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Abstract

Two prominent topics in Krister Segerberg’s works are, on the one hand, ac-
tions, and on the other hand, belief change. Both topics are connected in multiple
ways; one of these connections is via KGM belief update, since, as we argue, belief
update is a specific case of feedback-free action progression. We discuss the links
between update and action, and, starting from Segerberg’s works, discuss further
other possible interpretations of belief update, its differences with AGM belief re-
vision, and why it is interesting to develop further KGM-based Dynamic Doxastic
Logic.

1 Introduction
Krister Segerberg has introduced and developed a powerful and influential way of deal-
ing with belief change: dynamic doxastic logic (DDL). DDL aims at expressing belief
change actions at the same language level as factual sentences, using dynamic modali-
ties [?ϕ], where ?ϕ is the action of adding ϕ to the agent’s belief. Nesting such belief
change modalities allows us to reason about an agent’s beliefs about how her beliefs
are changed. For instance, borrowing from [25], page 169, B[?ϕ]Bθ expresses that
the agent believes that after adding ϕ to her body of knowledge she will believe θ, and
[?[?ϕ]Bθ]Bχ expresses that the agent believes χ after adding to her belief state the
information that adding ϕ to it would lead to a belief in θ.

In the paragraph above I deliberately avoided using the “to revise”, and used the
more neutral, but less elegant verbs “to change” or “to add”. However, most of the work
on DDL assumes that the belief change operation ? corresponds to a belief revision, in
the sense of Alchourrón, Gärdenfors and Makinson [1]; see for instance [33, 34]. Other
parts of this special issue deal with DDL and its relationship with AGM-style belief re-
vision (as well as its iterated versions), and the rôle played by the Ramsey rule and
Gärdenfors’ impossibility theorem in the development of DDL. Segerberg however
noticed that moving belief change actions from the linguistic meta-level to the object
level makes also perfectly sense for other paradigms of belief change, be it other op-
erations in AGM-style belief change such as expansion and contraction, and also other

∗A significant part of this article is a revised version of [23]
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non-AGM notions of belief change, the most prominent example being belief update,
in the sense of Katsuno and Mendelzon [21] and Grahne [13] – which Segerberg calls
the KGM paradigm. Developing a KGM version of DDL and highlighting its main
differences with the traditional, AGM version of DDL is mentioned first in Lindström
and Segerberg [28] and developed further by Leitgeb and Segerberg [25] of which it is
one of the main topics.

Now, although many papers about belief update have been written, including many
papers addressing its differences with belief revision, its precise scope still remains
unclear. Part of the reason is that the first generation of papers on belief update contain
a number of vague and ambiguous formulations, such as “belief revision has to do with
static worlds, while belief update has to do with dynamic worlds”, or “belief update
incorporates into a belief base some notification of a change in the world”.

Friedman and Halpern [11] were perhaps the first to argue that this is not as simple
as that. The issue is also addressed by Leitgeb and Segerberg [25], pages 183 and 184:

In the literature of belief change the distinction between static and dy-
namic environments has become important. (...) it seems right to say that
that belief change due to new information in an unchanging environment
has come to be called belief revision (the static case, in the sense that the
“world” remains unchanged), while it is fairly accepted to use the term be-
lief update for belief change that is due to reported changes in the environ-
ment itself (the dynamic case, in the sense that the “world” changes).(...)
The established tradition notwithstanding, it would be interesting to see
a really convincing argument for tying AGM revision to static environ-
ments. (...) But it is also not clear that belief update has to be interpreted
as reflecting a proper change in the environment.

Leitgeb and Segerberg also address an important ramification of this major ques-
tion, which has to do with the role and the meaning of rankings of worlds in revision
and in update. They give a very convincing line of argumentation towards the following
conclusion: in revision, rankings are subjective and correspond to relative plausibili-
ties (they can be thought of as an ordinal counterpart of subjective probabilities). In
belief update, rankings are objective (agent-independent) and correspond to similarity
between worlds. Let me quote Leitgeb and Segerberg [25], pages 184-185:

(...) Given new evidence, we find that in the case of belief revision the
agent tries to change his beliefs in a way such that the worlds that he sub-
sequently believes to be in comprise the subjectively most plausible devi-
ation from the worlds he originally believed to inhabit. However, when
confronted in the same evidence in belief update, the agent tries to change
his beliefs in a way such that the worlds that he subsequently believes
to be in are as objectively similar as possible to the worlds he originally
believed to be the most plausible candidates for being the actual world.

This question about the role of rankings can be pushed even further, as we may
even question the need for rankings in belief update. Accordingly, a series of papers
defined and studied families of update operators that, in contrast to the original model
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by Grahne, Katsuno and Mendelzon, are not based on minimization and thus do not
need any rankings at all. This is extensively discussed by Herzig and Rifi [18]. This is
in sharp contrast with belief revision, and this may be part of the explanation why the
Ramsey test, to which AGM revision does not escape, seems perfectly escapable with
belief update. This question of the compatibility of KGM update with the Ramsey test
is addressed in detail by Leitgeb and Segerberg, pages 179 to 187. It is further linked
to the question of iteration, which appear to be much less problematic in belief update
in with belief revision.

This chapter addresses all of these questions and develops on them (several more
than others; in particular, there will be no emphasize at all on the Ramsey test), and
discusses in detail some of the answers given in [25]. It is partly based on a previous
conference paper of mine [23]. The main question of this chapter is the identification
of the precise scope of belief update, i.e., the conditions (expressed by properties of
the world and of the agent’s beliefs) under which update is a suitable process for belief
change. After recalling some background on KGM belief update in Section 2, we give
in Section 3 an informal discussion about the role of time in revision and update. In
Section 4, we relate update to the field of reasoning about action (another issue in
which Krister Segerberg is a major contributor). Our main claim is that updating a
knowledge base by α corresponds to progressing it by a specific “purely physical”,
feedback-free action “make α true” whose precise meaning depends on the chosen
update operator. This in turn raises the following question, addressed in Section 5: if
update is progression, are there belief change operators corresponding to regression? In
Section 6 we discuss another important (and different?) interpretation of belief update,
which has to do with counterfactuals and causality; we address the question of whether
this interpretation is really different from action progression, or only a variation of it.
In Section 7 we come back to where the paper started, namely DDL, and show why it
is highly promising to develop further an update-based version of DDL. Further issues
are briefly addressed in Section 8.

2 Belief update
Let LV be the propositional language generated from a finite set of propositional vari-
ables V , the usual connectives and the Boolean constants >, ⊥. S = 2V is the set
of states (i.e., propositional interpretations). For any ϕ ∈ LV , Mod(ϕ) is the set of
states satisfying ϕ. For anyX ⊆ S, for(X) is the formula of LV (unique up to logical
equivalence) such that Mod(for(X)) = X . If X = {s}, we write for(s) instead of
for({s}). We use ϕ⊕ ψ as a shorthand for ϕ↔ ¬ψ.

As in [21], a belief update operator � is as mapping from LV × LV to LV , i.e.,
mapping two propositional formulas ϕ (the initial belief state) and α (the “input”) to
a propositional formula ϕ � α (the resulting belief state). We recall here the Katsuno-
Mendelzon (KM for short) postulates for belief update [21].

U1 ϕ � α |= α.

U2 If ϕ |= α then ϕ � α ≡ ϕ.
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U3 If ϕ and α are both satisfiable then ϕ � α is satisfiable.

U4 If ϕ ≡ ψ and α ≡ β then ϕ � α ≡ ψ � β.

