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Abstract. Boolean games are a logical setting for representing strategic games in a suc-
cinct way, taking advantage of the expressive power and conciseness of propositional logic.
A Boolean game consists of a set of players, each of which controls a set of propositional
variables and has a specific goal expressed by a propositional formula. We show here that
Boolean games are a very simple setting, yet sophisticated enough, for analysing the formation
of coalitions. Due to the fact that players have dichotomous preferences, the following notion
emerges naturally: a coalition in a Boolean game is efficient if it has the power to guarantee
that all goals of the members of the coalition are satisfied. We study the properties of efficient
coalitions.

Keywords: Game theory, propositional logic, coalitions

1. Introduction

Boolean games (Harrenstein et al., 2001; Harrenstein, 2004; Dunne and van der
Hoek, 2004; Bonzon et al., 2009) are a logical setting for representingstrate-
gic games in a succinct way, taking advantage of the expressive power and
conciseness of propositional logic. Informally, a Boolean game consists of a
set of players, each of which controls a set of propositional variablesand has
a goal expressed by a propositional formula.

Boolean games are games with both astructural specificityand aprefer-
ential specificity. The structural specificity expresses a restriction on strategy
profiles:a player’s (pure) strategy is a truth assignment of the variables she
controls. The preferential specificity expresses a restriction on the player’s
preferences: a player in a Boolean game has adichotomouspreference rela-
tion, that is, either her goal is satisfied or it is not, and this goal is represented
succinctly by a propositional formula. The preferential specificity can be
easily relaxed, and there are a number of extensions to Boolean games thatal-
low players to have nondichotomous preferences: in (Harrenstein, 2004) (last
chapter), each agent has asetof goals; in (Bonzon et al., 2006; Bonzon et al.,
2009), an agent’s preferences is described by a CP-net or more generally a
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specification in some compact preference representation language; in (Dunne
et al., 2008), each agent has aquasi-dichotomousutility function, namely,
a dichotomous utility function induced by her goal, plus a negligible cost
associated to her possible variable assignments (with the specific choice that
making a variable false is costless). The structural specificity, on the other
hand, is central to the framework, and relaxing it would probably make it
depart largely from Boolean games.

Previous work on Boolean games has focused on representational issues,
by giving logical characterizations of several solution concepts such as Nash
equilibria, and by investigating the computational issues related to these so-
lution concepts. Studying the power of coalitions, as well as the formation of
coalitions, in Boolean games, has rarely been addressed (with the exception
of (Dunne et al., 2008)). The goal of this paper is to address both issues. As
these issues are, to a large extent, independent, this paper is composed oftwo
almost independent parts.

The first part of the paper focuses on the power of coalitions in Boolean
games. Equivalently, it amounts at studying the meaning of the structural
specificity: how restrictive is it, and how can it be characterized? A natural
way of answering this question is to study Boolean games from the point of
view of effectivity functions, which model the power of coalitions of agents.
More precisely, we would like to characterize the properties of effectivity
functions that are implied by the structural specificity of Boolean games. Al-
most ten years ago, Pauly showed a correspondence between stategic games
and a particular class of effectivity functions he named playable effectivity
functions (it has been shown recently that this correspondence is not com-
pletely exact, but this has no impact on our work; see endnote 1). Now,
Boolean Games do not cover all strategic games: their structural specificity
is a true restriction, and therefore we expect that Boolean games correspond
to a strict subset of playable effectivity functions. The contribution of this
first part of the paper consists in characterizing this subset. Note that in this
first part, the agents’ preferences are irrelevant, and therefore theresults are
totally independent from the question whether the preferential specificity is
assumed or not.

The second part of this paper also focuses on the power of coalitions,
but from a different perspective, taking agents’ preferences into account, and
taking the preferential specificity for granted (even if some of our resultsstill
hold under the weaker assumption that preferences are quasi-dichotomous).
Due to the dichotomous nature of agents’ preferences, the following simple
notion emerges naturally: a coalition in a Boolean game isefficientif it has
the power to guarantee that all goals of the members of the coalition are
satisfied. This notion is of primary importance, because it is expected that
agents in a Boolean game will join such coalitions. Similarly as for related
notions in cooperative game theory, the existence of an efficient coalition is
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not guaranteed, and deciding whether a Boolean game possesses an efficient
coalition is an important issue. Efficient coalitions enjoy interesting structural
properties, and are not easy to identify, especially because a subset or a su-
perset of an efficient coalition may not be efficient, and likewise, the union
or the intersection of efficient coalitions may not be efficient. We charac-
terize efficient coalitions in terms of some topological properties and study
the relation between efficiency and some solution concepts coming from co-
operative game theory: the weak core (the standard notion of core) andthe
strong core (which is a sort of generalization of Pareto optimality). Then, the
computational complexity of the membership and non-emptiness problems
is identified for the three notions of efficiency, weak core and strong core.
Finally, the last contribution regards the representation of a Boolean game in
terms of dependency graphs: we show that dependency graphs and the relative
notion of stable coalitions can be used as a correct (but not complete) method
to find efficient coalitions. Completeness is restored in the special case where
goals requires only one player to be satisfied.

We recall the Boolean game framework in Section 2. In Section 3 we
study the specificity of the power of coalitions in Boolean games, as com-
pared to static games in general. For this we show that the effectivity function
in a Boolean game satisfies some specific properties, that fully characterize
Boolean games. In Section 4, we define efficient coalitions in Boolean games,
and focus first on their structural properties. We give an exact characterization
of sets of coalitions that can be obtained as the set of efficient coalitions
associated with a Boolean game, and we relate coalition efficiency to the
well-known notion of core. In Section 5 we study efficient coalitions from a
computational point of view. In Section 6, we address the role of dependen-
cies between agents in the computation of efficient coalitions. Sections 7 and
8 discuss respectively related work and further research issues.

2. Boolean games

For any finite setV = {a,b, . . .} of propositional variables,LV denotes the
propositional language built up fromV, the Boolean constants⊤ and⊥, and
the usual connectives. Formulas ofLV are denoted byϕ,ψ etc. A literal is a
variablex of V or the negation of a variable. Atermis a consistent conjunction
of literals. A clauseis a disjunction of literals. Ifα is a term, thenLit (α) is
the set of literals appearing inα. If ϕ ∈ LV , thenVar(ϕ) denotes the set of
propositional variables appearing inϕ.

2V is the set of the interpretations forV, with the usual convention that for
M ∈ 2V andx∈V, M gives the valuetrue to x if x∈ M andfalseotherwise.
|= denotes the consequence relation of classical propositional logic. LetV ′ ⊆
V. A V ′-interpretation is a truth assignement to each variable ofV ′, that is,
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an element of 2V
′
. V ′-interpretations are denoted by listing all variables of

V ′, with a ¯ symbol when the variable is set to false: for instance, letV ′ =
{a,b,d}, then theV ′-interpretationM = {a,d} assigninga andd to true and
b to false is denoted byabd. If Var(ϕ)⊆ X, thenModX(ϕ) represents the set
of X-interpretations satisfyingϕ.

If {V1, . . . ,Vp} is a partition ofV and{M1, . . . ,Mp} are partial interpre-
tations, whereMi ∈ 2Vi , (M1, . . . ,Mp) denotes the interpretationM1 ∪ . . .∪
Mp.

Let ψ be a propositional formula. A termα is animplicantof ψ if and only
if α |= ψ holds.α is aprime implicantof ψ if and only if α is an implicant of
ψ and for every implicantα ′ of ψ, if α |= α ′ holds, thenα ′ |= α holds.PI(ψ)
denotes the set of all the prime implicants ofψ.

Given a set of propositional variablesV, a Boolean game onV is ann-
player game, where the actions available to each player consist in assigning
a truth value to each variable in a given subset ofV. The preferences of
each playeri are represented by a propositional formulaϕi formed upon the
variables inV.

Without loss of generality, we can assume thatV is finite. Indeed, only
a finite set of variables occurs in the goalsϕi and the constraintsγi , and
the variables not occurring in them do not play any role and can safely be
forgotten.

DEFINITION 1. An n-player Boolean gameis a 5-tuple(N,V,π,Γ,Φ),
where

− N = {1,2, . . . ,n} is a set of players (also called agents);

− V is a set of propositional variables;

− π : N 7→ 2V is a control assignment function mapping each player to
the set of variables she controls;

− Γ = {γ1, . . . ,γn} is a set of constraints, where eachγi is a satisfiable
propositional formula of Lπ(i).

− Φ = {ϕ1, . . . ,ϕn} is a set of goals, where eachϕi is a satisfiable for-
mula of LV .

For ease of notation, the set of all the variables controlled byi is written
πi instead ofπ(i). Each variable is controlled by one and only one agent, that
is,{π1, . . . ,πn} forms a partition ofV. The role of constraints is to restrict the
set of feasible strategies of each agent: agenti assigns each variable ofπi to a
truth value, in such a way that the resulting assignment satisfiesγi .
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DEFINITION 2. Let G= (N,V,π,Γ,Φ) be a Boolean game. A (pure)strat-
egy for Player i in G is aπi-interpretation satisfyingγi . The set of strategies
for Player i in G isΣi = {σi ∈ 2πi | σi |= γi}. A strategy profile σ for G is an
n-tupleσ = (σ1,σ2, . . . ,σn) where for all i,σi ∈ Σi . Σ = Σ1× . . .×Σn is the
set of all strategy profiles.

For eachi, γi is a constraint restricting the possible strategy profiles for
Playeri.

Note that since{π1, . . . ,πn} forms a partition ofV, a strategy profileσ
is an interpretation forV, i.e., σ ∈ 2V . The following notations are usual in
game theory. Letσ = (σ1, . . . ,σn) be a strategy profile. For any nonempty
set of playersI ⊆ N, the projection ofσ on I is defined byσI = (σi)i∈I and
σ−I = σN\I . If I = {i}, we denote the projection ofσ on {i} by σi instead of
σ{i}; similarly, we noteσ−i instead ofσ−{i}. πI denotes the set of the variables
controlled byI , andπ−I = πN\I . The set of strategies forI ⊆N is ΣI =×i∈I Σi ,
and the joint goal of coalitionI ⊆ N is ΦI =

∧
i∈I ϕi .

If σ andσ′ are two strategy profiles,(σ−I ,σ′
I ) denotes the strategy profile

obtained fromσ by replacingσi with σ′
i for all i ∈ I . For the sake of notation,

the set of all strategy profiles constructed fromσC will be written{σ|σ ⊇ σC}
instead of{σ|σ = (σ−C,σC),∀σ−C}.

The goalϕi of playeri is a compact representation of a dichotomous pref-
erence relation, or equivalently, of a binary utility functionui : Σ → {0,1}
defined byui(σ) = 0 if σ |= ¬ϕi andui(σ) = 1 if σ |= ϕi . σ is at least as good
asσ′ for i, denoted byσ �i σ′, if ui(σ) ≥ ui(σ′), or equivalently, ifσ |= ¬ϕi

implies σ′ |= ¬ϕi ; σ is strictly better thanσ′ for i, denoted byσ ≻i σ′, if
ui(σ)> ui(σ′), or, equivalently,σ |= ϕi andσ′ |= ¬ϕi .

As we said in the introduction, for the results of the first part of the paper,
preferences do not play any role (anda fortiori, neither does their dichoto-
mous nature). For this we introduce the notion ofpre-Boolean games, which
are preference-free Boolean games.

DEFINITION 3. Apre-Boolean gameis a 4-tuple(N,V,π,Γ), with N,V,π,Γ
as in Definition 1.

