
r : 0
¬r : 1

]

κ1 :
[

r : 0
¬r : 1

]
κ2 :

[
r : 1
¬r : 0

]
κ3 :

[
r : 0
¬r : 2

]
κ0 :

[
r : 0
¬r : 0

]
µ(κ1) = 0 µ(κ2) = 0 µ(κ3) = 0 µ(κ0) = 1

obs1 obs2 obs1 obs2



µ(.|κ0, ask) =

[
κ1 : 0
κ2 : 0

]
µ(.|κ1, ask) =

[
κ3 : 0
κ0 : 1

]
4.3 Progression by physical actions
In addition to sensing actions we consider a finite setACTP

of physical, feedback-free actions4. In Section 2, the progres-
sion of a belief state by a physical action was definedas a
belief state. For the sake of homogeneity, we have now to
define it as a CBS: the progressionµ(.|κ0, α) of a belief state
κ0 by α ∈ ACTP is defined byµ(.|κ0, α) = µκ0�α, i.e.,

µ(κ|κ0, α) =
{

0 if κ = κ0 � α
∞ otherwise

4.4 Progression by belief-based programs
The progression of a belief stateκ by a BBPπ is thecomplex
belief stateµ(.|κ, π) defined inductively by

• if π = λ thenµ(.|κ, π) = µκ;

• if π = α thenµ(.|κ, π) is defined in Section 4.3 ifα ∈
ACTP and in Section 4.2 ifα ∈ ACTS ;

• if π = (π1;π2) then
µ(κ′|κ, π) = minκ′′∈BS(µ(κ′′|κ, π1) + µ(κ′|κ′′, π2))

• if π = if Φ then π1 else π2 then

µ(κ′|κ, π) =
{
µ(κ′|κ, π1) if κ |= Φ
µ(κ′|κ, π2) otherwise

• if π = while Φ do π′ then

µ(κ′|κ, π) =
{
µ(κ′|κ, (π′;π)) if κ |= Φ
µκ(κ′) otherwise

If π contains nowhile construct then this definition is
well-founded (it can be proved that it results a SBS which
moreover does not depend on the order in which the above
rules are applied). This is not so withwhile constructs,
since the (recursive) definition leads to a fixpoint equation
whose solution, when defined, is taken to be its least fixpoint
when the latter is a CBS, which is not necessarily the case:
considerκ0 = κ> andπ = while > do ask; applying the
above definition leads toµ(κ|κ0, π) = ∞ for all κ, which is
not a CBS. Moreover, whenµ(.|κ0, π) is defined, it does not
necessarily have a finite support.

Example 4
• µ(.|κ>, (ask; ask)) = [κ3 : 0 ; κ4 : 0 ; κ0 : 1];

• µ(.|κ>, (ask; ask; ask; ask))
= [κB4r : 0 ; κB4¬r : 0 ; κ3 : 1 ; κ4 : 1 ; κ0 : 2];

• π1 = (ask; ask; if B2r ∨B2¬r then λ else ask).
Thenµ(.|κ>, π1) = [κ3 : 0 ; κ4 : 0; κ1 : 1 ; κ2 : 1];

• π2 = while ¬(B2r ∨ B2¬r) do ask. Applying the
definition gives a fixpoint equation whose solution is
µ(.|κ0, π2) = [κ3 : 0 ; κ4 : 0].5

4Such a partition between purely sensing and purely physical ac-
tions is usual and does not induce a loss of generality.

5The question whether this program can run forever is similar to
that of whether it is possible that a fair coin tossed repeatedly always
turns up heads, and this is thus related to an OCF version of the law
of large numbers.

4.5 Two particular cases
An unobservable environmentconsists of a set of physical
actions only (ACTS = ∅).

A fully observable environmentis somewhat harder to de-
fine formally because of the separation between physical and
sensing actions, which prevents us to say that all actions send
a full feedback. To cope with this, we assume thatACTS

contains one actionsense(x) for each propositional variable,
which returns the truth value ofx with full certainty, and we
require that in a program, any physical actionα should be fol-
lowed by all actionssense(x) – which means that afterα and
this sequence of sensing actions, the state is known with full
certainty. Any program of this kind is said to beadmissible.
The initial state is also required to be known with certainty.

