
How Hard is it to Compute Majority-Preserving
Judgment Aggregation Rules?
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Abstract. Several recent articles have studied judgment aggrega-
tion rules under the point of view of the normative properties they
satisfy. However, a further criterion to choose between rules is their
computational complexity. Here we review a few rules already pro-
posed and studied in the literature, and identify the complexity of
computing the outcome.

1 Introduction

Given a collection of judgments, cast on a set of logically related
issues by different agents, a judgment aggregation problem is the
problem of finding a coherent collective set of judgments that is rep-
resentative of the individual judgment collection. Judgment aggrega-
tion is particularly interesting as it can be seen as a general frame-
work for abstract aggregation that encompasses preference aggrega-
tion [9]. Judgment aggregation has its origins in law and has been
studied in economy science, political science, but also in artificial
intelligence and multiagent systems.

In most papers in the literature on judgment aggregation, the ag-
gregation examples involve a small number of issues and a small
number of agents that cast judgments on those issues. However, if we
want to be able to implement the aggregation rules that these papers
justify by axiomatic properties, we have to be able to compute the
aggregate outcome. If the number of issues and agents is more than a
few units, the computation of the outcome may not be computation-
ally easy. Only a few papers have considered judgment aggregation
under the point of view of computation.

Endriss et al. [13] analyze the complexity of computing the out-
come of a judgment aggregation procedure (“winner determination”)
and strategic manipulation for three specific procedures: the quota
rules [7], the premised-based procedure [11], and a distance-based
rule (see further). They also consider another problem, which is in-
dependent of the procedure used: given an agenda, how complex is it
to determine whether this agenda is “safe”, that is, whether the issue-
by-issue majoritarian aggregation is guaranteed to output a consistent
result?

Baumeister et al. [4, 3] go further on the computational aspects of
strategic manipulation for premise-based procedures and quota rules,
by considering various forms of manipulations and investigating the
parameterized complexity of these problems with respect to natu-
ral parameters; they also consider control by the chair and bribery
in judgment aggregation, by generalizing some notions from voting,
but also by defining a new problem, specific to jugment aggregation,
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namely, control by bundling judges.
Alon et al. [2] introduce and give a computational study of the

notion of control by bundling issues. Alon et al. [1] study the related
issue of finding a consensual subset of issues.

Here we choose to leave aside the questions of strategic behaviour
such as manipulation, control and bribery, and focus on the more ba-
sic question of computing the outcome of a procedure, called “winner
determination” in [13] by analogy with voting theory: given a collec-
tion of judgments and a judgment aggregation rule, how difficult is
it to compute the collective judgment set(s)? We go beyond the three
rules considered by Endriss et al. and investigate the complexity of
winner determination for several voting rules that have been intro-
duced in the literature, the common point of which being that they are
all majority-preserving (if the issue-by-issue majoritarian aggrega-
tion leads to a consistent judgment set, then the output should consist
of this judgment set), and neutral (they treat all issues equally, unlike
e.g., the premise-based procedure). We show that the complexity of
winner determination for these rules lies at the first or second levels
of the polynomial hierarchy. One of the interests of our work is that it
establishes interesting connections with other fields of AI, especially
belief revision and nonmonotonic reasoning.

The paper is structured as follows. In Section 2 we give the neces-
sary background, first on judgment aggregation in general, and then
on the judgment aggregation rules that we study. In Section 3 we in-
troduce and discuss different computational problems. In Section 4
we consider the rules one by one and address the complexity of com-
puting the outcome. Finally, Section 5 discusses the significance of
our results and points to future research directions.

2 Background

We first give the basics of judgment aggregation and then we intro-
duce the judgment aggregation rules whose computational properties
we explore. Due to space limitations we do not recall any background
about the polynomial hierarchy (see, e.g., Chapter V.1 of [24]).

2.1 Judgment aggregation: general definitions

Let L be a set of well-formed propositional logical formulas, includ-
ing � (tautology) and ⊥ (contradiction). For any finite subset S of
formulas of L,

∧
(S) denotes the conjunction of all formulas in S.

An issue is a pair of formulas ϕ,¬ϕ where ϕ ∈ L and ϕ is nei-
ther a tautology nor a contradiction. An agenda A is a finite set
of issues, and has the form A = {ϕ1,¬ϕ1, . . . , ϕm,¬ϕm}. The
preagenda [A] associated with A is [A] = {ϕ1, . . . , ϕm}. A sub-
agenda is a subset of issues from A, that is, a subset of A of the form
{ϕj ,¬ϕj | j ∈ J}. A sub-preagenda is a subset of [A].
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A judgment on ϕ ∈ [A] is one of ϕ or ¬ϕ. A judgment set J is a
subset of A that is complete if and only if for each ϕ ∈ [A], either
ϕ ∈ J or ¬ϕ ∈ J .

