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Abstract. Boolean games are a logical setting for representing strategic gamesug: a s
cinct way, taking advantage of the expressive power and concsen@sopositional logic.

A Boolean game consists of a set of players, each of which controls @& peopositional
variables and has a specific goal expressed by a propositional loriive show here that
Boolean games are a very simple setting, yet sophisticated enoughafgsiag the formation

of coalitions. Due to the fact that players have dichotomous prefesetimefollowing notion
emerges naturally: a coalition in a Boolean game is efficient if it has the poaguarantee
that all goals of the members of the coalition are satisfied. We study thentiexpof efficient
coalitions.
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1. Introduction

Boolean games (Harrenstein et al., 2001; Harrenstein, 2004; Dudnvaaier
Hoek, 2004; Bonzon et al., 2009) are a logical setting for represestiiate-

gic games in a succinct way, taking advantage of the expressive poder a
conciseness of propositional logic. Informally, a Boolean game condists o
set of players, each of which controls a set of propositional varigdsas

a goal expressed by a propositional formula.

Boolean games are games with botstauctural specificityand aprefer-
ential specificity The structural specificity expresses a restriction on strategy
profiles:a player’s (pure) strategy is a truth assignment of the variables she
controls The preferential specificity expresses a restriction on the player’s
preferences: a player in a Boolean game hdhotomougpreference rela-
tion, that is, either her goal is satisfied or it is not, and this goal is reptesen
succinctly by a propositional formula. The preferential specificity can be
easily relaxed, and there are a number of extensions to Boolean gamads that
low players to have nondichotomous preferences: in (Harrenstein) faet
chapter), each agent hasetof goals; in (Bonzon et al., 2006; Bonzon et al.,
2009), an agent’s preferences is described by a CP-net or moeeatjgra
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specification in some compact preference representation languageiringD

et al., 2008), each agent hagjaasi-dichotomousitility function, namely,

a dichotomous utility function induced by her goal, plus a negligible cost
associated to her possible variable assignments (with the specific choice that
making a variable false is costless). The structural specificity, on the other
hand, is central to the framework, and relaxing it would probably make it
depart largely from Boolean games.

Previous work on Boolean games has focused on representatiores,issu
by giving logical characterizations of several solution concepts ssidtaah
equilibria, and by investigating the computational issues related to these so-
lution concepts. Studying the power of coalitions, as well as the formation of
coalitions, in Boolean games, has rarely been addressed (with the erceptio
of (Dunne et al., 2008)). The goal of this paper is to address bothsisése
these issues are, to a large extent, independent, this paper is comptged of
almost independent parts.

The first part of the paper focuses on the power of coalitions in Boolean
games. Equivalently, it amounts at studying the meaning of the structural
specificity: how restrictive is it, and how can it be characterized? A nlatura
way of answering this question is to study Boolean games from the point of
view of effectivity functionswhich model the power of coalitions of agents.
More precisely, we would like to characterize the properties of effectivity
functions that are implied by the structural specificity of Boolean games. Al-
most ten years ago, Pauly showed a correspondence between stategi g
and a particular class of effectivity functions he named playable effigctiv
functions (it has been shown recently that this correspondence ionot ¢
pletely exact, but this has no impact on our work; see endnote 1). Now,
Boolean Games do not cover all strategic games: their structural specificity
is a true restriction, and therefore we expect that Boolean games pamces
to a strict subset of playable effectivity functions. The contribution of this
first part of the paper consists in characterizing this subset. Note thasin th
first part, the agents’ preferences are irrelevant, and thereforesh#s are
totally independent from the question whether the preferential specificity is
assumed or not.

The second part of this paper also focuses on the power of coalitions,
but from a different perspective, taking agents’ preferences ottount, and
taking the preferential specificity for granted (even if some of our restilts
hold under the weaker assumption that preferences are quasi-dicluspmo
Due to the dichotomous nature of agents’ preferences, the following simple
notion emerges naturally: a coalition in a Boolean gameffisientif it has
the power to guarantee that all goals of the members of the coalition are
satisfied. This notion is of primary importance, because it is expected that
agents in a Boolean game will join such coalitions. Similarly as for related
notions in cooperative game theory, the existence of an efficient coalition is
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not guaranteed, and deciding whether a Boolean game possesshsiant ef
coalition is an important issue. Efficient coalitions enjoy interesting structural
properties, and are not easy to identify, especially because a sulsstio
perset of an efficient coalition may not be efficient, and likewise, the union
or the intersection of efficient coalitions may not be efficient. We charac-
terize efficient coalitions in terms of some topological properties and study
the relation between efficiency and some solution concepts coming from co-
operative game theory: the weak core (the standard notion of corghand
strong core (which is a sort of generalization of Pareto optimality). Then, th
computational complexity of the membership and non-emptiness problems
is identified for the three notions of efficiency, weak core and strong. cor
Finally, the last contribution regards the representation of a Boolean game in
terms of dependency graphs: we show that dependency graphsasthtive
notion of stable coalitions can be used as a correct (but not complete)dnetho
to find efficient coalitions. Completeness is restored in the special case whe
goals requires only one player to be satisfied.

We recall the Boolean game framework in Section 2. In Section 3 we
study the specificity of the power of coalitions in Boolean games, as com-
pared to static games in general. For this we show that the effectivity function
in a Boolean game satisfies some specific properties, that fully characterize
Boolean games. In Section 4, we define efficient coalitions in Boolean games
and focus first on their structural properties. We give an exacachenization
of sets of coalitions that can be obtained as the set of efficient coalitions
associated with a Boolean game, and we relate coalition efficiency to the
well-known notion of core. In Section 5 we study efficient coalitions from a
computational point of view. In Section 6, we address the role of depende
cies between agents in the computation of efficient coalitions. Sections 7 and
8 discuss respectively related work and further research issues.

2. Boolean games

For any finite seV = {a,b,...} of propositional variabled,, denotes the
propositional language built up fro, the Boolean constants and_L, and
the usual connectives. Formulaslef are denoted by, g etc. Aliteral is a
variablex of V or the negation of a variable.t&rmis a consistent conjunction
of literals. Aclauseis a disjunction of literals. Ifx is a term, therLit(a) is
the set of literals appearing m. If ¢ € Ly, thenVar(¢) denotes the set of
propositional variables appearinggn

2V is the set of the interpretations fgr with the usual convention that for
Me 2V andxeV, M gives the valudrue to x if x € M andfalseotherwise.
= denotes the consequence relation of classical propositional logie! et
V. A V'-interpretation is a truth assignement to each variabM'pthat is,
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an element of ¥. V'-interpretations are denoted by listing all variables of
V’, with a— symbol when the variable is set to false: for instanc&/’let
{a,b,d}, then theV’-interpretatiorM = {a,d} assigninga andd to true and

b to false is denoted bghd. If Var(¢) C X, thenMody (¢) represents the set
of X-interpretations satisfying.

If {V1,...,Vp} is a partition ofV and{Mj,...,Mp} are partial interpre-
tations, wheravl; € 2V, (M1,...,Mp) denotes the interpretatiod; U... U
Mp.
pLet W be a propositional formula. A termis animplicantof g if and only
if a = holds.a is aprime implicantof Y if and only if a is an implicant of
Y and for every implican@t’ of y, if a = a’ holds, thera’ = a holds.P1(y)
denotes the set of all the prime implicants]of

Given a set of propositional variabl®s a Boolean game oX is ann-
player game, where the actions available to each player consist in assigning
a truth value to each variable in a given subseWofThe preferences of
each player are represented by a propositional forméijdormed upon the
variables inv.

Without loss of generality, we can assume t\ais finite. Indeed, only
a finite set of variables occurs in the goalisand the constraintg, and
the variables not occurring in them do not play any role and can safely be
forgotten.

DEFINITION 1. An nplayer Boolean gameis a 5-tuple(N,V, I, @),
where

— N={1,2,...,n} is a set of players (also called agents);
— V is a set of propositional variables;

— m: N~ 2" is a control assignment function mapping each player to
the set of variables she controls;

— ' ={y1,...,Yn} is a set of constraints, where eaghis a satisfiable
propositional formula of k).

— ®={d1,...,9n} is a set of goals, where eadh is a satisfiable for-
mula of Ly.

For ease of notation, the set of all the variables controlledibywritten
1% instead ofrt(i). Each variable is controlled by one and only one agent, that
is, {my, ..., T} forms a partition o¥. The role of constraints is to restrict the
set of feasible strategies of each agent: agassigns each variable tfto a
truth value, in such a way that the resulting assignment satigfies
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DEFINITION 2. LetG= (N,V,1,I",®) be a Boolean game. A (pursirat-
egyfor Playeriin G is atg-interpretation satisfying;. The set of strategies
for Playeriin GisZ; = {g; € 2™ | 0; = Vi }. Astrategy profile o for G is an
n-tupleoc = (01,02,...,0n) Where for all i,0; € &j. ¥ =31 x ... x Zj is the
set of all strategy profiles.

For eachi, y; is a constraint restricting the possible strategy profiles for
Playeri.

Note that since{my,...,T,} forms a partition oV, a strategy profile
is an interpretation fo¥, i.e.,o € 2¥. The following notations are usual in
game theory. Leb = (01,...,0,) be a strategy profile. For any nonempty
set of playerd C N, the projection ofo on| is defined byo, = (0i)ic; and
0. = oy If I = {i}, we denote the projection afon {i} by g instead of
0yjy; similarly, we noteo _j instead ol _;,. Ty denotes the set of the variables
controlled byl, andm_| = Ty,,. The set of strategies foIC N is 3| = xj¢| Zj,
and the joint goal of coalitioh C N is ®; = A ¢i.

If o anda’ are two strategy profile$p_,,0]) denotes the strategy profile
obtained frono by replacingo; with o] for all i € 1. For the sake of notation,
the set of all strategy profiles constructed framwill be written {o|o D oc}
instead of{o|o = (0_¢,0¢),V0_c}.

