
Aggregating Conditionally Lexicographic Preferences
on Multi-Issue Domains

Jérôme Lang, Jérôme Mengin, and Lirong Xia

Abstract

One approach to voting on several interrelated issues consists in using a language for com-
pact preference representation, from which the voters’ preferences are elicited and aggregated.
A language usually comes with a domain restriction. We consider a well-known restriction,
namely, conditionally lexicographic preferences, where both the relative importance between
issues and the preference between values of an issue may depend on the values taken by more
important issues. The naturally associated language consists in describing conditional impor-
tance and conditional preference by trees together with conditional preference tables. In this
paper, we study the aggregation of conditionally lexicographic preferences, for several voting
rules and several restriction of the framework. We characterizes computational complexity for
some popular cases, and show that in many of them, computing the winner reduces in a very
natural way to a MAXSAT problem.

1 Introduction
There are many situations where a group of agents have to make a common decision about a set of
possibly interrelated issues, variables, or attributes. For example, this is the situation in the following
three domains:
• Multiple referenda: there is a set of binary issues (such as building a sport centre, building a

cultural centre etc.); on each of them, the group has to make a yes/no decision.
•Committee elections: there is a set of positions to be filled (such as a president, a vice-president,

a secretary).
• Group product configuration: the group has to agree on a complex object consisting of several

components.
Voting on several interrelated issues has been proven to be a challenging problem from both a

social choice viewpoint and a computational viewpoint. If the agents vote separately on each issue,
then paradoxes generally arise [6, 13]; this rules out this ‘decompositional’ way of proceeding,
except in the restricted case when voters have separable preferences. A second way consists in using
a sequential voting protocol: variables are considered one after another, in a predefined order, and the
voters know the assignment to the earlier variables before expressing their preferences on later ones
(see, e.g., [14, 15, 2]). This method, however, works (reasonably) well only if we can guarantee
that there exists a common order over issues such that every agent can express her preferences
unambiguously on the values of each issue at the time he is asked to report them. A third class of
methods consists in using a language for compact preference representation, in which the voters’
preferences are stored and from which they are aggregated. If the language is expressive enough to
allow for expressing any possible preference relation, then the paradoxes are avoided, but at a very
high cost, both in elicitation and computation. Therefore, when organizing preference aggregation
in multiple interrelated issue, there will always be a choice to be made between (a) being prone to
severe paradoxes, (b) imposing a domain restriction or (c) requiring a heavy communication and
computation burden.

In this paper, we explore a way along the third class of methods. When eliciting, learning, and
reasoning with preferences on combinatorial domains, a domain restriction often considered consists
in assuming that preferences are lexicographic. Schmitt et al. [17] address the learning of lexico-
graphic preferences, after recalling that the psychology literature shows evidence that lexicographic

preferences are often an accurate model for human decisions [10]. Learning such preferences is
considered further in [8, 18], and then in [3] who learn more generally conditionally lexicographic
preferences, where the importance order on issues as well as the local preferences over values of
issues can be conditional on the values of more important issues. The aggregation of lexicographic
preferences over combinatorial domains has received very little attention (the only exception we
know of is [1]). Yet it appears to be – at least in some contexts – a reasonable way of coping with
multiple elections. It does imply a domain restriction, and arguably an important one; but, as ex-
plained above, domain restrictions seem to be the only way of escaping both strong paradoxes and a
huge communication cost, and conditionally lexicographic preference models are not so restrictive,
especially compared to the most common domain restriction, namely separability.

The generic problem of aggregating conditionally lexicographic preferences can be stated as fol-
lows. The set of alternatives is a combinatorial domain X composed of a finite set of binary issues.1

We have a set of voters, each providing a conditionally lexicographic preference over X under the
compact and natural form of a lexicographic preference tree (LP-tree for short) [3], which we will
define soon; therefore, a (compactly represented) profile P consists of a collection of LP-trees. Since
each LP-tree L is the compact representation of one linear order �L over X , there is a one-to-one
correspondence between P and the (extensively represented) profile P ∗ consisting of a collection
of linear orders over X . Finally, for a given voting rule r, we ask whether there is a simple way
to compute the winner, namely r(P ∗), where ‘simple’ means that the winner should be computed
directly (and efficiently) from P and in any case we must avoid to produce P ∗ in extenso, which
would require exponential space. For many cases where winner determination is computationally
hard, we show that these problems can be efficiently converted to MAXSAT problems and thus be
solved by sat solvers.