Thus, a Boolean game consists of a pre-Boolean game together with a
descriptionΦ of the player’s (dichotomous) utilities.

Boolean games can easily be extended so as to allow for non-dichotomous
preferences, represented in some compact language for preference represen-
tation (see (Harrenstein, 2004; Bonzon et al., 2006; Bonzon et al., 2009;
Dunne et al., 2008)). Among these generalized Boolean games, an interesting
subclass consists of Boolean games in which the players’ utility functions are
nearly dichotomous.

DEFINITION 4. Aquasi-dichotomous Boolean gameis a 6-uple(N,V,π,Γ,
Φ,〈c1, . . . ,cn〉) where(N,V, π,Γ,Φ) is a Boolean game and for each Player
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i, ci is a function mapping each strategy profileσ = (σ1, . . . ,σn) to a cost
such that ci(σ)< 1. The utility function ui : Σ → {0,1} of player i defined by
ui(σ) =−ci(σ) if σ |= ¬ϕi and ui(σ) = 1−ci(σ) if σ |= ϕi . Note that for any
σ such thatσ |= ϕi and anyσ′ such thatσ′ |= ¬ϕi we have ui(σ) > ui(σ′):
whatever the cost function, an agent is always better off in a state that satisfies
her goal than in a state that does not.
If G is a quasi-dichotomous Boolean game, the standard Boolean game G∗

associated with G is obtained from G by simply ignoring the cost function c.

Obviously, any standard Boolean game corresponds to a quasi-dichotomous
Boolean game, obtained by lettingci(σ) = 0 for all i and for allσ.

Quasi-dichotomous Boolean games were introduced first in (Dunne et al.,
2008), with the difference that the cost functionc in (Dunne et al., 2008)
depends only on the player’s own action, that is,ci(σ) = ci(σi), plus the
additional assumption that each agent has a cost associated to each “positive”
action (setting one of her controlled variables to true), andci(σi) is the sum
of the costs of all of her variables assigned to true.

In the definition above we did not specify how the cost functionci is rep-
resented. Representing it explicitly, by listing all combinations of strategies
together with their utility for each agent, would not fit the spirit of Boolean
games, and would render somehow useless the compact representation ofthe
goals. It is thus natural to assume that eachci will be represented in some
compact representation language, possibly making some further restriction,
such as in (Dunne et al., 2008).

3. Coalitions and effectivity functions in Boolean games

Recall that the structural specificity of Boolean games is that individual strate-
gies are truth assignments to a given set of propositional variables. We might
wonder how restrictive this specificity is. In this section we study Boolean
games from the point of view of effectivity functions. Effectivity functions
have been developed in social choice to model the power of coalitions (Moulin,
1983; Abdou and Keiding, 1991; Pauly, 2001). Clearly, the definition ofΣi as
Modπi (γi) induces some constraints on the power of players and coalitions.
Our aim is to give an exact characterization of effectivity functions induced
by Boolean games.

Since in Boolean games the power of an agenti is independent from her
goal ϕi , it suffices to consider pre-Boolean games when dealing with effec-
tivity functions. As usual,N is the set of agents, acoalition C is a subset of
N, andS is a generic set of states.
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DEFINITION 5. A coalitional effectivity function is a functionEff : 2N →

22S
satisfyingmonotonicity: for every coalition C⊆ N, X ∈ Eff(C) implies

Y ∈ Eff(C) whenever X⊆Y ⊆ S.

The function Eff associates with every group of players the set of states, or
outcomes, for which the group is effective. We usually interpretX ∈ Eff(C)
as “the players inC have a joint strategy for bringing about an outcome inX”.

A strategic gameis usually defined as a tuple〈N,Σ,S,o〉, whereΣ is the
set of strategy profiles for players inN, ando: ×i∈N Σi → S is theoutcome
function. (Pauly, 2001) gives a more precise account for effectivity in strategic
games by definingα-effectivity: a coalitionC⊆ N is α-effectivefor X ⊆ S if
and only if the players inC have a joint strategy for bringing an outcome of
X, whatever the strategies of the other players are.

DEFINITION 6. Acoalitional α-effectivity function for a non-empty strate-
gic game G is a functionEffα

G : 2N → 22S
defined by: X∈ Effα

G(C) iff ∃σC

∀σ−C, o(σC,σ−C) ∈ X.

In a Boolean game, outcomes are identified with strategy profiles:S=Σ. A
pre-Boolean gameG then induces anα-effectivity function EffαG as follows:

DEFINITION 7. Let G= (N,V,π,Γ) be a pre-Boolean game. Thecoali-
tional α-effectivity function induced by G is the functionEffα

G : 2N → 22Σ

defined by: for any X⊆ Σ and any C⊆ N, X∈ Effα
G(C) if there existsσC ∈ ΣC

such that for anyσ−C ∈ Σ−C, (σC,σ−C) ∈ X.

For the sake of notation, theα-effectivity function induced by a pre-Boolean
gameG will be denoted by EffG instead of EffαG. Note that effectivity func-
tions induced by pre-Boolean games can be equivalently expressed as map-
pings EffG : 2N → 2LV from coalitions to sets of logical formulas:ϕ ∈ EffG(I)
if ModπI (ϕ)∈EffG(I). This definition obviously implies syntax-independence,
that is, ifϕ ≡ ψ thenϕ ∈ EffG(I) iff ψ ∈ EffG(I).

This definition is a particular case of theα-effectivity function induced by
a strategic game (see (Pauly, 2001), Chapter 2). Therefore, these functions
satisfy the following properties (cf. (Pauly, 2001), Theorem 2.27):

1. ∀C⊆ N, ∅ 6∈ EffG(C);

2. ∀C⊆ N, Σ ∈ EffG(C);

3. for all X ⊆ Σ, if X̄ 6∈ EffG(∅) thenX ∈ EffG(N);

4. EffG is superadditive, that is, if for allC,C′ ⊆N such thatC∩C′ = /0, and
X,Y ⊆ Σ, if X ∈ EffG(C) andY ∈ EffG(C′) thenX∩Y ∈ EffG(C∪C′).
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An effectivity function satisfying these four properties is calledstrongly
playable. Note that strong playability implies regularity and coalition-mono-
tonicity ((Pauly, 2001), Lemma 2.26). Pauly (2001) proves a correspondence
between strong playability of an effectivity function Eff and the existence of
a strategic gameG such that EffG = Eff.1 However, pre-Boolean games are
a specific case of strategic game forms, therefore we would like to have an
exact characterization of those effectivity functions that correspond toa pre-
Boolean game. We first have to define two additional properties. DefineAt(C)
as the minimal sets in Eff(C), that is,At(C) = {X ∈ Eff(C)| there is noY ∈
Eff(C) such thatY ⊂ X}. At(C) is called thenonmonotonic coreof C, and
denoted by Effnc(C), in (Goranko et al., 2011).

Atomicity: Eff satisfiesatomicityif for everyC⊆ N, At(C) forms a partition
of S.

Decomposability: Eff satisfiesdecomposabilityif for every two disjoints
subsetsI ,J of N and for everyX ⊆ S, X ∈ Eff(I ∪J) if and only if there
existY ∈ Eff(I) andZ ∈ Eff(J) such thatX =Y∩Z.

Decomposability is a strong property that implies superadditivity. Note
also that decomposability and atomicity are strongly related to the following
properties in (Agotnes and Alechina, 2011):

(2) for anyC 6= /0,Effnc(C) = {∩i∈CXi : Xi ∈ Effnc(i)}
(3) X,Y ∈ Effnc(i) andX 6=Y impliesX∩Y = /0
(4) X ∈ Effnc( j) andx∈ X implies∃Y ∈ Effnc(i),x∈Y

where Effnc(C) denotes the set of all inclusion-minimal sets in Eff(C). De-
composability is equivalent to (2) whereas in the presence of decomposability
and Eff(N) = 2S\ { /0}, atomicity is equivalent to the conjunction of (3) and
(4). We give a short proof of these equivalences in Appendix.

In the rest of this section we prove the following characterization result:
a coalitionalα-effectivity function Eff satisfies strong playability, atomicity,
decomposability and Eff(N) = 2S\∅ if and only if there exists a pre-Boolean
gameG= (N,V,π,Γ) and a bijective functionµ : S→ Mod(Γ) such that for
everyC⊆ N: EffG(C) = {µ(X)|X ∈ Eff(C)}.

The proof of these two results go along a series of lemmas, which we
establish first.2 If G is a pre-Boolean game, the set of atoms for the effectivity
functions EffG will be denoted byAtG.

LEMMA 1. For any pre-Boolean game G,EffG satisfies strong playability,
atomicity, decomposability, andEffG(N) = 2Σ \∅.

Proof:EffG is a (specific)α-effectivity function, therefore by Theorem 2.27 in
(Pauly, 2001), EffG satisfies strong playability (and,a fortiori, superaddivity).
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As for atomicity, remark first thatX ∈ AtG(C) if and only if X is the set of
all πC-interpretations satisfyingγC =

∧
i γi , which clearly implies that any two

distinct subsets inAtG(C) are disjoint. Then remark that
⋃

σC∈ΣC
{σ|σ ⊃ σC}

= Σ. Therefore,AtG(C) forms a partition ofΣ.
As for decomposability, from left to right: letX ∈ EffG(I ∪J). Then there

exists a joint strategyσI∪J such that ifW = {σ ∈ Σ|σ ⊇ σI∪J}, thenW ⊆ X.
Consider nowY = {σ ∈ Σ|σ ⊇ σI} andZ = {σ ∈ Σ|σ ⊇ σJ}. We haveY ∈
EffG(I), Z ∈ EffG(J) andX = Y∩Z. From right to left: letY ∈ EffG(I) and
Z ∈ EffG(J), then by superaddivity,Y∩Z ∈ EffG(I ∪J).

Lastly, letσ= (σ1, . . . ,σn)∈ Σ. If each playeri playsσi thenσ is obtained,
therefore{σ} ∈ EffG(N). By monotonicity, every nonempty subset ofΣ is in
EffG(N) as well, therefore EffG(N) = 2Σ \∅. �

LEMMA 2. If there exists a pre-Boolean game G= (N,V,π,Γ) and an bijec-
tive function µ: S→Mod(Γ) such that for every C⊆N: EffG(C)= {µ(X)|X ∈
Eff(C)}, thenEff satisfies strong playability, atomicity, decomposability and
Eff(N) = 2S\∅.

Proof: EffG satisfies these properties andµ is a bijection betweenS and
µ(Σ) = Mod(Γ), therefore these properties transfer to Eff. �

LEMMA 3. Let G be a pre-Boolean game,Σ its set of strategy profiles and
Ti be a minimal subset ofEffG(i). Then Ti = {σ|σ ⊇ σi} for all σi ∈ Σi .

Proof: Playeri can only enforce a subset ofΣi , that is,X ∈ EffG(i)if X con-
tainsΣ1× . . .×Σi−1×Σ∗

i ×Σi+1× . . .×Σn for someΣ∗
i ⊆ Σi . Therefore the

minimal subsets of EffG(i) are exactly those of the formΣ1 × . . .×Σi−1 ×
{σi}×Σi+1× . . .×Σn, that is, of the form{σ|σ ⊇ σi}. �

From now on, let Eff be a coalitional effectivity function satisfying
strong playability, atomicity, decomposability andEff(N) = 2S\∅.

Let At(C) be the set of atoms forC associated with Eff. Due to decompos-
ability, Eff is entirely determined by{At(i), i ∈ N}.

LEMMA 4. For every s∈ S there exists a unique(Z1, . . . ,Zn)∈ At(1)× . . .×
At(n) such that Z1∩ . . .∩Zn = {s}.