The goald; of playeri is a compact representation of a dichotomous pref-
erence relation, or equivalently, of a binary utility function: £ — {0,1}
defined by (o) =0 if 0 = —¢; andu;(0) =1if o = ¢;. o is at least as good
asc’ for i, denoted byo > @, if uj(o) > u;(0’), or equivalently, ifo = —;
implies 0’ = —¢;; o is strictly better tharo’ for i, denoted byo >~ @', if
ui(o) > ui(a’), or, equivalentlyp = ¢; ando’ = —¢;.

As we said in the introduction, for the results of the first part of the paper,
preferences do not play any role (aadortiori, neither does their dichoto-
mous nature). For this we introduce the notiorpm-Boolean gamesvhich
are preference-free Boolean games.

DEFINITION 3. Apre-Boolean gamas a 4-tuple(N,V, 1t "), with N,V, 1T, I
as in Definition 1.

Thus, a Boolean game consists of a pre-Boolean game together with a
description® of the player’s (dichotomous) utilities.

Boolean games can easily be extended so as to allow for non-dichotomous
preferences, represented in some compact language for prefesgmesen-
tation (see (Harrenstein, 2004; Bonzon et al., 2006; Bonzon et al9; 200
Dunne et al., 2008)). Among these generalized Boolean games, antingres
subclass consists of Boolean games in which the players’ utility functions are
nearly dichotomous.

DEFINITION 4. Aquasi-dichotomous Boolean gamis a 6-uple(N,V, Tt I,
®,(cy,...,Cn)) where(N,V, I, @) is a Boolean game and for each Player
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i, ¢ is a function mapping each strategy profde= (01,...,0,) to a cost
such that o) < 1. The utility function u: = — {0, 1} of player i defined by
ui(o) = —ci(0) if o = —¢; and y(o) = 1—c;(0) if o = ¢;. Note that for any

o such thato |= ¢; and anyo’ such thato’ = —¢; we have yo) > uj(0'):
whatever the cost function, an agent is always better off in a state thatsstisfi
her goal than in a state that does not.

If G is a quasi-dichotomous Boolean game, the standard Boolean gadme G
associated with G is obtained from G by simply ignoring the cost function c.

Obviously, any standard Boolean game corresponds to a quasi-dichetomo
Boolean game, obtained by lettiogo) = O for all i and for allo.

Quasi-dichotomous Boolean games were introduced first in (Dunne et al.,
2008), with the difference that the cost functionin (Dunne et al., 2008)
depends only on the player’s own action, thatagp) = ci(g;), plus the
additional assumption that each agent has a cost associated to edtipos
action (setting one of her controlled variables to true), @fd;) is the sum
of the costs of all of her variables assigned to true.

In the definition above we did not specify how the cost functiois rep-
resented. Representing it explicitly, by listing all combinations of strategies
together with their utility for each agent, would not fit the spirit of Boolean
games, and would render somehow useless the compact representgtion of
goals. It is thus natural to assume that eactvill be represented in some
compact representation language, possibly making some further restriction
such as in (Dunne et al., 2008).

3. Coalitions and effectivity functions in Boolean games

Recall that the structural specificity of Boolean games is that individuakstr
gies are truth assignments to a given set of propositional variables. Wé migh
wonder how restrictive this specificity is. In this section we study Boolean
games from the point of view of effectivity functions. Effectivity function
have been developed in social choice to model the power of coalitiondifiviou
1983; Abdou and Keiding, 1991; Pauly, 2001). Clearly, the definitiof afs
Modg (Vi) induces some constraints on the power of players and coalitions.
Our aim is to give an exact characterization of effectivity functions ieduc

by Boolean games.

Since in Boolean games the power of an agestindependent from her
goal ¢;, it suffices to consider pre-Boolean games when dealing with effec-
tivity functions. As usualN is the set of agents, @alition C is a subset of
N, andSis a generic set of states.
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DEFINITION 5. A coalitional effectivity function is a functioneff: 2N —
22° satisfyingmonotonicity for every coalition CC N, X € Eff(C) implies
Y € Eff(C) whenever XZY C S.

The function Eff associates with every group of players the set of states
outcomes, for which the group is effective. We usually interpret Eff(C)
as “the players i€ have a joint strategy for bringing about an outcomin

A strategic games usually defined as a tupl®N, =, S o), whereX is the
set of strategy profiles for players k, ando: Xxjcn Zj — Sis theoutcome
function (Pauly, 2001) gives a more precise account for effectivity in strateg
games by defining-effectivity: a coalitionC C N is a-effectivefor X C Sif
and only if the players i€ have a joint strategy for bringing an outcome of
X, whatever the strategies of the other players.are

DEFINITION 6. Acoalitional a-effectivity function for a non-empty strate-
gic game G is a functiofEffs: 2V — 22° defined by: Xe Eff$(C) iff Joc
Vo_c, 0(0c,0-¢) € X.

In a Boolean game, outcomes are identified with strategy pro8le<. A
pre-Boolean gamé& then induces an-effectivity function Eff} as follows:

DEFINITION 7. Let G= (N,V,1,I") be a pre-Boolean game. Thmali-
tional a-effectivity function induced by G is the functiorEffg : 2N — 2%
defined by: for any XZ £ and any CC N, X € Effg(C) if there existoc € 3¢
such that forany ¢ € Z_¢, (0¢,0_¢) € X.

For the sake of notation, tlieeffectivity function induced by a pre-Boolean
gameG will be denoted by Eff instead of Eff. Note that effectivity func-
tions induced by pre-Boolean games can be equivalently expressecpas ma
pings Eff; : 2N — 2 from coalitions to sets of logical formulag:c Effg(1)
if Mody (¢) € Eff(1). This definition obviously implies syntax-independence,
that is, ifp = Y thend € Effg(l) iff @ € Effs(l).

This definition is a particular case of theeffectivity function induced by
a strategic game (see (Pauly, 2001), Chapter 2). Therefore, thestiohs
satisfy the following properties (cf. (Pauly, 2001), Theorem 2.27):

1. YC C N, @ ¢ Effg(C);
2. VCCN, Z € Eff(C);
3. forallX C 3, if X ¢ Effg(@) thenX € Effg(N);

4. Effs is superadditive, that is, if for all, C’' € N such thaCNC’ =0, and
X,Y C %, if X € Effg(C) andY € Effg(C’) thenXNY e Effg(CUC).
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An effectivity function satisfying these four properties is cal&bngly
playable. Note that strong playability implies regularity and coalition-mono-
tonicity ((Pauly, 2001), Lemma 2.26). Pauly (2001) proves a correspue
between strong playability of an effectivity function Eff and the existerice o
a strategic gamé& such that Eff = Eff.1 However, pre-Boolean games are
a specific case of strategic game forms, therefore we would like to have an
exact characterization of those effectivity functions that correspoadote-
Boolean game. We first have to define two additional properties. D&f{a)
as the minimal sets in Eff), that is,At(C) = {X € Eff(C)| there is nor €
Eff(C) such thaty ¢ X}. At(C) is called thenonmonotonic coref C, and
denoted by Efi(C), in (Goranko et al., 2011).

Atomicity: Eff satisfiesatomicityif for everyC C N, At(C) forms a partition
of S

Decomposability: Eff satisfiesdecomposabilityif for every two disjoints
subsets,J of N and for everyX C S, X € Eff(1 UJ) if and only if there
existY € Eff(l) andZ € Eff(J) such thalX =YNZ.

Decomposability is a strong property that implies superadditivity. Note
also that decomposability and atomicity are strongly related to the following
properties in (Agotnes and Alechina, 2011):

(2) foranyC +# 0,Eff"°(C) = {NiecX : X € Eff"(i)}
(3) X,Y € Eff"(i) andX #Y impliesXNY =0
(4) X € Eff"°(j) andx € X implies3Y € Eff"(i),xe Y

where Eff°(C) denotes the set of all inclusion-minimal sets in(Eff. De-
composability is equivalent to (2) whereas in the presence of deconilitysab
and EffN) = 25\ {0}, atomicity is equivalent to the conjunction of (3) and
(4). We give a short proof of these equivalences in Appendix.

In the rest of this section we prove the following characterization result:
a coalitionala-effectivity function Eff satisfies strong playability, atomicity,
decomposability and EfiN) = 25\ & if and only if there exists a pre-Boolean
gameG = (N,V, 1, ") and a bijective functiop: S— Mod(I") such that for
everyC C N: Effg(C) = {u(X)|X € Eff(C)}.

The proof of these two results go along a series of lemmas, which we
establish first If G is a pre-Boolean game, the set of atoms for the effectivity
functions Eft; will be denoted byAts.

LEMMA 1. For any pre-Boolean game &ffg satisfies strong playability,
atomicity, decomposability, arffg(N) = 2%\ .

Proof: Effg is a (specificp-effectivity function, therefore by Theorem 2.27 in
(Pauly, 2001), Eff satisfies strong playability (and fortiori, superaddivity).
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As for atomicity, remark first thaX € Atg(C) if and only if X is the set of
all -interpretations satisfyings = A, yi, which clearly implies that any two
distinct subsets i\t (C) are disjoint. Then remark th@d,..s.{0|0 D oc}
= 2. Therefore Atg(C) forms a partition o.

As for decomposability, from left to right: let € Effg(1 UJ). Then there
exists a joint strategg,; such that iW = {o € Z|o D 0y 3}, thenW C X.
Consider nowy = {oc € Z|oc D> 0,} andZ = {0 € Z|o D 0;}. We haveY €
Effc(l), Z € Effg(J) andX =Y NZ. From right to left: lety € Effg(l) and
Z € Effg(J), then by superaddivityy N Z € Effg(1 UJ).

Lastly, leto = (01,...,0n) € Z. If each player playso; theno is obtained,
therefore{a} € Effg(N). By monotonicity, every nonempty subsetfs in
Effc(N) as well, therefore Ef(N) = 2%\ &. "

LEMMA 2. Ifthere exists a pre-Boolean game=&(N, V, 11,I") and an bijec-
tive function u S— Mod(I") such that for every € N: Eff(C) = {u(X)|X €
Eff(C)}, thenEff satisfies strong playability, atomicity, decomposability and
Eff(N) = 25\ @.