U5 (ϕ � α) ∧ β |= ϕ � (α ∧ β).

U6 If ϕ � α |= β and ϕ � β |= α then ϕ � α ≡ ϕ � β.

U7 If ϕ is complete then (ϕ � α) ∧ (ϕ � β) |= ϕ � (α ∨ β).

U8 (ϕ ∨ ψ) � α ≡ (ϕ � α) ∨ (ψ � α).

Although we have recalled all postulates for the sake of completeness, we should
not accept them unconditionally. They have been discussed in several papers, including
[18] in which it was argued that not all these postulates should be required, and that
the “uncontroversial” ones (those deeply entrenched in the very notion of update and
satisfied by most operators studied in the literature) are (U1), (U3), (U8), and (U4) to a
lesser extent. We therefore call a basic update operator any operator � from LV × LV
to LV satisfying at least (U1), (U3), (U4) and (U8). In addition, � is said to be syntax-
independent if it also satisfies (U4), inertial if it also satisfies (U2), and � is a KM
update operator if it satisfies (U1)-(U8)1. In the paper we refer to some specific update
operators such as the PMA [36]; see [18] for a compendum of belief update operators
that date, and [17] for an update on the literature about update since then.

The first goal of this chapter consists in identifying is the exact scope of belief
revision and belief update, and more generally belief change operators. To assess the
scope of belief change operators, we need to be able to talk about the properties of
the system (the world and the available actions) and the properties of the agent’s state
of knowledge, as in the taxonomy for reasoning about action and change from [31].
However, unlike reasoning about action, belief change processes have never (as far as
we know) been analyzed from the point of view of such a taxonomy. A first step is
taken towards this direction (for belief revision only) in [11]. We aim at identifying
further the precise scope of belief update, i.e., the conditions (expressed by properties
of the world and of the agent’s beliefs) under which update is a suitable process for
belief change.

3 Time, revision, and update
As already quoted in the Introduction, Leitgeb and Segerberg write in [25], pages 183
and 184:

The established tradition notwithstanding, it would be interesting to see a
really convincing argument for tying AGM revision to static environments.
(...) But it is also not clear that belief update has to be interpreted as
reflecting a proper change in the environment.

1(U5), (U6) and (U7) are much more controversial than the other ones (see [18]); they characterize the
specific class of updates based on a similarity-based minimization process (which is known to lead to several
counterintuitive results).
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Their diagnosis is definitely right: the discourse, seen so often, that the difference
between the scope of revision and that of update should be seen as an opposition be-
tween static and dynamic environments, is wrong indeed. Belief revision, AGM style,
has been developed as a qualitative counterpart of probabilistic conditionalisation; ty-
ing AGM to “static environments” would thus implicitly mean that the probability cal-
culus does not apply to dynamic environments – which would be absolutely nonsense.

And indeed, nothing in the AGM theory of belief revision implies that we should
restrict its application to static worlds. Belief revision [1] is meant to map a belief
set (a closed logical theory, or equivalently, since the language is finitely generated, a
propositional formula2) and a new piece of information α (a consistent propositional
formula) whose truth is held for sure, into a new belief set K ∗ α taking account of
the new piece of information without rejecting too much of the previous beliefs. The
initial belief set as well as the new piece of information may talk about the state of an
evolving world at different time points. As remarked already by Friedman and Halpern
[10], what is essential in belief revision is not that the world is static, but that the
language used to describe the world is static. Thus, if an evolving world is represented
using time-stamped propositional variables of the form vt (v true at time t), we can
perfectly revise a belief set by some new information about the past or the present (or
even, sometimes, the future), and infer some new beliefs about the past, the present, or
the future.

Example 3.1 On Monday, Alice is the head of the computer science lab while Bob is
the head of the math lab. On Tuesday I learned that one of them resigned (but without
knowing which one). On Wednesday I learn that Charles is now the head of the math
lab, which implies that Bob isn’t. (It is implicit that heads of labs tend to keep their
position for quite a long time.) What do I believe now?

Example 3.1 contains a sequence of two “changes”. Both are detected by obser-
vations, and the whole example can be expressed as a revision process (with time-
stamped variables). Let us identify Monday, Tuesday and Wednesday by the time
stamps 1, 2 and 3. On Monday I believe A1, B1, as well as the persistency laws
A1 ↔ A2, A2 ↔ A3, B1 ↔ B2 etc., therefore I also believe A2, B2 etc.: I expect that
Alice and Bob will remain the heads of their respective labs on Tuesday and Wednes-
day. The revision by¬A2∨¬B2 (provided that the revision operator minimizes change)
leads me to believe A1, B1, A2 ⊕B2, A3 ⊕B3 etc.: on Tuesday, I still believe that Al-
ice and Bob were heads of their labs on Monday, and that now exactly one of them is.
Then the revision by ¬B3 (at time 3) makes me believeA1, B1, A2,¬B2, A3,¬B3: on
Wednesday, I understand that Bob was the one to resign on Tuesday, and therefore that
Alice was still head of the CS lab on Tuesday, and is still now3.

Now, the fact that belief revision can deal with (some) evolving worlds suggests
that the opposition between revision and update relies on the possibility or not that the
state of the world may evolve is not accurate. In particular, claiming that belief update

2Our assumption that the language is finite allows us to consider revision operators as acting on proposi-
tional formulas as in [22] (instead of belief sets).

3Note that this scenario is also a case for belief extrapolation [8], which is a particular form of time-
stamped revision.
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is the right belief change operation for dealing with evolving worlds is unsufficient and
ambiguous. The literature on belief update abounds in ambiguous explanations such as
“update consists in bringing the knowledge base up to date when the world is described
by its changes”4. Especially, the expressions “describing the world by its changes” and
“notification of change”, appearing in many papers, are particularly ambiguous. The
problem is not that much, as it has been observed sometimes, that in these expressions
“change” has to be understood as “possibility of change” (we’ll come back to this
point). The main problem is the status of the input formula α. To make things clear,
here is an example.

Example 3.2 My initial belief is that either Alice or Bob is in the office (but not both).
Both tend to stay in the office when they are in. Now I see Bob going out of the office.
What do I believe now?

Trying to use belief update to model this example is hopeless. For all common
update operators seen in the literature, updating A ⊕ B by ¬B leads to ¬B, and not
to ¬A ∧ ¬B. The culprit is (U8), which, by requiring that all models of the initial
belief set be updated separately, forbids us to infer new beliefs about the past from
later observations. Indeed, because of (U8), we have (A ⊕ B) � ¬B ≡ [(A ∧ ¬B) �
¬B] ∨ [(¬A ∧ B) � ¬B] ≡ (A ∧ ¬B) ∨ (¬A ∧ ¬B) ≡ ¬B. The only way to have
¬A ∧ ¬B as the result would be to have (A ∧ ¬B) � ¬B ≡ ¬A ∧ ¬B, which can
hold only if there is a causal relationship between A and B, such as B becoming false
entails A becoming false – which is not the case here.

Example 3.2 definitely deals with an evolving world and contains a “notification of
change”, and still it cannot be formulated as a belief update process. On the other hand,
like Example 3.1, it can be perfectly expressed as is a time-stamped belief revision
process5.

The key point is (U8) which, by requiring that all models of the initial belief set
be updated separately, forbids us from inferring new beliefs about the past from later
observations: indeed, in Example 3.2, belief update provides no way of eliminating the
world (A,¬B) from the set of previously possible worlds, which in turn, does not allow
for eliminating (A,¬B) from the list of possible worlds after the update: if (A,¬B) is
a possible world at time t, then its update by ¬B must be in the set of possible worlds
at time t+1. In other terms, update fails to infer that Alice wasn’t in the office and still
isn’t.

