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Abstract. We consider a voting setting where candidates have preferences about
the outcome of the election and are free to join or leave the election. The cor-
responding candidacy game, where candidates choose strategically to partici-
pate or not, has been studied in very few papers, mainly by Dutta et al. [5,6],
who showed that no non-dictatorial voting procedure satisfying unanimity is
candidacy-strategyproof, or equivalently, is such that the joint action where all
candidates enter the election is always a pure strategy Nash equilibrium. They
also showed that for voting trees, there are candidacy games with no pure strat-
egy equilibria. However, no results were known about other voting rules. Here
we prove several such results. Some are positive (a pure strategy Nash equilib-
rium is guaranteed for Copeland and the uncovered set, whichever is the number
of candidates, and for all Condorcet-consistent rules, for 4 candidates). Some are
negative, namely for plurality and maximin.

1 Introduction

The two main criteria for the evaluation of voting rules are their ability to resist vari-
ous sorts of strategic behaviour and to adapt to changes in the environment. Many (if
not most) papers in computational social choice deal with (at least) one of these issues.
Typically, strategic behaviour is shown by the voters reporting insincere votes (manip-
ulation); by a third party, usually the chair, acting on the set of voters or candidates
(control), or on the votes (bribery and lobbying), or on the voting rule (e.g., agenda
control)1; finally, it can arise among the candidates themselves, who may also have
preferences about the outcome of the election. However, the latter case has received
little attention in (computational) social choice comparing to the former two. One form
thereof involves choosing optimal political platforms, but probably the simplest form
comes from the very ability of candidates to decide whether to run for the election or
not, which is the issue we address in this paper. The following table summarises this
rough classification of strategic behaviour in voting, according to the identity of strate-
gising agent(s) and also to another relevant dimension, namely what the strategic actions
bear on—voters, votes or candidates (we omit the agenda to keep the table small).

1 There are also some forms of strategic behaviour that are specific to multiwinner elections,
such as gerrymandering (by the chair) or vote pairing (by the voters).
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actions →
agents ↓ voters votes candidates

voters strategic participation manipulation -

third party / chair voter control bribery, lobbying
candidate control,

cloning
candidates - - strategic candidacy

Strategic candidacy does happen frequently in real-life elections, both in large-scale
political elections and in small-scale, low-stake elections (e.g., electing a chair in a re-
search group). Throughout the paper we consider a finite set of potential candidates,
which we simply call candidates when this is not ambiguous, and we make the follow-
ing assumptions:
1. each candidate may choose to run or not for the election;
2. each candidate has a preference ranking over candidates;
3. each candidate ranks himself on top of his ranking;
4. the candidates’ preferences are common knowledge among them;
5. the outcome of the election as a function of the set of candidates who choose to run

is common knowledge among the candidates.
With the exception of 3, these assumptions were also made in the original model of
Dutta et al. [5] which we discuss below. Assumption 2 amounts to saying that a candi-
date is interested only in the winner of the election2 and has no indifferences or incom-
parabilities. Assumption 3 (considered as optional in [5]) is a natural domain restriction
in most contexts. Assumptions 4 and 5 are common game-theoretic assumptions: note
that we do not have to assume that the candidates know precisely how voters will vote,
nor even the number of voters—they just have to know the choice function mapping
every subset of candidates to a winner.

Existing work on strategic candidacy is rather scarce. It starts with [5] and [6],
that formulate the strategic candidacy game and prove the following results (among
others): (i) no non-dictatorial voting procedure satisfying unanimity is candidacy-
strategyproof—or equivalently, is such that the joint action where all candidates enter
the election is always a pure strategy Nash equilibrium; (ii) for the specific case of
voting trees, there are candidacy games with no pure strategy Nash equilibria. These
results are discussed further (together with simpler proofs) [7], and extended to voting
correspondences [9,15] and to probabilistic voting rules [14].

Many questions remain unsolved. In particular, studying the solution concepts (such
as Nash equilibria or strong equilibria) of a candidacy game would help predict the set of
actual candidates and hence, the outcome of the vote, and therefore help design better
elections. However, little is known about this: we only know that for any reasonable
voting rule, there are some candidacy games for which the set of all candidates is not a
Nash equilibrium, and that for voting trees, there exist a candidacy game with no pure
strategy Nash equilibrium.

