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Abstract

In this paper, we study a maximum likelihood es-
timation (MLE) approach to preference aggrega-
tion and voting when the set of alternatives has a
multi-issue structure, and the voters’ preferences
are represented by CP-nets.

We first consider multi-issue domains in which
each issue is binary; for these, we propose a gen-
eral family of distance-based noise models, of
which give an axiomatic characterization. We
then propose a more specific family of natural
distance-based noise models that are parameter-
ized by a threshold. We show that computing the
winner for the corresponding MLE voting rule is
NP-hard when the threshold is 1, but can be done
in polynomial time when the threshold is equal to
the number of issues.

Next, we consider general multi-issue domains,
and study whether and how issue-by-issue vot-
ing rules and sequential voting rules can be rep-
resented by MLEs. We first show that issue-by-
issue voting rules in which each local rule is it-
self an MLE (resp. a ranking scoring rule) can be
represented by MLEs with a weak (resp. strong)
decomposability property. Then, we prove two
theorems that state that if the noise model satis-
fies a very weak decomposability property, then
no sequential voting rule that satisfies unanimity
can be represented by an MLE, unless the num-
ber of voters is bounded.

Finally, we propose and study the MLE approach
for CP-net aggregators, which take CP-nets as in-
put, and output one or more aggregate CP-nets.

1 Introduction

A natural way for agents to make a joint decision when they
have possibly conflicting preferences over a set of alterna-
tives is byvoting. Each agent (voter) is asked to report her

preferences, and then avoting rule (or voting correspon-
dence) selects the winning alternative (or multiple winning
alternatives). Mathematically, a voting rule or correspon-
dence is defined as a mapping from the set of possible pref-
erenceprofilesto the set of alternatives. Here, a profile is a
vector of all the agents’ preferences.

In some sense, this means that the agents’ preferences are
the “causes” of the joint decision. However, there is a dif-
ferent (and almost reversed) point of view: there is a “cor-
rect” joint decision, but the agents may have different per-
ceptions (estimates) of what this correct decision is. Thus,
the agents’ preferences can be viewed as noisy reports on
the correct joint decision. Even in this framework, the
agents still need to make a joint decision based on their
preferences, and it makes sense to choose their best esti-
mate of the correct decision. Given a noise model, one
natural approach is to choose the maximum likelihood es-
timate of the correct decision. The maximum likelihood
estimator is a function from profiles to alternatives (more
accurately, subsets of alternatives, since there may be ties),
and as such is a voting rule (more accurately, a correspon-
dence).

This maximum likelihood approach was first studied by
Condorcet [5] for the case of two and three alternatives.
Much later, Young [12] showed that for arbitrary numbers
of alternatives, the MLE rule derived from Condorcet’s
noise model coincides with the Kemeny rule [7]. The
approach was further pursued by Drissi and Truchon [6].
More recently, Conitzer and Sandholm [4] studied whether
and how common voting rules andpreference functions
(that is, mappings that take agents’ preferences as input,
and output one or more aggregate rankings of the alter-
natives) can be represented as maximum likelihood esti-
mators. More recently, the maximum likelihood approach
for preference functions has been investigated in more de-
tail [3].

All of the above work does not assume any structure on the
set of alternatives. However, in real life, the set of alterna-
tives often has a multi-issue structure: there are multipleis-
sues(or attributes), each taking values in its respective do-



main, and an alternative is characterized by the values that
the issues take. For example, consider a situation where the
citizens of a country vote to directly determine a govern-
ment plan, composed of multiple sub-plans for several in-
terrelated issues, such as transportation, environment, and
health [2]. Clearly, a voter’s preferences for one issue in
general depend on the decision taken on the other issues:
for example, if a new highway is constructed through a for-
est, a voter may prefer a nature reserve to be established;
but if the highway is not constructed, the voter may prefer
that no nature reserve is established.

The number of alternatives in a multi-issue domain is ex-
ponential in the number of issues, which makes commonly
studied voting methods impractical (for one, they require
the agents to rank all the alternatives). One straightforward
way to aggregate preferences in multi-issue domains is
issue-by-issue(a.k.a.seat-by-seat) voting, which requires
that the voters explicitly express their preferences over each
issue separately, after which each issue is decided by ap-
plying local (issue-wise) voting rules independently. This
makes sense if voters’ preferences areseparable, that is, if
the preferences of every voter over any issue are indepen-
dent of the values taken by the other issues. However, if a
voter has nonseparable preferences, it is not clear how she
should vote in such an issue-by-issue election. Indeed, it
is known that natural strategies for voting in such a context
can lead to very undesirable results [2, 8].