Belief update fails as well on Example 3.1: updating A ∧ B ∧ ¬C by ¬A ∨ ¬B
gives the intended result, but only by chance (because the agent’s initial belief state
is complete). The second step fails: with most common update operators, updating
(A⊕B) ∧ ¬C by ¬B ∧ C leads to ¬B ∧ C, while we’d expect to believe A as well.

4This formulation appears in [21], which may be one of the explanations for such a long-lasting ambigu-
ity.

5Note that without time stamps (and in particular within the framework of belief update), we cannot
distinguish between “B has become false” (as in ”I see Bob go out of the office”) and “the world has evolved
in such a way that B is now false” (as in “I now see Bob out of his office”). Anyway, for Example 3.2, the
expected outcome is the same in both cases (provided that A and B are expected to persist with respect to
the granularity of time considered).
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The diagnosis should now be clear: the input formula α is not a mere observation.
An observation made at time t+ 1 leads to filter out some possible states at time t+ 1,
which in turn leads to filter out some possible states at time t, because the state of the
world at time t and the state of the world at time t + 1 are correlated (by persistence
rules or other dynamic rules6.) And finally, the successor worlds (at time t+1) of these
worlds at time t that update failed to eliminate can not be eliminated either. Such a
backward-forward reasoning needs a proper generalization of update (and of revision),
unsurprisingly called generalized update [3].

One could try to argue that such scenarios (such as Examples 3.1 or 3.2) are both
a case for revision and update, depending whether the formulation of the problem uses
time-stamped variables or not. This line of argumentation fails: expressing Example
3.2 as a belief update still leads to the counterintuitive results that we do not learn
anything about Alice. Besides, several authors remarked that, unless belief bases are
restricted to complete bases, a belief update operator cannot be a belief revision oper-
ator. For instance, it is shown in [15, 30] that the AGM postulates are inconsitent with
U8 as soon as the language contains at least two propositional symbols.

4 Update as action progression
We now investigate in further detail the belief change interpretation of belief update.
(There is at least one other interpretation, which deals with causality and counterfactu-
als, on which we shall come back in Section 6.) Since standard belief update precludes
any possibility of feedback, the input formula α has to be understood as an action ef-
fect, and certainly not as an observation. If α has to be understood as an action effect,
update is a particular form of action progression for feedback-free actions. Action
progression (as considered in the literature of reasoning about action and logic-based
planning) consists in determining the belief state obtained from an initial belief state
after a given action is performed, this action corresponding to a transition graph (an
automaton) between states of the world.

This connection between belief update and action progression was first mentioned
by Del Val and Shoham [5], who argued that updating an initial belief state ϕ by a
formula α corresponds to one particular action; they formalize such actions in a formal
theory of actions based on circumscription, and their framework for reasoning action is
then used to derive a semantics for belief update. The relationship between update and
action progression appears (more or less explicitly) in several other papers, including
[27], who expresses several belief update operators in a specific action language. Still,
the relationship between update and action progression still needs to be investigated in
more detail.

We first need to give some background on reasoning about action. Generally speak-
ing, an action A has two types of effects: an ontic (or physical) effect and an epistemic
effect. For instance, if the action consists in tossing a coin, its ontic effect is that the

6The only case where belief update could be compatible with interpreting α as an observation would
therefore be the case where not the faintest correlation exists between the state of the world at different
time points; in this case, we would have ϕ � α ≡ α whenever α is consistent – a totally degenerate and
uninteresting case.
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next value of the fluent heads may change, whereas its epistemic effect is that the new
value of the fluent is observed (this distinction between ontic and epistemic effects is
classical in most settings). Complex actions (with both kinds of effects) can be decom-
posed into two actions, one being ontic and feedback-free, the other one being a purely
epistemic (sensing) action.

The simplest model for a purely ontic (i.e., feedback-free) action A consists of
a transition graph RA on S.7 RA(s, s′) means that s′ is accessible from s after A.
RA(s) = {s′ | RA(s, s′)} is the set of states that can obtain after performing A in
s. If RA(s) is a singleton for all s then A is deterministic. If RA(s) = ∅ then A is
inexecutable in s. A is fully executable iff RA(s) 6= ∅ for every s.

An epistemic action e corresponds to a set of possible observations, plus a feedback
function fe from S to 2O, where O is a finite observation space. o ∈ fe(s) means that
observation o may be obtained as feedback when performing e in state s. Observations
are of course correlated with states (for instance, an observation can be a propositional
formula, or equivalently a set of states.) For the sake of simplicity, we identify O with
LV , that is, we consider that observations are propositional formulas (note however
that this implies a loss of generality. The simplest possible epistemic actions are truth
tests, and correspond to two possible observations, ϕ and ¬ϕ, for some propositional
formula ϕ. An epistemic action e is truthful iff for all s ∈ S, o ∈ O, o ∈ fe(s) implies
s |= o, deterministic iff for all s ∈ S, fe(s) is a singleton, and fully executable iff for
all s ∈ S, fe(s) 6= ∅.

Let A be a purely ontic action modelled by a transition graph RA on S. For any
formula ϕ ∈ LV , the progression of ϕ by A is the propositional formula (unique up to
logical equivalence) whose models are the states that can obtain after performing A in
a state of Mod(ϕ): prog(ϕ,A) is defined by

prog(ϕ,A) = for

⋃
s|=ϕ

RA(s)

 (1)

Remark that the probabilistic variant of action progression is the well-known action
progression operator for stochastic actions: let p is a probability distribution over S and
A a stochastic action described by a stochastic matrix p(.|., A), where p(s′|s,A) is the
probability of obtaining s′ after performingA in s. Then progP (p,A) is the probability
distribution over S defined by

progP (p,A)(s′) =
∑
s∈S

p(s)p(s′|s,A)

Mapping each probability distribution p into the belief state B(p) = for({s|p(s) >
0}) consisting of those states deemed possible by p, i.e.,B(progP (p,A)) = prog(B(p), A).
As argued by Dubois and Prade [7], the probabilistic variant of belief update is Lewis’
imaging [26]: p(.|., α) is then defined by

p(s′|s, α) =
{ 1
|Proj(s,α)| ifs′ ∈ proj(s, α)
0 otherwise

7More sophisticated models may involve graded uncertainty such as probabilities, delayed effects etc.
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where proj(s, α) is the set of states closest to α (according to some proximity struc-
ture).

Lastly, for any action A, Inv(A) is the set of invariant states for A, i.e. the set of
all states s such that RA(s) = {s}.

Clearly enough, (1) is identical to (U8). Therefore, for any update operator (and
more generally any operator satisfying (U8)) and any input formula α, updating by α
is an action progression operator. This raises several questions: (a) Which action is
this exactly? (b) What is the class of actions that correspond to updates? (c) If update
is progression, are there belief change operators corresponding to regression?

Question (a) first. As argued above, (U8) and (1) mean that the action is feedback-
free. Indeed, a feedback would allow us to eliminate some states after the action has
been performed, which in turn would lead us to eliminate some states before the ac-
tion took place (see [3, 8])8. This comes down to saying that belief update assumes
unobservability: the set of possible states after A is performed is totally determined by
the set of possible states before it is performed and the transition system correspond-
ing to A. In other words, what you foresee is what you get (WYFIWYG): once we
have decided to perform A, waiting until it has actually been performed will not bring
us any new information. Expressed in a modal language, the WYFIWIG principle is
nothing but the (RR) axiom of Grahne [13], of which we give Leitgeb and Segerberg’s
formulation ([25], page 181):

B(ϕ �→ ψ)↔ [�ϕ]Bψ

(RR) can be seen the syntactical counterpart of (U8). Leitgeb and Segerberg consider
it as the key axiom of KGM, and I do agree.