2 In some contexts, candidates may have more refined preferences that bear for instance on the
number of votes they get, how their score compares to that of other candidates etc. We do not
consider these here.
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In this paper, we go further in this direction and prove some positive as well as
some negative results. We first consider the case of 4 candidates and show that a pure
strategy Nash equilibrium always exists for Condorcet-consistent rules. Then we show
that for Copeland and the uncovered set there is always an equilibrium in pure strategies,
whichever is the number of candidates (although strong equilibria are not guaranteed to
exist). On the negative side, we show that for plurality, for at least 4 candidates, and for
maximin for at least 5 candidates, there are candidacy games without Nash equilibria.

Although it seems that strategic candidacy has not been considered yet in computa-
tional social choice, it is related to some questions that have received some attention in
this community. First, the existence of strong equilibria is related to a stronger variant
of candidate control (see the last paragraph of the conclusion). Other somewhat less
related works that also consider a dynamic set of candidates are candidate cloning [8],
possible winners with new candidates [3], and the unavailable candidate model [12].

The paper unfolds as follows. In Section 2 we define the strategic candidacy games
and give a few preliminary results. In Section 3 we focus on the case of 4 candidates,
whereas the case of 5 or more candidates is considered in Section 4. Finally, in Section
5 we discuss further issues, including the relation to candidate control.

2 Model and Preliminaries

In this section, we formally define the model of strategic candidacy and show that it
induces a normal form game. We then present two simple results on the existence of
Nash equilibria and strong equilibria in this setting.

2.1 Voting Rules

For completeness, we first define the common voting rules that we study in this paper.
There is a set of n voters electing from a set of m candidates. A single vote is a

strict ordering of the candidates. A voting rule takes all the votes as input, and produces
an outcome—a candidate, called the winner of the election. Although voting rules are
usually defined for a fixed number of candidates, here we naturally extend the defini-
tion to an arbitrary number of candidates. All voting rules we consider in this work
are resolute: we first define their irresolute version and assume that ties are broken up
according to a fixed priority relation over candidates. Since voting rules are applied to
varying sets of candidates, we assume that the tie-breaking rule is defined for the whole
set of potential candidates, and projected to smaller sets of candidates; in other terms,
if x has priority over y when all potential candidates run, this will still be the case for
any set of candidates that contains x and y.

The plurality winner is the candidate that is ranked first by the largest number of
voters. The Borda winner is the candidate who gets the highest Borda score: for each
voter, a candidate c receives q − 1 points (where q is the number of candidates that are
actually running) if it is ranked first by that voter, q−2 if it is ranked second, and so on;
the Borda score B(c) of c is the total number of points he receives from all the voters.

Let N(c, x) be the number of votes that rank c higher than x. The majority graph
associated with a set of votes is the graph whose vertices are the candidates and con-
taining an edge from x to y whenever N(x, y) > n

2 (when this holds we say that x
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“beats” y). A candidate c is a Condorcet winner if x beats y for all y �= x. A voting rule
is Condorcet-consistent if it always elects a Condorcet winner when one exists.

The maximin rule chooses the candidate c for whom minx∈X\{c}N(c, x) is max-
imal. The Copeland0 (resp., Copeland1) rule elects the candidate c maximising the
number of candidates x such that N(c, x) > n

2 (resp., N(c, x) ≥ n
2 ). The uncovered

set (UC) rule selects the winner from the “uncovered set of candidates”: a candidate c
belongs to the uncovered set if and only if, for any other candidate x, if x beats c then c
beats some y that beats x.

2.2 Strategic Candidacy

There is a set X = {x1, x2, . . . xm} of m potential candidates, and a set V =
{1, 2, . . . n} of n voters. We assume that these sets of voters and candidates are dis-
joint. As is classical in social choice theory, each voter i ∈ V has a preference relation
Pi, over the different candidates—i.e., a strict order ranking the candidates. The com-
bination P = (P1, P2, . . . , Pn) of all the voters’ preferences defines their preference
profile.