Proof: Let s∈ S. Because Eff(N) = 2S\{∅}, we have{s} ∈ Eff(N), and by
decomposability, there exists(T1, . . . ,Tn) such that for everyi, Ti ∈ Eff(i) and
T1∩ . . .∩Tn = {s}. Let i ∈ N. By definition ofAt(i), there existsZi ∈ At(i)
such thats∈ Zi andZi ⊆ Ti . Suppose there existsZ′

i ∈ At(i) such thats∈ Z′
i
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andZ′
i ⊆ Ti . Zi ∩Z′

i 6= ∅, sinces belongs to bothZi andZ′
i . Therefore, by

atomicity,Zi = Z′
i , and this holds for everyi. �

Lemma 4 allows us to writeZi(s) for everys andi to be the unique subset
in At(i) containings. For any non-empty coalitionC, let us writeZC(s) =⋂

i∈C Zi(s).

Let us now build the Boolean gameG∗ = G(Eff) as follows. The intuition
of the construction is that by the atoms of playeri correspond to her strategies,
and in order to ensure that the number ofi’s strategies is equal to the number
of atoms fori, we introduce a suitable number of variables controlled byi, add
a constraint that limits the number ofi’s strategies to the number of atoms.
(We also give a detailed example after the formal construction.)

− for every i, consider the following numbering ofAt(i): let r i be a bi-
jective mapping fromAt(i) to {0,1, . . . , |At(i)| − 1}. Then createpi =

⌈log2 |At(i)|⌉ propositional variablesx1
i , . . . ,x

pi
i . Finally, letV = {x j

i |i ∈
N,1≤ j ≤ pi};

− for everyi, let πi = {x1
i , . . . ,x

pi
i };

− for everyi and everyj ≤ pi , let εi, j be the jth digit in the binary repre-
sentation ofi. Note thatεi,pi = 1 by definition ofpi . If x is a propositional
variable then we use the following notation: 0.x= ¬x and 1.x= x. Then
define

γi =
∧

j∈{2,...,pi},εi, j=0

(

∧

1≤k≤ j−1

εi, j .x
k
i →¬x j

i

)

− finally, for eachs∈ S, let µ(s) ∈ 2V defined by:x j
i ∈ µ(s) if and only if

the jth digit of the binary representation ofr i(Zi(s)) is 1.

For everyi ∈ N and everyZ ∈ At(i), let k = r i(Z) and σi(Z) the strat-
egy of Playeri in G∗ corresponding to the binary representation ofk using
{x1

i , . . . ,x
pi
i }, x1

i being the most significant bit. For instance, ifpi = 3 and
r(Zi) = 6 thenσi(Z) = (x1

i ,x
2
i ,¬x3

i ).
We denote byΣG∗ the set of strategy profiles (or, equivalently, states) of

G∗. Strategies ofΣG∗ are denoted byσG∗ . The set of atoms of EffG∗ is denoted
by AtG∗(i).

Since the decomposition of states into atoms is unique (Lemma 4), two
different statessands′ are mapped to two different valuations,i.e., s 6= s′ im-
pliesµ(s) 6= µ(s′). Now, for anyZ ∈ At(i), constraintγi ensures thatσi(Z) |=
γi ; this being true for alli, for anyσ we haveµ(σ) |= γ1∧ . . .∧ γn. Therefore,
µ is a bijection betweenSandΣG∗ = Mod(γ1∧ . . .∧ γn).
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To understand it better, it is helpful to see how this construction works
on an example. LetN = {1,2,3}, S= {1,2,3,4,5,6,7,8,9,A,B,C}, At(1) =
{1234, 5678, 9ABC}, At(2)= {13579B, 2468AC}, At(3)= {12569C, 3478AB}
(curly brackets for subsets ofΣ are omitted – 1234 means{1,2,3,4} and so
on). By decomposability, we obtain:

− At(12) = {13,24,57,68,9B,AC},

− At(13) = {12,34,56,78,9C,AB}, and

− At(23) = {159,37B,26C,48A}.

|At(1)| = 3, thereforep1 = 2. |At(2)| = |At(3)| = 2, thereforep2 = p3 = 1.
Thus,V = {x1

1,x
2
1,x

1
2,x

1
3}. Let At(1) = {Z0,Z1,Z2}, that is, r1(1234) = 0,

r1(5678) = 1 andr1(9ABC) = 2. Likewise,r2(13579B) = 0, r2(2468AC) = 1,
r3(12569C) = 0 andr3(3478AB) = 1. Considers= 6. We haves= 5678∩
2468AC∩12569C, thereforeµ(s)= (x1

1,¬x2
1,x

1
2,¬x1

3). The constraints areγ1=
(x1

1 → ¬x2
1), γ2 = γ3 = ⊤. Thus,G∗ = (N,V,π,Γ) whereN = {1,2,3}, V =

{x1
1,x

2
1,x

1
2,x

1
3}, π1 = {x1

1,x
2
1}, π2 = {x1

2}, π3 = {x1
3}, γ1 = (x1

1 → ¬x2
1) and

γ2 = γ3 =⊤.

LEMMA 5. For every i∈N and Z∈At(i): µ(Z)= {σG∗ ∈ΣG∗ |σG∗ ⊇σi(Z)}.

Proof: Let i ∈ N andZ ∈ At(i). Let σG∗ ∈ µ(Z); by definition ofµ(Z), there
exists ans∈ S such thatµ(s) = σG∗ . Consider the decomposition ofs into
atoms, thatis,{s} = Z1(s)∩ . . .∩Zn(s) (cf. Lemma 4). By construction ofµ,
the projection ofµ(s) on{x1

i , . . . ,x
pi
i } corresponds to the binary representation

of r i(Zi(s)). Therefore,µ(s) = σG∗ extendsσi(Z).
Conversely, letσG∗ such thatσG∗ ⊇ σi(Z). For every j ≤ n, let k j be the

number whose binary representation in{x1
j , . . . ,x

p j
j } is the projection ofσG∗

on {x1
j , . . . ,x

p j
j }. Let σ be defined by{σ} = Z1(k1)∩ . . .∩Zn(kn). By con-

struction ofµ, we haveµ(σ) = σG∗ . Moreover,Zi(ki) = Z by atomicity, that
is, σ ∈ Z. ThereforeσG∗ ∈ µ(Z). �

We are now ready for establishing the main result of this section.

PROPOSITION 1.An effectivity functionEff satisfies

1. strong playability,

2. atomicity,

3. decomposability and

4. Eff(N) = 2Σ \∅
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if and only if there exists a pre-Boolean game G= (N,V,π,Γ) and a bijective
function µ: Σ → Mod(Γ) such that for every C⊆ N: EffG(C) = {µ(X)|X ∈
Eff(C)}.

Proof: The right-to-left direction is Lemma 2. In order to prove the opposite
direction, we show that for everyC ⊆ N and everyX ⊆ S, X ∈ Eff(C) holds
if and only if µ(X) ∈ EffG∗(C).

Decomposability of both Eff and EffG∗ implies that it is enough to show
that for everyi and everyX ⊆ S, X ∈ Eff(i) if and only if µ(X) ∈ EffG∗(i).
Because both Eff and EffG∗ satisfy coalition monotonicity, it is enough to
show that for everyi, Zi ∈ AtG∗(i) implies µ(Zi) ∈ EffG∗(i) andTi ∈ AtG∗(i)
impliesµ−1(Ti) ∈ Eff(i).

Let Zi ∈ At(i). Becauser(Zi)≤ pi , we haveσi(Zi) |= γi , thereforeσi(Zi) ∈
EffG∗(i). By Lemma 5,µ(Zi)= {σG∗ |σG∗ ⊇σi(Zi)}. Therefore,µ(Zi)∈EffG∗(i).

Conversely, letTi ∈ AtG∗(i). By Lemma 3,Ti = {σ|σ ⊇ σi} for some
σi ∈ Σi . Let σi = (εi,1.x1

1, . . . ,εi,pi .x
pi
i ) andq(σi) = ∑pi

k=12pi−k.εi,k. Note that
q(σi) ≤ pi , becauseσi ∈ Σi implies σi |= γi . Now, let j = r−1

i (q(σi)). Let
Z j

i ∈ At(i) such thatr i(Z
j
i ) = j. We haveµ(Z j

i ) = {σ|σ ⊇ σi} = Ti . Now,
Z j

i ∈ Eff(i), becauseZ j
i ∈ At(i). Therefore,µ−1(Ti) ∈ Eff(i).

We have now proven that forC⊆ N and everyX ⊆ S, X ∈ Eff(C) holds if
and only ifµ(X) ∈ EffG∗(C). We can now conclude that if Eff satisfies strong
playability, atomicity, decomposability, and Eff(N) = 2Σ\∅, then there exists
a gameG(=G∗) and an bijective functionµ : S→Mod(Γ) such that for every
C⊆ N: EffG(C) = {µ(X)|X ∈ Eff(C)}. �

A natural question is, can we obtain a similar result without the need
of constraints? This is obviously not the case, because for a Boolean game
G without constraints, the cardinality ofΣG is 2m for somem. Therefore,
requiring that the cardinality ofS is a power of 2 is necessary. But it is not
sufficient: because the cardinality of everyΣi is also be a power of 2, this
must also be the case forAt(i).

We say that Eff satisfiesregular atomicityif it satisfies atomicity and for
all i ∈ N, |At({i})| = 2mi for some positive integermi . We note that regular
atomicity and decomposability implies that this cardinality property propa-
gates to every coalition,i.e., for all C ⊆ N, |At(C)| = 2mC for some positive
integermC.

Then we have the following:

PROPOSITION 2.A coalitionalα-effectivity functionEff satisfies

1. strong playability,

2. regular atomicity,
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3. decomposability and

4. Eff(N) = 2S\∅

if and only if there exists a constraint-free pre-Boolean game G= (N,V,π,⊤)
and an bijective function µ: S→ 2V such that for every C⊆ N: EffG(C) =
{µ(X)|X ∈ Eff(C)}.

Proof: The proof is almost identical to the proof of Proposition 1. The only
difference is that in the construction ofG∗ is unchanged except that we don’t
need to defineΓ. Since|At({i})| is a power of 2, we havepi = log|At({i})|,
andµ is a bijection betweenS andΣG∗ = Mod(γ1 ∧ . . .∧ γn) = Mod(⊤) =
2V . �

4. Efficient coalitions

We now consider Boolean games and defineefficient coalitions. Informally,
a coalition is efficient in a Boolean game if and only if it has the ability to
jointly satisfy the goals of all members of the coalition. This notion of effi-
cient coalition is not totally new, as is coincides with the notion of successful
coalition in qualitative coalitional games (QCG) introduced in (Wooldridge
and Dunne, 2004).

4.1. DEFINITION AND CHARACTERIZATION

DEFINITION 8. Let G= (N,V,π,Γ,Φ) be a Boolean game. A coalition C⊆
N isefficient if and only if there existsσC ∈ ΣC such that for allσ−C, we have
(σC,σ−C) |=

∧
i∈C ϕi . The set of all efficient coalitions of a game G is denoted

by EC(G). C is aminimal efficient coalition if there is no efficient coalition
B⊂C.

Note that this definition still makes sense for quasi-dichotomous Boolean
games; in this case, the costci is irrelevant, and a coalition is efficient if it
is able to jointly satisfy the goals of its members, whatever the induced costs
(which, we recall, are always smaller than the utility gain resulting from goal
satisfaction): formally,C is efficient for a quasi-dichotomous Boolean game
G if and only if it is efficient forG∗. (However, it no longer makes sense for
generalized Boolean games with arbitrary utility functions.)