Note that using update in Example 3.2 would correspond to performing an action
whose effect is to make Bob go out of his office (when he is initially not in the office,
this action has no effect). Likewise, in Example 3.1, updating A ⊕ B ∧ ¬C by ¬B ∧
C corresponds to performing the action “demote Bob from his position and appoint
Charles instead”.

Therefore, updating by α is a purely ontic (feedback-free) action. Can we now
describe this action in more detail? (U1) means that the action of updating by α has
to be understood as “make α true”. Such actions (or events9 have been given some
attention for long by Segerberg, and are referred to in [25] (pages 182-183) as

“resultative” events’: events describable in terms of their results (...). The
intended meaning of a term δϕ would be “the event resulting in (its being
the case that) ϕ”. Accordingly, the intended meaning of a formula [δϕ]ψ

8Unless the state of the world after the action is performed is totally disconnected from the state of the
world before the action is performed, which only happens if RA(s) = S for all s. In this case, a feedback
never allows for learning anything about the past state of the world. Clearly, this case is a very degenerated
one.

9The distinction between actions and events is mostly irrelevant to our discussion. Actions are usually
thought of as agent-trigerred, whereas events don’t, or don’t necessarily (see for instance [31]). Who triggers
what has no impact on our discussion: an action performed consciously and intentionally by an agent, or a
nature-trigerred event, or an action performed by another agent, have the same effects on the agent’s belief
state provided that, in all cases, the agent is perfectly aware of the action or the event taking place.
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would be “after the event resulting in (its being the case that) ϕ, it is the
case that ψ, or more briefly, “after ϕ has just been realized, ψ.”

More precisely, Segerberg studied in [32] a class of actions bringing about that α,
or simply, doing α. In the light of the discussion above, comparing this class of actions
do α and KGM belief update appears is more than worth doing. One of the main axioms
for do α is [do α]α, which is obviously equivalent to (U1), modulo reformulation.
Axioms (E1) and (E2) ([32], page 333) are together equivalent to (U4). Where the two
frameworks depart is with the last main axiom of do α, namely,

[do α]β → ([do β]γ → [do α]γ)

whose reformulation in the language of belief update is

ϕ � α |= β → ((ϕ � β |= γ)→ (ϕ � α |= γ))

This axiom (which, incidentally, implies the KM axiom (U6)), cannot be satisfied
by a belief update operator satisfying (U1) and (U2). Indeed, take γ = ϕ, α = ¬ϕ,
and β = >. Trivially, ϕ � α |= β holds. Due to (U2), we have ϕ � β ≡ ϕ, thus
ϕ � β |= γ holds. Lastly, due to (U1), ϕ �α |= α, which implies that ϕ �α |= γ cannot
hold. This fact is intriguing, as the axiom seems natural. I leave a deeper discussion
for further research, but still, I am convinced that early works by Segerberg on do α
actions (which appeared several years before the first papers on belief update) – was
very close to belief update, and, probably due to the fact that both streams of work were
developed in different communities, very few works mention that.

Back to interpreting “updating by α” as “make α true”. More precisely, due to
the absence of feedback reflected by (U8), updating ϕ by α could be understood as a
dialogue between an agent and a robot: “All I know about the state of the world is that
is satisfies ϕ. Please, go to the real world, see its real state, and whatever this state, act
so as to change it into a world satisfying α, following some rules” (given that the robot
does not communicate with the agent once it is the real world.) The rules to be followed
by the robot are dictated by the choice of the update operator �. If � satisfies (U2), then
the rules state that if the α is already true then the robot must leave the world as it is.
If � is the PMA [36], then the rules are “make α true, without changing more variables
than necessary”. More generally, when � is a Katsuno-Mendelzon operator, associated
with a collection of similarity preorders (one for each world), the robot should make
α true by changing s into one of the states that are most similar to it notion (s being
closer to s1 than to s2 may, in practice, reflect that from s it is easier to go to s1 than
to s2) and not as an epistemic notion of similarity, as it would be the case for belief
revision. When � is a forgetting-based operation, such as WSS [36, 14] or the MPMA
[6], then the rules are “make α true, without changing the truth values of a given set of
variables (those that do not appear in α, or those that play no role in α).” And so on.

It is the right place to discuss the rôle of minimisation in belief update. It has been
remarked already by several authors (see [18] for a synthetic discussion) that requiring
minimisation of change is not always the right thing to do, and that many well-behaved
update operators do not need it, nor do they need these KM faithful orderings around

10



worlds – which strongly departs with AGM belief revision. These rankings are op-
tional; when relevant, they correspond to objective similarity between worlds. Peppas
et al. [30], argue that this similarity has be understood as ontological, which agrees
with our view of update(�, α) as an ontic action. Leitgeb and Segerberg go further in
this direction by giving this illuminating argument ([25], pages 184-185):

We think that the actual difference between the intended interpretation of
revision and update is given by the fact that the former belief change fol-
lows a doxastic order of “fallback positions” [29] while the latter conforms
to a worldly similarity order of states of affairs – the one rides on a subjec-
tive structure, the other as an objective one. (...) Thus, given new evidence,
we find that in the case of belief revision the agent tries to change his be-
liefs in a way such that he subsequently believes to be in the subjectively
most plausible deviation from the worlds he originally believed to inhabit.
However, confronted with the same evidence in belief update, the agent
tries to change his beliefs in a way such that the worlds that he subse-
quently believes to be are as objectively similar as possible to the worlds
he originally believed to be the most plausible candidates to be the actual
world.

Writing things more formally: given an update operator � and a formula α, let
update(�, α) be the ontic action whose transition graph is defined by: for all s, s′ ∈ S,

s′ ∈ Rupdate(�,α)(s) iff s′ |= for(s) � α

The following characterizations are almost straightforward, but worth mentioning,
as they shed some light on the very meaning of the KM axioms.

Proposition 4.1 Let � satisfy (U8).

1. ϕ � α ≡ prog(ϕ, update(�, α));

2. � satisfies (U1) if and only if for any formulaα ∈ LV and any s ∈ S,Rupdate(�,α)(s) ⊆
Mod(α);

3. � satisfies (U2) if and only if for any formula α ∈ LV , Inv(update(�, α)) ⊇
Mod(α);

4. � satisfies (U3) if and only if for any satisfiable formula α ∈ LV , update(�, α)
is fully executable.

Proof: For point 1, (U8) implies that Mod(ϕ � α) = ∪s|=ϕfor(s) � α, which, by
definition of update(�, α), is equal to ∪s|=ϕRupdate(�,α)(s), which, by definition of
progression, is equal to Mod(prog(ϕ, update(�, α))).

For point 2, let � satisfying (U1). Then Rupdate(�,α)(s) = Mod(for(s) � α) ⊆
Mod(α). Conversely, if for any α and any s ∈ S, Rupdate(�,α)(s) ⊆ Mod(α) holds,
then Mod(ϕ � α) = ∪s|=ϕfor(s) � α = ∪s|=ϕRupdate(�,α)(s) ⊆ Mod(α), therefore
ϕ � α |= α.