Furthermore, each candidate also has a strict preference ordering over the candidates.
We naturally assume that the candidates’ preferences are self-supported—that is, the
candidates rank themselves at the top of their ordering. Let PX = (PX

c )c∈X denote the
candidates’ preference profile. Following PX , the potential candidates may decide to
enter an election or withdraw their candidacy. Thus, the voters will only express their
preferences over a subset Y ⊆ X of the candidates that will have chosen to participate
in the election, and we denote by P ↓Y the restriction of P to Y . We assume that the
voters are sincere.

Given a profile P of the voters’ preferences, a voting rule r defines a (single) winner
among the actual candidates—i.e., given a subset Y ⊆ X of candidates, it assigns to
a (restricted) profile P ↓Y a member of Y . Each such voting rule r induces a natural
game form, where the set of players is given by the set of potential candidates X , and
the strategy set available to each player is {0, 1} with 1 corresponding to entering the
election and 0 standing for withdrawal of candidacy. A state s of the game is a vec-
tor of strategies (sc)c∈X , where sc ∈ {0, 1}. For convenience, we use s−z to denote
(sc)c∈X\{z}—i.e., s reduced by the single entry of player z. Similarly, for a state s we
use sZ to denote the strategy choices of a coalition Z ⊆ X and s−Z for the comple-
ment, and we write s = (sZ , s−Z).

The outcome of a state s is r
(
P ↓Y ) where c ∈ Y if and only if sc = 1.3 Coupled

with a profile PX of the candidates’ preferences, this defines a normal form game Γ =
〈X,P, r, PX〉 with m players. Here, player c prefers outcomeΓ (s) over outcomeΓ (s′)
if ordering PX

c ranks Γ (s) higher than Γ (s′).

2.3 Game-Theoretic Concepts

Having defined a normal form game, we can now apply standard game-theoretic solu-
tion concepts. Let Γ = 〈X,P, r, PX〉 be a candidacy game, and let s be a state in Γ .

3 When clear from the context, we use vector s to also denote the set of candidates Y that cor-
responds to state s; e.g., if X = {x1, x2, x3}, we write {x1, x3} and (1,0,1) interchangeably.



New Results on Equilibria in Strategic Candidacy 17

We say that a coalition Z ⊆ X has an improving move in s if there is s′Z such that
Γ (s−Z , s

′
Z) is preferable over Γ (s) by every player z ∈ Z . In particular, the improving

move is unilateral if |Z| = 1. A (pure strategy) Nash equilibrium (NE) [13] is a state
that has no unilateral improving moves. More generally, a state is a k-NE if no coalition
with |Z| ≤ k has an improving move. A strong equilibrium (SE) ([1]) is a state that has
no improving moves.

Example 1. Consider the game 〈{a, b, c, d}, P, r, PX〉, where r is the Borda rule, and
P and PX are as follows4:

P PX

1 1 1 1 1 1 1

b c c a d b a
d d d c a c b
a a b b c d c
c b a d b a d

a b c d

a b c d
d a b a
b d a c
c c d b

The state (1,1,1,1) is not an NE: abcd �→ c, but abc �→ a, and d prefers a to c, so for
d, leaving is an improving move. Now, (1,1,1,0) is an NE, as nobody has an improving
move neither by joining (d prefers a over c), nor by leaving (obviously not a; if b or c
leaves then the winner is still a). It can be checked that this is also an SE.

2.4 Preliminary Results

Regardless of the number of voters and the voting rule, a straightforward observation
is that a candidacy game with three candidates is guaranteed to possess an NE.5 This,
however, is not true for SE.6 For any number of candidates, the following result holds.

Proposition 1. Let Γ = 〈X,P, r, PX〉 be a candidacy game where r is Condorcet-
consistent. If P has a Condorcet winner c then for any Y ⊆ X ,

Y is a SE ⇔ Y is an NE ⇔ c ∈ Y .