The rest of the paper is organized as follows. Conditionally lexicographic preferences and their
compact representation by LP-trees are defined and discussed in Section 2. In Section 3 we state the
problem considered in this paper, namely the aggregation of conditionally lexicographic preferences
by voting rules. As we will see, some voting rules are better than others in this respect. In the paper
we focus on three families of rules. First, in Section 4, k-approval rules: we show that for many
values of k, we can give a quite satisfactory answer to our question above, even for our most general
models. Note that by ‘satisfactory’ we do not necessarily mean “computable in polynomial time”:
for instance, when deciding whether a given alternative is a winner is NP-complete but can be easily
translated into a compact maximum (weighted) satisfiability problem, for which efficient algorithms
exist, we still consider the answer as (more or less) positive. In Section 5 we then focus on the
Borda rule, and show that the answer to our question is satisfactory for some of the simplest LP-tree
models, but less so for some general models. We also provide a natural family of scoring rules for
which the answer is positive in all cases. Then in Section 6 we consider the existence of a Condorcet
winner, and show that for Condorcet-consistent rules, and in particular Copeland and maximin, the
answer tends to be negative. Finally, Section 7 is devoted to the specific case of LP-trees with fixed
local preferences. Due to the space constraint, most proofs are omitted.

2 Conditionally Lexicographic Preferences and LP-Trees
Let I = {X1, . . . , Xp} (p ≥ 2) be a set of issues, where each issue Xi takes a value in a binary
local domain Di = {0i, 1i}. The set of alternatives is X = D1 × · · · ×Dp, that is, an alternative is
uniquely identified by its values on all issues. Alternatives are denoted by ~d, ~e etc. For any Y ⊆ I
we denote DY =

∏
Xi∈Y Di. Let L(X) denote the set of all linear orders over X .

Lexicographic comparisons order pairs of outcomes (~d,~e) by looking at the attributes in se-
quence, according to their importance, until we reach an attribute X such that the value of X in

1The assumption that variables are binary is made for the sake of simplicity due to the space constraint. Most of our
results would easily extend to the non-binary case.

~d is different from the value of X in ~e; ~d and ~e are then ordered according to the local preference
relation over the values of X . For such lexicographic preference relations we need both an impor-
tance relation, between attributes, and local preference relations over the domains of the attributes.
Both the importance between attributes and the local preferences may be conditioned by the values
of more important attributes. Such lexicographic preference relations can be compactly represented
by Lexicographic Preference trees (LP-trees) [3], described in the next section.

2.1 Lexicographic Preference Trees
An LP-tree L is composed of two parts: (1) a tree T where each node t is labeled by an issue,
denoted by Iss(t), such that each issue appears once and only once on each branch; each non-leaf
node either has two outgoing edges, labeled by 0 and 1 respectively, or one outgoing edge, labeled
by {0, 1}. (2) A conditional preference table CPT(t) for each node t, which is defined as follows.
Let Anc(t) denote the set of issues labeling the ancestors of t. Let Inst(t) (respectively, NonInst(t))
denote the set of issues in Anc(t) that have two (respectively, one) outgoing edge(s). There is a set
Par(t) ⊆ NonInst(t) such that CPT(t) is composed of the agent’s local preferences over DIss(t) for
all valuations of Par(t). That is, suppose Iss(t) = Xi, then for every valuation ~u of Par(t), there is
an entry in the CPT which is either ~u : 0i � 1i or ~u : 1i � 0i. For any alternative ~d ∈ X , we let
the importance order of ~d in L, denoted by IO(L, ~d), to be the order over I that gives ~d in T . We
use B to denote an importance order to distinguish it from agents’ preferences � (over X). If in T ,
each vertex has no more than one child, then all alternatives have the same importance order B, and
we say that B is the importance order of L.

An LP-tree L represents a linear order �L over X as follows. Let ~d and ~e be two different
alternatives. We start at the root node troot and trace down the tree according to the values of ~d, until
we find the first node t∗ such that ~d and ~e differ on Iss(t∗). That is, w.l.o.g. letting Iss(troot) = X1,
if d1 6= e1, then we let t∗ = troot; otherwise, we follow the edge d1 to examine the next node, etc.
Once t∗ is found, we let U = Par(t∗) and let dU denote the sub-vector of ~d whose components
correspond to the nodes in U . In CPT(t∗), if dU : dt∗ � et∗ , then ~d �L ~e. We use L and �L
interchangeably.

Example 1 Suppose there are three issues. An LP-tree L is illustrated in Figure 1. Let t be the
node at the end of the bottom branch. We have Iss(t) = X2, Anc(t) = {X1, X3}, Inst(t) = {X1},
NonInst(t) = {X3}, and Par(t) = {X3}. The linear order represented by the LP-tree is [001 �
000 � 011 � 010 � 111 � 101 � 100 � 110], where 000 is the abbreviation for 010203, etc.
IO(L, 000) = [X1 B X2 B X3] and IO(L, 111) = [X1 B X3 B X2].

X1

X2 X3

X3 X2

01

11

{02,12}

{03,13}

01 ≻ 11

02 ≻ 12 13 ≻ 03

13 ≻ 03

03 : 02 ≻ 12

13 : 12 ≻ 02

t

Figure 1: An LP-tree L.

2.2 Classes of Lexicographic Preference Trees
The definition for LP-trees above is for the most general case. [3] also defined some interesting
sub-classes of LP-trees by imposing a restriction on the local preference relations and/or on the
conditional importance relation.