11



For point 3, we have that for all s and α, for(s) � α = for(s) if and only if
Rupdate(�,α)(s) = {s} if and only if s ∈ Inv(update(�, α)). Now, if � satisfies (U2)
then for any α and s ∈ Mod(α), by (U2) we get for(s) � α = for(s), therefore
s ∈ Inv(update(�, α)). Conversely, if Inv(update(�, α)) ⊇ Mod(α) holds then
for any ϕ such that ϕ |= α we have Mod(ϕ � α) = ∪s|=ϕRupdate(�,α)(s) = ∪s|=ϕs
(because for(s) |= α), therefore Mod(ϕ � α) = Mod(ϕ), hence (U2) is satisfied.

For point 4, let α be a satisfiable formula. For any s, for(s) � α is satisfiable if
and only if Rupdate(�,α)(s) 6= ∅. If � satisfies (U3) then because for(s) is satisfi-
able, for(s) � α is satisfiable, therefore Rupdate(�,α)(s) 6= ∅; this being true for all s,
update(�, α) is fully executable. Conversely, assume update(�, α) is fully executable,
then for any satisfiable ϕ, Mod(ϕ � α) = ∪s|=αRupdate(�,α)(s) 6= ∅; hence � satisfies
(U3).

2

From point 4 of Proposition 4.1, (U3) corresponds to full executability of update(�, α).
We may wonder what new properties of update(�, α) obtain when other postulates are
required. (U2) is particularly interesting in this respect. Indeed, the inertia postulate
(U2) together with (U1) and (U8), reinterpreted in terms of action progression, means
that any state that can be reached by update(�, α) is an invariant state. More precisely:

Proposition 4.2 Let � satisfying (U1), (U2) and (U8). Then

Rupdate(�,α)(S) = Inv(update(�, α)) ∩Mod(α)

Proof: By (U1), update(�, α) maps any state to a set of states satisfying α; then by
(U2), any of these states is invariant by update(�, α); therefore, Rupdate(�,α)(S) ⊆
Inv(update(�, α)). Rupdate(�,α)(S) ⊆ Mod(α) is a direct consequence of (U1). Fi-
nally, let s ∈ Inv(update(�, α)) ∩Mod(α). Then, by (U2), for(s) � α = for(s),
henceRupdate(�,α)(s) = {s} and thus s ∈ Rupdate(�,α)(S), which proves Inv(update(�, α))∩
Mod(α) ⊆ Inv(update(�, α)) ∩Mod(α).

2

Note that if Rupdate(�,α)(s) ⊆ Inv(update(�, α)) for all s, then update(�, α) is
involutive, i.e., Rupdate(�,α) ◦ Rupdate(�,α) = Rupdate(�,α), but the converse fails to
hold.

The other postulates do not have any direct effect on the properties of update(�, α)
considered as an isolated action, but they relate different actions of the form update(�, α).
Noticeably, requiring (U4) corresponds to the equality between update(�, α) and update(�, β)
when α and β are logically equivalent. The characterizations of (U5), (U6) and (U7) in
terms of reasoning about action are purely technical and do not present any particular
interest.

Let us now consider question (b). Obviously, given a fixed update operator � sat-
isfying (U1), (U3), (U4) and (U8), some fully executable actions are not of the form
update(�, α). This is obvious because there are 22n

actions of the form update(�, α)
and 2n+2n−1 fully executable actions, where n = |V |. Here is another proof, more
intuitive and constructive: let V = {p}, thus S = {p,¬p}, and consider the actions
A = switch(p), such that RA(p) = {¬p} and RA(¬p) = {p}. Assume there is
a formula α such that A = update(�, α); then U1 enforces α ≡ >; therefore, if
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A = update(�, α) then by (U4), A = update(A,>). Now, let A′ be the iden-
tity action; we also have that if A′ can be expressed as an update action for �, then
A′ = update(�,>). Therefore, at most one of A and A′ can be expressed as an update
action for �.

Now, what happens if we allow � to vary? The question now is, what are the actions
that can be expressed as update(�, α), for some update operator � and some α?

Proposition 4.3 Let A be a fully executable ontic action such that RA(s) ⊆ Inv(A)
for all s ∈ S. Then there exists a KM-update operator, and a formula α, such that
A = update(�, α).

Proof: The proof is constructive. Let us take any formula α = for(Inv(A)), and the
collection of faithful orderings in the sense of [21] defined by s1 <s s2 if and only if
s = s1 6= s2 or (s 6= s1, s 6= s2, s1 ∈ RA(s), s2 6∈ RA(s)); and s1 ≤s s2 iff not
(s2 <s s1).

Because A is fully executable, RA(s) 6= ∅ for any s, therefore Inv(A) 6= ∅ and α
is satisfiable.

Let s |= α. Because α = for(Inv(A)) we have RA(s) = {s}. By (U2), because
for(s) |= α, we have for(s)�α = for(s), thereforeRupdate(�,α)(s) = {s} = RA(s).

Let s |= ¬α. Then s 6∈ RA(s), which implies that Min(≤s,Mod(α)) = RA(s),
from which we have for(s) � α = for(RA(s)) and Rupdate(�,α)(s) = RA(s).

We have established that Rupdate(�,α)(s) = RA(s) holds for all s ∈ S. Because of
(U8), � is fully determined by {Rupdate(�,α)(s), s ∈ S}, therefore A = update(�, α).

2

From Propositions 4.1 and 4.3 we get

Corollary 4.4 Let A be an ontic action. There exists a KM-update operator �, and
a formula α such that A = update(�, α), if and only if A is fully executable and
RA(s) ⊆ Inv(A) for all s ∈ S.

A variant of Proposition 4.3 (and Corollary 4.4) can be obtained by not requiring
RA(s) ⊆ Inv(A): in that case there exists an update operator � satisfying all the KM
postulates except (U3), and a formula α such that A = update(�, α). α can be taken
as > and s ≤s s2 iff s1 ∈ RA(s) or s2 6∈ RA(s).

Note that if (U2) is not required in Proposition 4.3 then we have the meaningless
result that any action is expressible as an update.

5 Reverse update
Now, question (c). Is there a natural notion which is to action regression what update
is to progression? The point is that we do not have one, but two notions of action
regression. The weak (or deductive) regression (also called weak preimage in the AI
planning literature) of ψ by A is the formula whose models are the states from which
the execution of A possibly leads to a model of ψ, while the strong (or abductive)
regression (also called strong preimage) of ψ by A is the formula whose models are
the states from which the execution of A certainly leads to a model of ψ:
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reg(ψ,A) = form ({s,RA(s) ∩Mod(ψ) 6= ∅})
Reg(ψ,A) = form ({s,RA(s) ⊆Mod(ψ)})

While weak regression is the suitable operator for postdiction (given that ψ now
holds and that α has been performed, what can we say about the past state of the
world?), strong regression is better understood as goal regression (what are the states
in which it is guaranteed that performing αwill lead to a goal state, i.e. a state satisfying
ψ?) See for instance [24] for the interpretation of these two notions of regression in
reasoning about action. This naturally leads to two notions of reverse update.

Definition 5.1 Let � be an update operator.

• the weak reverse update � associated with � is defined by: for all ψ, α ∈ LV ,
for all s ∈ S,

s |= ψ � α iff for(s) � α 6|= ¬ψ

• the strong reverse update ⊗ associated with � is defined by: for all ψ, α ∈ LV ,
for all s ∈ S,

s |= ψ ⊗ α iff for(s) � α |= ψ

Equivalently, ψ�α = for({s | for(s)�α 6|= ¬ψ}) and ψ⊗α = for({s | for(s)�
α |= ψ}).