Proof. Assume c is a Condorcet winner for P and let Y ⊆ X such that c ∈ Y . Be-
cause r is Condorcet-consistent, and because c is a Condorcet winner for P ↓Y , we have
r
(
P ↓Y ) = c. Assume Z = Z+∪Z− is a deviating coalition from Y , with Z+ the can-

didates who join andZ− the candidates who leave the election. Clearly, c /∈ Z , as c ∈ Y

and c has no interest to leave. Therefore, c is still a Condorcet winner in P ↓(Y \Z−)∪Z+

,

4 In our examples, we assume a lexicographic tie-breaking. We also use the simplified notation
Y �→ x to denote that rule r applied to the subset of candidates Y ⊆ X is x, and we omit
curly brackets. The first row in P indicates the number of voters casting the different ballots.

5 This can be easily seen: Let X = {a, b, c} and suppose w.l.o.g. that abc �→ a. If {a, b, c} is
not an NE, then either (1) ab �→ b and c prefers b to a, or (2) ac �→ c and b prefers c to a.
Since b and c play symmetric roles, w.l.o.g., assume (1). Then {a, b} is an NE.

6 Here is a counterexample (for which we thank an anonymous reviewer of the previous version
of the paper). The selection rule is abc �→ b; ab �→ a; ac �→ c; bc �→ c; it can be easily
implemented by the scoring rule with scoring vector (5, 4, 0〉 with 5 voters. Preferences of
candidates are: a : a � b � c; b : b � c � a; c : c � a � b. The group deviations are: in
{a, b, c}, c leaves; in {a, b}, b leaves and c joins; in {a, c}, b joins; in {b, c}, a joins; in {a},
c joins; in {b}, c joins; in {c}, a and b join.



18 J. Lang, N. Maudet, and M. Polukarov

which by the Condorcet-consistency of r implies that r
(
P ↓(Y \Z−)∪Z+

)
= c, which

contradicts the assumption that Z wants to deviate. We thus conclude that Y is an SE,
and a fortiori an NE. Finally, let Y ⊆ X such that c /∈ Y . Then, Y is not an NE (and a
fortiori not an SE), because c has an interest to join the election. �

Now, if P has no Condorcet winner, the analysis becomes more complicated. We
provide results for this more general case in the following sections. Interestingly, as
we demonstrate, some Condorcet-consistent rules (e.g., Copeland and UC) do always
possess a Nash equilibrium in this case, while some other (e.g., maximin) do not.

3 Four Candidates

With only 4 potential candidates, we exhibit a sharp contrast between Condorcet con-
sistent rules, which all possess an NE, and scoring rules.

3.1 Scoring Rules

To study scoring rules, we make use of a very powerful result by Saari [16]. It states that
for almost all scoring rules, any conceivable choice function can result from a voting
profile. This means that our question boils down to checking whether a choice function,
together with some coherent candidates’ preferences, can be found such that no NE
exists with 4 candidates. We solve this question by encoding the problem as an Integer
Linear Program (ILP), the details of which can be found in Appendix. It turns out that
such choice functions do exist: it then follows from Saari’s result that counterexamples
can be obtained for “most” scoring rules. We exhibit a profile for plurality.

Proposition 2. For plurality and m = 4, there may be no NE.

Proof. We exhibit a counterexample with 13 voters, whose preferences are contained
in the left part of the table below. The top line indicates the number of voters with each
particular profile. The right part of the table represents the preferences of the candidates.

3 1 1 1 1 1 1 2 2

d d d a a a b b c
c b a b c d c a b
a c b c b b d c d
b a c d d c a d a

a b c d

a b c d
b a d a
c c a b
d d b c

�
Similar constructions of profiles can thus be obtained for other scoring rules. However,
Borda comes out as a very peculiar case [16] among scoring rules7. This is also verified
for the case of strategic candidacy.

7 For a more detailed statement of this result, we point the reader to the work of Saari, in par-
ticular [17]. For the case of 4 candidates, families of scoring rules such that, when the scoring
vector for 3 candidates is of the form 〈w1, w2, 0〉, the vector for 4 candidates is of the form
〈3w1, w1 + 2w2, 2w2, 0〉 (for instance, 〈〈3, 1, 0, 0〉, 〈1, 0, 0〉〈1, 0〉〉) are an exception in the
sense that not all choice functions are implementable with them.
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Proposition 3. For Borda and m = 4, there is always an NE.