The local preference relations can be conditional (general case, as defined above), but can also
be unconditional (the preference relation on the value of any issue is independent from the value of
all other issues). The most restrictive case is fixed, which means that not only are the preferences
unconditional, but that they are common to all voters. Formally, UP is the class of LP-trees with
unconditional local preferences: for every issue Xi there exists a preference relation �i (1i �i 0i
or 0i �i 1i) and for every node t with Xi = Iss(t), Par(t) = ∅, and CPT(t) = {�i}. And FP is the
class of LP-trees with fixed local preferences (FP): without loss of generality, for every node t (with
Iss(t) = Xi), CPT(t) = {1i � 0i}.

Likewise, the importance relation over issues can be conditional (general case), or unconditional,
of fixed when it is common to all voters: (UI) is the set of all linear LP-trees, i.e., every node has no
more than one child. And (FI) is the set of all linear LP-trees with the (unconditional) importance
order over issues [X1 B . . . B Xp].

We can now combine a restriction on local preferences and a restriction on the importance rela-
tion. We thus obtain nine classes of LP-trees, namely, FI-FP, UI-FP, CI-FP, FI-UP, UI-UP, CI-UP,
FI-CP, UI-CP, and CI-CP. For instance, UI-CP is defined as the class of all LP-trees with uncon-
ditional importance relation and conditional preferences. Note that the FI-FP class is trivial, as it
contains a unique LP-tree.

Recall that a LP-tree is composed of a tree and a collection of conditional preference tables.
The latter is reminiscent of CP-nets [4]. In fact, it can be viewed as some kind of generalized
CP-net whose dependency relations between variables (induced from the importance relation) may
be conditional on the values of their parent variables. However, in the case of an unconditional
importance relation (UI), then the collection of CP-tables is a CP-net, and the LP-tree is a TCP-net
[5]. In the general case however, a conditionally lexicographic preferences cannot be represented by
a TCP-net.

3 Aggregating LP-trees by Voting Rules
We now consider n voters. A (voting) profile P over a set of alternatives X is a collection of n linear
orders on X . A voting rule r maps every profile P to a nonempty subset of X : r(P) is the set of
co-winners for r and P .

A scoring function S is a mappingL(X)n×X → R. Often, a voting rule r is defined so that r(P)
is the set of alternatives maximizing some scoring function Sr. In particular, positional scoring rules
are defined via a scoring vector ~v = (v(1), . . . , v(m)), where m is the number of alternatives (here,
m = 2p): for any vote V ∈ L(X) and any c ∈ X , let S~v(V, c) = v(rankV (c)), where rankV (c)
is the rank of c in V ; then for any profile P = (V1, . . . , Vn), let S~v(P, c) =

∑n
j=1 S~v(Vj , c).

The winner is the alternative maximizing S~v(P, ·). In particular, the k-approval rule Appk (with
k ≤ m), is defined by the scoring vector v(1) = · · · = v(k) = 1 and v(k + 1) = · · · = v(m) = 0,
the scoring function being denoted by Sk

App; and the Borda rule is defined by the scoring vector
(m− 1,m− 2, . . . , 0), the scoring function being denoted by SBorda.

An alternative α is the Condorcet winner for a profile P if for any β 6= α, a (strict) major-
ity of votes in P prefers α to β. A voting rule is Condorcet-consistent if it elects the Condorcet
winner whenever one exists. Two prominent Condorcet-consistent rules are Copeland and max-
imin. The Copeland winners are the alternatives α that maximize the Copeland score C(α), de-
fined as the number of alternatives β such that a majority of votes in P prefers α to β. The
maximin winners are the alternatives α that maximize the maximin score SMM(α), defined as
SMM(P, α) = max{NP (β, α) : β ∈ X , β 6= α}, where NP (β, α) denotes the number of votes
in P that rank α ahead of β.

3.1 Voting Restricted to Conditionally Lexicographic Preferences
The key problem addressed in this paper is the following. We know that applying voting rules
to profiles consisting of arbitrary preferences on multi-issue domains is computationally difficult.
Does it become significantly easier when we restrict to conditionally lexicographic preferences?
The question, of course, may depend on the voting rule used.

A conditionally lexicographic profile is a collection of n conditionally lexicographic preferences
over X . As conditionally lexicographic preferences are compactly represented by LP-trees, we
define a LP-profile P as a collection of n LP-trees. Given a class C of LP-trees, let us call C-profile
a finite collection of LP-trees in C.

Given a LP-profile P and a voting rule r, a naive way of finding the co-winners would consists
in determining the n linear orders induced by the LP-trees and then apply r to these linear orders.
However, this would be very inefficient, both in space and time. We would like to know how feasible
it is to compute the winners directly from the LP-trees. More specifically, we ask the following
questions: (a) given a voting rule, how difficult is it to compute the co-winners (or, else, one of
the co-winners) for the different classes of LP-trees? (b) for score-based rules, how difficult is it to
compute the score of the co-winners? (c) is it possible to have, for some voting rules and classes of
LP-trees, a compact representation of the set of co-winners?