Intuitively, weak reverse update corresponds to (deductive) postdiction: given that
the action “make α true” has been performed and that we now know that ψ holds,
what we can say about the state of the world before the update was performed is that
it satisfied ψ � α. As to strong reverse update, it is an abductive form of postdiction,
better interpreted as goal regression: given that a rational agent has a goal ψ, the states
of the world in which performing the action “make α true” is guaranteed to lead to a
goal states are those satisfying ψ ⊗ α.

The following result shows that � and ⊗ can be characterized in terms of �:

Proposition 5.2

1. ψ � α |= ϕ iff ¬ϕ � α |= ¬ψ;

2. ϕ |= ψ ⊗ α iff ϕ � α |= ψ;

Proof: For point 1, assume ¬ϕ�α 6|= ¬ψ. Then there exists s and s′ such that s |= ¬ϕ,
s′ ∈ RA(s) and s′ |= ψ. This implies that for(s) � α 6|= ¬ψ, i.e., s |= ψ � α, and
since s |= ¬ϕ, we have ψ � α 6|= ¬ϕ. Conversely, assume ψ � α 6|= ϕ. Then there
exists s′ |= ψ and s |= ¬ϕ such that s′ ∈ RA(s), which implies that ¬ϕ 6|= ¬ψ.
For point 2, assume ϕ � α 6|= ψ. Then there exists s′ such that s′ |= ϕ � α, and
s′ |= ¬ψ. This implies that there exists an s such that s′ ∈ RA(s) and s |= ϕ, hence
for(s) � α 6|= ψ, i.e., s 6|= ψ ⊗ α. Conversely, assume ϕ 6|= ψ ⊗ α. Then there exists
s |= ϕ such that s 6|= ψ ⊗ α, i.e., for(s) � α 6|= ψ, which implies that there is a s′ such
that s′ ∈ RA(s) and s′ |= ¬ψ, therefore ϕ � α 6|= ψ.

2

As a consequence of Proposition 5.2, ψ � α is the weakest formula ϕ such that
¬ϕ � α |= ¬ψ, and ψ ⊗ α is the strongest formula ϕ such that ϕ � α |= ψ.
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Example 5.3 Let � = �PMA [36]. Let b and m stand for “the book is on the floor”
and “the magazine is on the floor”. The action update(�, b ∨m) can be described in
linguistic terms by “make sure that the book or the magazine is on the floor”. Then
b�(b∨m) ≡ b∨(¬b∧¬m) ≡ b∨¬m, which can be interpreted as follows: if we know
that the book is on the floor after update(�, b ∨m) has been performed, then what we
can say about the previous state of the world is that either the book was already on the
floor (in which case nothing changed) or that neither the book nor the magazine was
on the floor (and then the update has resulted in the book being on the floor). On the
other hand, b⊗ (b∨m) ≡ b: if our goal is to have the book on the floor, the necessary
and sufficient condition for the action update(�, b∨m) to be guaranteed to succeed is
that the book is already on the floor (if neither of them is, the update might well leave
the book where it is and move the magazine onto the floor).

An interesting question is whether weak and strong reverse update can be charac-
terized by some properties (which then would play the role that the basic postulates
play for “forward” update). Here is the answer (recall that a basic update operator
satisfies U1, U3, U4 and U8).

Proposition 5.4 � is the weak reverse update associated with a basic update operator
� if and only if � satisfies the following properties:

W1 ¬α� α ≡ ⊥;

W3 if α is satisfiable then >� α ≡ >;

W4 if ψ ≡ ψ′ and α ≡ α′ then ψ � α ≡ ψ′ � α′;

W8 (ψ ∨ ψ′)� α ≡ (ψ � α) ∨ (ψ′ � α).

In addition to this, � satisfies (U2) if and only if � satisfies

W2 (ψ � α) ∧ α ≡ ψ ∧ α.

Proof: Note first that (W4) and (W8) are exactly the same properties as (U4) and (U8),
replacing � by �.

Let � be the weak reverse update associated with a basic update operator �. Let us
show that � satisfies (W1), (W3), (W4) and (W8).

From Proposition 5.2, ¬α � α ≡ ⊥ is equivalent to > � α |= α, i.e., for all s,
for(s) � α |= α, which in turns is equivalent to: for all ϕ, ϕ � α |= α, which is (U1).
Therefore, � satisfies (W1).

Let α be a satisfiable formula. Assume that � does not satisfy (W3), that is, > �
α 6≡ >: from (U8), there is a s such that s 6|= > � α, which is equivalent to > �
α |= for(S \ {s}), i.e., using Proposition 5.2, ¬for(S \ {s}) � α |= ⊥, equivalent
to for(s) � α unsatisfiable, which contradicts the assumption that � satisfies (U3).
Therefore, � satisfies (W3).

Assumeψ ≡ ψ′ and α ≡ α′. For any s, s |= ψ�α holds if only if for(s)�α 6|= ¬ψ,
which using (U4) is equivalent to for(s) � α′ 6|= ¬ψ′, therefore s |= ψ′ � α′, which
implies that � satisfies (W4).
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It holds that s |= (ψ ∨ ψ′) � α if and only if for(s) � α 6|= ¬(ψ ∨ ψ′), which
is equivalent to for(s) � α 6|= ¬ψ and for(s) � α 6|= ¬ψ′), i.e., to s |= ψ � α or
s |= ψ � α, which shows that � satisfies (W8).

Conversely, let � satisfying (W1), (W3), (W4) and (W8). Let us show that there
exists an operator � satisfying satisfies (U1), (U3), (W4) and (U8), such that � is the
weak reverse update associated with �. We first note that definition of � from � is
symmetric: let us call the conjugate of a belief change operator ? the belief change
operator ? defined by

s |= for(s′)?for(s) iff for(s) ? αfor(s′)
Then we see that if the weak reverse operator � associated with � is its conjugate,

i.e., � = �, but also vice versa: � = �. Therefore, if we define � as the conjugate of
�, � is the weak reverse update associated with �.

Lert us now show that � = � satisfies (U1), (U3), (U4) and (U8). Since (W4) and
(W8) coincide with (U4) and (U8), exchanging � and �, together with the first half of
the proof we immediately get that � satisfies (U4) and (U8).

Recall from above that in presence of (U8), � satifies (U1) if and only if � satisfies
(W1). Therefore, � satisfies (W1).

As to the point concerning (U2) and (W2), assume furthermore that � satisfies
(U2). Assume s |= (ψ � α) ∧ α. Suppose s 6|= ψ. Then there exists s′ such that
s′ ∈ RA(s) and s′ |= ψ, which implies s 6= s′, therefore RA(s) 6= {s}; this, together
with for(s) |= α, violates (U2). Therefore, s |= ψ ∧ α. Now, assume s |= ψ ∧ α. By
(U2), RA(s) = {s}, therefore there is a s′(= s) such that s′ |= ψ and s′ ∈ RA(s),
which shows that s |= ψ � α. Therefore, � satisfies (W2). Conversely, assume that �
does not satisfy (U2). Then, by (U8), there exist two states s, s′ and a formula α such
that s′ 6= s, s |= α, and s′ |= for(s) �α. Take ψ = for(s′), we have s |= (ψ�α)∧α
but s 6|= ψ ∧ α; therefore � does not satisfy (W2).