Note that the empty coalition∅ is efficient, becauseϕ∅ =
∧

i∈∅ ϕi ≡⊤ is
always satisfied.
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EXAMPLE 1. Let G= (N,V,Γ,π,Φ) where V= {a,b,c}, N= {1,2,3}, γi =
⊤ for every i,π1 = {a}, π2 = {b}, π3 = {c}, ϕ1 = (¬a∧b), ϕ2 = (¬a∨¬c)
andϕ3 = (¬b∧¬c).

First note thatϕ1 ∧ϕ3 is inconsistent, therefore no coalition containing
{1,3} can be efficient.{1} is not efficient, becauseϕ1 cannot be made true
only by fixing the value of a; similarly,{2} and{3} are not efficient either.
{1,2} is efficient, because the joint strategyσ{1,2} = ab is such thatσ{1,2} |=

ϕ1∧ϕ2. {2,3} is efficient, becauseσ{2,3}= bc |=ϕ2∧ϕ3. Therefore,EC(G)=
{∅,{1,2},{2,3}}.

From this simple example we see already that EC is neither downward
closed nor upward closed, that is, ifC is efficient, then a subset or a superset
of C may not be efficient. We also see that EC is not closed under union
or intersection:{1,2} and{2,3} are efficient, but neither{1,2}∩{2,3} nor
{1,2}∪{2,3} is.

EXAMPLE 2 (kidney exchange, after (Abraham et al., 2007)).
Consider n pairs of individuals, each consisting of a recipient Ri in urgent

need of a kidney transplant, and a donor Di who is ready to give one of her
kidneys to save Ri . Because the kidney of donor Di is not necessarily compati-
ble with recipient Ri , a strategy for saving more people consists in considering
the graph〈{1, . . . ,n},E〉 containing a node i∈ 1, . . . ,n for each pair(Di ,Ri)
and containing the edge(i, j) whenever Di ’s kidney is compatible with Rj .
A solution is any set of nodes that can be partitioned into disjoint cycles
in the graph: in a solution, Donor Di gives a kidney if and only if Ri gets
one. An optimal solution (saving a maximum number of lifes) is a solution
with a maximum number of nodes. The problem can be seen as the following
Boolean game G:

− N = {1, . . . ,n};

− V = {gi j |i, j ∈ {1, . . . ,n}}; gi j being true means that Di gives a kidney
to Rj .

− πi = {gi j ;1≤ j ≤ n};

− for every i,γi =
∧

j 6=k¬(gi j ∧gik) expresses that a donor cannot give
more than one kidney.

− for every i, ϕi =
∨

( j,i)∈E g ji expresses that the goal of i is to get a
kidney that is compatible with Ri .

For example, take n= 5 and E= {(1,1),(1,2),(2,3),(2,4),(2,5),(3,1),
(4,2),(5,4)}. Then G= (N,V,Γ,π,Φ), with

− N = {1,2,3,4,5}
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− V = {gi j | 1≤ i, j ≤ 5};

− ∀i, γi =
∧

j 6=k¬(gi j ∧gik)

− π1 = {g11,g12,g13,g14,g15}, and similarly forπ2, etc.

− ϕ1 = g11∨g31; ϕ2 = g12∨g42; ϕ3 = g23; ϕ4 = g24∨g54; ϕ5 = g25.

The corresponding graph is depicted below.

1 2

3 4

5

Clearly enough, efficient coalitions correspond to solutions. In our exam-
ple, the efficient coalitions are∅, {1}, {2,4}, {1,2,4}, {1,2,3}, {2,4,5} and
{1,2,4,5}.

We have seen that the set of efficient coalitions associated with a Boolean
game may not be downward closed nor upward closed, nor closed under
union or non-empty intersection. However, it is possible to characterize the
efficient coalitions of a Boolean game: we will show that a set of coalitions
corresponds to the set of efficientcoalitions for some Boolean game if and
only if (a) it contains the emptyset and (b) it is closed by union of disjoint
coalitions.

We will prove this characterization result in the rest of this subsection. To
do so, we will need Lemmas 6 to 9, which will we establish first.

LEMMA 6. Let I, J be two coalitions of a Boolean game G. If I and J are
efficient and I∩J =∅, then I∪J is efficient.

Proof: If I is efficient, then we know that∃σI ∈ ΣI such thatσI |=
∧

i∈I ϕi , and
the same forJ: ∃σJ ∈ ΣJ such thatσJ |=

∧
j∈J ϕ j . Moreover, asI ∩J =∅, we

have(σI ,σJ) |=
∧

i∈I∪J ϕi , soI ∪J is an efficient coalition.
�

We now need to define the following construction. LetS C be a set of coali-
tions satisfying the following conditions:

(1) ∅ ∈ S C .

(2) for all I ,J ∈ S C such thatI ∩J =∅ thenI ∪J ∈ S C .

Define the following Boolean gameG as follows:
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− V = {connect(i, j)|i, j ∈ N} (all possible connections between players);

− ∀i, γi =⊤;

− πi = {connect(i, j)| j ∈ N} (all connections from Playeri);

− ϕi =
∨

I∈S C |i∈I FI ,

where

FI =

(

∧

j,k∈I

connect( j,k)

)

∧
(

∧

j∈I ,k6∈I

¬connect( j,k)

)

(Player i wants that all the players of her coalition are interconnected
and that there is no connection from the coalition to the “outside” of the
coalition)

We want to show that the set ECG = S C (where ECG is the set of efficient
coalitions forG).

Before proving that ECG ⊆ S C , we establish the following lemmas:

LEMMA 7. For any collectionS C = {Ci , i = 1, . . . ,q} ⊆ 22N
,
∧

1≤i≤qFCi is
satisfiable if and only if for any i, j ∈ {1, . . . ,q}, either Ci =Cj or Ci ∩Cj =∅.

Proof:

1. Assume that for anyi, j ∈ {1, . . . ,q}, eitherCi =Cj orCi ∩Cj =∅. Then∧
1≤i≤qFCi is equivalent to
(

∧

1≤i≤q

∧

j,k∈Ci

connect( j,k)

)

∧
(

∧

1≤i≤q

∧

j∈Ci ,k6∈Ci

¬connect( j,k)

)

∧
1≤i≤qFCi is satisfied by any interpretation assigning eachconnect( j,k)

such thatj,k belong to the sameCi to true, and eachconnect( j,k) such
that j ∈Ci for somei andk 6∈Ci to false. Hence

∧
1≤i≤qFCi is satisfiable.

2. Assume that for somei, j ∈ {1, . . . ,q}, we haveCi ∩Cj 6=∅ andCi 6=Cj .
Let k ∈ Ci ∩Cj and (without loss of generality)l ∈ Ci \Cj . ThenFCi |=
connect(k, l) andFCj |= ¬connect(k, l), henceFCi ∧FCj is unsatisfiable,
and a fortiori, so is

∧
1≤i≤qFCi .

�

We now define acovering of a coalition I by disjoint subsets ofS C as a
tuple~C = 〈Ci |i ∈ I〉 of coalitions such that:(i) for everyk ∈ I , Ck ∈ S C ; (ii)
for all Cj ,Ck ∈ ~C, eitherCj =Ck or Cj ∩Ck =∅; (iii) for everyi ∈ I , i ∈Ci .
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LetCov(S C , I) be the set of all covering ofI by disjoint subsets ofS C . For
instance, ifS C = {1,24,123,124} thenCov(S C ,12) = {〈1,24〉, 〈123,123〉,
〈124,124〉}3,Cov(S C , 123) = {〈123,123,123〉},Cov(S C ,124) = {〈1,24,24〉,
〈124,124,124〉} andCov(S C , 234) = Cov(S C ,1234) =∅.

LEMMA 8. For any I 6=∅, ΦI is equivalent to
∨

~C∈Cov(S C ,I)

∧
i∈I FCi .

Proof:
ΦI ≡

∧
i∈I ϕi

≡
∧

i∈I
∨

J∈S C |i∈J FJ

≡
∨

〈Ci ,i∈I〉 such thatCi∈S C andi∈Ci for everyi∈I

∧
i∈I FCi

Now, by Lemma 7,
∧

i∈I FCi is satisfiable if and only if for alli, j ∈ I , either
Ci =Cj or Ci ∩Cj =∅. Therefore,ΦI ≡

∨
~C∈Cov(S C ,I)

∧
i∈I FCi .

�

For instance, ifS C = {1,24,123,124} thenΦ12 ≡ (F1∧F24)∨F123∨F124;
Φ123≡ F123; Φ124≡ (F1∧F24)∨F124; Φ234≡⊥.

LEMMA 9. Let I ⊆ 2N. As ∀I ,J ∈ S C , I ∩ J = ∅ ⇒ I ∪ J ∈ S C , ΦI is
satisfiable if and only if there exists J∈ S C such that I⊆ J.

Proof: The caseI = ∅ is straightforward:Φ ≡ ⊤ is satisfiable, and∅ ∈ S C
by assumption, therefore there existsJ ∈ S C (J =∅) such thatI ⊆ J.

Now, let I 6=∅.

⇒ AssumeΦI is satisfiable. By Lemma 8,ΦI is equivalent to
∨

~C∈Cov(S C ,I)

∧

i∈I

FCi

therefore there exists a~C in Cov(S C , I) such that
∧

i∈I FCi is satisfiable,
thereforeCov(S C , I) is not empty. Now,~C∈Cov(S C , I) implies that:

(i) for every i ∈ I , Ci ∈ S C ;

(ii) for every i, j ∈ I , eitherCi =Cj or Ci ∩Cj =∅.

(iii) I ⊆
⋃

i∈I Ci

Now, (i), (ii) and∀I ,J∈ S C , I ∩J=∅⇒ I ∪J∈ S C imply that
⋃

i∈I Ci ∈
S C , which together with (iii) proves that there exists aJ ∈ S C (namely
J =

⋃
i∈I Ci) such thatI ⊆ J.

⇐ Assume that there is aJ ∈ S C such thatI ⊆ J. ThenΦJ |= ΦI , andΦJ is
consistent (consider the interpretation assigning eachconnect(i, j) such
that i, j ∈ J to true).
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�

We can now establish the characterization of the efficient coalitions of a
Boolean game.

PROPOSITION 3. Let N= {1, . . . ,n} be a set of agents andS C ∈ 22N
a

set of coalitions. There exists a Boolean game G over N such that the set of
efficient coalitions for G isS C (i.e. EC(G) = S C ) if and only ifS C satisfies
these two properties:

(1) ∅ ∈ S C .

(2) for all I ,J ∈ S C such that I∩J =∅ then I∪J ∈ S C .

Proof: Lemma 6 proves the (⇒) direction of Proposition 3. For the (⇐)
direction, we want to show thatS C ⊆ ECG.

We first show thatS C ⊆ ECG. Let I ∈ S C . If every agenti ∈ I plays
(∧

j∈I connect(i, j)
) ∧ (∧

k6∈I ¬connect(i,k)
)

, then ϕi is satisfied for every
i ∈ I . Hence,I is an efficient coalition forG andS C is included in EC(G).

It remains to be shown that ECG ⊆ S C . Let I be a coalition such that
I 6∈ S C (which impliesI 6=∅, because of assumption∅ ∈ S C ).

− If I = N then there is noJ ∈ S C such thatI ⊆ J (becauseI 6∈ S C ), and
then Lemma 9 implies thatΦI is unsatisfiable, thereforeI cannot be
efficient forG.