Proposition 1
1. in an unobservable environment, for anyκ0 and any pro-

gramπ for whichµ(.|κ0, π) is defined, there exists a be-
lief stateκ such thatµ(.|κ0, π) = µκ;

2. in a fully observable environment, for any belief state
κ0 and any admissible programπ such thatµ(.|κ0, π)
is defined,µ(κ|κ0, π) < ∞ implies thatκ is a precise
belief state,i.e., κ = κs for somes ∈ S.

5 Progression: syntactical computation
Applying progression as it is defined above has a prohibitive
complexity, since it amounts at iterating over all belief states,
states, and observations. In this Section we give a more
friendly, syntactical way of computing progression, based on
a compact representation of complex belief states.

So as to be able to reason about the resulting belief states,
we now introduce a new family of modalitiesP1, P2, . . . ,
P∞ in addition toB1, . . . ,B∞. While theBi modalities deal
with uncertainty (about the current state), P1 , P2, . . . , P∞
deal with second-order uncertainty,i.e., uncertainty about the
projected belief state(with respect to some program).
L2

PS is the language defined by:

• if Φ is a formula ofLPS then for alli, PiΦ is a formula
of L2

PS ;

• if Θ andΘ′ are formulas ofL2
PS thenΘ ∧ Θ′, Θ ∨ Θ′

and¬Θ are formulas ofL2
PS .

Like for Bi modalities, we need not consider nestedPi

modalities, neither heterogeneous combinations ofPi andBi

modalities (resp. objective formulas). Satisfaction of aL2
PS

formula by a CBS is defined by

• µ |= PiΦ iff for all κ ∈ BS , κ |= ¬Φ impliesµ(κ) > i;

• µ |= Θ ∧Θ′ iff µ |= Θ andµ |= Θ′

(and similarly for the other connectives).

Validity, satisfiability and logical consequence are defined in
the usual way. Intuitively,P1Φ means thatall belief states
that do not satisfyΦ are exceptional at least to the degreei.

When reasoning about CBS, we are mainly concerned with
inferringpositive formulas– inferring negative formulas such
as¬PiΦ is somewhat derivative. We define apositiveL2

PS
formula as follows:



• if Φ is a positiveLPS formula andi ∈ N thenPiΦ is a
positiveL2

PS formula;

• if Θ1 andΘ2 are positiveL2
PS formulas thenΘ1 ∧ Θ2

andΘ1 ∨Θ2 is a positiveL2
PS formula.

Moreover, acanonicalL2
PS formula is aL2

PS formula of the
form Θ = P1Φ1 ∧P2Φ2 ∧ . . .∧PnΦn ∧P∞Φ∞, whereΦ1,
. . . ,Φn, Φ∞ are positiveLPS formulas6.

Given a CBSµ with finite support, the canonicalL2
PS for-

mulaG+(µ) = Θµ associated withµ is defined by

Θµ =

i=n∧
i=1

Pi

 ∨
µ(κ)<i

G(κ)

 ∧P∞

 ∨
µ(κ)<∞

G(κ)


wheren = nµ andG(κ) is the canonicalLPS formula cor-

responding toκ (cf. Section 2).

Proposition 2 For any CBSµ with finite support and any
positive conjunctiveL2

PS formula Θ, µ |= Θ if and only if
Θµ |= Θ, that is, Θµ is the strongest positive conjunctive
L2

PS formula satisfied byµ.

Example 1 (continued)
Θµ = P1(B2r ∨B2¬r) ∧P∞(B2r ∨B2¬r ∨B∞>)

≡ P1(B2r ∨B2¬r)
We are now in position to give a syntactical characteriza-

tion of progression.

Definition 4 Let Φ be a positive conjunctiveLPS formula
and α be any action. The progression ofΦ by α is the
canonicalL2

PS formula Prog(Φ, α) corresponding to the
CBSµ(.|κΦ, α), i.e.,

Prog(Φ, α) = G+(µ(.|κΦ, α)) = Θµ(.|κΦ,α)

We now show how the formulaProg(Φ, α) can be com-
puted without first generating the correspondingµ.