Constraints can be specified to explicitly represent logical depen-
dencies enforced on agenda issues. Since we have a finite L, without
loss of generality we can assume that the constraints consist of one
propositional formula (typically the conjunction of several simpler
constraints). The constraint associated to an agenda A is thus a con-
sistent formula Γ ∈ L. When not otherwise specified, Γ is the tau-
tology �. Involving constraints in judgment aggregation has already
been considered in a few places, such as [10, 16]. We reproduce here
the definitions of two special constraints, the transitivity (Tr) and
the dominance (W ) constraint, used to prove relations between vot-
ing rules and judgment aggregation rules [20].

The preference agenda AC = {xiPxj | 1 ≤ i < j ≤ q} is
a special type of agenda associated with a set of alternatives C =
{x1, . . . , xq}. For the preference agenda we define the Tr and W
constraints as:

• Tr =
∧

i,j,k∈{1,...,m}
(
(xiPxj) ∧ (xjPxk) → (xiPxk)

)

• W =
∨

i≤m

∧
j �=i(xiPxj)

A judgment set J (and more generally, a set of propositional for-
mulas) is Γ-consistent if and only if J ∪ {Γ} � ⊥. Let D(A,Γ)
be the set of all Γ-consistent judgment sets (for agenda A) and
D(A,Γ) ⊂ D(A,Γ) be the set of all judgment sets that are also
complete. We omit specifying A and Γ when they are clear from the
context.

For I ⊆ A, we define CompA,Γ(I) as the set of
all complete and consistent judgment sets containing I , i.e.
CompA,Γ(I) = {J ∈ D(A,Γ) | I ⊆ J, }. For
S = {I1, . . . , Ik} with I1 ⊆ A, . . . , Ik ⊆ A, we define
CompA,Γ(S) = ∪I∈SCompA,Γ(I).

A profile P = 〈J1, . . . , Jn〉 ∈ D
n(A,Γ) is a col-

lection of complete, Γ-consistent individual judgment
sets. Given a sub-agenda Y , the projection of J on Y is
J↓Y = J ∩ Y . Given a profile P = 〈J1, . . . , Jn〉, the projection of
P on Y is P ↓Y = 〈J↓Y

1 , . . . , J↓Y
n 〉. Lastly, we define N(P,ϕ) as

N(P,ϕ) = |{i | Ji ∈ P and ϕ ∈ J}|.
An irresolute judgment aggregation rule, for n voters, is a function

FΓ : Dn(A,Γ) → 2D(A,Γ) \{∅}, i.e., FΓ maps a profile of complete
judgment sets to a nonempty set of consistent and complete judgment
sets. When Γ is omitted, i.e., when we note F instead of FΓ, we
assume that F is defined for any possible constraint Γ (F then defines
a family of judgment aggregation rules – one for each Γ – but by a
slight abuse of language we use F for a judgment aggregation rule).

The majoritarian judgment set associated with profile P contains
all elements of the agenda that are supported by a majority of judg-
ment sets in P , i.e.,

m(P ) = {ϕ ∈ A | N(P,ϕ) >
n

2
}.

A profile P is (Γ)-majority-consistent if and only if m(P ) is Γ-
consistent.

A judgment aggregation rule F is majority-preserving if and only
if for every agenda A, for every Γ ∈ L, for every majority-consistent
profile P based on A and Γ, we have FΓ(P ) = CompA,Γ(m(P )).

A judgment aggregation rule F is neutral if for any permutation σ
of the issues of the preagenda, we have F (Pσ) = F (P )σ , where Pσ

and F (P )σ are obtained from P and F (P ) by replacing everywhere
every issue ϕ (resp. ¬ϕ) by σ(ϕ) (resp. ¬σ(ϕ)).

Given a set of formulas Σ, S ⊆ Σ is a maximal Γ-
consistent subset of Σ if S is Γ-consistent and no S′ such that

S ⊂ S′ ⊆ Σ is Γ-consistent; and S ⊆ Σ is a maxcard (for “max-
imal cardinality”) Γ-consistent subset of Σ if S is Γ-consistent and
no S′ ⊆ Σ such that |S| < |S′| is Γ-consistent. With max(S,Γ,⊆)
we denote the set of all maximal Γ-consistent subsets of S, while
max(S,Γ, |.|) denotes the set of all maxcard Γ-consistent subsets of
S.