− Assume now thatI 6=N and define the followinḡI -strategyΣĪ (Ī =N\ I ):
for every i ∈ Ī , σi is such that for allj ∈ I , σi contains¬connect(i, j)
(whetherconnect(i, j) is true or false forj 6∈ I is irrelevant). Let~C =
〈Ci , i ∈ I〉 ∈Cov(S C , I).

We first claim that there existsi∗ ∈ I such thatCi∗ is not contained inI .
Indeed, suppose that for everyi ∈ I , Ci ⊆ I . Then, becausei ∈ Ci holds
for every i, we have

⋃
i∈I Ci = I . Now, Ci ∈ S C for all i, and any two

distinctCi ,Cj are disjoint, therefore, by Property (2) of Proposition 3,
we getI ∈ S C , which by assumption is false.

Now, letk∈Ci∗ \ I (such ak exists becauseCi∗ is not contained inI ). As
i andk are inCi , connect(k, i∗) has to be true to satisfyFCi . Therefore
σk |= ¬FCi , and a fortioriσĪ |= ¬FCi , which entailsσĪ |= ¬

∧
i∈I FCi .

This being true for any~C∈Cov(S C , I), we have

σĪ |=
∧

~C∈Cov(S C ,I)

¬
∧

i∈I

FCi
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that is,σĪ |=¬
∨

~C∈Cov(S C ,I)

∧
i∈I FCi . Together with Lemma 8, this entails

σĪ |= ¬ΦI . Hence,I does not controlΦI andI cannot be efficient forG.

�

4.2. EFFICIENT COALITIONS AND THE CORE

We now relate the notion of efficient coalitions to the usual notion of core of
a coalitional game. In coalitional games with ordinal preferences, the coreis
usually defined as follows (see e.g. (Aumann, 1967; Owen, 1982; Myerson,
1991)): a strategy profileσ is in the core of a coalitional game if and only
if there exists no coalitionC with a joint strategyσC that guarantees that
all members ofC are better off than withσ. Here we consider also a stronger
notion of core: a strategy profileσ is in the strong core of a coalitional game if
and only if there exists no coalitionC with a joint strategyσC that guarantees
that all members ofC are at least as satisfied as withσ, and at least one
member ofC is strictly better off than withσ.

DEFINITION 9. Let G be a Boolean game. The(weak) coreof G, denoted
by WCore(G), is the set of strategy profilesσ = (σ1, . . . ,σn) such that there
exists no C⊆ N and noσC ∈ ΣC such that for every i∈ C and everyσ−C ∈
Σ−C, (σC,σ−C)≻i σ.
Thestrong core of a Boolean game G, denoted by SCore(G), is the set of
strategy profilesσ = (σ1, . . . ,σn) such that there exists no C⊆ N and no
σC ∈ ΣC such that for every i∈C and everyσ−C ∈ Σ−C, (σC,σ−C)�i σ and
there is an i∈C such that for everyσ−C ∈ Σ−C, (σC,σ−C)≻i σ.

Obviously enough, this notion of weak core is equivalent to the notion of
strong Nash equilibrium (Aumann, 1959), where coalitions form in order to
correlate the strategies of their members.

The relationship between the (weak) core of a Boolean game and its set of
efficient coalitions is expressed by the following simple result.

PROPOSITION 4.Let G= (N,V,Γ,π,Φ) be a Boolean game.σ∈WCore(G)
if and only ifσ satisfies at least one member of every efficient coalition, that
is, for every C∈ EC(G), σ |=

∨
i∈C ϕi .

Proof: σ = (σ1, . . . ,σn) 6∈ WCore(G) if and only if there exist a coalition
C ⊆ N and a tupleσC ∈ ΣC such that (1) for everyi ∈C andσ−C ∈ Σ−C, we
have(σC,σ−C) ≻i σ. Using the specific form that utility functions have in
Boolean games, (1) is equivalent to (2a)∀σ−C, (σC,σ−C) |=

∧
i∈C ϕi and (2b)

σ |=
∧

i∈C¬ϕi . As {π1, . . . ,πn} forms a partition ofV, (2a) can be written as
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σC |=
∧

i∈C ϕi . Therefore,σ ∈WCore(G) if and only if (3) for everyC ⊆ N,
eitherσ |=

∨
i∈C ϕi or for everyσC ∈ ΣC, σC |=

∨
i∈C¬ϕi . (3) can be rewritten

into (4): for everyC ⊆ N, if there existsσC such thatσC |=
∧

i∈C ϕi then
σ |=

∨
i∈C ϕi . Now, the existence ofσC ∈ ΣC such thatσC |=

∧
i∈C ϕi means

that CoalitionC is efficient. Therefore,σ ∈WCore(G) if and only if for every
C⊂ N, if C∈ EC(G) thenσ |=

∨
i∈C ϕi .

�

In particular, when no coalition of a Boolean gameG is efficient, then all
strategy profiles are inWCore(G).

Moreover, the weak core of a Boolean game cannot be empty:

PROPOSITION 5.For any Boolean game G, WCore(G) 6=∅.

Proof: We construct the following set of coalitionsE as follows. First, ini-
tialize E to ∅. Then, while there exists a coalitionC in EC(G) such that
C∩C′ = ∅ holds for everyC′ ∈ E, pick such aC and add it toE. At the
end of the algorithm,E is a set of disjoint efficient coalitions{CI , i ∈ I},
therefore, by Proposition 3,∪i∈ICi is efficient. Therefore, there existsσE ∈ΣE

such thatσE |=
∧

i∈E ϕi , andE contains at least one element of every efficient
coalition (if this were not the case, there would remain an efficient coalitionC
that intersects none of theCi ’s, and the algorithm would have continued and
incorporatedC into E). Let σ extendingσE. σ satisfies at least one member
of every efficient coalition, therefore, by Proposition 4,WCore(G) 6=∅.

�

The strong core of a Boolean game is harder to characterize in terms of
efficient coalitions. We only have the following implication.

PROPOSITION 6. Let G= (N,V,Γ,π,Φ) be a Boolean game, andσ be a
strategy profile. Ifσ ∈ SCore(G) then for every C∈ EC(G) and every i∈C,
σ |= ϕi .

Proof: LetC∈EC(G) and assume there existsi ∈C such that (1)σ |=¬ϕi . We
want to show thatσ 6∈ SCore(G). SinceC ∈ EC(G), (2) there existsσC ∈ ΣC

such thatσC |=
∧

j∈C ϕ j . Applying (1) and (2) toi leads toσC ≻i σ, while
applying (1) and (2) toj ∈C\{i} leads toσC � j σ. Therefore,σ 6∈SCore(G).

�

Thus, a strategy in the strong core ofG satisfies the goal of every member
of every efficient coalition. The following counterexample shows that the
converse does not hold.

EXAMPLE 3. Let G= (N,V,Γ,π,Φ) be the following Boolean game: V=
{a,b,c,d,e}, N= {1,2,3,4,5}, γi =⊤ for every i,π1 = {a}, π2 = {b}, π3 =
{c}, π4 = {d}, π5 = {e}, ϕ1 = ¬a∧ b, ϕ2 = ¬a, ϕ3 = d, ϕ4 = c∧ a and
ϕ5 = c∧e.
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This game has one efficient coalition:{1,2}.
Let σ = abcde. We haveσ |= ϕ1 ∧ϕ2 ∧¬ϕ3 ∧¬ϕ4 ∧¬ϕ5. Therefore,∀C ∈
EC(G), ∀i ∈C, σ |= ϕi .
However,σ 6∈SCore(G): ∃C′ = {1,2,3,4}⊂N such that∃σC = abcd|= ϕ1∧
ϕ2∧ϕ3∧¬ϕ4. So,∀σ−C, (σC,σ−C) �1 σ, (σC,σ−C) �2 σ, (σC,σ−C) �4 σ,
and(σC,σ−C)≻3 σ. σ 6∈ SCore(G).

Note that the strong core of a Boolean game can be empty: in Example 1,
the set of efficient coalitions is{∅,{1,2},{2,3}}, therefore there is noσ ∈ Σ
such that for allC∈ EC(G), for all i ∈C, σ |= ϕi , therefore, by Proposition 6,
SCore(G) = ∅. However, we can show that the non-emptiness of the strong
core is equivalent to the following simple condition on efficient coalitions.

PROPOSITION 7. Let G= (N,V,Γ,π,Φ) be a Boolean game. We have the
following:

Score(G) 6= ∅ if and only if
⋃
{C ⊆ N|C ∈ EC(G)} ∈ EC(G) – that is, if

and only if the union of all efficient coalitions is efficient.

Proof: Let MEC(G) =
⋃

C⊆N{C∈ EC(G)}.

⇐ Score(G) 6= ∅. Let σ ∈ Score(G). From Proposition 6, we know that
∀C∈ EC(G), ∀i ∈C, σ |= ϕi . So,∀i ∈ MEC(G), σ |= ϕi . So,MEC(G) ∈
EC(G).

⇒ MEC(G)∈EC(G). LetσMEC(G) ∈ΣMEC(G) such that∀σ−MEC(G), σMEC(G) |=
ΦMEC(G). We are looking forσ such thatσ ∈ Score(G).

Let σ−MEC(G) ∈Σ−MEC(G) such thatMAX= {i|σ=(σMEC(G),σ−MEC(G)) |=
ϕi} be maximal for⊆. σ−MEC(G) exists, in worst caseσ |= ΦMEC(G). As
MAX is maximal, we cannot findC ⊆ N such that∃σC ∈ ΣC, such that
∀σ−C ∈ Σ−C, ∀i ∈C, (σC,σ−C)�i σ, and∃i ∈C, (σC,σ−C)≻i σ. Indeed,
if we assume that this coalitionC exists, then∀i ∈ N such thatσ |= ϕi ,
we haveσC |= ϕi , and∃i ∈ N such thatσ 6|= ϕi andσC |= ϕi . In this case,
MAX is not maximal for⊆.

�

5. Computational complexity of reasoning about efficient coalitions

We start by identifying the complexity of some key decision problems related
to efficient coalitions. The key questions are: is a given coalition efficient?
does there exist a nonempty efficient coalition? is a given agent member
of some efficient coalition? of all nonempty efficient coalitions? In addi-
tion to these problems that are directly related to efficient coalitions, similar
problems arise for the notions of weak and strong core.
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PROPOSITION 8.Deciding whether a given coalition is efficient for a Boo-
lean game isΣp

2-complete, and isΣp
2-hard even if n= 2 and the coalition is a

singleton.

Proof: Membership is straightforward and hardness is a straightforward con-
sequence of the facts that (1) the coalition reduced to the singleton{i} is
efficient if and only ifi has a winning strategy and that (2) deciding whether
an agent has a winning strategy in a Boolean game isΣp

2-complete (see (Bon-
zon et al., 2009)). �

The next result addresses the problem whether there exists an efficient
coalition in a Boolean game.

PROPOSITION 9.Deciding whether there exists a non-empty efficient coali-
tion in a Boolean game isΣp

2-complete, and isΣp
2-hard even if n= 2.

Proof: Membership toΣp
2 is immediate.

To show that deciding whether there is a non-empty efficient coalition
in a Boolean game isΣp

2-hard (even with 2 agents), consider the following
polynomial reduction fromQBF2,∃. To each instanceQ= ∃a1 . . .ap∀b1 . . .bqϕ
of QBF2,∃, let us consider the following Boolean gameGQ = 〈N,V,π,Γ,Φ〉,
whereN= {1,2}, γ1= γ2=⊤,V = {a1 . . .ap,b1 . . .bq,x}, π1= {a1, . . . ,ap,x},
π2 = {b1, . . . ,bq}, ϕ1 = ϕ andϕ2 = ¬ϕ∧x. Neither{2} nor{1,2} can be ef-
ficient; therefore, the only possible nonempty efficient coalition is{1}. Now,
it is easily seen that{1} is efficient if and only ifQ is a valid instance of
QBF2,∃. �

We now consider the problems of determining whether a given agent be-
longs to some efficient coalition, and whether she belongs to all nonempty
efficient coalitions.