While in general, a voter’s preferences for one issue depend
on the decisions taken on other issues, on the other hand,
one would not necessarily expect the preferences for one
issue to depend onall other issues. CP-nets [1] were de-
veloped as a natural representation language for capturing
such limited dependence among the preferences over multi-
ple issues; they have some obvious similarities to Bayesian
networks. Recent work has started to investigate using CP-
nets to represent preferences in voting contexts with mul-
tiple issues. If there is an order over issues such that ev-
ery voter’s preferences for “later” issues depends only on
the decisions made on “earlier” issues, then the voters’ CP-
nets are acyclic, and a natural approach is to apply issue-
wise voting rulessequentially[9]. This sequential voting
process has a low communication cost, and a low com-
putational cost if each of the local voting rules is easy to
compute. While the assumption that such an order exists is
still restrictive, it is much less restrictive than assuming that
preferences are separable (for one, the resulting preference
domain is exponentially larger [9]). Recent extensions of
sequential voting rules include order-independent sequen-
tial voting rules [11], as well as a framework for voting
when preferences are modeled by general (that is, not nec-
essarily acyclic) CP-nets [10].

In this paper, we combine the two research directions: we
take a maximum likelihood estimation approach to pref-
erence aggregation in multi-issue domains, when the vot-

ers’ preferences are represented by (not necessarily acyclic)
CP-nets. Considering the structure of CP-nets, we focus
on probabilistic models that arevery weakly decomposable.
That is, given the “correct” winner, a voter’s local prefer-
ences over an issue are independent from her local prefer-
ences over other issues, as well as from her local prefer-
ences over the same issue given a different setting of (at
least some of) the other issues.

After reviewing some background, we start with the spe-
cial case in which each issue has only two possible values.
For such domains, we introducedistance-based noise mod-
els, in which the local distribution over any issuei under
some setting of the other issues depends only on the Ham-
ming distance from this setting to the restriction of the “cor-
rect” winner to the issues other thani. We axiomatically
characterize distance-based noise models by very weak de-
composability andinter-issue neutrality. Then we focus on
distance-based threshold noise modelsin which there is a
threshold such that if the distance is smaller than the thresh-
old, then a fixed nonuniform local distribution is used,
whereas if the distance is at least as large as the thresh-
old, then a uniform local distribution is used. We study the
computational complexity of the two extreme cases of this
model: for the case where the threshold is one, we prove
that it is NP-hard to compute the winner; but for the case
where the threshold is equal to the number of issues, we
prove that the winner can be computed in polynomial time.

Then, we move to the general case in which the issues are
not necessarily binary. The goal here is to investigate when
issue-by-issue or sequential voting rules can be modeled as
maximum likelihood estimators. When the input profile is
separable, we completely characterize the set of all voting
correspondences that can be modeled as an MLE for a noise
model satisfying a weak decomposability (resp. strong de-
composability) property. Lastly, when the input profile of
CP-nets is consistent with a common order over issues, we
prove that no sequential voting rule satisfying unanimity
can be represented by an MLE, provided the noise model
satisfies very weak decomposability. We show that this im-
possibility result no longer holds if the number of voters is
bounded above by a constant.

Finally, we generalize the idea to define MLEs that aggre-
gate CP-nets to a single CP-net or multiple CP-nets (in con-
trast to a single winner or multiple winners). We show that
such MLEs correspond to a family of natural CP-net aggre-
gators that are composed of local MLEs.

2 Technical background

2.1 Basics of voting

LetX be a finite set ofalternatives(or candidates). A vote
V is a linear order onX , i.e., a transitive, antisymmetric,
and total relation onX . For anyk ≤ |X |, (V )k denotes the



alternative ranked in thekth position inV ; top(V ) = (V )1
denotes the alternative that is ranked in the top position in
V . The set of all linear orders onX is denoted byL(X ).
An n-voter profileP is a collection ofn votes, that is,P =
(V1, . . . , Vn), whereVj ∈ L(X ) for everyj ≤ n. The set
of all profiles onX is denoted byP (X ). A (voting) rule
r : P (X ) → X maps any profile to a single candidate (the
winner). A(voting) correspondencec : P (X )→ 2X maps
any profile to a subset of candidates. Apreference function
f : P (X ) → 2L(X ) maps any profile to a set of linear
orders overX .