Lastly, we give the example of an agenda and profile which we
will make use of in this paper. We make use of the following classical
notation (see Figure 1): we have one column for each element of the
preagenda [A] and one row for each judgment set of each class of
identical judgment sets; + (resp. −) in column ϕ and row J means
that ϕ ∈ J (resp. ¬ϕ ∈ J). Thus, for instance, in the profile of
Example 1 below, Ji contains {¬xj , yj , (xj ∧ yj) → ϕj} for all
j �= i, and {xj , yj , (xj ∧ yj) → ϕi} for j = i; and Ji+1 contains
{xj ,¬yj , (xj ∧ yj) → ϕj} for all j �= i and {xj , yj , (xj ∧ yj) →
ϕi} for j = i.

Example 1 Let Δ ⊂ L be a set of formulas, Δ = {ϕ1, . . . , ϕp}. To
Δ we associate a pre-agenda [AΔ] of p elements constructed in the
following manner

[AΔ] = {xi, yi, (xi ∧ yi) → ϕi | i ∈ [1, p], ϕi ∈ Δ}.
We construct a profile PΔ = 〈J1, J2, . . . , J2p−1, J2p〉 where judg-
ment sets J2j and J2j+1 for i odd and j ∈ [1, 2p] consist of the
following judgments:

• {¬xj , yj , (xj ∧ yj) → ϕj} ⊂ Ji for all j �= i, and
{xj , yj , (xj ∧ yj) → ϕi} ⊂ Ji for j = i;

• {xj ,¬yj , (xj ∧ yj) → ϕj} ⊂ Ji+1 for all j �= i and
{xj , yj , (xj ∧ yj) → ϕi} ⊂ Ji+1 for j = i.

The profile PΔ is also depicted in Figure 1. Observe that the judg-

x1 y1 (x1 ∧ y1) → ϕ1 x2 y2 (x2 ∧ y2) → ϕ2 · · · xp yp (xp ∧ yp) → ϕp

J1 + + + + − + · · · + − +
J2 + + + − + + · · · − + +
J3 + − + + + + · · · + − +
J4 − + + + + + · · · − + +
...

...
...

...
...

...
... · · · ...

...
...

J2p−1 + − + + − + · · · + + +
J2p − + + − + + · · · + + +

m(PΔ) + + + + + + · · · + + +

Figure 1. Profile PΔ obtained for a set of formulas Δ.

ment sets Ji and Ji+1 are consistent if and only if the formula ϕi ∈
Δ is consistent. More precisely, the subset {xi, yi, (xi ∧ yi) → ϕi}
is consistent if and only if ϕi is consistent. For the same reason,
m(PΔ) is consistent if and only if Δ is consistent.

2.2 Judgment aggregation rules

In this work we focus on neutral and majority-preserving judgment
aggregation rules. This rules out rules that are not neutral, such as
premise-based and conclusion-based rules, and rules that are not
majority-consistent, such as scoring rules introduced recently in [8].
These rules occur under different names in the literature, and some-
times with slightly different (but equivalent) definitions. We give the
definition for each of them, reusing the names from [18, 20]. For
more details and intuitions behind these rules, as well as for detailed
examples, we invite the reader to consult [18, 19, 20].
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In the rest of this Section, let P = 〈J1, . . . , Jn〉, P ∈ D
n(A,Γ).

Definition 1 (Maximal & maxcard sub-agenda rules) The maxi-
mal sub-agenda (MSA) and the maxcard sub-agenda (MCSA) rules
are defined as follows: for every agenda A, for every Γ ∈ L, for
every profile P based on A and Γ,

MSAΓ(P ) = CompA,Γ(max(m(P ),Γ,⊆)), (1)

MCSAΓ(P ) = CompA,Γ(max(m(P ),Γ, |.|)). (2)

The MSA rule is called “Condorcet admissible set”, and the
MCSA “Slater rule”, in [23]. The MCSA rule is also equivalent
to the ENDPOINTd rule from [21] defined for d being the Hamming
distance.