PROPOSITION 10.

− deciding whether an agent i belongs to at least one efficient coalition
of a Boolean game isΣp

2-complete, and isΣp
2-hard even if n= 2.

− deciding whether an agent i belongs at all nonempty efficient coali-
tions of a Boolean game isΠp

2-complete, and isΠp
2-hard even if n=

2.

Proof: For both problems, the membership part of the proof is easy.
To show that deciding whether an agenti belongs to at least one effi-

cient coalition forG is Σp
2-hard (even with 2 agents), consider the following

polynomial reduction fromQBF2,∃. To each instanceQ= ∃a1 . . .ap∀b1 . . .bqϕ
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of QBF2,∃, let us consider the following Boolean gameGQ = 〈N,V,π,Γ,Φ〉,
whereN= {1,2}, γ1= γ2=⊤,V = {a1, . . . ,ap,b1, . . . ,bq}, π1= {a1, . . . ,ap},
π2 = {b1, . . . ,bq}, ϕ1 = ϕ andϕ2 = ¬ϕ. {1} is efficient if and only if there
exists a strategyσ1 such thatσ1 |= ϕ, that is, if and only ifI is valid. Now,
{1,2} cannot be efficient, becauseϕ1 ∧ϕ2 = ⊤. therefore, 1 belongs to an
efficient coalition if and only if{1} is efficient, that is, if and only ifQ is
valid.

To show that deciding whether an agenti belongs to all nonempty effi-
cient coalitions forG is Πp

2-hard (even with 2 agents), consider the following
polynomial reduction fromQBF2,∀. To each instanceQ= ∃a1 . . .ap∀b1 . . .bqϕ
of QBF2,∀, let us consider the following Boolean gameGQ = 〈N,V,π,Γ,Φ〉,
whereN= {1,2}, γ1= γ2=⊤,V = {a1 . . .ap,b1 . . .bq,x}, π1= {a1, . . . ,ap,x},
π2 = {b1, . . . ,bq}, ϕ1 = ¬ϕ andϕ2 = ϕ∧ x. Neither{2} nor {1,2} can be
efficient; therefore, 2 belongs to all nonempty efficient coalitions if and only
if {1} is not efficient, that is, if∃a1 . . .ap∀b1 . . .bq¬ϕ is not valid, or equiva-
lently, if ∀a1 . . .ap∃b1 . . .bqϕ is valid. �

Although we have stated them and proven them for standard Boolean
games with dichotomous utilities, Propositions 8, 9 and 10 hold also for
quasi-dichotomous Boolean games. This is trivially obtained from the fact
that a coalition is efficient for a quasi-Boolean gameG if and only if it is
efficient forG∗4 .

Given the strong relationships between efficient coalitions and the notions
of weak and strong core of a Boolean game, these results allow us to derive
complexity results regarding these. Note however that unlike the previous
three propositions, the following three hold for standard Boolean games (with
dichotomous preferences) only.

First, Proposition 4 leads the following result:

PROPOSITION 11.Deciding if a strategy profileσ is in the weak core of a
Boolean game G isΠp

2-complete.

Proof: Recall thatσ 6∈WCore(G) if and only if there exists a coalitionC⊆ N
such that (a)σ |=

∧
i∈C¬ϕi and (b) there exists a strategyσC ∈ ΣC such that

σC |= ϕC =
∧

i∈C ϕi .

Membership toΠp
2 is immediate, as the formulation above immediately

shows that the problem to decide if a strategy profileσ is not in WCore(G) is
in Σp

2.

Hardness is obtained by proving that the complementary problem isΣp
2-

complete, using a reduction of the problem of deciding the validity of a
QBF2,∃.

GivenQ= ∃A,∀B,Φ, whereA andB are disjoint sets of variables andΦ
is a formula ofLA∪B, we define the following Boolean gameGQ by
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− V = A∪B∪{c}, wherec is a fresh variable (c 6∈ A∪B);

− N = {pv | v∈V};

− for everyv∈V, π(pv) = {v};

− for everyai ∈ A, ϕai = ϕ∧c;

− for everyb j ∈ B, ϕb j =⊤;

− ϕc = ϕ∧c;

− σ is any assignment satisfying¬c.

AssumeQ is a positive instance ofQBF2,∃, that is, there exists a~a such that
for every~b we have(~a,~b) |= ϕ. Let C = A∪{c} andσC = (~a,c). We have
σC |=

∧
v∈C ϕv = ϕ∧c andσ |=

∧
v∈C¬ϕv. Therefore,σ 6∈WCore(GQ).

Conversely, assume that there exists a coalitionC⊆ N and a strategyσC ∈
ΣC such thatσC |= ϕC =

∧
i∈C ϕi . Note that becauseσ |= ¬c, we haveσ |=∧

i∈C¬ϕi , thus condition (a) is satisfied. Becauseσ |= ¬ϕi for any i ∈C, we
must haveC ⊆ A∪{c}, which implies thatσC = c∧ϕ. Define~a ∈ ΣA such
that~a andσC agree allai ∈C. BecauseσC |= ϕ we have~a |= ϕ, that is, for all
~b we have(~a,~b) |= ϕ.

We have shown thatσ ∈WCore(GQ) if and only if Q is a positive instance
of QBF2,∃, hence the result. �

PROPOSITION 12.Deciding if a strategy profileσ is in the strong core of a
Boolean game G isΠp

2-complete.

Proof:
Recall that we haveσ 6∈ SCore(G) if and only if there exists a coalition

C⊆ N and a strategyσC ∈ ΣC such that

(c) for all i ∈C and allσ−C ∈ Σ−C we have(σC,σ−C)�i σ;

(d) there existi ∈C andσ−C ∈ Σ−C such that(σC,σ−C)≻i σ;

We take the same reduction as in Proposition 11.

If Q is satisfiable, thenσ 6∈WCore(GQ), anda fortiori σ 6∈ SCore(GQ).

If σ 6∈ SCore(GQ) then there exist a coalitionC and σC ∈ ΣC such that
(c) and (d) hold. But (d) implies thatσ |= ¬(ϕ∧ c) and(σC,σ−C) |= ϕ∧ c,
therefore,σ 6∈ WCore(GQ), which implies thatQ is a positive instance of
QBF2,∃.

�
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PROPOSITION 13.Deciding whether SCore(G) is nonempty is in∆p
2.

Proof: We recall thatSCore(G) 6= /0 if and only if the union of all efficient
coalitions ofG is efficient.

We start by noticing thatC is the union of all efficient coalitions ofG if
and only if the following two conditions hold:

(A) for every i ∈C, there exists an efficient coalitionCi containingi;

(B) for all i 6∈C, no efficient coalition containsi.

Therefore, the following nondeterministic algorithm shows thatSCore(G) 6=
/0:

1. C := /0

2. for everyi ∈ N do

3. if there exists an efficient coalition ofG containingi
then addi to C
(else nothing)

4. check thatC is efficient.

Consider the problem of Step 3, namely: giveni ∈ N, check that there
exists an efficient coalition ofG containingi. The problem can be solved
by the following nondeterministic algorithm: guess a coalitionC′, a strategy
profile σC′ ∈ ΣC′ , and check thatσC′ |= ϕC′ . Thus, checking that there ex-
ists an efficient coalition ofG containingi is in NP and Step 2 amounts to
a linear number ofNP-oracles, whereas Step 4 amounts to one moreNP-
oracle. Therefore, the algorithm is a deterministic algorithm using a polyno-
mial number ofNP-oracles, which shows that the problem of checking that
SCore(G) 6= /0 is in ∆p

2.

�

So far we do not have a∆p
2-hardness result.

6. Efficient coalitions and dependencies between agents

We now study how the computation of efficient coalitions can be made easier
by taking benefit from specific restrictions on the agents’ preferences. First,
the syntactical nature of goals may help us identifying efficient coalitions eas-
ily. Second, exploiting the dependencies between agents (where a dependency
betweeni and j means that the goalϕi of i involves a variable controlled by
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j) can allow us, in some cases, to decompose the computation of efficient
coalitions into independent subproblems.

We first note that whenϕi does not involve any variable controlled byj,
the satisfaction ofi does not depend directly onj. This is only a sufficient
condition: it may be the case that the syntactical expression ofϕi mentions
a variable controlled byj, but that this variable plays no role whatsoever in
the satisfaction ofϕi , as variabley in ϕi = x∧ (y∨¬y). We therefore use a
stronger notion of formula-variable independence (Lang et al., 2003).

DEFINITION 10. A propositional formulaϕ is independent froma propo-
sitional variable x if there exists a formulaψ logically equivalent toϕ and in
which x does not appear.

DEFINITION 11. Let G= (N,V,Γ,π,Φ) be a Boolean game. The set of
relevant variablesfor a player i, denoted by RVG(i), is the set of all variables
v∈V such thatϕi is not independent from v.

For the sake of notation, the set of relevant variables for a playeri in a
given Boolean gameG will be denoted byRVi instead ofRVG(i). We now
easily define therelevant playersfor a given playeri as the set of players
controlling at least one variable ofRVi .

DEFINITION 12. Let G= (N,V,Γ,π,Φ) be a Boolean game. The set of
relevant players for a player i, denoted by RPi ,5 is the set of agents j∈ N
such that j controls at least one relevant variable of i: RPi =

⋃
v∈RVi

π−1(v).

EXAMPLE 4. Three friends (1, 2 and 3) are invited at a party.1 wants to
attend the party.2 wants to attend if and only if1 does.3 wants to attend, and
would like2 to attend as well and1 not to. This situation can be modelled by
the following Boolean game G= (N,V,Γ,π,Φ), defined by

− V = {a,b,c}, with a (resp. b, c) means “1 (resp. 2, 3) attends the
party”,

− N = {1,2,3}, ∀i, γi =⊤,

− π1 = {a}, π2 = {b}, π3 = {c},

− ϕ1 = a, ϕ2 = a↔ b andϕ3 = ¬a∧b∧c.

We can see that1’s satisfaction depends only on herself, 2’s depends on 1 and
herself, whereas 3’s depends on 1, 2 and herself. Therefore, we have: RV1 =
{a}, RV2 = {a,b}, RV3 = {a,b,c}, RP1 = {1}, RP2 = {1,2}, RP3 = {1,2,3}.

This relation between players can be seen as a directed graph containing a
vertex for each player, and an edge fromi to j wheneverj ∈ RPi , i.e. if j is a
relevant player ofi.
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DEFINITION 13. Let G= (N,V,Γ,π,Φ) be a Boolean game. Thedepen-
dency graph of a Boolean gameG is the directed graphP = 〈N,R〉, with
∀i, j ∈ N, (i, j) ∈ R (denoted by R(i, j)) if j ∈ RPi .

Thus,R(i) is the set of players from whichi may need some action in
order to be satisfied:j ∈ R(i) if and only if j ∈ RPi . Remark however that
j ∈ R(i) does not imply thati needssome action byj to see her goal satisfied.
For instance, ifπ1 = {a}, π2 = {b} andϕ1 = a∨b, then 2∈ R(1); however,
1 has a strategy for satisfying her goal (settinga to true) and therefore does
not need an action by 2. Note that the dependency graph may have cycles.