We could check this by relying on the fact that Borda rule is represented by a weighted
majority graph, and by adding the corresponding constraints into the ILP. The infea-
sibility of the resulting set of constraints shows that no instances without NE can be
constructed. However, it takes only coalitions of pairs of agents to ruin this stability.

Proposition 4. For Borda and m = 4, there may be no 2-NE.

Proof. Consider the following game:

1 1 1 1 1
b c d a b
d d a b c
c a c c d
a b b d a

a b c d
a b c d
c a a b
d c d a
b d b c

Here, only s1 = (0, 1, 1, 1) and s2 = (1, 1, 0, 1) are NE, with bcd �→ b, and abd �→ d.
But from s1 the coalition {a, c} has an improving move to s2 as they both prefer d over
b. Now take s2: if b leaves and c joins, they reach (1, 0, 1, 1), with acd �→ c and both
prefer c over d. �

3.2 Condorcet-Consistent Rules

We now turn our attention to Condorcet-consistent rules. It turns out that for all of them,
the existence of an NE can be guaranteed.

Proposition 5. For m = 4, if r is Condorcet-consistent, there always exists an NE.

Proof. We start with a remark: although we do not assume that r is based on the ma-
jority graph, we nevertheless prove our result by considering all possible cases for the
majority graphs (we get back to this point at the end of the proof). There are four graphs
to consider (all others are obtained from these ones by symmetry).

a b

c d

G1

a b

c d

G2

a b

c d

G3

a b

c d

G4

For G1 and G2, any subset of X containing the Condorcet winner is an NE (see Propo-
sition 1). For G3, we note that a is a Condorcet loser. That is, N(a, x) < N(x, a) for
all x ∈ {b, c, d}. Note that in this case, there is no Condorcet winner in the reduced
profile P ↓{b,c,d} as this would imply the existence of a Condorcet winner in P (case G1

or G2). W.l.o.g., assume that b beats c, c beats d, and d beats b. W.l.o.g. again, assume
that bcd �→ b. Then, {b, c} is an NE. Indeed, in any set of just two candidates, none has
an incentive to leave. Now, a or d have no incentive to join as this would not change the
winner: in the former case, observe that b is the (unique) Condorcet winner in P ↓{a,b,c},
and the latter follows by our assumption. There is always an NE for G3.
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The proof for G4 is more complex and proceeds case by case. Since r is Condorcet-
consistent, we have acd �→ a, bcd �→ c, ab �→ b, ac �→ a, ad �→ a, bc �→ c, bd �→ d and
cd �→ c. The sets of candidates for which r is undetermined are abcd, abc and abd.

We observe the following easy facts: (i) if abcd �→ a then acd is an NE, (ii) if
abcd �→ c then bcd is an NE, (iii) if abc �→ a then ac is an NE, (iv) if abd �→ a then ad
is an NE, (v) if abc �→ c then bc is an NE. The only remaining cases are:

1. abcd �→ b, abc �→ b, abd �→ b.
2. abcd �→ b, abc �→ b, abd �→ d.
3. abcd �→ d, abc �→ b, abd �→ b.
4. abcd �→ d, abc �→ b, abd �→ d.

In cases 1 and 3, ab is an NE. In case 2, if a prefers b to c then abc is an NE, and if a
prefers c to b, then bcd is an NE. In case 4, if a prefers c to d, then bcd is an NE; if b
prefers a to d, then ad is an NE; finally, if a prefers d to c and b prefers d to a, then
abcd is an NE. To conclude, observe that the proof never uses the fact that two profiles
having the same majority graph have the same winner.8 �

The picture for 4 candidates shows a sharp contrast. On the one hand, the existence of
choice functions shows that “almost all scoring rules” [16] may fail to have an NE. On
the other hand, Condorcet-consistency alone suffices to guarantee the existence of an
NE. (However, this criterion is not sufficient to guarantee stronger notion of stability:
e.g., for Copeland, we could exhibit examples without any 2-NE.)