Definition 2 (Ranked agenda) Let �P be the weak order on A de-
fined by: for all ψ,ψ′ ∈ A, ψ �P ψ′ if and only if N(P, ψ) ≥
N(P, ψ′). For A = {ψ1, . . . , ψ2m} and a permutation σ of
{1, . . . , 2m}, let >σ be the linear order on A defined by ψσ(1) >
... > ψσ(2m). We say that >σ is compatible with �P if ψσ(1) �P

... �P ψσ(2m). The ranked agenda rule RAΓ is defined as J ∈
RAΓ(P ) if and only if there exists a permutation σ such that >σ is
compatible with �P and such that J = Jσ is obtained by the follow-
ing procedure:

• S := ∅;
• for j = 1, . . . , 2m do
• if S ∪ {ψσ(j)} is Γ-consistent, then S := S ∪ {ψσ(j)};
• Jσ := S.

This rule is similar, although not exactly the same, as the “leximin
rule” in [23]. See also [14] for a similar rule.

Definition 3 (Maxweight sub-agenda) The maxweight sub-agenda
rule MWA is defined as

MWAΓ(P ) = argmax
J∈D(A,Γ)

∑

ϕ∈J

N(P,ϕ). (3)

The MWA rule is called “Median rule” by Nehring et al. [23] and
“Simple scoring rule” in [8]. The MWA rule is equivalent [18] to the
PROTOTYPEd for d being the Hamming distance and the “Distance-
based procedure” of [13].

The following rule corresponds to the FULLd rule in [21] for the
choice of the Hamming distance.

Definition 4 (Minimal number of atomic changes)

Given two profiles P = {J1, ..., Jn} and Q = {J ′
1, ..., J

′
n}, let

dH(P,Q) =
n∑

i=1

|Ji \ J ′
i |. Then

MNACΓ(P ) = {CompA,Γ(m(P ′)) | m(P ′) ∈ D(A,Γ) and (4)

dH(P, P ′) ≤ dH(P,Q) for all Q ∈ D
n(A,Γ)}

Intuitively, MNAC looks for a minimal number of elementary
changes in the profile (where an elementary change consists in
switching a judgment on an issue for some voter) so as to render
it Γ-consistent.

We should make clear that there is a slight difference in the defini-
tions of rules MSA and MCSA we give here and as they are defined
in [18, 20]. Here we define the rules to always produce complete
judgment sets, while in [18, 20], these rules can produce incomplete
judgment sets. However, the definitions we choose here considerably
simplify the study of their properties (including computational prop-
erties); see [19].

Example 2 We illustrate the presented rules with an example. Con-
sider [A] = {p ∧ r, p ∧ s, q, p ∧ q, t}, Γ = �, and the profile given
in Figure 2. Observe that for this profile, the m(P ) is not consistent.
The collective judgments from each of the five rules we consider are
also given on the Figure.

Voters { p ∧ r, p ∧ s, q, p ∧ q, t }
J1 × 6 + + + + +
J2 × 4 + + - - +
J3 × 7 - - + - -
m(P ) + + + - +

MSA�(P ) + + + + +
+ + - - +
- - + - +

MCSA�(P ) + + + + +
+ + - - +

RA�(P ) - - + - +
MWA�(P ) + + + + +

MNAC�(P ) + + + + +

Figure 2. Profile example illustrating different judgment aggregation rules.

3 The problems

In voting theory, the computational issues of winner determination
have been vastly explored for many different rules. There, a win-
ner determination problem is composed of a set of alternatives from
which a winner or a subset of winners has to be selected, a profile
(generally consisting of a preference ranking for each voter), and the
key question is whether a given alternative is among the winners.
The winner determination problem in judgment aggregation is not
as straightforward to define as in voting. Perhaps the main difficulty
is that in judgment aggregation a “winner” could both be a single
judgment and a set of judgments3.

A possible approach to winner determination (taken in [17]) con-
sists in asking whether a particular judgment set is among the judg-
ment sets of the output: given a profile P , a judgment set J and a
judgment aggregation rule F , is J ∈ F (P )? Endriss et al [13] con-
sider a more general notion of winner determination problem by con-
sidering subsets of the agenda, and define winner determination as
the following decision problem: given an agenda subset S ⊂ A and
a profile P , is there a J ∈ F (P ) such that J contains S? We take a
similar approach as in [13], with two differences: instead of asking
whether a given subset S ⊂ A is contained in some J ∈ F (P ),
we ask if a given element ϕ of the agenda is contained in all output
judgment sets. The reason for considering elements ϕ of the agenda
will be clearer after reading the paper: for all rules we consider, we
are able to obtain hardness results even for this simple case, and con-
sidering arbitrary subsets of the agenda does not make the problem
more complex. The reason for requiring that all judgment sets of the
output contain ϕ is because we find it more natural, and is without
loss of generality, as the ‘existential’ problems are dual of these ‘uni-
versal’ problems, as explained at the end of this Section.