We denote byR∗ the transitive closure ofR. R∗(i) is the set of all players
who have a direct or indirect influence oni. ForI ⊆N, we letR(I)=

⋃
i∈I R(i).

Example 4, continued:
The dependence graphP induced by G is depicted as follows:

1 2

3

We already know that if two disjoint coalitionsI andJ are efficient then
their union is efficient. The converse does not hold in the general case,that is,
there may exist two disjoint setsI andJ such thatI ∪J is efficient and neither
I norJ is. However, the converse holds in the following specific case:

PROPOSITION 14. Let G= (N,V,Γ,π,Φ) be a Boolean game. Let I and
J be two coalitions such that I∩ J = ∅, I ∪ J is efficient, R(I)∩ J = ∅ and
R(J)∩ I =∅. Then I and J are both efficient.

Proof: The efficiency ofI ∪ J implies that there existsσI∪J ∈ ΣI∪J such that
σI∪J |= (

∧
i∈I∪J ϕi). SinceI ∩J =∅, we have this following chain of equiva-

lences:

∃σI ∈ ΣI ,∃σJ ∈ ΣJ : (σI ,σJ) |= (
∧

i∈I∪J

ϕi)

⇔ ∃σI ∈ ΣI ,∃σJ ∈ ΣJ : (σI ,σJ) |= (
∧

i∈I

ϕi ∧
∧

j∈J

ϕ j)

⇔ ∃σI ∈ ΣI ,∃σJ ∈ ΣJ : ((σI ,σJ) |= (
∧

i∈I

ϕi))∧ ((σI ,σJ) |= (
∧

j∈J

ϕ j))

Moreover, we know that∀i ∈ I , j ∈ J, j 6∈RPi (resp.i 6∈RP j). So,∀i ∈ I , j ∈ J,
∀v∈Var(PI(ϕi)), v 6∈ π j (resp.∀w∈Var(PI(ϕ j)), w 6∈ πi). We know that no
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player inJ controls a variable of a goal of a player inI (and vice versa).
As we have∃σI ∈ΣI , ((σI ,σJ) |=(

∧
i∈I ϕi)) and∀i ∈ I , j ∈ J,∀v∈Var(PI(ϕi)),

v 6∈ π j , we have:σI |= (
∧

i∈I ϕi) (resp.σJ |= (
∧

j∈J ϕ j).
Therefore, bothI andJ are efficient. �

We now introduce the notion ofstable setfor a Boolean game6. A subset
of agentsB is stable forG if none of the agents inB has a relevant player
outsideB.

DEFINITION 14. Let G= (N,V,π,Γ,Φ) be a Boolean game. B⊆ N is sta-
ble for G if and only if R(B)⊆ B.

The following proposition is straightforward but useful:

PROPOSITION 15.Let G= (N,V,Γ,π,Φ) be a Boolean game. If B⊆ N is
stable for R, then B is an efficient coalition of G (B⊆ EC(G)) if and only if
ϕB =

∧
i∈B ϕi is consistent.

Proof: Let B a stable set forR. Then, we have:

∀i ∈ B,∀ j such thatj ∈ R(i), j ∈ B
⇔ ∀i ∈ B,RPi ⊆ B
⇒ ∀i ∈ B,∃σB ∈ ΣB such thatσC |= ϕi

⇔ ∃σB ∈ ΣB such thatσB |=
∧

i∈B ϕi if and only if
∧

i∈B ϕi 6|=⊥

�

The converse is not necessarily true, as we can see on the following example:

EXAMPLE 5.
Let G= (N,V,Γ,π,Φ) be the Boolean game defined by V= {a,b}, N =

{1,2}, π1 = {a}, π2 = {b}, ϕ1 = a∨b andϕ2 =⊤.
The coalition{1} is efficient, but is not stable for R: R({1}) = {1,2} 6⊆

{1}.

However, the converse can be true under the very restrictive conditionthat
the satisfaction of the goal of a player depends only on the actions ofone
player, that is, ifRPi is a singleton for everyi ∈ B.

PROPOSITION 16.Let G= (N,V,Γ,π,Φ) be a Boolean game. If B⊆ N is
an efficient coalition of G (B⊆ EC(G)) such that∀i ∈ B, |RPi |= 1, then B is
stable for R. In this case, a coalition B such thatϕB =

∧
i∈B ϕi 6|=⊥ is efficient

if and only if B is stable for R.

Proof: B is an efficient coalition, so
∧

i∈B ϕi is consistent, and∃σB ∈ ΣB such
thatσB |=

∧
i∈B ϕi .
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We know that∀i ∈ B, |RPi | = 1. So,∃ j ∈ N such thatRPi = { j}, i.e. ∀v ∈
Var(PI(ϕi)), v ∈ π j . As we haveσB |= ϕi , with σB ∈ ΣB, we know thatB
controls at least one variable inϕi . So, j ∈ B, and thusB is stable forR. �

In this specific case whereRPi is a singleton for everyi ∈ B, we have fur-
thermore this intuitive graph-theoretic characterization of efficient coalitions:

PROPOSITION 17. Let G= (N,V,Γ,π,Φ) be a Boolean game such that
∀i ∈ N, |RPi |= 1. For any coalition C⊆ N, C is minimal efficient if and only
if C forms a cycle in the dependence graph.

Proof:

⇒ As ∀i, |RPi |= 1, only one edge can go out for each player. So, if there is a
cycle betweenp players, and if we rename these players with respect to
the topological order, we haveRP1 = {2}, RP2 = {3}, . . ., RPp−1 = {p},
RPp = {1}. Let C = {1, . . . , p}. As we obviously haveR(C) = C (∀i ∈
C,RPi = {(i+1)modp} ∈C), C is stable forR.
Moreover, we know that∀i, j ∈C, RPi 6= RPj , so∀i, j ∈C, ϕi ∧ϕ j 6|=⊥.
So, from Proposition 15,C is efficient.
Assume that∃I ⊂C efficient. So,∃σI such thatσI |=

∧
i∈I ϕi . So,∀i ∈ I ,

RPi ∈ I . As |RPi | = 1, and as∀i, j ∈ C, and thus∀i, j ∈ I , RPi 6= i and
RPi 6= RPj , agents inI form a cycle. So,I =C. C is minimal efficient.

⇐ If C is stable forR, then∀i ∈ C, ∃ j ∈ C such thatRPi = { j}. So, if C =
{1, . . . , p}, we can rename these players in order to haveRP1 = {2},
RP2 = {3}, . . ., RPp−1 = {p}, RPp = {1}, andC forms a cycle in the
dependance graph.

�

Another interesting issue is the study of efficient coalitions in Boolean
games where goals have a specific syntactical structure. The characterization
of efficient coalitions when goals are literals is a straightforward consequence
of Propositions 16 and 17:

COROLLARY 1. Let G= (N,V,Γ,π,Φ) be a Boolean game. If for every
i ∈ N, ϕi is a literal, then we have the following results:

1. A coalition B is efficient if and only if B is stable for R.

2. For any coalition B⊆ N, B is minimal efficient if and only if B forms a
cycle in the dependence graph.

We also have the following intuitive characterization of efficient coalitions
when goals are either clauses or terms:
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PROPOSITION 18.Let G= (N,V,Γ,π,Φ) be a Boolean game.

1. If for every i∈ N, ϕi is a term then for any B⊆ N such that
∧

i∈B ϕi is
consistent, B is efficient if and only if B is stable for R.

2. If for every i∈ N, ϕi is a clause such that
∧

i∈N ϕi is consistent, then for
any B⊆ N, B is efficient if and only if there exists a set of cycles in the
dependence graph of G such that the nodes of the union of these cycles
are exactly the members of B.

Proof:

1. ⇒ Let B be a stable set forR. As
∧

i∈B ϕi is consistent, we know from
Proposition 15 thatB is an efficient coalition.

⇐ Let B be an efficient coalition. So∃σB ∈ ΣB such thatσB |=
∧

i∈B ϕi .
As∀i, ϕi =

∧
v∈Lit (ϕi) v, σB |=

∧
v∈

⋃
i∈B Lit (ϕi) v. So,∀v∈

⋃
i∈BLit (ϕi),

Var(v) ∈ πB, and then∀i ∈ B, RPi ⊆ B. B is stable forR.

2. ⇒ Let B be an efficient coalition. So∃σB ∈ ΣB such thatσB |=
∧

i∈B ϕi .
Let decomposeB in p minimal efficient coalitions7. We have∀k∈
{1, . . . , p}, Bk is minimal efficient,B1∪ . . .∪Bp = B.
Let Bk ∈ {B1, . . . ,Bp}. As ∀i ∈ N, ϕi =

∨
v∈Lit (ϕi) v, we know that

∀i ∈ Bk, ∃ j ∈ Bk, ∃σ j ∈ Σ j such thatσ j |= ϕi . As Bk is minimal
efficient, we know that we cannot findC ⊂ Bk such that∀i ∈ C,
∃ j ∈C, ∃σ j ∈ Σ j such thatσ j |= ϕi . So, if Bk = {1, . . . ,m} we can
rename these players in the following way: let us take a player and
call her 1. Then, call 2 the player inBk such thatσ2 |= ϕ1 (asBk is
minimal efficient, we know that 1 and 2 are two different players).
Then, call 3 the player inBk such thatσ3 |= ϕ3 (as previously, as
Bk is minimal efficient, we know that 1, 2 and 3 are three different
players). We can rename all players inBk in the same way, until
σm |= ϕm−1. As Bk is minimal efficient, we know thatσ1 |= ϕm.
ThusBk forms a cycle in the dependency graph.
As eachBk ∈ {B1, . . . ,Bp} forms a cycle in the dependency graph,
B is the union of these cycles in the dependency graph.

⇐ Let B= {1, . . . ,m} be a cycle betweenmplayers. So,∀i ∈ B, ∃ j ∈ B
such thatj ∈ RPi . As ∀i ∈ N, ϕi =

∨
v∈Lit (ϕi) v, we know that∀i ∈

B, ∃ j ∈ B, ∃σ j ∈ Σ j such thatσ j |= ϕi . Moreover, we know that∧
i∈N ϕi 6|= ⊥. Then,∃σB ∈ ΣB such thatσB |=

∧
i∈B ϕi . So,B is an

efficient coalition.
Let assume now that we havep cycles{B1, . . .Bp} in the depen-
dency graph. As seen previously, eachBi is an efficient coalition.
As

∧
i∈N ϕi 6|=⊥, B1∪ . . .∪Bp |=

∧
i∈{1,...p}

∧
j∈Bi

ϕ j . So,B1∪ . . .∪
Bp is an efficient coalition.
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Again, due to the fact that a coalition in a quasi-dichotomous Boolean
gameG is efficient if and only if it is efficient in the associated standard
Boolean gameG∗, Propositions 14, 15, 16, 17 and 18 also hold for quasi-
dichotomous Boolean games.

7. Related work

Introduced in (Dunne et al., 2008), cooperative Boolean games (CBG)are a
specific class of quasi-dichotomous Boolean games. In a cooperative Boolean
game, as in a classical Boolean game, each agent has a goal represented by a
propositional logic formula, and each agent has control over a set of Boolean
variables. In addition to this, every propositional variablexi is associated
with a positive numberc(xi) representing the cost, incurring for the agent
who controlsxi , of makingxi true. Costs are negligible with respect to the
utility of having a goal satisfied (an agent always prefers a state satisfying her
goal to a state that does not), therefore cooperative Boolean games arequasi-
dichotomous. Standard Boolean games are recovered by lettingc(xi) = 0 for
all xi .