Proposition 3
Letα be a sensing action andΦ = B1ϕ1∧ . . .∧Bpϕp∧B∞ϕ
a positive conjunctiveLPS formula. We define:

• for anyobs ∈ OBS andi ∈ N,
ψi,obs,α = Form{s ∈ S | µOBS(obs|s, α) < i};

• Xi,Φ,α = {obs ∈ OBS | (ϕ1 ∧ ψi,obs,α) ∨ . . . ∨ (ϕi ∧
ψ1,obs,α) 6≡ ⊥};

• X∞,Φ,α = {obs ∈ OBS | ϕ ∧ ψ∞,obs,α 6≡ ⊥};
• n is the largest integeri such thatXi,Φ,α  X∞,Φ,α.

Then

Prog(Φ, α) =

i=n∧
i=1

Pi(
∨

obs∈Xi,Φ,α

Φ⊗ Φobs)

∧P∞(
∨

obs∈X∞,Φ,α

Φ⊗ Φobs)

where⊗ is the syntactical revision operator (Proposition 1
of [Laverny and Lang, 2004]), which satisfiesΦ ⊗ Φobs =
G(H(Φ)⊕ obs).

6Notice that canonicalL2
PS formulas are positiveL2

PS formulas
in which there is no disjunction at the level of thePi modalities (but
disjunctions may appearin the scopeof aPi modality, and of course
in the scope of aBi modality too).

Example 2 (continued) Let Φ = B1r. We get
X1,Φ,ask = {obs1}, X2,Φ,ask = {obs1, obs2} and for
all n > 2, Xn,Φ,ask = {obs1, obs2}. Proposition 3 gives
Prog(Φ, ask) = P1(B1r ⊗ B1r) ∧ P∞((B1r ⊗ B1r) ∨
(B1r ⊗B1¬r)) ≡ P1B2r ∧P∞(B2r ∨B∞>) ≡ P1B2r.

The characterization for physical actions is much easier.

Proposition 4 For any physical actionα and any PCLPS

formulaΦ, Prog(Φ, α) ≡ P∞G(κΦ � α).

Moreover,G(κΦ � α) can be computed efficiently using
Proposition 2 of[Laverny and Lang, 2004].

Lastly, the progression of a positive conjunctiveLPS for-
mulaΦ by a BBPπ is the canonicalL2

PS formulaProg(Φ, π)
defined inductively as follows:

• Prog(Φ, λ) = P∞Φ;

• Prog(Φ, α) is defined at Definition 4 ifα is an action;

• Prog(Φ, if Ψ then π1 else π2)

=
{
Prog(Φ, π1) if Φ |= Ψ
Prog(Φ, π2) otherwise

• Prog(Φ, π1;π2) =

i=n∧
i=1

Pi(
∨

u+v=i+1

[Prog([Prog(Φ, π1)]u, π2)]v)

∧P∞([Prog([Prog(Φ, π1)]∞, π2)]∞)

• Prog(Φ, while Ψ then π′) ={
Prog(Φ, π′;π) if Φ |= Ψ
Prog(Φ, λ) otherwise

where

1. for any canonicalL2
PS formulaΘ, [Θ]i is the strongest

positiveLPS formula Ψ (unique up to logical equiva-
lence) such thatΘ |= PiΨ .

2. for any positive conjunctiveLPS formulas Φ1 and
Φ2: [Prog(Φ1 ∨ Φ2, π)]i = [Prog(Φ1, π)]i ∨
[Prog(Φ2, π)]i.

Proposition 5 Prog(Φκ, π) = Θµ(.|κ,π)

Example 5
Letπ = (ask; ask; if B2r ∨B2¬r then λ else ask)
andπ′ = (while ¬(B2r ∨B2¬r) do ask).