We end this Section by defining the problems more formally.

3 This distinction is reminiscent of the distinction between social choice func-
tions and social welfare functions in preference aggregation: the former
select a winner or a set of winners whether the latter output a collective
preference relation.
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Consider a fixed, irresolute judgment aggregation rule FΓ. The
decision problem WINNER DETERMINATION(F ), that we abbreviate
in WD(F ), is defined as follows:

Input Agenda A, constraint Γ, profile P ∈ D
n(A,Γ), α ∈ A.

Output Is it the case that α ∈ J for every J ∈ FΓ(P )?

We pay special attention to the case where there is no constraint,
i.e., Γ = �. The associated problem CONSTRAINT-FREE WINNER

DETERMINATION(F ), abbreviated into CF-WD(F ), is defined as:

Input Agenda A, profile P ∈ D
n(A,�), α ∈ A.

Output Is it the case that ϕ ∈ J for every J ∈ F�(P )?

Observe that WD(F ) is at least as hard as CF-WD(F ).
Lastly, because FΓ(P ) is a set of complete judgment sets, we have

the following equivalence:

(A) α ∈ J for some J ∈ FΓ(P ) if and only if it is not the case that
¬α ∈ J for all J ∈ FΓ(P ).

Therefore, if WD(FΓ) is in a complexity class C for a given rule F
then the corresponding ‘existential’ problem (is it the case that α ∈ J
for some J ∈ FΓ(P )?) is in coC.

4 The results

Many of our hardness results use reductions from problems in knowl-
edge representation and reasoning, and in particular, in nonmono-
tonic reasoning and belief revision.

A supernormal default theory4 is a pair D = 〈Δ, β〉 with
Δ = {ϕ1, . . . , ϕp}, where 〈ϕ1, . . . , ϕp〉 ∈ Ln and β ∈ L. A for-
mula α ∈ L is a skeptical consequence of D, denoted by D |∼∀ α,
if and only if for all S ∈ max(Δ, β,⊆) we have S ∧ β |= α, and
a maxcard skeptical consequence of D, denoted by D |∼C

∀ α, if and
only if for all S ∈ max(Δ, β, |.|) we have S ∧ β |= α. Skeptical
inference is Πp

2-complete [15], even if β = �. It is straightforward
to show that skeptical inference remains Πp

2-complete under the re-
striction that α = ϕi for some i

(
because 〈Δ, β〉 |∼∀ α if and only if

〈Δ ∪ {α}, β〉 |∼∀ α
)
. Maxcard skeptical inference is Θp

2-complete
[22], even if β = �.5 Again, maxcard skeptical inference remains
Θp

2-complete under the restriction that α = ϕi for some i. Under
these restrictions β = � and α = ϕi, because a maximal consis-
tent subset of Δ is consistent with α if and only if it contains α, and
because ϕ1, . . . , ϕp play symmetric roles, the problem SKEPTICAL

INFERENCE (in supernormal default theories) becomes

Input Δ = 〈ϕ1, . . . , ϕp〉 with consistent ϕi ∈ L.
Output Is it the case that for every maximal (reps. maxcard) consis-

tent subset S of Δ, we have ϕi ∈ S?

Proposition 1 Both WD(MSA) and CF-WD(MSA) are Πp
2-

complete.

Proof. We show membership of WD(MSA) to Πp
2 by giving an

nondeterministic algorithm that shows that the complement problem
WD(MSA) is in Σp

2 .
The role of steps 2 and 3 of Algorithm 2 is to check that S is a

maximal Γ-consistent subset of m(P ).

4 “Supernormal” defaults are also called “normal defaults without prerequi-
sites” [25].

5 The problem in [22] is actually called CARDINALITY-MAXIMIZING BASE
REVISION, but both problems are straightforwardly reducible to each other.

Algorithm 1: Membership of WD(MSA) to Σp
2

Input: Agenda A, judgment profile P , α ∈ A.
Output: true if and only if ∃J s.t. J ∈ MSAΓ(P ) and α �∈ J

1 guess a subset S of m(P ) and a complete judgment set J ⊇ S;
2 check that S is Γ-consistent;
3 check that for each ϕ ∈ m(P ) \ S, S ∪ {ϕ} is Γ-inconsistent;
4 check that α /∈ J .