Formally, we consider the following decision and function problems.

Definition 1 Given a class C of LP-trees and a voting rule r that is the maximizer of scoring function
S, in the S-SCORE and EVALUATION problems, we are given a C-profile P and an alternative ~d.
In the S-SCORE problems, we are asked to compute whether S(P, ~d) > T for some given T ∈ N.
In the EVALUATION problem, we are asked to compute whether there exists an alternative ~d with
S(P, ~d) > T for some given T ∈ N. In the WINNER problem, we are asked to compute r(P).

When we say that WINNER for some voting rule w.r.t. some class C is in P, the set of winners can
be compactly represented, and can be computed in polynomial time.

Note that if EVALUATION is NP-hard and the score of an alternative can be computed in poly-
nomial time, then WINNER cannot be in P unless P = NP: if WINNER were in P, then EVALUATION
could be solved in polynomial time by computing a winner and its score.

For the voting rules studied in this paper, if not mentioned specifically, EVALUATION is w.r.t. the
score functions we present when defining these rules. In this paper, we only show hardness proofs,
membership in NP or #P is straightforward.

3.2 Two Specific Cases: Fixed Importance and Fixed Preference
It is worth focusing on the specific case of the class of profiles composed of LP-trees which have
a fixed, linear structure: there is an order of importance among issues, which is common to all
voters: X1 is more important than X2, which is itself more important than X3, and so on. . . . Voters
of course may have differing local preferences for the value for each issue, and their preferences
on each issue may depend on the values of more important issues. A simple, easy to compute, and
cheap in terms of communication, rule works as follows [14]: choose a value forX1 according to the
majority rule (possibly with a tie-breaking mechanism if we have an even number of voters); then,
choose a value for X2 using again the majority rule; and so on. The winner is called the sequential
majority winner. When there is an odd number of voters, the sequential majority winner is the
Condorcet winner (cf. Proposition 3 in [14], generalized in [7] to CI-profiles in which all voters
have the same importance tree.). This, together with the fact that the sequential majority winner can
be computed in polynomial time, shows that the winner of any Condorcet-consistent rule applied to
FI profiles can be computed in polynomial time.

The case of fixed preferences is very specific for a simple reason: in this case, the top-ranked
alternative is the same for all voters! This makes the winner determination trivial for all reasonable

voting rules. However, nontrivial problems arise if we have constraints that limit the set of feasible
alternatives. We devote Section 7 to aggregating FP trees.

4 k-Approval
We start by the following lemma. Most proofs are omitted due to the space constraint.

Lemma 1 Given a positive integer k′ such that 1 ≤ k′ ≤ 2p written in binary, and an LP-tree L,
the k′-th preferred alternative of �L can be computed in time O(p) by Algorithm 1.

Algorithm 1: FindAlternative(L, k′)
1 Let k∗ = (k∗p−1...k

∗
0)2 = 2p − k′ and L∗ = L;

2 for i = p− 1 down to i = 0 do
3 Let Xj be the root issue of L∗ with local preferences xj � xj ;
4 if k∗i = 1 then
5 Let L∗ ← L∗(xj) (the subtree of L∗ tracing the path Xj = xj) and let aj = xj ;
6 end
7 else Let L∗ ← L∗(xj) and let aj = xj ;
8 end
9 return ~a.

Similarly, the position of a given alternative ~d can be computed in time O(p). It follows that the
k-approval score of any alternative in a CI-CP profile can be computed in time O(np). However,
this does not mean that the winner can be computed easily, because the number of alternatives is
exponential in p. For some specific values of k, though, computing the k-approval winner is in P.

Proposition 1 Let k be a constant independent of p. When the profile is composed of n LP-trees,
computing the k-approval co-winners for P can be done in time O(knp).

Proof: We compute the top k alternatives of each LP-tree in P ; we store them in a table together
with their k-approval score. As we have at most kn such alternatives, constructing the table takes
O(knp). �

A similar result also holds for computing the (2p − k)-approval co-winners for any constant k.2

Theorem 1 (CI-CP) For CI-CP profiles, WINNER for 2p−1-approval can be computed in time
O(np).

Proof: We note that an alternative ~d is among the first half of alternatives in Lj iff the root
issue of Lj is assigned to the preferred value. We build a table with the following 2p entries
{11, 01, . . . , 1p, 0p}: for every Lj we add 1 to the score of 1i (resp. 0i) if Xi is the root issue
of Lj and the preferred value is 1i (resp. 0i). When this is done, for each Xi, we instantiate Xi to 1i
(resp. 0i) if the score of 1i is larger than the score of 0i (resp. vice versa); if the scores are identical,
we do not instantiate Xi. We end up with a partial instantiation, whose set of models (satisfying
valuations) is exactly the set of co-winners. �

Applying 2p−1-approval here is both intuitive and cheap in communication (each voter only
communicates her most important issue and its preferred value), and the output is computed very
easily. On the other hand, it uses a very small part of the LP-trees. We may want to do better and
take, say, the most important two issues into account, which comes down to using 2k−2-approval
or (2k−1 + 2k−2)-approval. However, this comes with a complexity cost. Let M be a constant
independent of p and n and define N(M,p) to be the set of all multiples of 2p−M that are ≤ 2p,
except 2p−1. For instance, ifM = 3 thenN(3, p) = {2p−3, 2p−2, 2p−2+2p−3, 2p−1+2p−3, 2p−1+
2p−2, 2p−1 + 2p−2 + 2p−3}.