Proof. Effg satisfies these properties apds a bijection betweers and
H(Z) = Mod(I"), therefore these properties transfer to Eff. n

LEMMA 3. Let G be a pre-Boolean gamE,its set of strategy profiles and
Ti be a minimal subset d&ffs(i). Then T= {o|o D g;} for all g; € %;.

Proof: Playeri can only enforce a subset Bf, that is,X € Effg(i)if X con-
tainsXy x ... x Zj_1 X X X Zj41 X ... x Xy for someZX’ C Z;. Therefore the
minimal subsets of Eff(i) are exactly those of the form; x ... x Zj_1 x
{0i} X Zj41 X ... x X, that is, of the form{o|o 2 o;}. ]

From now on, let Eff be a coalitional effectivity function satisfying
strong playability, atomicity, decomposability andEff(N) = 25\ &.

Let At(C) be the set of atoms f@& associated with Eff. Due to decompos-
ability, Eff is entirely determined byAt(i),i € N}.

LEMMA 4. For every s= S there exists a uniquéa, ...,Zn) € At(1) x...x
At(n) suchthat4n...NnZ, = {s}.

Proof: Letsc S. Because EfiN) = 25\ {@}, we have{s} € Eff(N), and by
decomposability, there exist3, . .., Tn) such that for every, T; € Eff(i) and
TiN...NTy = {s}. Leti € N. By definition of At(i), there exist&; € At(i)
such thas € Z; andz; C T;. Suppose there exisB& € At(i) such thats € Z{
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andZ C Ti. ZnZ # &, sinces belongs to botly; andZ. Therefore, by
atomicity,Z; = Z/, and this holds for every []

Lemma 4 allows us to writ&;(s) for everysand to be the unique subset
in At(i) containings. For any non-empty coalitio@, let us writeZ¢(s) =

Niec Zi(9)-

Let us now build the Boolean gan@& = G(Eff) as follows. The intuition
of the construction is that by the atoms of plaieorrespond to her strategies,
and in order to ensure that the number'ektrategies is equal to the number
of atoms foii, we introduce a suitable number of variables controlled bgd
a constraint that limits the number o strategies to the number of atoms.
(We also give a detailed example after the formal construction.)

— for everyi, consider the following numbering d@t(i): let r; be a bi-
jective mapping fromAt(i) to {0,1,...,|At(i)| — 1}. Then createy =
[log, |At(i)|] propositional variablesg?, ..., x". Finally, letV = {x/|i
N,1<j<p};

— foreveryi, letmg = {x},....x"};

— for everyi and everyj < pj, letg; j be thejth digit in the binary repre-
sentation of. Note thak; , = 1 by definition ofp;. If xis a propositional
variable then we use the following notationx@ —x and 1x = x. Then
define

= A ( A Ei,j-&"—Hxi")

je{2,...,pi},E,j=0 \1<k<j-1

finally, for eachs€ S, let u(s) € 2V defined by»(ij € Y(s) if and only if
the jth digit of the binary representation nfz;(s)) is 1.

For everyi € N and everyZ € At(i), letk =ri(Z) and g;(Z) the strat-
egy of Playeri in G* corresponding to the binary representatiorkafsing
{xt,...,xP}, xt being the most significant bit. For instance,pif= 3 and
r(zZ) = 6 thenaj(Z) = (x}, %2, ).

We denote by g+ the set of strategy profiles (or, equivalently, states) of
G*. Strategies okg- are denoted bgg-. The set of atoms of Eff is denoted
by Atg-(i).

Since the decomposition of states into atoms is unique (Lemma 4), two
different states ands’ are mapped to two different valuations,, s+ s im-
pliesp(s) # u(s). Now, for anyZ € At(i), constrainty; ensures thati(Z) |=
vi; this being true for all, for anyo we havey(o) = y1 A ... Ayn. Therefore,
Wis a bijection betweeBandZg: = Mod(y1 A ... AYh).
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To understand it better, it is helpful to see how this construction works
on an example. Le¥l = {1,2,3}, S={1,2,3,4,5,6,7,8,9,A,B,C}, At(1) =
{1234,5678, BBC}, At(2) = {1357B, 2468AC}, At(3) = {1256, 3478AB}
(curly brackets for subsets a@fare omitted — 1234 mear4, 2,3,4} and so
on). By decomposability, we obtain:

— At(12) = {13,24,57,68,9B,AC},
— A(13) = {12,34,56,78,9C, AB}, and
— At(23) = {159,37B, 26C, 48A}.

|At(1)| = 3, thereforep; = 2. |At(2)| = |At(3)| = 2, thereforep, = p3 = 1.
Thus,V = {x},x2,x3 x4}. Let At(1) = {Zo, 21,25}, that is,r1(1234) = 0,
r1(5678 =1 andr1(9ABC) = 2. Likewise,r(13573B) = 0,r2(2468AC) = 1,
r3(1256%) = 0 andr3(3478AB) = 1. Considers= 6. We haves = 5678N
2468ACN1256%, thereforqu(s) = (X3, X3, X3, —x3). The constraints ang =
(xt = =x2), Y2 =y3=T. Thus,G* = (N,V, 7. T) whereN = {1,2,3},V =
Pdo@odiod), T = pdod), To = ), T6 = {8}, v = (d — ) and
Y2=Y3=T.

LEMMA 5. Foreveryie N and Ze At(i): W(Z) = {0¢- € 2

Oc-20i(2)}.

Proof: Leti € N andZ € At(i). Let og- € H(Z); by definition ofp(Z), there
exists ans € S such thatu(s) = og-. Consider the decomposition efinto
atoms, thatis{s} = Z1(s) N...NZy(s) (cf. Lemma 4). By construction qf,
the projection ofi(s) on {x*,... ,xipi} corresponds to the binary representation
of ri(Z(s)). Thereforep(s) = og- extendso;(Z).

Conversely, lebge- such thatog: O 0j(Z). For everyj < n, letk; be the
number whose binary representation{i(i, e ,xpj} is the projection obg-
on {x},...,x"}. Let o be defined by{c} = Zy(ki) N...N Zy(ky). By con-
struction ofy, we havep(o) = og-. Moreover,z;(ki) = Z by atomicity, that
is, 0 € Z. Thereforeog- € p(Z). n

We are now ready for establishing the main result of this section.

PROPOSITION 1. An effectivity functioreff satisfies
1. strong playability,
2. atomicity,
3. decomposability and

4. Eff(N) =22\ @
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if and only if there exists a pre-Boolean game-GN,V, 11, I") and a bijective
function p: £ — Mod(I") such that for every € N: Effg(C) = {u(X)|X €
Eff(C)}.

Proof: The right-to-left direction is Lemma 2. In order to prove the opposite
direction, we show that for eve@ C N and everyX C S X € Eff(C) holds
if and only if p(X) € Effe(C).

Decomposability of both Eff and Eff implies that it is enough to show
that for everyi and everyX C S X € Eff(i) if and only if u(X) € Effe-(i).
Because both Eff and Eff satisfy coalition monotonicity, it is enough to
show that for every, Z; € Ate-(i) implies () € Effg-(i) andT; € Ate-(i)
impliesu~1(T;) € Eff(i).

LetZ; € At(i). Because(Z) < pi, we haveoi(Z;) = Vi, thereforeoi(Z;) €
Effe-(i). By Lemma5u(Z) = {og-|0c- 2 0i(Z)}. Thereforepu(z) € Effg-(i).

Conversely, letT; € Ats-(i). By Lemma 3,T; = {o|o D g;} for some
0 € 5. Leto; = (g1.%,...,& 5. X") andq(ai) = 3P, 2P K& . Note that
q(oi) < pi, becausas; € Z; implies o; = yi. Now, let j = rfl(q(oi)). Let
Z) ¢ At(i) such thatri(Z}) = j. We havep(z!) = {o|o 2 g;} = Ti. Now,

Z) c Eff(i), becaus&’ ¢ At(i). Thereforep (T;) € Eff(i).

We have now proven that f@ C N and everyX C S, X € Eff(C) holds if
and only ifu(X) € Effg-(C). We can now conclude that if Eff satisfies strong
playability, atomicity, decomposability, and Bf) = 2%\ &, then there exists
a games(= G*) and an bijective functiop: S— Mod(I") such that for every
C C N: Effg(C) = {u(X)|X € Eff(C)}. [

A natural question is, can we obtain a similar result without the need
of constraints? This is obviously not the case, because for a Booleaa ga
G without constraints, the cardinality &g is 2™ for somem. Therefore,
requiring that the cardinality obis a power of 2 is necessary. But it is not
sufficient: because the cardinality of evexyis also be a power of 2, this
must also be the case ft(i).

We say that Eff satisfieegular atomicityif it satisfies atomicity and for
alli e N, |At({i})| = 2™ for some positive integem. We note that regular
atomicity and decomposability implies that this cardinality property propa-
gates to every coalition,e., for all C C N, |At(C)| = 2™ for some positive

integernc.
Then we have the following:

PROPOSITION 2. A coalitional a-effectivity functioreff satisfies
1. strong playability,

2. regular atomicity,
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3. decomposability and
4. Eff(N) =25\ o

if and only if there exists a constraint-free pre-Boolean game ®I,V, 1, T)
and an bijective function uS— 2¥ such that for every G N: Effg(C) =
{u(X)[X € Eff(C)}.

Proof: The proof is almost identical to the proof of Proposition 1. The only
difference is that in the construction Gf is unchanged except that we don't
need to defin€ . Since|At({i})| is a power of 2, we have; = log|At({i})],
andp is a bijection betwee® andZg- = Mod(y1 A ... AYn) = Mod(T) =

2V, m

4. Efficient coalitions

We now consider Boolean games and de@ifecient coalitionsInformally,

a coalition is efficient in a Boolean game if and only if it has the ability to

jointly satisfy the goals of all members of the coalition. This notion of effi-

cient coalition is not totally new, as is coincides with the notion of successful
coalition in qualitative coalitional games (QCG) introduced in (Wooldridge
and Dunne, 2004).