Πp
2-hardness of CF-WD(MSA) is proven by a polynomial reduc-

tion of SKEPTICAL INFERENCE with the restrictions β = � and
α ∈ Δ. With any instance 〈Δ, α〉 of SKEPTICAL INFERENCE we
associate an instance of CF-WD(MSA). For a set of formulas Δ we
construct a pre-agenda and profile as in Example 1.

Clearly, m(PΔ) = {x1, y1, x1∧y1 → ϕ1, . . . , xp, yp, xp∧yp →
ϕp}. Now, we claim that S ⊆ m(PΔ) is a maximal consistent subset
of m(PΔ) if and only if S is of the form

S =
⋃

i∈I

{xi, yi, xi ∧ yi → ϕi} ∪
⋃

j /∈I

Zj

where I ⊆ {1, . . . , p} is such that ΔI = {ϕi, i ∈ I} is a maximal
consistent subset of Δ and for each j /∈ I , Zj contains exactly two
elements among {xj , yj , xj ∧ yj → ϕj}. First, for any such subset
S,

∧
(S) is equivalent to

∧
j /∈I

∧
Zj ∧∧

j∈I xi ∧ yi ∧ ϕi; it is con-
sistent, because ΔI is consistent. Second, adding one more element
of m(PΔ) to such an S makes it inconsistent, since it would imply
Δi∧ϕj for some j /∈ I , and the latter is inconsistent because ΔI is a
maximal consistent subset of Δ. Therefore, any such S is a maximal
consistent subset of m(P ). Now, assume S is a maximal consistent
subset of m(PΔ). If S does not contain at least two among xi, yi
and xi ∧ yi → ϕi for every i = 1, . . . , n, then it is not maximal
consistent, because we can add one of these without creating an in-
consistency. Therefore, for each i = 1, . . . , n, S contains either the
three formulas xi, yi and xi ∧ yi → ϕi, or exactly two of them.
Let I be the set of indices i such that S contains all three formulas
xi, yi and xi ∧ yi → ϕi. S implies ΔI , therefore ΔI is consis-
tent. Suppose that ΔI is not maximal consistent: then there exists
j /∈ I such that ΔI∪{j} is consistent; but then we can add xj or yj
or xj ∧ yj → ϕj to S (whichever of the three is not in S) without
creating an inconsistency, which contradicts the assumption that S is
a maximal consistent subset of m(P ).

Lastly, if Δ |∼∀ ϕi, then any maximal consistent subset S of
m(PΔ) contains ϕi, and using the claim above, every judgment set
in MSA�(PΔ) contains xi. Conversely, if some maximal consis-
tent subset S of m(PΔ) does not contain ϕi, then again using the
claim above, some judgment set in MSA�(PΔ) does not contains
xi. Therefore, Δ |∼∀ ϕi if and only if every J ∈ MSA�(PΔ)
contains ϕi.

�

Proposition 2 WD(MCSA) and CF-WD(MCSA) are both Θp
2-

complete.

Proof sketch. We show membership of WD(MCSA) to Θp
2 by giving

an algorithm that shows that the complement problem WD(MCSA)
is in Θp

2 .
Θp

2-hardness of CF-WD(MCSA) is proven by a polynomial
reduction of MAXCARD SKEPTICAL INFERENCE, with the restric-
tions α ∈ Δ and β = �. The reduction is the same as for MSA
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Algorithm 2: Membership of WD(MCSA) to Θp
2

1 find the cardinality K of a maximal Γ-consistent subset of
m(P ) by dichotomy on {1, . . . ,m}

2 guess a subset S of m(P ) of cardinality K and a complete
judgment set J ⊇ S;

3 check that S is Γ-consistent;
4 guess an interpretation M ;
5 check that M satisfies S ∧ Γ;
6 check that α /∈ J .

above. (For the first line of the algorithm see for instance the proof
of Theorem 5.14 in [22].) Recall that for each maximal subset S of
m(P ), S has the form S =

⋃
i∈I{xi, yi, xi ∧ yi → ϕi}∪⋃

j /∈I Zj ,
where ΔI = {ϕi, i ∈ I} is a maximal consistent subset of Δ and
for each j /∈ I , zj is either xj or yj . Now, |S| = 3|I|+ 2(n− |I|);
therefore, S is a maxcard consistent subset of m(P ) if |I| is
maximal, that is, if ΔI = {ϕi, i ∈ I} is a maxcard consistent subset
of Δ. The rest of the proof is similar to the proof for MSA above. �

Proposition 3 WD(RA) and CF-WD(RA) are both Πp
2-complete.