2However, there is little practical interest in using 2p − k approval for a fixed (small) value of k, since in practice, we
will have kn � 2p, and almost every alternative will be a co-winner.

Theorem 2 (UI-UP) For any k ∈ N(M,p), for UI-UP profiles, EVALUATION for k-approval is
NP-hard.

Proof sketch: When k = 2p−i for some i ≥ 2, the hardness of EVALUATION is proved by a
reduction from the NP-complete problem MIN2SAT [12], where we are given a set Φ of clauses,
each of which is the disjunction of two literals, and an integer T ′. We are asked whether there
exists a valuation that satisfy smaller than T ′ clauses in Φ. We next show the case k = 2p−2 as
an example. We note that ~d is among the first quarter of alternatives in Lj iff the root issue of Lj

is assigned to the preferred value, and the second most important issue in IO(Lj , ~d) is assigned to
the preferred value as well. Now, we give a polynomial reduction from MIN2SAT to our problem:
given a set Φ of 2-clauses, the negation ¬Ci of each clause Ci ∈ Φ is mapped into a UI-UP LP-tree
whose top quarter of alternatives satisfies ¬Ci (for instance, ¬X3 ∧ X4 is mapped into a LP-tree
whose two most important issues are X3 and X4, and their preferred values are 03 and 14). The
set of co-winners is exactly the set of valuations satisfying a maximal number of clauses ¬Ci, or
equivalently, satisfying a minimal number of clauses in Φ.

The hardness for any other k in N(M,p) is proved by a reduction from special cases of the
MAXSAT problem, which are omitted due to the space constraint. �

The hardness proofs carry over to more general models, namely {UI,CI}×{UP,CP}. We next
present an algorithm that converts winner determination for k-approval to a compact GENERALISED
MAXSAT problem (“generalised” here means that the input is a set of formulas, and not necessarily
clauses). The idea is, for each LP-tree Lj , we construct a formula ϕj such that an alternative (val-
uation) is ranked within top k positions iff it satisfies ϕj . ϕj is further composed of the disjunction
of multiple sub-formulas, each of which encodes a path from the root to a leaf in the tree structure,
and the valuations that are ranked among top k positions.

Formally, for each path u, we define a formula Cu that is the conjunction of literals, where there
is an literalXi (resp., ¬Xi) if and only if along the path u, there is an edge marked 1i (resp., 0i). For
any path with importance order O (w.l.o.g. O = X1 B X2 B · · · B Xp) and k = (kp−1 . . . k0)2 in
binary, we define a formula DO,k. Due to the space constraint, we only present the construction for
the CI-UP case, but it can be easily extended to the CI-CP case. For each i ≤ p − 1, let li = Xi if
1i � 0i, and li = ¬Xi if 0i � 1i. Let DO,k be the disjunction of the following formulas: for every
i∗ ≤ p − 1 such that ki∗ = 1, there is a formula (

∧
i>i∗:ki=0 li) ∧ li∗ . To summarize, for each LP-

tree Lj in the profile we have a formula ϕj , and we can use a (generalised) MAXSAT solver to find
a valuation that maximizes the number of satisfied formulas {ϕj}. Note that there are efficient such
solvers; see, e.g., [16] and the Minimally Unsatisfiable Subset Track of the 2011 Sat Competition, at
http://www.satcompetition.org/2011/#tracks.

Example 2 Let L denote the LP-tree in Example 1, except that the preferences for t is un-
conditionally 02 � 12. Let k = 5 = (101)2. For the upper path we have the follow-
ing clause (¬X1) ∧ (¬X1 ∨ (¬X2 ∧ X3)). For the lower path we have the following formula
(X1) ∧ (¬X1 ∨ (X3 ∧ ¬X2)).

Theorem 3 For any k ≤ 2p − 1 represented in binary and any profile P of LP-trees, there is a
polynomial-size set of formulas Φ such that the set of k-approval co-winners for P is exactly the set
of the models of MAXSAT(Φ).

Therefore, though WINNER for k-approval is hard to compute for some cases, it can be done
efficiently in practice by using a generalized MAXSAT solver.

Note that all polynomiality results for k-approval carry on to the Bucklin voting rule (that we do
not recall): it suffices to apply k-approval dichotomously until we get the value of k for which the
score of the winner is more than n

2 .
Now, we focus on the specific case of fixed importance orders (FI).

Theorem 4 (FI-CP) Let k ∈ N(M,p). For FI-CP profiles, WINNER for k-approval can be com-
puted in time O(2M · n).