4 More Candidates

The first question which comes to mind is whether examples showing the absence of
NE transfer to larger sets of candidates. They indeed do, under an extremely mild as-
sumption. We say that a voting rule is insensitive to bottom-ranked candidates (IBC)
if given any profile P over X = {x1, . . . , xm}, if P ′ is the profile over X ∪ {xm+1}
obtained by adding xm+1 at the bottom of every vote of P , then r(P ′) = r(P ). This
property is extremely weak (much weaker than Pareto) and is satisfied by almost all
voting rules studied in the literature (a noticeable exception being the veto rule).

Lemma 1. For any voting rule r satisfying IBC, if there exists Γ = 〈X,P, r, PX〉 with
no NE, then there exists Γ ′ = 〈X ′, P ′, r, PY 〉 with no NE, where |X ′| = |X |+ 1.

Proof. Take Γ with no NE, with X = {x1, . . . , xm}. Let X ′ = X ∪ {xm+1}, P ′ the
profile obtained from P by adding xm+1 at the bottom of every vote, and PX′

be the
candidate profile obtained by adding xm+1 at the bottom of every ranking of a candidate
xi, i ≤ m, and whatever ranking for xm+1. Let Y ⊆ X . Because Y is not an NE for
Γ , some candidate xi ∈ X has an interest to leave or to join, therefore Y is not an NE
either for Γ ′. Now, consider Y ′ = Y ∪ {xm+1}. If xi ∈ X has an interest to leave
(resp., join) Y , then because r satisfies IBC, the winner in Y ′ \ {xi} (resp., Y ′ ∪ {xi})
is the same as in Y \ {xi} (resp., Y ∪ {xi}), therefore xi ∈ X has an interest to leave
(resp., join) Y ′, therefore Y ′ is not an NE. �

8 For instance, we may have two profiles P , P ′ both corresponding to G4, such that r(P ) = a
and r(P ′) = b; the proof perfectly works in such a case.
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Corollary 1. For plurality and m ≥ 4, there may be no NE.

We now turn our attention to Condorcet-consistent rules, which all admit NE with 4 can-
didates. However, 5 candidates suffice to show that NE are not guaranteed any longer.

Proposition 6. For maximin with m = 5, there may be no NE.

Proof. The counterexample is given by the following pairwise comparison matrix,
where the entry corresponding to row x and column y is equal to N(x, y) − N(y, x).
From Debord’s theorem [4] we know that there exists a profile with such a compar-
ison matrix. The candidates’ preference profile is given on the right hand side. The
tie-breaking priority is lexicographic.

a b c d e

a 0 −3 3 −1 1
b 3 0 −3 3 1
c −3 3 0 −1 −1
d 1 −3 1 0 −5
e −1 −1 1 5 0

a b c d e
a b c d e
c e d a b
b c a c a
e a e b d
d d b e c

The proof goes by exhibiting all cases. For each subset we indicate the deviation (the
winner being shown using bold font): ad → abd → abcd → abcde → bcde → cde →
acde → abcde; ab → abc → abce → bce → ce → ace → abce; abde → bce;
ae → abe → abce; ac → acd → abcd; bd → bcd → abcd; bde → bcde; bc → abc;
be → bce; cd → cde; ce → ace; de → ade. �

Corollary 2. For maximin and m ≥ 5, there may be no NE.

This negative result does not extend to all Condorcet-consistent rules. In particular,
next we show the existence of NE for Copeland and the uncovered set (UC), under
deterministic tie-breaking, for any number of candidates.

Proposition 7. For Copeland0, with any number of candidates, there is always an NE.

Proof. Let P be a profile and →P its associated majority graph. Let C(x, P ) be
the number of candidates y �= x such that x →P y. Let COP 0(P ) be the set of
the Copeland0 cowinners for P , i.e., the set of candidates maximising C(·, P ), and
Cop0(P ) = c the Copeland0 winner—the highest-priority candidate in COP 0(P ).
Consider Dom(c) = {c}∪{y|c→P y}. Note that C

(
c, P ↓Dom(c)

)
= |Dom(c)|−1 =

q = C(c, P ). Also, since any y ∈ Dom(c) is beaten by c, we have C(y, P ↓Dom(c)) ≤
q − 1.