Proof. Membership of WD(RA) to Πp
2 is shown with the following

algorithm:

Algorithm 3: Membership of WD(RA) to Σp
2

1 guess a judgment set J ;
2 guess a permutation σ on A;
3 check that Jσ = J ;
4 check that α �∈ J .

Πp
2-hardness of CF-WD(RA) is proven by a polynomial reduction

of SKEPTICAL INFERENCE. The proof – like the proof of Proposi-
tion 1 – uses the profile of Example 1. The proof is very similar to the
proof of Proposition 1. For every i, N(P, xi) = N(P, yi) = p + 1
and N(P, xi ∧ yi → ϕi) = 2p. Therefore, the judgment sets
in RA(P ) have the following form: they contain xi ∧ yi → ϕi

for all i = 1, . . . , p, and then contain {xi, yi} for all i ∈ I
and exactly one of xi and yi for i /∈ I , where I is a subset
of {1, . . . , p} such that ΔI is a maximal consistent subset of Δ.
The rest of the proof goes exactly like in the proof of Proposition 1. �

We now consider the MWA rule. MWA is equivalent to the so-
called “distance-based procedure” in [13]; it is shown in [13] (The-
orem 9) that the problem that we call WINNER DETERMINATION

SUBSET(F ) is Θp
2-complete:

Input Agenda A ⊂ L, judgment profile P ∈ D
n(A,�), S ⊂ L.

Output Is there a J ∈ F�(P ) such that S ⊆ J?

Due to Remark (A) at the end of Section 3 and the fact that coΘp
2

= Θp
2 , the universal version of the problem (do all output judgment

sets contain S?) is Θp
2-complete as well. The only thing that remains

to prove is that the problem remains Θp
2-hard when S is restricted to

a singleton, which we state now.

Proposition 4 WD(MWA) and CF-WD(MWA) are both Θp
2-

complete.

Proof sketch. Membership is a corollary of Proposition 9 in [13].
For hardness, we use a reduction from MAXCARD SKEPTICAL

INFERENCE with the same profile as for Propositions 1 and 2.
MWA(PΔ) consists of all judgment sets containing all formulas
xi, yi, xi and yi → ϕi for i ∈ I where SI is some maxcard
consistent subset of Δ, plus, for each i /∈ I , xi and yi → ϕi and
exactly one of xi and yi. Every J ∈ MWA(PΔ) contains xi iff
Δ |∼C

∀ ϕi. �

Proposition 5 WD(MNAC) and CF-WD(MNAC) are Θp
2-

complete.

Proof. Membership is along the same lines as for Proposition 2.
For hardness, we give a reduction from MAXCARD SKEPTICAL IN-
FERENCE. Given Δ = 〈ϕ1, . . . , ϕn〉, let us build the following in-
stance of CF-WD(MNAC): A = {ϕ1 ∨ x1, ϕ1 ∨ ¬x1, . . . , ϕ1 ∨
x1, ϕn ∨ ¬xn}, where x1, y1, . . . , xp, yp are 2p fresh proposi-
tional symbols (not appearing in ϕ1, . . . , ϕp); and P consists of
2p individual judgment sets as given in Figure 3. Every Ji is a

ϕ1 ∨ x1 ϕ1 ∨ ¬x1 ϕ2 ∨ x2 ϕ2 ∨ ¬x2 . . . ϕn ∨ xn ϕn ∨ ¬xn

J1 + + + − . . . + −
J2 + + − + . . . − +
J3 + − + + . . . + −
J4 − + + + . . . − +
. . .

J2n−1 + − + − . . . + +
J2n − + − + . . . + +

m(P ) + + + + . . . + +

Figure 3. The P profile used in the reduction proof for MNAC.