Proof sketch: For simplicity, we only present the algorithm for the case k = 2p−2. The other
cases are similar. Let X1 > X2 > . . . be the importance order, common to all voters. There are
four types of votes: those for which the 2p−2 top alternatives are those satisfying γ1 = X1 ∧ X2

(type 1), those satisfying γ2 = X1 ∧ ¬X2 (type 2), etc. Let αi be the number of votes in P of
type i (i = 1, 2, 3, 4). The 2p−2-approval co-winners are the alternatives that satisfy γi such that
αi = max{αi, i = 1, . . . , 4}. �

5 Borda
We start with a lemma that provides a convenient localized way to compute the Borda score for a
given alternative in an LP-tree L. For any ~d = (d1, . . . , dp) ∈ X and any i ≤ p, we define the
following notation, which is an indicator whether the i-th component of ~d is preferred to its negation
in L, given the rest of values in ~d, denoted by ~d−i.

∆i(L, ~d) =

{
1 if in L, di � di given ~d−i
0 Otherwise

∆i(L, ~d) can be computed in polynomial-time by querying the CPT of Xi along IO(L, ~d). We
let rank(Xi,L, ~d) denote the rank of issue Xi in IO(L, ~d).

Lemma 2 For any LP-tree L and any alternative ~d, we have the following calculation:

SBorda(L, ~d) =

p∑
i=1

2p−rank(Xi,L,~d) ·∆i(L, ~d)

Example 3 Let L denote the LP-tree defined in Example 1. We have SBorda(L, 011) = 22 · 1 + 21 ·
0 + 20 · 1 = 5 and SBorda(L, 101) = 22 · 0 + 20 · 0 + 21 · 1 = 2.

Hence, the Borda score of ~d for profile P = (L1, . . . ,Ln) is SBorda(P, ~d) =∑n
j=1

∑p
i=1 2p−rank(Xi,Lj ,~d) ·∆i(Lj , ~d).

Theorem 5 (CI-UP) For CI-UP profiles, EVALUATION is NP-hard for Borda.

Proof sketch: We prove the NP-hardness by a reduction from 3SAT. Given a 3SAT instance, we
construct an EVALUATION instance, where there are q + 2 issues I = {c, d} ∪ {X1, . . . , Xq}. The
clauses are encoded in the following LP-trees: for each j ≤ t, we define an LP-tree Lj with the
following structure. Suppose Cj contains variables Xi1 , Xi2 , Xi3 (i1 < i2 < i3), and di1 , di2 , di3
are the valuations of the three variables that satisfy Cj . In the importance order of Lj , the first three
issues are Xi1 , Xi2 , Xi3 . The fourth issue is c and the fifth issue is d if and only if Xi1 = di1 ,
Xi2 = di2 , or Xi2 = di2 ; otherwise the fourth issue is d and the fifth issue is c. The rest of issues
are ranked in the alphabetical order (issues in C are ranked higher than issues in S). Then, we set
the threshold appropriately (details omitted due to the space constraint) such that the Borda score of
an alternative is higher than the threshold if and only if its d-component is 1, and the its values for
X1, . . . , Xp satisfy all clauses. �

Finally, we show that WINNER for Borda can be converted to a weighted generalized MAXSAT
problem. We note that ∆i(Lj , ~d) can be represented compactly by a formula ϕi

j such that a valuation
~d satisfies ϕi

j iff ∆i(Lj , ~d) = 1. The idea is similar to the logical formula for k-approval, where
each path u corresponds to a clauseCu, and there is another clause depicting whether ∆i(Lj , ~d) = 1

in u. For example, let L denote the LP-tree in Example 1, then ∆2(L, ~d) can be presented by the
disjunction of the clauses for the two paths: ¬X1 ∧ ¬X2 for the upper path, and X1 ∧ ((¬X3 ∧
¬X2) ∨ (X3 ∧X2)) for the lower path.

Theorem 6 For any profile P of LP-trees, there is a set of clauses Φ with weights such that the set
of Borda co-winners for P is exactly the set of the models of WEIGHTED MAXSAT(Φ).

Now, we focus on the specific case of unconditional importance orders (UI). When, for each
Lj the importance order is unconditional, rank(Xi,Lj , ~d) does not depend on ~d: let us denote it
rank(Xi,Lj). It can be computed in polynomial time by a simple exploration of the tree Lj .

If the preferences are unconditional, then the Borda winner is the alternative ~d that maximises∑p
i=1

∑n
j=1 2p−rank(Xi,Lj)∆i(Lj , ~d). We can choose in polynomial time the winning value for each

issue independently: it is the di that maximizes

n∑
j=1

2p−rank(Xi,Lj)∆i(Lj , di) where ∆i(Lj , di) =

{
1 if in Lj , di � di
0 otherwise.

Note that this method still works if the voters have differing importance order – provided they
still have unconditional importance.

Theorem 7 (UI-UP) For UI-UP profiles, WINNER for Borda can be computed in polynomial time.