We claim that Dom(c) is an NE. Note that c is a Condorcet winner in the restriction
ofP toDom(c), and a fortiori, in the restriction ofP to any subset ofDom(c). Hence, c
is the Copeland0 winner in Dom(c) and any of its subsets, and no candidate in Dom(c)
has an incentive to leave.

Now, assume there is a candidate z ∈ X \ Dom(c) such that
Cop0

(
P ↓Dom(c)∪{z}) �= c. Note that c �→P z as z does not belong to
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Dom(c); so, C(c, P ↓Dom(c)∪{z}) = q. For any y ∈ Dom(c) we have
C(y, P ↓Dom(c)∪{z}) ≤ (q − 1) + 1 = q = C(c, P ↓Dom(c)∪{z}). If
C
(
y, P ↓Dom(c)∪{z}) < C(c, P ↓Dom(c)∪{z}), then y is not the Copeland0

winner in P ↓Dom(c)∪{z}. If C
(
y, P ↓Dom(c)∪{z}) = C

(
c, P ↓Dom(c)∪{z}),

then C(y, P ) ≥ C(c, P ). That is, either c /∈ COP 0(P ), a contradiction, or
both y, c are in COP 0(P ). In that case, the tie-breaking priority ensures that
Cop0

(
P ↓Dom(c)∪{z}) �= y.

Hence, Cop0
(
P ↓Dom(c)∪{z}) = z. By Cop0(P ) = c we have C

(
z, P ↓Dom(c)∪{z})

≤ C(z, P ) ≤ C(c, P ) ≤ q; therefore, C
(
z, P ↓Dom(c)∪{z}) = q, and the tie-breaking

priority favours z over c. But then, C(z, P ) = C(c, P ), i.e., both c and z are in
COP 0(P ), and the tie-breaking priority ensures that Cop0

(
P ↓Dom(c)∪{z}) �= z, a

contradiction. Therefore, the Copeland0 winner in P ↓Dom(c)∪{z} must be c, which im-
plies that z has no incentive to join Dom(c). �

Note that if the number of voters is odd, we do not have to care about head-to head
ties. In this case, all Copelandα rules, where each agent in a head-to-head election
gets 0 ≥ α ≥ 1 points in the case of a tie (Copeland0 being a special cases), are
equivalent, and the result above holds. However, if the number of voters is even, this
is not necessarily the case. Thus, in particular, for Copeland0.5 (more often referred to
as Copeland), Dom(c) is generally no more an NE, and we do now know whether the
existence of an NE is guaranteed or not.

Proposition 8. For UC, with any number of candidates, and an odd number of voters,
there is always an NE.

Proof. Let c be the UC winner in P , i.e., the highest-priority candidate in UC(P ).
Consider (again) Dom(c) = {c} ∪ {y|c →P y}. We claim that Dom(c) is an NE.

Since c is a Condorcet winner in the restriction of P to Dom(c), and a fortiori, in
the restriction of P to any subset of Dom(c), it is the UC winner in Dom(c) and in any
of its subsets, and no candidate in Dom(c) wants to leave.

Now, let z ∈ X \Dom(c). Since z �∈ Dom(c), we have c �→P z and hence, z →P c,
as n is odd. Since x ∈ UC(P ), there must be y ∈ Dom(c) such that y →P z. This
implies that x ∈ UC(P ↓Dom(c)∪{z}), which, due to tie-breaking priority, yields that c
is the UC winner in P ↓Dom(c)∪{z}. Thus, z has no incentive to join Dom(c). �
Note that the proofs of Propositions 7 and 8 also show that for Copeland0 and UC, there
always exists an NE in which the winning candidate is the winner in the full profile (with
all candidates present)9.

5 Conclusions

In this work, we further explored the landscape of strategic candidacy in elections and
obtained several positive results (for Condorcet-consistent rules with 4 candidates; for
two versions of Copeland, as well as for the uncovered set, with any number of can-
didates) and several negative results (for plurality and maximin). Many cases remain
open, especially Borda with more than 4 candidates.