4.1. DEFINITION AND CHARACTERIZATION

DEFINITION 8. LetG=(N,V, ., ®) be a Boolean game. A coalitionC

N isefficientif and only if there existsc € 2¢ such that for allo_c, we have
(0c,0_c) = Aicc 9i- The set of all efficient coalitions of a game G is denoted
by EC(G). C is aminimal efficient coalition if there is no efficient coalition
BcC.

Note that this definition still makes sense for quasi-dichotomous Boolean
games; in this case, the castis irrelevant, and a coalition is efficient if it
is able to jointly satisfy the goals of its members, whatever the induced costs
(which, we recall, are always smaller than the utility gain resulting from goal
satisfaction): formallyC is efficient for a quasi-dichotomous Boolean game
Gif and only if it is efficient forG*. (However, it no longer makes sense for
generalized Boolean games with arbitrary utility functions.)

Note that the empty coalitios is efficient, becaus@z = Aic ¢i =T is
always satisfied.
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EXAMPLE 1. LetG=(N,V,I, 7, ®)where V= {a,b,c}, N={1,2,3},yi =
T for every i,y = {a}, T = {b}, Ty = {c}, ¢1 = (—aAb), ¢p2 = (-aVv —c)
anddz = (-bA—cC).

First note thatd; A ¢3 is inconsistent, therefore no coalition containing
{1,3} can be efficient{1} is not efficient, becausf; cannot be made true
only by fixing the value of a; similarly,2} and {3} are not efficient either.
{1,2} is efficient, because the joint strategy; », = ab is such that 5, =
b1/ b2. {2,3} is efficient, becausey, 3, = bt |= ¢2 A d3. ThereforeEC(G) =
{2,{1,2},{2,3}}.

From this simple example we see already that EC is neither downward
closed nor upward closed, that is{fis efficient, then a subset or a superset
of C may not be efficient. We also see that EC is not closed under union
or intersection{1,2} and{2,3} are efficient, but neithef1,2} N {2,3} nor
{1,2}U{2,3} is.

EXAMPLE 2 (kidney exchange, after (Abraham et al., 2007)).

Consider n pairs of individuals, each consisting of a recipierinRirgent
need of a kidney transplant, and a donoy\2ho is ready to give one of her
kidneys to save;RBecause the kidney of donor B not necessarily compati-
ble with recipient R a strategy for saving more people consists in considering
the graph({1,...,n},E) containing a node € 1,...,n for each pair(D;, R)
and containing the edgé, j) whenever Ps kidney is compatible with R
A solution is any set of nodes that can be partitioned into disjoint cycles
in the graph: in a solution, Donor Pgives a kidney if and only ifRyets
one. An optimal solution (saving a maximum number of lifes) is a solution
with a maximum number of nodes. The problem can be seen as the following
Boolean game G:

— N={1,...,n};

— V ={gijli,j € {1,...,n}}; gij being true means that@ives a kidney
to R;.

- m={g;;1<j<n}

— for every i,yi = A —(8ij A Gik) expresses that a donor cannot give
more than one kidney.

— for every i,0i = Vj)ce 0ji expresses that the goal of i is to get a
kidney that is compatible with;R

For example, take B 5and E= {(1,1),(1,2),(2,3),(2,4),(2,5),(3,1),
(4,2),(5,4)}. Then G= (N,V,I, 7t @), with

— N=1{1,2,3,4,5)



Effectivity functions and efficient coalitions in Booleaames 15
—V={gj|1<i,j<5}
= Vi, ¥ = A (i A i)
— Ty = {011,012, 013, 014,915}, and similarly forr, etc.

— 01 =011V 031, 02 =012V Ga2; $3 = Go3; O4 = P24V O54; P5 = Qos.

The corresponding graph is depicted below.

Clearly enough, efficient coalitions correspond to solutions. In ourrexa
ple, the efficient coalitions are, {1}, {2,4}, {1,2,4},{1,2,3}, {2,4,5} and
{1,2,4,5}.

We have seen that the set of efficient coalitions associated with a Boolean
game may not be downward closed nor upward closed, nor closed under
union or non-empty intersection. However, it is possible to characterize the
efficient coalitions of a Boolean game: we will show that a set of coalitions
corresponds to the set of efficientcoalitions for some Boolean game if and
only if () it contains the emptyset and (b) it is closed by union of disjoint
coalitions.

We will prove this characterization result in the rest of this subsection. To
do so, we will need Lemmas 6 to 9, which will we establish first.

LEMMA 6. Letl, J be two coalitions of a Boolean game G. If | and J are
efficient and NJ = &, then 1UJ is efficient.

Proof: If | is efficient, then we know thalo, € %, such thab; = A ¢i, and
the same fod: Jo; € Z; such thao; = Njea®j. Moreover, ag NJ = 2, we
have(a;,03) = Aicius $i, sol UJ is an efficient coalition.

|
We now need to define the following construction. lset be a set of coali-
tions satisfying the following conditions:

Q) oesc.
(2) foralll,J e sc suchthat N =@ thenluJe sc.

Define the following Boolean gant@ as follows:
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— V ={connecti, j)|i, ] € N} (all possible connections between players);

— Vi,i=T,;
— 15 = {connecfi, j)|j € N} (all connections from Playey;

- ¢i= Vlesc\iel F,
where

= (/\ connec(j,k)) /\( A ﬁconnec(j,k)>

i-kel jel kel

(Playeri wants that all the players of her coalition are interconnected
and that there is no connection from the coalition to the “outside” of the

coalition)

We want to show that the set EG= s ¢ (where EG is the set of efficient
coalitions forG).

Before proving that Eg C s ¢, we establish the following lemmas:

LEMMA 7. For any collectionsc = {C;,i=1,...,q} C 22", Ni<i<qFci is
satisfiable if and only if for any j € {1,...,q}, eitherG=C; orGNC; = @.

Proof:

1. Assumethatforanyj € {1,...,q}, eitherC; =C; orGNC; = @. Then
Ai<i<qFc is equivalent to

< AN Connectj,k)>/\< A A wonnec(j,k))

1<i<qj keG 1<i<qj€Ci ke

Ni<i<qFo is satisfied by any interpretation assigning eashnectj, k)
such thatj, k belong to the sam€; to true, and eachonnectj, k) such
thatj € G for somei andk ¢ C; to false. Hence\ ;-4 Fc is satisfiable.

2. Assume that for somiej € {1,...,q}, we haveCiNC; # @ andC; #C;.
Letk € G NC; and (without loss of generality)e G\ C;. Thenkg, =
connectk,l) andFc; = —connectk, l), hencefrg, A Fg; is unsatisfiable,
and a fortiori, s0 i\1<j<qFc-

We now define aovering of a coalition | by disjoint subsets of as a
tupleC = (Gi|i € I) of coalitions such that(i) for everyk € I, Cy € s¢; (i)
forall Cj,Cy € C, eitherC; = Cc or C;NCy = o; (iii) for everyi € 1,i € G,.
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LetCoVs ¢, 1) be the set of all covering dfby disjoint subsets of ¢. For
instance, ifs ¢ = {1,24,123 124} thenCoVs ¢,12) = {(1,24), (123 123),
(12412413,Covs ¢, 123 = {(123 123 123 },CoVs C,124) = {(1,24,24),
(124,124,124} andCous ¢, 234 = Cous,1234) = o.

LEMMA 8. For any | # @, @, is equivalent td\/éemv(m) Nieil Fo-

Proof:
D = Aig i

/\iel VJesc\ieJ F
V<q,ie|> such thatiesc andiec; for everyiel Niel Fe,

Now, by Lemma 7, Fc, is satisfiable if and only if for all, j € I, either
G =CjorGNCj = . Therefore® = Vecooyse ) Niel Fo-
]
For instance, ifsc = {1,24,123 124} then®12 = (F1 A Foa) V Fi23V Fi24
D123 = Fi23 Proa= (FL AFos) V Fiog Poza= L.

LEMMAQ. Let I C 2N AsVl,Jesc, INdJ=o=1UJesc, ® is
satisfiable if and only if there existssls ¢ such that IC J.

Proof: The casd = @ is straightforward® = T is satisfiable, an@ € s¢
by assumption, therefore there exidts s ¢ (J = @) such that C J.
Now, letl # @.

= Assumed, is satisfiable. By Lemma 8p, is equivalent to

VAR

CeCovsc,l)i€!

therefore there exists@in Cou(s ¢, 1) such that\;, Fc, is satisfiable,
thereforeCou(s ¢, 1) is not empty. NowC € Cov(s ¢, ) implies that:

(i) foreveryiel,Cesc;

(i) foreveryi,jel,eitherG=CjorGnNC; =o.

(i) 1<Uia G

Now, (i), (i) andvl,Je sc,INJ=2 =1UJ e sc imply that{ ., G €

S ¢, which together with (iii) proves that there existd & s ¢ (namely
J=Ui¢ Gi) such that C J.

< Assume that there isde s ¢ such that C J. Then®; = &, and®; is
consistent (consider the interpretation assigning eacimecti, j) such
thati, j € J to true).
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We can now establish the characterization of the efficient coalitions of a
Boolean game.

PROPOSITION 3. Let N= {1,...,n} be a set of agents andc € 22" a

set of coalitions. There exists a Boolean game G over N such that thé set o
efficient coalitions for G ig ¢ (i.e. EC(G) = s¢) if and only if s ¢ satisfies
these two properties:

Q) oesc.

(2) foralll,Je sc suchthathdJ=o thenluJe sc.

Proof: Lemma 6 proves the=¢) direction of Proposition 3. For the<f)
direction, we want to show thatc C ECg.

We first show thatsc C ECs. Let | € s¢. If every agenti € | plays
(Ajerconnecti, j)) A (Axz —connecti,k)), then¢; is satisfied for every
i € 1. Hence| is an efficient coalition foG ands ¢ is included in EQG).

It remains to be shown that ECC s¢. Let | be a coalition such that
| ¢ sc (which impliesl # &, because of assumptiane s ¢).