Now, (Dunne et al., 2008) focuses on two stability concepts, one of which
is highly related to our Section 4.2. This concept is also called thecoreof a
(cooperative) Boolean game, and is defined as follows :

DEFINITION 15. Let G be a Boolean game8. A strategy profileσ is blocked
by a coalition C⊆ N through a strategy profile σ′ if

1. σ andσ′ coincide on all variables that are not controlled by any member
of C;

2. coalition C strictly prefersσ′ overσ: for all i ∈C, σ′ ≻i σ.

TheDHKW-core of G, denoted by CoreDHKW(G), is the set of strategy pro-
files that are not blocked by any coalition.

When restricted on standard (zero-cost) Boolean games, this definition
differs from both our weak and strong core notions, for the following reason:
σ is in the DHKW-core of a Boolean game if no coalitionC has an interest
to deviate fromσ, the actions of the other players being fixed, whereasσ is
in the weak or strong core if no coalition has a joint strategy which makes it
better off (where the meaning of “better off” differs whether we talk about
the weak or the strong core) thanσ, whatever the actions of the other players.
As remarked in (Sauro et al., 2009; Sauro and Villata, 2011), this definition
corresponds to thestrong Nash equilibriumin noncooperative game theory.
The following is immediate from the definition of the DHKW-core:
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PROPOSITION 19.For any Boolean game G, the DHKW-core of G is con-
tained in the weak core of G9.

The converse inclusion does not hold, as witnessed by the following ex-
ample.

EXAMPLE 6. Let n= 3, V = {x1,x2,x3}, π(i) = {xi}, andγ1 = x1 ↔ (x2∧
x3), γ2 = γ3 =¬γ1. The DHKW-core of G is empty: for everyσ satisfyingγ2, 1
can switch x1 to makeγ1 true, and for everyσ satisfyingγ1, 2 and 3 can adjust
the values of x2 and x3 to makeγ2 true. However, no coalition is efficient in
G, therefore, no coalition can find another way to act (than inσ) that ensures
it to be better off, whatever the action of the other player(s), and any strategy
profile is in the weak core of G.

Note finally that deciding membership to the DHKW-core of a Boolean
game iscoNP-complete (whereas deciding membership to the weak and to the
strong core is, in both cases,Πp

2-complete), and that deciding the nonempti-
ness of the DHKW-core isΣp

2-complete (whereas the weak core is always
nonempty, and deciding the nonemptiness of the strong core is in∆p

2).
Cooperative games have been further investigated in (Endriss et al., 2011),

who study the design of taxation functions so as to modify a cooperative
Boolean game in order to ensure that some Nash equilibrium (or all Nash
equilibria) satisfies some desirable property.

Sauro, van der Torre and Villata (Sauro et al., 2009; Sauro and Villata,
2011) address the actual computation of the DHKW-core of a cooperative
Boolean game, using the dependencies between players and variables and/or
players, as we do for efficient coalitions in Section 6.

Another related line of work is the study of coalition formation among
goal-directed agents by Boella, Sauro and van der Torre (Boella et al., 2005;
Boella et al., 2006; Sauro, 2006). One of the main differences between their
framework and ours is in the expression of the problem input. While we spec-
ify agents’ abilities and goals separately (abilities by a control assignment
function and goals by propositional formulae), Sauro (2006) defines apower
structureconsisting of a set of abstract goalsGoal(i) for each agenti, a power
relationpowexpressing, for every subsetGoal′ of Goal= ∪iGoal(i), which
coalitions can achieveGoal′, and a compatibility relationcompexpressing
which goals are jointly feasible,i.e., non-conflictual. An agent is satisfied
as soon as one of its goals is satisfied. Now, a pair〈C,E〉, whereC ⊆ N
andE ⊆ Goal = ∪iGoal(i) is do-ut-desif every agenti in C (a) has one of
her goals satisfied:Goal(i)∩E 6= /0, and (b) contributed to the achievement
of some of the others’ goals: there existsg j ∈ E∩Goal( j), j 6= i, such that
C\{i} cannot achieveg j .

A Boolean game can be translated into a power structure in the following
way: every propositional goalϕi is expressed as an abstract goalgi with
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Goal(i) = {gi}, while pow andcompexpress respectively which coalitions
can achieve which sets of goals and which sets of goals are jointly feasible.
The converse translation (from power structures to Boolean games) is simple
only in the special case where each agenti has a single goalgi (the details of
the translation do not present any particular interest and we omit them).

Now, in the specific case where each agenti has a single goalgi , 〈C,E〉 is
do-ut-desif (a’) E ⊇ GoalC = {gi , i ∈C} and (b’) for everyi ∈C there exists
j ∈C, j 6= i, such thatC\ {i} cannot achieveg j . This leads to the following
characterization ofdo-ut-descoalitions:

OBSERVATION 1. 〈C,GoalC〉 is do-ut-desif and only if C is efficient and
for every i∈C, C\{i} is not efficient.

Although, clearly, any minimally efficient coalition isdo ut des, the con-
verse is not true: consider the Boolean game withn= 4, i controlsxi , γ1 = x2,
γ2 = x1, γ3 = x4 andγ4 = x3; thenC is do-ut-des, but not minimally efficient.
Now, Boellaet al.define a further refined notion :〈C,E〉 is a i-dud coalition
if it is do-ut-desand is not decomposable into two smallerdo-ut-descoali-
tions. In other terms,C is i-dud if and only if C is efficient and cannot be
decomposed into disjoint efficient subcoalitions. This stronger notion is still
not equivalent to being minimally efficient: in the Boolean game wheren= 4,
i controlsxi , γ1 = x2, γ2 = x1, γ3 = x1∧x2∧x4 andγ4 = x1∧x2∧x3, the only
efficient coalitions are{1,2} and{1,2,3,4}, therefore{1,2,3,4} is i-dudbut
not minimally efficient.

8. Conclusion

The results we have obtained are twofold – this paper can actually be seen as
two independent parts.

The first part (Section 3) gives a characterization of effectivity functions
induced by (pre-)Boolean games, thus allowing us to understand better the
structural assumptions hidden behind the control assignment functions that
define the power of agents in Boolean games. The results of Section 3 apply
to pre-Boolean games, where preferences do not play any role.

The second part (Sections 4, 5 and 6) shows that Boolean games can be
used as a compact representation setting for coalitional games where players
have quasi-dichotomous preferences. This specificity has lead us to define
an interesting notion of efficient coalitions. We have given an exact charac-
terization of sets of coalitions that correspond to the set of efficient coali-
tions for a Boolean game, and several results concerning the computation
of efficient coalitions. The results of Sections 4, 5 and 6 can be partitioned
into two classes: those who apply to Boolean games with quasi-dichotomous
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preferences, and those who apply only to standard Boolean games, with di-
chotomous preferences.

There are many practical situations where preferences are naturally quasi-
dichotomous, or even dichotomous (cf. Example 2). However, it is naturalto
ask whether our results of Sections 4, 5 and 6 extend to generalized Boolean
games, with arbitrary preferences represented in some compact representa-
tion language (Bonzon et al., 2006; Bonzon et al., 2009). This is a challenging
issue for further research. Unfortunately, this does not appear to beeasy,
because the notion of efficient coalition, which is dichotomous in essence,
only makes sense when each agent has a primary goal whose satisfaction
overweighs all possible action costs, or, in other terms, when preferences are
quasi-dichotomous.
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Appendix

We show here that decomposability is equivalent to (2) whereas in the pres-
ence of decomposability and Eff(N) = 2S\{ /0}, atomicity is equivalent to the
conjunction of (3) and (4), with

(2) for anyC 6= /0,Effnc(C) = {∩i∈CXi : Xi ∈ Effnc(i)}
(3) X,Y ∈ Effnc(i) andX 6=Y impliesX∩Y = /0
(4) X ∈ Effnc( j) andx∈ X implies∃Y ∈ Effnc(i),x∈Y

where Effnc(C) denotes the set of all inclusion-minimal sets in Eff(C).

1. Decomposability is equivalent to (2).
First, we show that decomposability is equivalent to

(D′) : for everyC⊆ N, X ∈ Eff(C) iff for all i ∈C there existsXi such
thatX = ∩i∈CXi

This is easily shown by induction on the size ofC: the base case is
obvious, and for anyi ∈ C, X ∈ Eff(C) if and only if there existsXi

andX−i such thatX = Xi ∩X−i .
Now, because Eff(C) is upward closed (X ⊆ Y andX ∈ Eff(C) implies
Y ∈ Eff(C)), we haveX ∈ Eff(C) iff Y ∈ Effnc(C) for someY ⊆ X,
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therefore (2) is equivalent to:X ∈ Eff(C) iff there exists(Yi)i∈C such that
for all i, Yi ∈ Effnc({i}) andX ⊇ ∩i∈CYi , which, again because Eff(C) is
upward closed, is equivalent to:X ∈ Eff(C) iff there exists(Yi)i∈C such
that for all i, Yi ∈ Eff({i}) andX = ∩i∈CYi , which is (D’).

2. In the presence of decomposability andEff(N) = 2S\{ /0}, atomicity
is equivalent to (3) and (4).
Assume atomicity holds. Recall thatAt(i) andE f fnc(i) coincide, there-
fore the fact that any two elements ofAt(i) are disjoint implies (3). Now,
let X ∈ At( j) andx∈ X. Thenx∈ S; sinceAt(i) is a partition ofS, there
existsY ∈ At( j) such thatx∈Y, which shows (4).
Conversely, assume (3) and (4) hold, as well as decomposability and
Eff(N) = 2S\ { /0}. Let s∈ S; then{s} ∈ Eff(N). By decomposability
applied to(N\{i},{i}), there isY ∈ Eff(i) andZ ∈ Eff(N\{i} such that
Y∩Z = {s}. Therefore,s∈ ∪{X|X ∈ At(i)}. Lastly, (3) implies that any
two elements ofAt(i) are disjoint, which shows thatAt(i) is a partition
of S.

Notes

1 This result was recently shown by (Goranko et al., 2011) to be wrong for infinite game
models. As the games we consider are finite, this has no impact on the restof the paper.

2 The strong links between our properties and the properties in (Agotnes and Alechina,
2011) that characterize injective games should not be seen as a surprise: becauseσ = σ′ if and
only if σi = σ′

i for everyi ∈ N, Boolean games are injective. Our Lemmas 3 and 4 can actually
be seen as a proof that our properties, which imply all of the properties (Agotnes and Alechina,
2011) (note that their property (1) is trivially satisfied for finite games) imply injectivity.

3 There are 2 players inI = {1,2}, therefore each~C in Cov(S C ,12) contains 2 coalitions,
one for each player, satisfying (i), (ii) and (iii).

4 We must be careful however. if the cost functions in a quasi-dichotomous Boolean game
were represented explicitly, then all problems considered would be trivially polynomial. Our
statement holds only if the representation is compact enough so that the representation of some
cost function (such as, typically, the null cost function) has a polynomial size.

5 Again, the set of relevant players for a Boolean gameG should be denoted byRPG(i): for
the ease of notation we simply writeRPi .

6 Note that this notion has nothing to do with the classical notion of stable set in graph
theory.

7 If B is minimal efficient, thenp= 1.
8 Since we aim at comparing both notions in standard Boolean games, we give the definition

for standard Boolean games only. The definition would be exactly the samein the general case
with non-zero costs.

9 There is no similar relationship between the DHKW-core and the strong core. Whereas
both the DHKW-core and the weak core consider that a coalition is strictly better off if all its
members are strictly better off, the strong core uses a weaker definition that makes the concept
incomparable with the DHKW-core.
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