9 We thank Edith Elkind for this remark.
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Another line for further research is the study of the set of states that can be reached
by some improvement path (e.g., best or better response dynamics) starting, say, from
the set or all potential candidates. In some cases, even when the existence of NE is
guaranteed (e.g., for Copeland), we could already come up with examples showing that
no equilibrium point is reachable by a sequence of better responses. But other types of
dynamics can also be considered.

Finally, there is an interesting connection between strategic candidacy and control by
deleting or adding candidates [2,11], as well as multimode control [10] where the chair
is allowed both to delete and to add some candidates. Strategic candidacy relates to a
slightly more demanding notion of control, which we can call consenting control, in
which candidates have to agree to be added or removed. For instance, s is an SE if there
is no consenting destructive control by removing+adding candidates against the current
winner r(Xs). Not only this notion is of independent interest, but also, complexity
results for control may allow to derive complexity results for the problem of deciding
the existence of NE or SE in a strategic candidacy game.

Acknowledgements. We would like to thank Michel Le Breton, Vincent Merlin, Edith
Elkind and the anonymous reviewers for helpful discussions.
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Appendix: ILP Formulation

Let S be the set of (2|X|) states, and A(s) be the set of agents candidating in state s.

Choice functions without NE. We introduce a binary variable wsi, indicating that agent
i wins in state s. We add constraints enforcing that a winner in each state s is unique:

∀i ∈ X, ∀s ∈ S : ws,i ∈ {0, 1} (1)

∀s ∈ S :
∑

i∈X ws,i = 1 (2)

∀s ∈ S, ∀i ∈ X �∈ A(s) : ws,i = 0 (3)

Now we denote by D(s) the set of possible deviations from state s (states where a single
agent’s candidacy differs from s). We denote by a(s, t) an agent potentially deviating
from s to t. Binary variables ds,t indicate a deviation from s to t. In each state, there
must be at least one deviation, otherwise this state is an NE:

∀s ∈ S, ∀t ∈ S : ds,t ∈ {0, 1} (4)

∀s ∈ S :
∑

t∈D(s) ds,t ≥ 1 (5)

Now, we introduce constraints related to the preferences of the candidates. For this
purpose, we introduce a binary variable pi,j,k, indicating that agent i prefers candidate
j over candidate k. If there is indeed a deviation from s to t, the deviating agent must
prefer the winner of the new state over the winner of the previous state:

∀s ∈ S, ∀t ∈ D(s), ∀i ∈ X, ∀j ∈ X : ws,i + wt,j + ds,t − pa(s,t),j,i ≤ 2 (6)

Finally we ensure that the preferences are irreflexive and transitive10, and respect the
constraint of being self-supported:

∀i ∈ X, ∀j ∈ X : pi,j,j = 0 (7)

∀a ∈ X, ∀i ∈ X∀j ∈ X, ∀k ∈ X : pa,i,j + pa,j,k − pa,i,k ≤ 1 (8)

∀i ∈ X, ∀j ∈ X : pi,i,j = 1 (9)

10 Notice that this ILP does not necessarily contain complete preferences: the program only needs
to check those preference relations that correspond to possible deviations. Any linear extension
of these (partial) preferences gives an instance with complete preferences.
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Constraints for Borda. We introduce a new integer variable Ni,j to represent the num-
ber of voters preferring i over j in the weighted tournament. We first make sure that the
values of Ni,j are coherent throughout the weighted tournament:

∀i ∈ X, ∀j ∈ X, ∀k ∈ X, ∀l ∈ X : Ni,j +Nj,i = Nk,l +Nl,k (10)

In each state, when agent i wins, we must make sure that his total amount of points is
the highest among all the agents in this state (note that i can simply tie with those agents
that i is prioritised over by the tie-breaking; we omit this for the sake of readability):

∀s ∈ S, ∀i ∈ A(s), ∀j ∈ A(s) \ {i} :

(1 − ws,i)×M +
∑

j∈A(s)\{i}
Ni,j >

∑

j∈A(s)\{k}
Nk,j (11)

Here M is an arbitrary large value, used to relax the constraint when ws,i is 0.
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