However, if we allow conditional preferences, computing the Borda winner becomes intractable:

Theorem 8 (FI-CP) For FI-CP profiles, EVALUATION is NP-hard for Borda.

6 Condorcet-Consistent Rules
We start by studying the several classes of conditionally lexicographic preferences according to the
existence of a Condorcet winner. We recall the following result from [7]:

Lemma 3 [7] For FI-CP profiles, there always exists a Condorcet winner, and it can be computed
in polynomial time.

Proposition 2 The existence of a Condorcet winner for our classes of conditionally lexicographic
preferences is depicted on the table below, where yes (resp. no) means that the existence of a
Condorcet winner is guaranteed (resp. is not guaranteed) for an odd number of voters.

FP UP CP
FI yes yes yes
UI yes no no
CI yes no no

Proof: We know from [7] that for FI-CP profiles, there always exists a Condorcet winner, and it can
be computed in polynomial time. For CI-FP profiles, since all voters have the same top alternative,
the existence of a Condorcet winner is trivial. Finally, here is a UI-UP profile with two variables and
three voters, that has no Condorcet winner:
– Voter 1: [X B Y], x � x̄, y � ȳ, and the linear order is [xy � xȳ � x̄y � x̄ȳ].
– Voter 2: [Y B X], x̄ � x, y � ȳ, and the linear order is [x̄y � xy � x̄ȳ � xȳ].
– Voter 3: [Y B X], x̄ � x, ȳ � y, and the linear order is [x̄ȳ � xȳ � x̄y � xy]. �

Theorem 9 (UI-UP) For UI-UP profiles, deciding whether a given alternative is the Condorcet
winner is coNP-hard.

Corollary 1 For UI-UP profiles, EVALUATION for maximin is coNP-hard.

7 Fixed Preferences
When the agents’ local preferences are fixed (w.l.o.g. 1 � 0), issues can be seen as objects, and
every agent has a preference for having an object rather than not, everything else being equal. Ob-
viously, the best outcome for every agent is ~1, and applying any reasonable voting rule (that is, any
voting rule that satisfies unanimity) will select this alternative, making winner determination trivial.
However, winner determination ceases to be trivial if we have constraints that limit the set of feasible
alternatives. For instance, we may have a maximum number of objects that we can take.

Let us start with the only tractability result in this section, with the Borda rule. Recall that,
when, for each Lj the importance order is unconditional, rank(Xi,Lj) does not depend on ~d. If,
the preferences are fixed, ∆i(Lj , ~d) = di, and SBorda(P, ~d) =

∑p
i=1 di

∑n
j=1 2p−rank(Xi,Lj). We

have the following theorem, which states that for the UI-FP case, computing the Borda winner
is equivalent to computing the winner for a profile composed of importance orders, by applying
some positional scoring rule. For any order B over I, let ext(B) denote the UI-FP LP-tree whose
importance order is B.

Theorem 10 (UI-FP) Let fp denote the positional scoring rule over I with the scoring vector
(2p−1, 2p−2, . . . , 0). For any profile PI over I, we have ext(fp(PI)) = Borda(ext(PI)).

However, when the importance order is conditional, the Borda rule becomes intractable. We
prove that using the following problem:

Definition 2 Let voting rule r be the maximizer of scoring function S. In theK-EVALUATION prob-
lem, we are given a profile P that is composed of lexicographic preferences whose local preferences
for all issues are 1 � 0, a natural number K, and an integer T . We are asked to compute whether
there exists an alternative ~d that takes 1 on no more than K issues and S(P, ~d) > T .

Theorem 11 (CI-FP) For CI-FP profiles, K-EVALUATION is NP-hard for Borda.

Theorem 12 (UI-FP) Let k ∈ N(M,p). For UI-FP profiles, K-EVALUATION for k-approval is
NP-hard.

Theorem 13 (UI-FP) For UI-FP profiles, Copeland-SCORE is #P-hard.

The proof is by polynomial-time counting reduction from #INDEPENDENT SET. Maximin, when
the preferences are fixed (to be 1 � 0 for all issues), the maximin score of ~1 is 0 and the maximin
score of any other alternative is 2p − 1. This trivialize the computational problem of winner de-
termination even when with the restriction on the number of issues that take 1 (if K 6= p then all
available alternatives are tied). Following Lemma 3, for FI profiles, the winner can be computed in
polynomial-time.

8 Summary and Future Work
Our main results are summarized in Table 1. In addition, we can also show that for k-approval
(except k = 2p−1), Copeland and maximin, there is no observation similar to Theorem 10, and the
maximin score of a given alternative is APX-hard to approximate.

Our conclusions are partly positive, partly negative. On the one hand, there are voting rules for
which the domain restriction to conditionally lexicographic preferences brings significant benefits:
this is the case, at least, for k-approval for some values of k. The Borda rule can be applied easily
provided that neither the importance relation and the local preference are unconditional, which is
a very strong restriction. The hardness of checking whether an alternative is a Condorcet winner
suggest that Condorcet-consistent rules appears to be hard to apply as well. However, as we have

FP UP CP

FI Trivial
P

(Thm. 4)
UI NPC

(Thm. 12)
NPC

(Thm. 2)CI

FP UP CP
FI Trivial P

(Thm. 7) NPC
(Thm. 8)UI P

CI
NPC

(Thm. 11)
NPC

(Thm. 5)
(a) k-approval, k ∈ N(M,p). (b) Borda.