— If I =N then there is nd € s¢ such that C J (because ¢ s¢), and
then Lemma 9 implies thab, is unsatisfiable, thereforke cannot be
efficient forG.

— Assume now that# N and define the following-strategyz (I = N\ I):
for everyi € 1, o is such that for allj € I, o; contains—connecti, j)
(whetherconnecti, j) is true or false forj ¢ | is irrelevant). LetC =
Ciel)eCovsc,l).

We first claim that there exist$ € | such thaCi- is not contained in.
Indeed, suppose that for evarg¢ I, C; C |. Then, becausee C; holds
for everyi, we haveJic; G = 1. Now, G € s¢ for all i, and any two
distinctG;,C; are disjoint, therefore, by Property (2) of Proposition 3,
we getl € s ¢, which by assumption is false.

Now, letk € Ci- \ | (such & exists becausg;- is not contained in). As
i andk are inC;, connectk,i*) has to be true to satisfli;,. Therefore
ok = —F¢,, and a fortiorioj = —Fc,, which entailsoj = - A Fo.-

This being true for anf € Covs ¢, 1), we have

o A AR

CeCovsc,l) i€l
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thatis,o; = — Véecowse) Niel For- Together with Lemma 8, this entails
oj = —®,. Hence) does not controfp; andl cannot be efficient fo6.

4.2. EFFICIENT COALITIONS AND THE CORE

We now relate the notion of efficient coalitions to the usual notion of core of
a coalitional game. In coalitional games with ordinal preferences, theisore
usually defined as follows (see e.g. (Aumann, 1967; Owen, 1982;ddyer
1991)): a strategy profile is in the core of a coalitional game if and only

if there exists no coalitiolC with a joint strategyoc that guarantees that
all members o€ are better off than witlw. Here we consider also a stronger
notion of core: a strategy profiteis in the strong core of a coalitional game if
and only if there exists no coalitidd with a joint strategyoc that guarantees
that all members o€ are at least as satisfied as with and at least one
member ofC is strictly better off than witto.

DEFINITION 9. Let G be a Boolean game. Tweak) coreof G, denoted
by WCor€G), is the set of strategy profiles= (01, ...,0p) such that there
exists no GC N and noac € Z¢ such that for every € C and everyo_¢ €
> ¢, (0c,0-¢) = 0.

Thestrong core of a Boolean game G, denoted by SG&g is the set of
strategy profilesoc = (01,...,0,) such that there exists no C N and no
Oc € Xc such that for every & C and everyo_c € Z_¢, (0¢,0-_¢) =i 0 and
there is an ie C such that for everg_c € Z_¢, (0c,0_¢) =i O.

Obviously enough, this notion of weak core is equivalent to the notion of
strong Nash equilibrium (Aumann, 1959), where coalitions form in order to
correlate the strategies of their members.

The relationship between the (weak) core of a Boolean game and its set of
efficient coalitions is expressed by the following simple result.

PROPOSITION 4.LetG= (N,V,I",1,®) be a Boolean game.c WCorgG)
if and only ifo satisfies at least one member of every efficient coalition, that
is, for every Ce EC(G), 0 = Vicc ¢i-

Proof: 0 = (01,...,0n) € WCorgG) if and only if there exist a coalition
C C N and a tupleoc € ¢ such that (1) for everye Cando_c € Z_¢, we
have (oc,0_c) =i 0. Using the specific form that utility functions have in
Boolean games, (1) is equivalent to (2@) c, (0c,0_c) = Aicc $i and (2b)
0 = Aiecc i As{m,..., T, } forms a partition oV, (2a) can be written as
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oc = Aicc 9i- Thereforeo € WCorgG) if and only if (3) for everyC C N,
eithero = V¢ ¢i or for everyoc € Zc, oc = Viec —9i. (3) can be rewritten
into (4): for everyC C N, if there existsoc such thatoc = Ajcc i then
0 = Vicc 9i. Now, the existence afic € ¢ such thatoc = Ajcc $i means
that CoalitionC is efficient. Thereforeg € WCorgG) if and only if for every
CC N, if Ce EC(G) theno = Vicc §i.

]
In particular, when no coalition of a Boolean gam@es efficient, then all
strategy profiles are WCor€G).

Moreover, the weak core of a Boolean game cannot be empty:

PROPOSITION 5. For any Boolean game G, WCdf®) # &.

Proof: We construct the following set of coalitiorts as follows. First, ini-
tialize E to @. Then, while there exists a coalitidd in EC(G) such that
CNC’ = @ holds for everyC’' € E, pick such aC and add it toE. At the
end of the algorithmE is a set of disjoint efficient coalition§C;,i € 1},
therefore, by Proposition 8ji¢|C; is efficient. Therefore, there exisis € 2¢
such thabe = Aice 9i, andE contains at least one element of every efficient
coalition (if this were not the case, there would remain an efficient coaltion
that intersects none of tl@&’s, and the algorithm would have continued and
incorporatedC into E). Let o extendingog. o satisfies at least one member
of every efficient coalition, therefore, by PropositionMCordG) # &.

|
The strong core of a Boolean game is harder to characterize in terms of
efficient coalitions. We only have the following implication.

PROPOSITION 6. Let G= (N,V,I",1,®) be a Boolean game, amul be a
strategy profile. lfo € SCoréG) then for every G= EC(G) and every i C,

G)Z(I)i.

Proof: LetC € EC(G) and assume there exists C such that (1p = —¢;. We
want to show that ¢ SCoréG). SinceC € EC(G), (2) there exist®c € ¢
such thatoc = Ajecdj- Applying (1) and (2) to leads tooc i o, while
applying (1) and (2) tg € C\ {i} leads tooc - 0. Thereforeg ¢ SCor€G).

[
Thus, a strategy in the strong core Gfsatisfies the goal of every member
of every efficient coalition. The following counterexample shows that the
converse does not hold.

EXAMPLE 3. Let G= (N,V,I", 1t ®) be the following Boolean game: ¥
{a,b,c,d,e}, N={1,2,3,4,5},yi =T forevery i,y = {a}, o = {b}, TG =
{c}, u = {d}, ™6 = {€}, ¢1 = ~aAb, ¢p2 = -a, ¢p3=d, p4=cAa and
ds=cAe.
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This game has one efficient coalitioft, 2}.

Let o0 = abade. We haves = d1 A do A ~3 A ~d4 A —ds. Therefore ¥C €
EC(G),VieC,o = ¢i.

Howevero ¢ SCordG): 3C' = {1,2,3,4} C N such thaBoc =abcdl= ¢1 A
2 A b3 A 4. SO,YO_c, (0c,0-c) =10, (0c,0-¢c) =20, (Oc,0-c) =40,
and(0c,0_c) >=30.0 € SCoréG).

Note that the strong core of a Boolean game can be empty: in Example 1,
the set of efficient coalitions 62, {1, 2},{2,3} }, therefore there isno €
such that for alC € EC(G), for alli € C, 0 = ¢, therefore, by Proposition 6,
SCoréG) = @. However, we can show that the non-emptiness of the strong
core is equivalent to the following simple condition on efficient coalitions.

PROPOSITION 7.Let G= (N,V,I', 1t ®) be a Boolean game. We have the
following:

ScoréG) # @ if and only if J{C C N|C € EC(G)} € EC(G) — that is, if
and only if the union of all efficient coalitions is efficient.

Proof: Let MEC(G) = Uccn{C € EC(G)}.

< ScoréG) # @. Let 0 € ScoréG). From Proposition 6, we know that
VC e EC(G), Vi € C, 0 = ¢i. So,Vi e MEC(G), 0 |= ¢i. So,MEC(G) €
EC(G).

= MEC(G) € EC(G). LetOmec(c) € Zmec(c) SUch thaVo_viec(a), Omec(e) F
®Pyec(c)- We are looking foo such thab € ScorgG).

Leto_vec(e) € Z-mec(c) such thaMAX = {i|o = (Omec(e), 0-mEC(G)) F
¢i} be maximal forC. 0_yec(g) exists, in worst case = ®yecc)- AS
MAX is maximal, we cannot fin@ C N such thatdoc € 2¢, such that
Vo_ceZ ¢,VieC, (0c,0-¢)=io,anddi € C, (0¢c,0_¢) =i 0. Indeed,
if we assume that this coalitiod exists, thervi € N such thato |~ ¢;,
we haveoc |= ¢, anddi € N such that |~ ¢; andoc = ;. In this case,
MAX is not maximal forC.

5. Computational complexity of reasoning about efficient coalitions

We start by identifying the complexity of some key decision problems related
to efficient coalitions. The key questions are: is a given coalition efficient?
does there exist a nonempty efficient coalition? is a given agent member
of some efficient coalition? of all nonempty efficient coalitions? In addi-
tion to these problems that are directly related to efficient coalitions, similar
problems arise for the notions of weak and strong core.
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PROPOSITION 8.Deciding whether a given coalition is efficient for a Boo-
lean game i€ 5-complete, and i&5-hard even if n= 2 and the coalition is a
singleton.

Proof: Membership is straightforward and hardness is a straightforward con-
sequence of the facts that (1) the coalition reduced to the sing{étois
efficient if and only ifi has a winning strategy and that (2) deciding whether
an agent has a winning strategy in a Boolean garag-somplete (see (Bon-
zon et al., 2009)). |

The next result addresses the problem whether there exists an éfficien
coalition in a Boolean game.

PROPOSITION 9.Deciding whether there exists a non-empty efficient coali-
tion in a Boolean game iE5-complete, and i&5-hard even if n= 2.

Proof: Membership t&} is immediate.

To show that deciding whether there is a non-empty efficient coalition
in a Boolean game i§§-hard (even with 2 agents), consider the following
polynomial reduction fron@BF, 5. To each instanc® = Ja; ... apvby ... bgd
of QBF 3, let us consider the following Boolean garGg = (N,V, ., @),
whereN={1,2},y1=v> =T,V ={a;...ap,b1...bg,x},u ={ay,...,ap,x},
™ = {by,...,bg}, $1 = ¢ anddo = —$ Ax. Neither{2} nor {1,2} can be ef-
ficient; therefore, the only possible nonempty efficient coalitiofilis Now,
it is easily seen thafl} is efficient if and only ifQ is a valid instance of

QBF2 3. []

We now consider the problems of determining whether a given agent be-
longs to some efficient coalition, and whether she belongs to all nonempty
efficient coalitions.