2

Properties (U5), (U6) and (U7) do not seem seem to have meaningful counterparts
for � (and anyway, as already argued, these three postulates are controversial).

Proposition 5.5 The strong reverse update ⊗ associated with a basic update operator
� satisfies the following properties:

S1 α⊗ α ≡ >;

S3 if α is satisfiable then ⊥⊗ α ≡ ⊥;

S4 if ψ ≡ ψ′ and α ≡ α′ then ψ ⊗ α ≡ ψ′ ⊗ α′;

S8 (ψ ∧ ψ′)⊗ α ≡ (ψ ⊗ α) ∧ (ψ′ ⊗ α).

In addition to this, � satisfies (U2) if and only if ⊗ satisfies

S2 if ψ |= α then ψ |= ψ ⊗ α.

Note that, unlike weak reverse update, strong reverse update does generally not
satisfy modelwise decomposability (U8/W8), but a symmetric, conjunctive decompos-
ability property (S8).

Moreover, if � is a basic update operator then
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SIW if α is satisfiable then ψ ⊗ α |= ψ � α

Proof: By Proposition 5.2, α⊗α ≡ > is equivalent to >�α |= α, which is equivalent
to (U1), therefore ⊗ satisfies (S1).

Assume ⊥ ⊗ α 6≡ ⊥, i.e., ⊥ ⊗ α is satisfiable. Then there exists s such that
s |= ⊥⊗α, which by Proposition 5.2 implies for(s) �α |= ⊥, which by (U3) implies
that α is unsatisfiable.

Assume ψ ≡ ψ′ and α ≡ α′. For any ϕ, by Proposition 5.2, ϕ |= ψ′ ⊗ α′ is
equivalent to ϕ � α′ |= ψ′, which by (U4) is equivalent to ϕ � α |= ψ, which again
by Proposition 5.2 is equivalent to ϕ |= ψ ⊗ α. This being true for all ϕ, we get that
ψ′ ⊗ α′ and ψ ⊗ α are equivalent: ⊗ satisfies (S4).

It is straightforward from the definition of⊗ that (ψ∧ψ′)⊗α |= ψ⊗α; therefore,
(ψ ∧ ψ′) ⊗ α |= (ψ ⊗ α) ∧ (ψ′ ⊗ α). Now, let s |= (ψ ⊗ α) ∧ (ψ′ ⊗ α). Then by
Proposition 5.2, for(s) �α |= ψ and for(s) �α |= ψ′, therefore for(s) �α |= ψ∧ψ′,
which again by Proposition 5.2 is equivalent to s |= (ψ ∧ ψ′) ⊗ α. Hence ⊗ satisfies
(S8).

Finally, let ψ and α be such that ψ |= α. Then by Proposition 5.2, ψ |= ψ ⊗ α is
equivalent to ψ � α |= ψ, which is entailed by (U2). Therefore, if � satisfies (U2) then
⊗ satisfies (S2). For the converse, assume ⊗ satisfies (S2) and s |= ψ. Then s |= α,
and by (S2) we get for(s) |= for(s) ⊗ α, which by definition of ⊗ is equivalent to
for(s) � α |= for(s). Now, by (U3), for(s) � α |= for(s) implies that for(s) � α ≡
for(s), which by (U8) implies ψ � α ≡ ψ: � satisfies (U2).

2

Note that (SIW) fails without (U3). Example 5.3 shows that the converse impli-
cation of (SIW) does not hold in general. Finally, ⊗ and � coincide if and only if
update(�, α) is deterministic.

One may wonder whether reverse update has something to do with erasure [21].
An erasure operator � is defined from an update operator � by ψ�α ≡ ψ ∨ (ψ � ¬α).
Erasing by α intuitively consists in making the world evolve (following some rules)
such that after this evolution, the agent no longer believes α. A quick look suffices
to understand that erasure has nothing to do with weak and strong reverse update.
Erasure corresponds to action progression for an action erase(α) whose effect is be
epistemically negative (make α disbelieved). This implies in particular that >�> is
always unsatisfiable (> cannot be made disbelieved) whereas > � > ≡ > ⊗ > ≡ >.
To give another short example: if � = �PMA, then (a ↔ ¬b)�PMAb ≡ (¬a ∨ ¬b),
whereas (a↔ ¬b)�PMA b ≡ (a↔ ¬b)⊗PMA b ≡ ¬a.

Pursuing the investigation on reverse update does not only have a theoretical in-
terest: weak (deductive) reverse update allows for postdiction, and strong (abuctive)
reverse update allows for goal regression (when the actions performed are updates)
and is therefore crucial if we want to use an update-based formalism for planning (see
[16]).
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6 Update as counterfactual reasoning
There is another prominent interpretation of belief update, which a priori does not
seem to be related to feedback-free action progression: counterfactual reasoning and
causality. Let me quote Leitgeb and Segerberg [25], pages 184-185:

The intended interpretation of the semantics for belief update depends cru-
cially on the manner in which selection functions are interpreted. The
standard interpretation is in terms of environmental change; but there is
another plausible way of interpreting selection functions, one that enables
us to demonstrate that update does not necessarily correspond to environ-
mental changes. Lewis famously considered objective similarity relations
between possible worlds to be determinable from the objective spheres
systems (...). This, given new evidence, we find that in the case of belief
revision the agent tries to change his beliefs in a way such that the worlds
that he subsequently believes to be in comprise the subjectively most plau-
sible deviation from the worlds he originally believed to inhabit. However,
when confronted in the same evidence in belief update, the agent tries to
change his beliefs in a way such that the worlds that he subsequently be-
lieves to be in are as objectively similar as possible to the worlds he orig-
inally believed to be the most plausible candidates for being the actual
world.

This is in agreement with Grahne’s relationship between updates and counterfactu-
als [13]. Dupin de Saint-Cyr [9] goes further and argues that belief update is the right
operation to deal with causality: the fact that α was true (respectively, that some event
ε took place) at some time point t causes ϕ to be true at t′ > t is equivalent to saying
that updating the past of the system by the fact that α was false (respectively, that ε did
not take place) at t allows to derive that ¬ϕ holds at t′. Updating the past in such a way
requires selecting objectively most similar worlds that satisfy the condition part of the
counterfactual (¬ϕt or ¬εt).

Is counterfactual reasoning a radically different interpretation from feedback-free
action progression? The traditional view of action progression only involves reasoning
about the agent’s future beliefs given her current beliefs and the knowledge of the
action that is taking place now. Performing an action whose effects take place in the
past does not look particularly intuitive at first sight. We argue that updating the past
(in order to assess a causality statement) does however correspond to some form of
action progression.

Technically, this is clear. The actions involved here act on the whole history. As
in [9], consider a time-stamped language generated by propositional variables of the
form vt. A world τ is a full trajectory 〈st, t ∈ T 〉 consisting of a full state at each time
point. A temporal formula is a formula α built on the alphabet {vt, t ∈ T}. Updating
τ by α is conceptually no different from updating a world by a propositional formula
in standard belief update. Updating a temporal formula β by a temporal formula α
consists in taking the union of all τ � α for all trajectories τ satisfying β.