FP UP CP

FI Trivial
Polynomial
(Lemma 3)

UI #P-complete
(Thm. 13)CI

FP UP CP

FI
Trivial

P
(Lemma 3)

UI coNPC
(Thm. 9, Coro. 1)CI

(c) Copeland score. (d) Maximin and Condorcet winner.

Table 1: Summary of computational complexity results.

shown that some of these problems can be reduced to a compact MAXSAT problem. From a practical
point of view, it is important to test the performance of MAXSAT solvers on these problems. We be-
lieve that continuing studying preference representation and aggregation on combinatorial domains,
taking advantages of developments in efficient CSP techniques, is a promising future work direction.

Acknowledgments
We thank all anonymous reviewers of AAAI-12, CP-12, and COMSOC-12 for their helpful com-
ments and suggestions. This work has been partly supported by the project ComSoc (ANR-09-
BLAN-0305-01). Lirong Xia is supported by NSF under Grant #1136996 to the Computing Re-
search Association for the CIFellows Project.

References
[1] M. Ahlert. Aggregation of lexicographic orderings. Homo Oeconomicus, 25(3/4):301–317,

2008.

[2] S. Airiau, U. Endriss, U. Grandi, D. Porello, and J. Uckelman. Aggregating dependency graphs
into voting agendas in multi-issue elections. In Proceedings of IJCAI-11, pages 18–23, 2011.

[3] R. Booth, Y. Chevaleyre, J. Lang, J. Mengin, and C. Sombattheera. Learning conditionally
lexicographic preference relations. In Proceeding of ECAI-10, pages 269–274, 2010.

[4] C. Boutilier, R. Brafman, C. Domshlak, H. Hoos, and D. Poole. CP-nets: A tool for represent-
ing and reasoning with conditional ceteris paribus statements. Journal of Artificial Intelligence
Research (JAIR), 21:135–191, 2004.

[5] R. I. Brafman, C. Domshlak, and S. E. Shimony. On graphical modeling of preference and
importance. Journal of Artificial Intelligence Research (JAIR), 25:389–424, 2006.

[6] S. Brams, D. Kilgour, and W. Zwicker. The paradox of multiple elections. Social Choice and
Welfare, 15(2):211–236, 1998.

[7] V. Conitzer and L. Xia. Approximating common voting rules by sequential voting in multi-
issue domains. In Proceedings of KR-12, 2012.

[8] J. Dombi, C. Imreh, and N. Vincze. Learning lexicographic orders. European Journal of
Operational Research, 183:748–756, 2007.

[9] M. Garey and D. Johnson. Computers and Intractability. W. H. Freeman and Company, 1979.

[10] G. Gigerenzer and D. Goldstein. Reasoning the fast and frugal way: Models of bounded
rationality. Psychological Review, 103(4):650–669, 1996.

[11] B. Jaumard and B. Simeone. On the complexity of the maximum satisfiability problem for
horn formulas. Information Processing Letters, 26(1):1–4, 1987.

[12] R. Kohli, R. Krishnamurti, and P. Mirchandani. The minimum satisfiability problem. SIAM
Journal on Discrete Mathematics, 7(2):275–283, 1994.

[13] D. Lacy and E. M. Niou. A problem with referendums. Journal of Theoretical Politics,
12(1):5–31, 2000.

[14] J. Lang and L. Xia. Sequential composition of voting rules in multi-issue domains. Mathemat-
ical Social Sciences, 57(3):304–324, 2009.

[15] G. D. Pozza, M. S. Pini, F. Rossi, and K. B. Venable. Multi-agent soft constraint aggregation
via sequential voting. In Proceedings of IJCAI-11, pages 172–177, 2011.

[16] V. Ryvchin and O. Strichman. Faster extraction of high-level minimal unsatisfiable cores. In
Theory and Applications of Satisfiability Testing - SAT 2011, volume 6695 of Lecture Notes in
Computer Science, pages 174–187. Springer, 2011.

[17] M. Schmitt and L. Martignon. On the complexity of learning lexicographic strategies. Journal
of Machine Learning Research, 7:55–83., 2006.

[18] F. Yaman, T. Walsh, M. Littman, and M. desJardins. Democratic approximation of lexico-
graphic preference models. In Proceedings of ICML-08, pages 1200–1207, 2008.

Jérôme Lang
LAMSADE
Université Paris-Dauphine
France
Email: lang@lamsade.dauphine.fr

Jérôme Mengin
IRIT
Université de Toulouse
France
Email: mengin@irit.fr

Lirong Xia
School of Engineering and Applied Sciences
Harvard University
USA
Email: lxia@seas.harvard.edu