PROPQOSITION 10.

— deciding whether an agent i belongs to at least one efficient coalition
of a Boolean game iﬁg-complete, and iig-hard even if n= 2.

— deciding whether an agent i belongs at all nonempty efficient coali-
tions of a Boolean game B5-complete, and i§15-hard even if n=
2.

Proof: For both problems, the membership part of the proof is easy.

To show that deciding whether an agentelongs to at least one effi-
cient coalition forG is Zg—hard (even with 2 agents), consider the following
polynomial reduction fron@BF, 5. To each instanc® = Ja; ... apvb; ... byd
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of QBF2 3, let us consider the following Boolean garGg = (N,V, 1", @),
whereN ={1,2},yi=vo=T,V={ay,...,ap,by,...,bg}, u ={ay,...,ap},
T = {by,...,bg}, d1 = ¢ anddp, = —¢. {1} is efficient if and only if there
exists a strategy; such thato; = ¢, that is, if and only ifl is valid. Now,
{1,2} cannot be efficient, becaugg A ¢, = T. therefore, 1 belongs to an
efficient coalition if and only if{1} is efficient, that is, if and only iQ is
valid.

To show that deciding whether an agértelongs to all nonempty effi-
cient coalitions forG is M5-hard (even with 2 agents), consider the following
polynomial reduction fron@BF, . To each instanc® = Ja; ... apvby ... byd
of QBFR,y, let us consider the following Boolean garGg = (N,V, 1", @),
whereN={1,2},y1=v> =T,V ={a1...ap,b1...bg,x}, u ={ay, ..., ap,x},
™ = {by,...,bg}, $1 = ¢ andp> = ¢ Ax. Neither{2} nor {1,2} can be
efficient; therefore, 2 belongs to all nonempty efficient coalitions if arlgl on
if {1} is not efficient, that is, iBay ...apVby ... bg—¢ is not valid, or equiva-
lently, if Vay ...ap3b; ... bgd is valid. n

Although we have stated them and proven them for standard Boolean
games with dichotomous utilities, Propositions 8, 9 and 10 hold also for
quasi-dichotomous Boolean games. This is trivially obtained from the fact
that a coalition is efficient for a quasi-Boolean gafaéf and only if it is
efficient forG*4 .

Given the strong relationships between efficient coalitions and the notions
of weak and strong core of a Boolean game, these results allow us te deriv
complexity results regarding these. Note however that unlike the previous
three propositions, the following three hold for standard Boolean gamts (w
dichotomous preferences) only.

First, Proposition 4 leads the following result:

PROPOSITION 11.Deciding if a strategy profile is in the weak core of a
Boolean game G iﬁlg-complete.

Proof: Recall thato ¢ WCorgG) if and only if there exists a coalitiod C N
such that (ap = Aicc ~¢i and (b) there exists a strategy € >¢c such that
oc = ¢c = Aicc di-

Membership td15 is immediate, as the formulation above immediately
shows that the problem to decide if a strategy prafile notin WCorgG) is
in>5.

Hardness is obtained by proving that the complementary probléi-is
complete, using a reduction of the problem of deciding the validity of a
QBF» 5.

GivenQ = JA VB, @, whereA andB are disjoint sets of variables adu
is a formula ofLa g, we define the following Boolean gant, by
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— V =AUBU/{c}, wherecis a fresh variableq¢ AU B);
- N={pv|veV}
— foreveryveV, (py) = {v};
— foreverya € A s =P AC;
— foreverybj € B, ¢p, = T;
— dc=0AgG

— 0is any assignment satisfyineg.

AssumeQ is a positive instance @BF, 5, that is, there existsasuch that
for everyb we have(a,b) = ¢. LetC = AU{c} andoc = (& c). We have
oc = Avecdv = ¢ Acando = Ayec v Thereforeo ¢ WCorgGg).

Conversely, assume that there exists a coallfiahN and a strateggc €
>¢c such thatoc = ¢c = Aicc §i- Note that because = —c, we haveo =
Nicc —$i, thus condition (a) is satisfied. Becausé= —¢; for anyi € C, we
must haveC C AU {c}, which implies thatoc = cA ¢. Defined € 24 such
thatd andoc agree all; € C. Becaus@c = ¢ we haved = ¢, that is, for alll
b we have(d, b) = ¢.

We have shown that € WCorgGq) if and only if Q is a positive instance
of BF, 3, hence the result. ]

PROPOSITION 12.Deciding if a strategy profile is in the strong core of a
Boolean game G i§|§-comp|ete.

Proof:
Recall that we have ¢ SCordG) if and only if there exists a coalition
C C N and a strateggc € >¢ such that

(c) forallieCandallo_c € Z_c we have(oc,0_¢) =i O;
(d) there exist e Cando_¢ € X_¢ such tha{oc,0_¢) =i 0;
We take the same reduction as in Proposition 11.

If Qis satisfiable, theo ¢ WCorgGq), anda fortiori o ¢ SCoréGq).

If o ¢ SCoréGgq) then there exist a coalitioB andoc € ¢ such that
(c) and (d) hold. But (d) implies that = —(¢ Ac) and(oc,0-¢) E $ Ac,
therefore,0 ¢ WCorgGgq), which implies thatQ is a positive instance of
QBF23.
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PROPOSITION 13.Deciding whether SCo(&) is nonempty is img.

Proof: We recall thatSCoréG) # 0 if and only if the union of all efficient
coalitions ofG is efficient.

We start by noticing that is the union of all efficient coalitions d& if
and only if the following two conditions hold:

(A) for everyi € C, there exists an efficient coalitidy containingi;
(B) for alli ¢ C, no efficient coalition containis

Therefore, the following nondeterministic algorithm shows B@oréG)
0:

1.C:=0
2. for everyi € N do

3. if there exists an efficient coalition & containingi
then add toC
(else nothing)

4. check tha€ is efficient.

Consider the problem of Step 3, namely: givies N, check that there
exists an efficient coalition ofs containingi. The problem can be solved
by the following nondeterministic algorithm: guess a coalif@na strategy
profile o € ¢ , and check thatc = ¢c. Thus, checking that there ex-
ists an efficient coalition o6 containingi is in NP and Step 2 amounts to
a linear number oNP-oracles, whereas Step 4 amounts to one niNive
oracle. Therefore, the algorithm is a deterministic algorithm using a polyno-
mial number ofNP-oracles, which shows that the problem of checking that
SCoréG) # 0is in A.

So far we do not have &)-hardness result.

6. Efficient coalitions and dependencies between agents

We now study how the computation of efficient coalitions can be made easier
by taking benefit from specific restrictions on the agents’ preferemies,

the syntactical nature of goals may help us identifying efficient coalitions eas
ily. Second, exploiting the dependencies between agents (where aldepgn
between and j means that the godl of i involves a variable controlled by
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j) can allow us, in some cases, to decompose the computation of efficient
coalitions into independent subproblems.

We first note that whep; does not involve any variable controlled lpy
the satisfaction of does not depend directly on This is only a sufficient
condition: it may be the case that the syntactical expressian ofentions
a variable controlled by, but that this variable plays no role whatsoever in
the satisfaction of;, as variabley in ¢; = xA (yV —y). We therefore use a
stronger notion of formula-variable independence (Lang et al., 2003).

DEFINITION 10. A propositional formula is independent froma propo-
sitional variable x if there exists a formulplogically equivalent tap and in
which x does not appear.

DEFINITION 11. Let G= (N,V,I,1,®) be a Boolean game. The set of
relevant variablesfor a player i, denoted by R\(i), is the set of all variables
v €V such thath; is not independent from v.

For the sake of notation, the set of relevant variables for a playea
given Boolean gam& will be denoted byRV instead ofR\:(i). We now
easily define theelevant playerdor a given player as the set of players
controlling at least one variable &\.

DEFINITION 12. Let G= (N,V,I,1,®) be a Boolean game. The set of
relevant playersfor a player i, denoted by RP is the set of agents ¢ N
such that j controls at least one relevant variable of i RR J,cry T (V).

EXAMPLE 4. Three friends 1, 2 and 3) are invited at a partyl wants to
attend the party2 wants to attend if and only if does.3 wants to attend, and
would like2 to attend as well and not to. This situation can be modelled by
the following Boolean game & (N,V, I, 11, ®), defined by

— V = {ab,c}, with a (resp. b, c) meansl‘(resp. 2, 3) attends the
party”,

- N:{17273}aV|,V|:T,
— m = {a}, e = {b}, T3 = {c},
— 01 =a,,=a+ bandps=-arbAc.

We can see thdfs satisfaction depends only on herself, 2's depends on 1 and
herself, whereas 3's depends on 1, 2 and herself. Thereforeavee R\ =

{a}, Rb = {a,b}, Rk = {a,b,c}, RR = {1}, RB = {1,2}, RR = {1,2,3}.

This relation between players can be seen as a directed graph containing a
vertex for each player, and an edge froto j wheneverj € RR, i.e.if jisa
relevant player of.
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DEFINITION 13. Let G= (N,V,I,; ®) be a Boolean game. Ttaepen-
dency graph of a Boolean gamés is the directed graplr = (N, R), with
Vi,j €N, (i,]) € R (denoted by R, j)) if ] € RR.

Thus,R(i) is the set of players from whichmay need some action in
order to be satisfiedj € R(i) if and only if j € RR. Remark however that
j € R(i) does not imply thaitneedssome action byj to see her goal satisfied.
For instance, ify = {a}, T = {b} and$; = aV b, then 2 R(1); however,

1 has a strategy for satisfying her goal (settintp true) and therefore does
not need an action by 2. Note that the dependency graph may have. cycles
We denote byR* the transitive closure dR. R*(i) is the set of all players

who have a direct or indirect influence brirorl C N, we letR(l) = Ui R(i).