From a philosophical point of view, this is less obvious and we proceed by giving
first an analogy between time and space. Consider the following counterfactual state-
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ment: if event ε had occurred at time point t, would p had been true at time point t′?
This is equivalent to check whether (a) β |= ¬pt and (b) β � εt |= pt′ . Clearly, the
part of the knowledge history β that takes place before t should remain unchanged:
for every temporal formula γ involving only time-stamped variables pt′′ with t” < t,
we should have β � εt |= γ if and only if β |= γ. Now, consider a series of cells,
horizontally connected, with a gate between cell i and cell i+1 that can be pushed and
opened from i but not from i + 1: when pushed from the left side towards the right,
they open, but when pushed from the right towards the left, they do not. Suppose now
that we perform an action in cell i that may increase the pressure, which in turn can
lead to increase the pressure in cells i + 1, i + 2 etc. and possibly other side effects.
Because the doors cannot open from right to left, nothing changes in cells j < i. (One
can also imagine some information passing between cells that is possible only from the
left to the right). It is not difficult to see that the strong left-to-right orientation of space
is analogous to the past-to-future orientation of time. Asking whether making α true
at cell i results in ψ holding at cell j > i corresponds to asking whether the event of
making α true at time t would result in ψ holding at time t′ > t.

As a second example, consider a fiction writer who has built a scenario for a novel;
the temporal formula β represents the beliefs of the reader at each time point (obvi-
ously, β is not necessarily complete). We assume here that these beliefs are correct,
i.e., the reader is never misled. The author is then asked by the publisher to change
the scenario so that a particular temporal formula α be true (and known by the reader).
This requires the writer to update β by α. Making α true is an action that can have
effects on the whole history, including maybe at time points earlier to those concerned
by α: it may indeed be simpler for the writer to adapt his novel so that xt now holds by
changing facts at time points t′ < t. Although this is another example of updating the
past, the possible influence from future to past make it radically different from updates
used in counterfactual reasoning.

7 Updates and DDL
As developed in length in Krister Segerberg’s works on Dynamic Doxastic Logic, there
are many reasons why it is tempting to “express doxastic actions such as belief revision
on the object language level”. This, however, raises a serious issue: the failure of the
Ramsey test. Quoting [25], page 171:

(...) DDL is bound to face a serious challenge: the danger of getting en-
tangled in the potentially paradoxical of combining belief revision for an
object language F with a representation of the revision operator in terms
of formulæ in F.

The possibly devastating effects of such a combination first showed up
when Gärdenfors considered a doxastic interpretation of conditionals in
terms of the so-called Ramsey test for conditionals.

ϕ⇒ θ iff θ ∈ K ? ϕ

19



Indeed, Gärdenfors shows in [12] that as soon as the language contains at least three
propositions that are pairwise consistent but jointly inconsistent, the AGM axioms of ?
are inconsistent with the Ramsey test for conditionals. The implications of Gärdenfors’
impossibility result, to DDL, and the two ways to escape it, are discussed in [?], page
172. As noticed by Herzig [15] and by Leitgeb and Segerberg [25], Gärdenfors’ im-
possibility result does not carry over to belief update, and indeed, quoting from [15],
“most standard systems of conditional logic support update operations”. The intuitive
reason for this lies in this ([25], page 186):

(...) given a body of beliefs [about the ways in which the environment
may change] and an initial state of beliefs [about the current state of the
environment], in KGM all future beliefs [about the current state of the
environment] are determined by reports of what happens. So KGM, unlike
basic AGM, is a theory of iterated belief change.

And indeed, iteration in belief update does not cause any particular problem. In the
view of the discussion of Section 4, this should not be seen as surprising: recall that be-
lief update is a particular kind of action progression, and action progression is naturally
iterated. More than that, belief update can, just as action progression, be generalized
not only to sequences of updates but also to conditional updates, nondeterministic up-
dates, and concurrent updates. A nondeterministic update [4, 16] α∪β corresponds to
the nondeterministic choice of the two updates α and β. A conditional update [16] if
ϕ then α else β corresponds to an update by α if ϕ holds and by β otherwise. A con-
current update [16] α||β corresponds to the simulatenous execution of an update by α
and an update by β. These constructs, which can be applied recursively, considerable
enrich the language of belief update and makes it more suitable to express planning
problems.

Now that we know that updates are a specific class of feedback-free actions, associ-
ated with transition systems, it makes even more sense to use DDL-KGM for express-
ing interactions between actions and beliefs, where �α denotes the action of updating
by α. As we argued already, the specificity of feedback-free actions is the what you
foresee is what you get axiom, which is expressed in DDL by

B[�α]ϕ ≡ [�α]Bϕ

which, of course, does not hold for sensing actions or more generally actions that may
bring some feedback. Progression and regression can also be expressed in DDL-KGM.
The axiom

(Prog) (Bϕ→ B[�α]ψ) ≡ (prog(ϕ, α)→ ψ)

actually gives a definition of progression, i.e., a unique characterization of prog(ϕ, α)
up to logical equivalence; and similarly for weak and strong regression:

(WR) ([�α]Bψ → Bϕ)→ (reg(ψ, α)→ ϕ)

(SR) (Bϕ→ [�α]Bψ)→ (ϕ→ Reg(ψ, α))
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There is no reason to stop here. For instance, we may integrate DDL-AGM and
DDL-KM and express something like that

[?([�α]Bψ)]Bϕ

expressing that after learning that updating by α would make ψ true, I now believe that
it is the case that ϕ. (As an example, take � to be �PMA, and α = a ∨ b, ψ = a↔ ¬b,
ϕ = ¬a ∨ ¬b.)

8 Summary and conclusion
Let us try to summarize what we have said so far. Both revision and update deal with
dynamic worlds, but they strongly differ in the nature of the information they process.
Belief revision (together with the introduction of time stamps in the propositional lan-
guage) aims at correcting some initial beliefs about the past, the present, and even the
future state of the world by some newly observed information about the past or the
present state of the world. Belief update is suitable only for (some specific) action pro-
gression without feedback: updating ϕ by α corresponds to progressing (or projecting
forward) ϕ by the action update(�, α), to be interpreted as make α true. The “input
formula” α is the effect of the action update(�, α), and definitely not an observation.
Expressed in the terminology of Sandewall [31], the range of applicability of update
is the class Kp-IA: correct knowledge10, no observations after the initial time point,
inertia if (U2) is assumed, and alternative results of actions.

In complex environments, especially planning under incomplete knowledge, ac-
tions are complex and have both ontic and epistemic effects; the belief change process
then is very much like the feedback loop in partially observable planning and control
theory: perform an action, project its effects on the current belief state, then get the
feedback, and revise the projected belief state by the feedback. Clearly, update allows
for projection only. Or, equivalently, if one chooses to separate the ontic and the epis-
temic effects of actions, by having two disjoint sets of actions (ontic and epistemic),
then ontic actions lead to projection only, while epistemic actions lead to revision only.
Therefore, if one wants to extend belief update so as to handle feedback, there is no
choice but integrating some kind of revision process, as in [3, 35, 20, 19]. Another
possibility is to generalize update so that it works in a language that distinguishes facts
and knowledge, such as epistemic logic S5: this knowledge update process is investi-
gated by Baral and Zhang [2]. Here, effects of sensing actions are handled by updating
(and not revising) formulas describing the agent’s knowledge. Such a framework takes
the point of view of a modelling agent O who reasons an the state of knowledge of
another agent ag. Thus, for instance, updating a S5 model by Kagϕ means that the O
updates her beliefs about ag’s knowledge; considering ag’s mental state as part of the
outside world for agent O, this suits our view of update as a feedback-free action for
O (updating by Kagϕ corresponds as “make Kagϕ true”, which can for instance be
implemented by telling ag that ϕ is true).

10However, this point is somewhat debatable: update would work as well if we don’t assume that the
agent’s initial beliefs is correct – of course, in this case the final beliefs may be wrong as well.
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