consistent individual judgment set. Let K be the cardinality of a
maxcard-consistent subset of Δ. We claim that min{d(P,Q) |
Q majority-consistent} = n − K. m(P ) contains xi ∨ ϕi and
¬xi ∨ ϕi for all i, and thus implies ϕi for each i. If Q is majority
consistent then {ϕi | m(Q) |= ϕi} must be consistent, therefore6

|m(P )�m(Q)| ≥ n−K; because changing the majority judgment
on an issue implies changing at least one individual judgment on that
issue, min{d(P,Q) | Q majority-consistent} ≥ n − K. Now, let
S be a maxcard consistent subset of Δ (i.e., such that |S| = K).
For each i /∈ S, switching judgment set J2i−1 about ϕi ∨ xi from
ϕi ∨ xi to ¬(ϕi ∨ xi) suffices to reach majority-consistency; hence
min{d(P,Q) | Q majority-consistent} ≥ n − K. More precisely,
all sets of minimal changes from P to a majority-consistent Q are
of this form: for some maxcard consistent subset S of Δ, for each
ϕ /∈ S, change ϕi ∨ xi to ¬(ϕi ∨ xi) or ϕi ∨¬xi to ¬(ϕi ∨¬xi) in
one of the individual judgments where it is possible.

Assume that ϕ1 /∈ S for some maxcard consistent subset of Δ.
Then, there will be a Q such that d(P,Q) = n − K and such that
ϕ1∨x1 /∈ m(Q), therefore there will be Q ∈ MNAC(P ) such that
ϕ1 ∨ x1 /∈ m(Q). Conversely, assume ϕ1 ∈ S for every maxcard
consistent subset S of Δ. Then no set of minimal changes from P to
Q involves a switch of ϕ1 ∨ x1, therefore for all Q ∈ MNAC(P )
we have ϕ1 ∨ x1 ∈ m(Q). We conclude that Δ |∼C

∀ ϕ1 if and only
if every J ∈ MNAC(P ) contains ϕ1 ∨ x1. �

There was one more majority-preserving rule defined in [18, 20],
namely the Young rule for judgment aggregation: given a profile P ,

6 Recall that � denotes the symmetric difference between two sets, not to be
confused with the set Δ.
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YΓ(P ) is defined as the majoritarian judgment sets of all maxcard
Γ-consistent subprofiles of P . Given that this rule generalizes the
Young voting rule (see [20]), and given that winner determination
for the Young rule is Θp

2-complete ([26] for the strong version of the
rule and [5] for the original one), we might think that obtaining Θp

2-
complete for WD(Y ) is almost straightforward. However, and sur-
prisingly, it is not, because of the focus on a single element of the
agenda in our definition of WD (and so far we do not have a proof).

5 Conclusion

We have established a number of complexity results for winner deter-
mination in judgment aggregation (see Table 1), focusing on a family
of rules that have received some attention in the literature but, apart
of the MWA rule, had not been studied from the point of view of
computation.

In all cases, we have started to prove that CF-WD is C-hard for
some complexity class (Σp

2 or Θp
2). This allows to conclude that any

superproblem of CF-WD who belongs to C is C-complete. This ap-
plies of course to WD, as we have said already, but also to the more
general problem where we ask if all output judgment sets contain a
given subset S of the agenda (which is the ‘universal’ version of the
winner determination notion in [13]). This, however, does not apply
to the restriction of the latter problem to complete judgment sets, for
which we generally have a complexity fall.

Also, we know that specifying judgment aggregation rules to the
preference agenda and imposing one of the two constraints Tr or
W leads to recovering voting rules which are, in many cases, well-
known rules [20]. Such a specialization sometimes comes with no
complexity gap (for instance, MWA vs. Kemeny) but sometimes
with one: for instance, winner determination for RA is Πp

2-complete,
whereas the rules obtained by the specialization to the preference
agenda are: for Γ = W , maximin (for which winner determination
is polynomial) and for Γ = Tr, ranked pairs, for which winner de-
termination is NP-complete [6].

WD CF-WD
MSA ΠP

2 -c. ΠP
2 -c.

MCSA ΘP
2 -c. ΘP

2 -c.
MWA ΘP

2 -h. ΘP
2 -h.

RA ΠP
2 -c. ΠP

2 -c.
MNAC ΘP

2 -c. ΘP
2 -c.

Table 1. Complexity of the winner determination problem for judgment
aggregation rules.

The high complexity of these judgment aggregation rules should
be relativized by the fact that many agendas will in fact contain few
potential inconsistencies, and it is not hard to see that winner deter-
mination for MSA, MCSA, MWA and RA is polynomial when
the number of minimal inconsistent subsets of the agenda is bounded
by a constant. Another way of escaping intractability consists in
defining polynomial approximations of our rules, such as rules based
on most representative voters [12].
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aspects of manipulation and control in judgment aggregation.’, in Pro-
ceedings of the 3rd International Conference on Algorithmic Decision
Theory, ADT 2013, (2013).
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