Example 4, continued:
The dependence graphinduced by G is depicted as follows:

We already know that if two disjoint coalitionsandJ are efficient then
their union is efficient. The converse does not hold in the general ttedeas,
there may exist two disjoint setsandJ such that U J is efficient and neither
I norJ is. However, the converse holds in the following specific case:

PROPOSITION 14.Let G= (N,V,I, 1t ®) be a Boolean game. Let | and
J be two coalitions such that1J = @, | UJ is efficient, R) NJ = @ and
R(J)NI =@. Then | and J are both efficient.

Proof: The efficiency ofl UJ implies that there exists|; € Z;; such that
o1 = (Aieiua $i)- Sincel NJ = &, we have this following chain of equiva-
lences:

E|O'| GZ|,E!O-JEZJ: (O'|,O'J) ‘:( /\ (I)|)

ielud

& Joe€3,305€%5: (01,05) = (AdiA A 0))
icl jed

& 30y €3),305€ 31 ((01,03) = (i) A((01,03) = (A 9)))
iel jed

Moreover, we know thati €1, j € J, j € RR (respi ¢ RP)). So,vViel, | €],
Vv e Var(PI(¢i)), v¢ 1 (resp.vyw e Var(Pl(¢;)), w & 15). We know that no
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player inJ controls a variable of a goal of a playerlifand vice versa).
Aswe havedo) € %, ((01,03) = (Aig 9i)) andvi e, j € J, Vv e Var(PI(¢i)),
v¢Z 1, we haveo; = (Aig 9i) (resp.oy = (Ajes 9j)-

Therefore, both andJ are efficient. []

We now introduce the notion aftable sefor a Boolean ganfe A subset
of agentsB is stable forG if none of the agents iB has a relevant player
outsideB.

DEFINITION 14. Let G= (N,V, I, ®) be a Boolean game. 8 N is sta-
ble for G if and only if RB) C B.

The following proposition is straightforward but useful:

PROPOSITION 15.Let G= (N,V,I,1,®) be a Boolean game. If B N is
stable for R, then B is an efficient coalition of G (BEC(G)) if and only if
ds = Aicg 9i is consistent.

Proof: Let B a stable set foR. Then, we have:

Vi € B,Vjsuchthat € R(i),j € B
& VieB,RRCB
= Vi € B,3Jop € g such thabc = ¢;
< Jog € Zg such thavg = Ajcg ¢i if and only if Aicgdi = L

[]
The converse is not necessarily true, as we can see on the followingpkxa

EXAMPLE 5.

Let G= (N,V,I, 1t ®) be the Boolean game defined by=/{a,b}, N =
{1,2}, y ={a}, = {b}, ¢ =avbandp>=T.

The coalition{1} is efficient, but is not stable for R:(RL}) = {1,2} ¢
{1}.

However, the converse can be true under the very restrictive contlition
the satisfaction of the goal of a player depends only on the actions®f
player, that is, iRR is a singleton for everyc B.

PROPOSITION 16.Let G= (N,V,I', 1, ®) be a Boolean game. If B N is
an efficient coalition of G (BC EC(G)) such thatvi € B, |RR| =1, then B is
stable for R. In this case, a coalition B such that= A;cg ¢; [~ L is efficient
if and only if B is stable for R.

Proof: Bis an efficient coalition, s@\;cg ¢i is consistent, andog € g such
thatog = Aicg i-
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We know thatvi € B, |RR| = 1. So,3j € N such thalRR = {j}, i.e. W e
Var(Pl(¢i)), v € ;. As we haveog = ¢;, with og € >, we know thatB
controls at least one variabledn. So, j € B, and thusB is stable foR. =

In this specific case whelRR is a singleton for every < B, we have fur-
thermore this intuitive graph-theoretic characterization of efficient coadition

PROPOSITION 17. Let G= (N,V,I',1, ®) be a Boolean game such that
Vi € N, |RR| = 1. For any coalition CC N, C is minimal efficient if and only
if C forms a cycle in the dependence graph.

Proof:

= AsVi, |RR| =1, only one edge can go out for each player. So, if there is a
cycle betweerp players, and if we rename these players with respect to
the topological order, we haRR = {2}, RB = {3}, ..., RR_1={p},

RR, = {1}. LetC = {1,..., p}. As we obviously havk(C) = C (Vi €
C,RR={(i+1)modg € C), Cis stable foR.

Moreover, we know thati, j € C, RR # RB, soVi,j € C, di A = L.
So, from Proposition 15 is efficient.

Assume thaBl c C efficient. SoJo; such that, = A ¢i. So,Viel,
RR €1. As|RR| =1, and asvi, j € C, and thusvi, j € |, RR # i and
RR # RP, agents il form a cycle. Sol = C. Cis minimal efficient.

< If Cis stable forR, thenVi € C, 3j € C such thaRR = {j}. So, ifC =
{1,...,p}, we can rename these players in order to haRe = {2},
RR = {3}, ..., RR_1 = {p}, RR, = {1}, andC forms a cycle in the
dependance graph.

Another interesting issue is the study of efficient coalitions in Boolean
games where goals have a specific syntactical structure. The chaatwer
of efficient coalitions when goals are literals is a straightforward coresemg
of Propositions 16 and 17:

COROLLARY 1. Let G= (N,V,I, 1t ®) be a Boolean game. If for every
i € N, ¢; is a literal, then we have the following results:

1. A coalition B is efficient if and only if B is stable for R.

2. For any coalition BC N, B is minimal efficient if and only if B forms a
cycle in the dependence graph.

We also have the following intuitive characterization of efficient coalitions
when goals are either clauses or terms:
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PROPOSITION 18.Let G= (N,V,I', 1t @) be a Boolean game.

1. If for every i€ N, ¢; is a term then for any B- N such that/\;.g ¢i is
consistent, B is efficient if and only if B is stable for R.

2. If for every ic N, ¢; is a clause such thak; .y ¢ is consistent, then for
any BC N, B is efficient if and only if there exists a set of cycles in the
dependence graph of G such that the nodes of the union of these cycles
are exactly the members of B.

Proof:

1. = Let B be a stable set fdR. As A;cg i is consistent, we know from
Proposition 15 thaB is an efficient coalition.

< Let B be an efficient coalition. S6og € 2 such thaog = A ¢i-

As Vi, bi = AveLit(9) Vs 98 F AveygLit(er) V- SOV € UiegLit (i),
Var(v) € 1, and thervi € B, RR C B. B is stable forR.

2. = Let B be an efficient coalition. S6og € g such thaog = Ajcg di-
Let decompos® in p minimal efficient coalitions. We havevk €
{1,...,p}, Bcis minimal efficientB; U...UBp = B.
Let Bk € {By,...,Bp}. AsVi € N, 0i = VyeLit(4) V» We know that
Vi € By, 3j € By, 30; € % such thato; = ¢i. As By is minimal
efficient, we know that we cannot fifd C By such thatvi ¢ C,
Jj € C, doj € % such thawj = ¢;. So, if By = {1,...,m} we can
rename these players in the following way: let us take a player and
call her 1. Then, call 2 the player By such thao, = ¢1 (asBx is
minimal efficient, we know that 1 and 2 are two different players).
Then, call 3 the player iByx such thatos = ¢3 (as previously, as
Bk is minimal efficient, we know that 1, 2 and 3 are three different
players). We can rename all playersBr in the same way, until
Om = ®m-1. As By is minimal efficient, we know that; = ¢m.
ThusBy forms a cycle in the dependency graph.
As eachBy € {By,...,Bp} forms a cycle in the dependency graph,
B is the union of these cycles in the dependency graph.

< LetB={1,...,m} be a cycle betweem players. Soyi € B, 3] € B
such thatj € RR. AsVi € N, ¢i = Vyeit(4;) v, We know thatvi €
B, Jj € B, Joj € X such thatoj = ¢;. Moreover, we know that
Aien @i = L. Then,Jog € g such thaog = Ajcg ¢i- S0,Bis an
efficient coalition.
Let assume now that we hayecycles{By,...B} in the depen-
dency graph. As seen previously, edhs an efficient coalition.
AS Nien i b= L, B1U...UBP= Aicqa,.py Aje ¢j- S0.B1U... U
By is an efficient coalition.
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Again, due to the fact that a coalition in a quasi-dichotomous Boolean
gameG is efficient if and only if it is efficient in the associated standard
Boolean gamés*, Propositions 14, 15, 16, 17 and 18 also hold for quasi-
dichotomous Boolean games.

7. Related work

Introduced in (Dunne et al., 2008), cooperative Boolean games (@B
specific class of quasi-dichotomous Boolean games. In a cooperativeddo
game, as in a classical Boolean game, each agent has a goal reptbseste
propositional logic formula, and each agent has control over a sea@EBn
variables. In addition to this, every propositional variaklds associated
with a positive numbec(x) representing the cost, incurring for the agent
who controlsx;, of makingx; true. Costs are negligible with respect to the
utility of having a goal satisfied (an agent always prefers a state satjgfgin
goal to a state that does not), therefore cooperative Boolean gantpsaaie
dichotomous. Standard Boolean games are recovered by letting= O for
all x.

Now, (Dunne et al., 2008) focuses on two stability concepts, one of which
is highly related to our Section 4.2. This concept is also calledttineof a
(cooperative) Boolean game, and is defined as follows :

DEFINITION 15. Let G be a Boolean garfieA strategy profile is blocked
by a coalition C C N through a strategy profile o’ if

1. o andd’ coincide on all variables that are not controlled by any member
of C;

2. coalition C strictly prefer®’ overo: foralli € C,0’ = 0.

TheDHKW-core of G, denoted by Corgikw(G), is the set of strategy pro-
files that are not blocked by any coalition.