• Prog(B∞>, ask) ≡ P∞(B1r ∨B1¬r)
• Prog(B∞>, ask; ask) ≡ P1(B2r ∨B2¬r).
• Prog(B∞>, π) ≡ P1(B2r∨B2¬r)∧P∞(B1r∨B1¬r)
• Prog(B∞>, π′) ≡ P∞(B2r ∨B2¬r)

6 Related work
Partially observable Markov decision processes
POMDPs are the dominant approach for acting under partial
observability (including nondeterministic actions and unreli-
able observations). The relative plausibility of observations
given states, as well as the notion of progressing a belief state
by an action, has its natural counterparts in POMDPs. Now,



there are two important differences between POMDPs and
our work.

First, in POMDPs policies, branching is conditioned by
the observation sequence that has lead to the current belief
state; the policy is therefore directly implementable, without
the need for an on-line reasoning phase. In our framework,
branching conditions are expressed logically, which may al-
low for much more compact policies than branching on ob-
servations. In this view, BBPs can be seen as high-level, com-
pact specifications of POMDP policies (the policy being the
implementation of the program).Our work can thus be seen
as a first step towards bridging knowledge-based programs
and POMDPs.

Second, we allow for second-order uncertainty whereas
POMDPs get rid of it: ifpproj(p|p0, π) is the probability
of obtaining the probabilistic belief statep after executingπ
in p0, this second-order belief state is systematically reduced
into the first-order onêp, following the lottery reduction prin-
ciple: p̂(s) =

∑
p∈PBS

pproj(p).p(s) (wherePBS is the set
of probability distributions onS). This is a loss of expressiv-
ity, as seen on the following example: consider the actionα of
tossing a coin and the actionβ of sensing it. The agent knows
that after performingα only, she will be for sure in a belief
state wherep(heads) = p(tails) = 0.5. This differs from
projecting the effects ofα;β: then she knows that he will
reach either a belief state where sheknowsheads or a belief
state where sheknowstails, with equal probability. After re-
duction, these two plans and their projections can no longer
be distinguished – whereas our CBS do distinguish them7.

Cognitive robotics
Another fairly close area is that of cognitive robotics, es-
pecially the work aroundGolog and the situation calculus
(e.g.,[Reiter, 2001]), which is concerned with logical specifi-
cations of actions and programs, including probabilistic ex-
tensions and partial observability.[Bacchuset al., 1999]
gives an account for the dynamics of probabilistic belief states
when perceiving noisy observations and performing physical
actions with noisy effectors.[Grosskreutz and Lakemeyer,
2000] considers probabilistic Golog programs with partial ob-
servability, with the aim of turning off-line nondeterministic
plans into programs that are guaranteed to reach the goal with
some given probability. In both works, branching conditions
involve objective formulas and there is no account for second-
order uncertainty. Bridging belief-based programs and the
situation calculus (and Golog) is a promising issue.

Belief revision with unreliable observations
[Boutilier et al., 1998] might be the closest work to ours,
as far as the dynamics of belief states in the presence of
noisy observations is concerned. Our notion of an observa-
tion model (Definition 3) owes a lot to theirs (which also
makes use of ranking functions). Now, their objectives de-
part from ours, as they focus on a general ontology for belief

7Incidentally, we can reduce a CBS in a similar way: thereduc-
tion of the CBSµ of the is thebelief stateκ̂µ ∈ BS defined by
κ̂µ(s) = minκ∈BS µ(κ)+κ(s). It is readily checked that̂κ is a be-
lief state. Reducingµ into κ̂µ results in a much simpler (and shorter)
structure, which, on the other hand, is much less informative thanµ.

revision and do not consider physical actions nor programs,
nor do they give a syntactical way of computing their revision
functions.

Counterfactual belief-based programs
[Halpern and Moses, 2004] consider belief-based programs
with counterfactuals whose semantics, like ours, is based on
ranking functions. They do not allow for graded belief in
branching conditions, nor unreliable observations (ranking
functions are used for evaluating counterfactuals), but they
allow for counterfactual branching conditions, possibly refer-
ring to future belief states, such as “if I believe that if I were
not sending this message now then my partner might not get
this important information, then I should send it”. Adding
counterfactuals and beliefs about future states to our frame-
work is worth considering for further research.
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