When restricted on standard (zero-cost) Boolean games, this definition
differs from both our weak and strong core notions, for the followiragsom:
o is in the DHKW-core of a Boolean game if no coalitiGhhas an interest
to deviate fromo, the actions of the other players being fix@hereaso is
in the weak or strong core if no coalition has a joint strategy which makes it
better off (where the meaning of “better off” differs whether we talk dabou
the weak or the strong core) thanwhatever the actions of the other players
As remarked in (Sauro et al., 2009; Sauro and Villata, 2011), this definition
corresponds to thstrong Nash equilibriunin noncooperative game theory.
The following is immediate from the definition of the DHKW-core:
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PROPOSITION 19.For any Boolean game G, the DHKW-core of G is con-
tained in the weak core of G

The converse inclusion does not hold, as witnessed by the following ex-
ample.

EXAMPLE 6. Letn=3,V = {x1,X2, X3}, TW(i) = {X }, andy; = X1 <> (X2 A
X3), Y2 = Y3 = —y1. The DHKW-core of G is empty: for evemysatisfyingy,, 1
can switch x to makey; true, and for every satisfyingy;, 2 and 3 can adjust
the values of xand % to makey, true. However, no coalition is efficient in
G, therefore, no coalition can find another way to act (thaw)hat ensures
it to be better off, whatever the action of the other player(s), and anyesiya
profile is in the weak core of G.

Note finally that deciding membership to the DHKW-core of a Boolean
game iscoNP-complete (whereas deciding membership to the weak and to the
strong core is, in both casd§§-complete), and that deciding the nonempti-
ness of the DHKW-core iig-complete (whereas the weak core is always
nonempty, and deciding the nonemptiness of the strong coreﬁ@jn

Cooperative games have been further investigated in (Endriss et dl), 201
who study the design of taxation functions so as to modify a cooperative
Boolean game in order to ensure that some Nash equilibrium (or all Nash
equilibria) satisfies some desirable property.

Sauro, van der Torre and Villata (Sauro et al., 2009; Sauro and Villata,
2011) address the actual computation of the DHKW-core of a cooperativ
Boolean game, using the dependencies between players and variatites an
players, as we do for efficient coalitions in Section 6.

Another related line of work is the study of coalition formation among
goal-directed agents by Boella, Sauro and van der Torre (Boella e08b; 2
Boella et al., 2006; Sauro, 2006). One of the main differences betwe@n th
framework and ours is in the expression of the problem input. While we spec
ify agents’ abilities and goals separately (abilities by a control assignment
function and goals by propositional formulae), Sauro (2006) defimeswer
structureconsisting of a set of abstract go@sal(i) for each agent a power
relation pow expressing, for every subsbal of Goal = UjGoal(i), which
coalitions can achiev&oal, and a compatibility relatioompexpressing
which goals are jointly feasibla,e., non-conflictual. An agent is satisfied
as soon as one of its goals is satisfied. Now, a gaiE), whereC C N
andE C Goal = U;jGoal(i) is do-ut-desf every agent in C (a) has one of
her goals satisfiedSoal(i) N E # 0, and (b) contributed to the achievement
of some of the others’ goals: there exigisc ENnGoal(j), j # i, such that
C\ {i} cannot achievg;.

A Boolean game can be translated into a power structure in the following
way: every propositional goap; is expressed as an abstract ggalith
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Goal(i) = {gi}, while pow andcompexpress respectively which coalitions

can achieve which sets of goals and which sets of goals are jointly feasible.

The converse translation (from power structures to Boolean games) iesimp

only in the special case where each agdrds a single goaj; (the details of

the translation do not present any particular interest and we omit them).
Now, in the specific case where each agdmds a single god;, (C,E) is

do-ut-desf (&') E 2 Goak = {g;,i € C} and (b’) for everyi € C there exists

j €C, j #1i, such thaC\ {i} cannot achieve;. This leads to the following

characterization oflo-ut-descoalitions:

OBSERVATION 1. (C,Goak) is do-ut-desif and only if C is efficient and
for every ic C, C\ {i} is not efficient.

Although, clearly, any minimally efficient coalition to ut desthe con-
verse is not true: consider the Boolean game with4, i controlsx;, y1 = Xo,
V2 = X1, Y3 = X4 andys = X3; thenC is do-ut-desbut not minimally efficient.
Now, Boellaet al. define a further refined notionC, E) is ai-dud coalition
if it is do-ut-desand is not decomposable into two smaltiEr-ut-descoali-
tions. In other termsC is i-dud if and only if C is efficient and cannot be
decomposed into disjoint efficient subcoalitions. This stronger notion is still
not equivalent to being minimally efficient: in the Boolean game whetet,

i controlsx;, y1 = X2, Y2 = X1, Y3 = X1 A X2 A Xq andys = X1 A X2 A X3, the only
efficient coalitions aré1,2} and{1,2,3,4}, therefore{1, 2, 3,4} isi-dud but
not minimally efficient.

8. Conclusion

The results we have obtained are twofold — this paper can actually beseen a
two independent parts.

The first part (Section 3) gives a characterization of effectivity fioms
induced by (pre-)Boolean games, thus allowing us to understand better the
structural assumptions hidden behind the control assignment functians tha
define the power of agents in Boolean games. The results of Section 3 apply
to pre-Boolean games, where preferences do not play any role.

The second part (Sections 4, 5 and 6) shows that Boolean games can be
used as a compact representation setting for coalitional games wherssplaye
have quasi-dichotomous preferences. This specificity has lead us te defi
an interesting notion of efficient coalitions. We have given an exactchar
terization of sets of coalitions that correspond to the set of efficient coali-
tions for a Boolean game, and several results concerning the computation
of efficient coalitions. The results of Sections 4, 5 and 6 can be partitioned
into two classes: those who apply to Boolean games with quasi-dichotomous
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preferences, and those who apply only to standard Boolean games,iwith d
chotomous preferences.

There are many practical situations where preferences are naturaflit qu
dichotomous, or even dichotomous (cf. Example 2). However, it is natural
ask whether our results of Sections 4, 5 and 6 extend to generalizecaBBoole
games, with arbitrary preferences represented in some compactemrares
tion language (Bonzon et al., 2006; Bonzon et al., 2009). This is a chaiign
issue for further research. Unfortunately, this does not appear &Eabg
because the notion of efficient coalition, which is dichotomous in essence,
only makes sense when each agent has a primary goal whose satisfaction
overweighs all possible action costs, or, in other terms, when pretseme
quasi-dichotomous.
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Appendix

We show here that decomposability is equivalent to (2) whereas in the pres
ence of decomposability and Bf) = 25\ {0}, atomicity is equivalent to the
conjunction of (3) and (4), with

(2) for anyC +# 0,Eff"(C) = {NiccX : X € Eff"°(i)}
(3) X,Y € Eff"(i) andX #Y impliesXNY =0
(4) X € Eff"(j) andx € X implies3Y € Eff"°(i),xe Y

where Eff'(C) denotes the set of all inclusion-minimal sets in(Eff.

1. Decomposability is equivalent to (2).
First, we show that decomposability is equivalent to

(D'): for everyC C N, X € Eff(C) iff for all i € C there exists such

This is easily shown by induction on the size ©f the base case is
obvious, and for any € C, X € Eff(C) if and only if there existsX
andX_; such thatX = X; N X_;.

Now, because EfC) is upward closedX C Y andX € Eff(C) implies
Y € Eff(C)), we haveX € Eff(C) iff Y € Eff"%(C) for someY C X,
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therefore (2) is equivalent t&X < Eff(C) iff there existgY; )icc such that
foralli, Y € Eff"“({i}) andX D NiccYi, which, again because Eg) is

upward closed, is equivalent t&: € Eff(C) iff there existgY,)icc such
that for alli, Y; € Eff({i}) andX = NiccYi, which is (D).

2. In the presence of decomposability andeff(N) = 25\ {0}, atomicity
is equivalent to (3) and (4).
Assume atomicity holds. Recall that(i) andE f f"°(i) coincide, there-
fore the fact that any two elementsAsdf(i) are disjoint implies (3). Now,
let X € At(j) andx € X. Thenx € S, sinceAt(i) is a partition ofS, there
existsY € At(j) such thak € Y, which shows (4).
Conversely, assume (3) and (4) hold, as well as decomposability and
Eff(N) = 25\ {0}. Let s S then {s} € Eff(N). By decomposability
applied to(N\{i},{i}), thereisy € Eff(i) andZ € Eff(N\ {i} such that
YNZ={s}. Thereforesc U{X|X € At(i)}. Lastly, (3) implies that any
two elements oft(i) are disjoint, which shows thatt(i) is a partition
of S

Notes

1 This result was recently shown by (Goranko et al., 2011) to be wronipfinite game
models. As the games we consider are finite, this has no impact on tué tlestpaper.

2 The strong links between our properties and the properties in (Agotrmedlachina,
2011) that characterize injective games should not be seen as Bsupgcause = ¢’ if and
only if oj = of for everyi € N, Boolean games are injective. Our Lemmas 3 and 4 can actually
be seen as a proof that our properties, which imply all of the propeAugstiies and Alechina,
2011) (note that their property (1) is trivially satisfied for finite games)lynigectivity.

3 There are 2 players ih= {1,2}, therefore eack in Co\(s ¢,12) contains 2 coalitions,
one for each player, satisfying (i), (ii) and (iii).

4 We must be careful however. if the cost functions in a quasi-dichassrBmolean game
were represented explicitly, then all problems considered would bellyipialynomial. Our
statement holds only if the representation is compact enough so thapthsestation of some
cost function (such as, typically, the null cost function) has a polynbsize.

5 Again, the set of relevant players for a Boolean gaBrshould be denoted HgRs(i): for
the ease of notation we simply wriRR.

6 Note that this notion has nothing to do with the classical notion of stable set i gra
theory.

71f Bis minimal efficient, therp = 1.

8 Since we aim at comparing both notions in standard Boolean games, sviagistefinition
for standard Boolean games only. The definition would be exactly the isetimegeneral case
with non-zero costs.

9 There is no similar relationship between the DHKW-core and the strong \iereas
both the DHKW-core and the weak core consider that a coalition is strictlyrlug#tté all its
members are strictly better off, the strong core uses a weaker definiibmékes the concept
incomparable with the DHKW-core.
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