2.2 The maximum likelihood approach to voting

In the maximum likelihood approach to voting rules, it is
assumed that there is a correct winnerd ∈ X , and each
vote V is drawn conditionally independently givend, ac-
cording to a conditional probability distributionPr(V |d).
The independence structure of the noise model is illustrated
in Figure 1. The use of this independence structure is stan-
dard. Moreover, if conditional independence among votes
is not required, then any voting rule can be represented by
an MLE for some noise model [4], which trivializes the
question.

correct outcome

Voter 1 Voter 2 Voter n. . .

Figure 1: The noise model.

Under this independence assumption, the probability of a
profile P = (V1, . . . , Vn) given the correct winnerd is
Pr(P |d) =

∏n
i=1 Pr(Vi|d) Then, the maximum likeli-

hood estimate of the correct winner is
MLEPr(P ) = arg maxd∈X Pr(P |d)

MLEPr is a voting correspondence, as there may be sev-
eral alternativesd that maximizePr(P |d). Another model
that has been studied assumes that there is a correctrank-
ing of the alternatives. Here, the model is defined similarly:
given the correct linear orderV ∗, each voteV is drawn
conditionally independently according toPr(V |V ∗). The
maximum likelihood estimate is defined as follows.

MLEPr(P ) = argmaxV ∗∈L(X )

∏

V ∈P Pr(V |V ∗)

Definition 1 ([4]) A voting rule (correspondence)r is
a maximum likelihood estimator for winners under
i.i.d. votes (MLEWIV)if there exists a noise modelPr such
that for any profileP , we have thatMLEPr(P ) = r(P ).

Definition 2 ([4]) A preference functionf is a maxi-
mum likelihood estimator for rankings under i.i.d. votes
(MLERIV) if there exists a noise modelPr such that for
any profileP , we have thatMLEPr(P ) = f(P ).

Conitzer and Sandholm studied which common voting
rules/preference functions are MLEWIVs/MLERIVs [4].
A ranking scoring correspondencec is a correspondence

defined by a scoring functions : L(X ) × X →
R in the following way: for any profileP , c(P ) =
arg max~d∈X

∑

V ∈P s(V, d).

2.3 Voting in multi-issue domains

In this paper, the set of all alternativesX is a multi-issue
domain. That is, letA = {x1, . . . ,xp} (p ≥ 2) be a set
of issues, where each issuexi takes values in a finitelocal
domainDi. The set of alternatives isX = D1 × . . .×Dp,
that is, an alternative is uniquely identified by its values
on all issues. A multi-issue domain isbinary if for ev-
ery i we haveDi = {0i, 1i}. For any alternative~d =

(d1, . . . , dp) and any issuexi, we let ~d|xi
= di and~d−i =

(d1, . . . , di−1, di+1, . . . , dp). For anyI ⊆ {1, . . . , p}, we
let DI =

∏

i∈I Di, andD−i = D{1,...,i−1,i+1,...,p}.

Example 1 A group of people must make a joint decision
on the menu for dinner (the caterer can only serve the same
menu to everyone). The menu is composed of two issues:
the main course (M ) and the wine (W). There are three
choices for the main course: beef (b), fish (f), or salad (s).
The wine can be either red wine (r), white wine (w), or pink
wine (p). The set of alternatives is a multi-issue domain:
X = {b, f, s} × {r, w, p}.

CP-nets [1] constitute a useful language for compactly ex-
pressing preferences over multi-issue domains. A CP-net
N overX consists of two components: (a) a directed graph
G = (A, E) and (b) a set of conditional linear preferences
�i

~u overDi, for any setting~u of the parents ofxi in G (de-
noted byParG(xi)). These conditional linear preferences
�i

~u overDi form theconditional preference tablefor issue
xi, denoted byCPT (xi). WhenG is acyclic,N is said to
be anacyclic CP-net.

A CP-netN induces the partial preorder�N , defined
as the transitive closure of{(ai, ~u, ~z) � (bi, ~u, ~z)) | i ≤
p; ai, bi ∈ Di; ~u ∈ DParG(xi)}.

It is known [1] that whenN is acyclic,�N is transitive
and asymmetric, that is, a strict partial order. (This is not
necessarily the case ifN is not acyclic.) For any graphG′

onA, a CP-netN is compatiblewith G′ if its graphG is a
subgraph ofG′.

Example 2 LetX be the multi-issue domain defined in Ex-
ample 1. We define a CP-netN as follows:M is the parent
of W, and the CPTs consist of the following conditional
preferences:CPT (M) = {b � f � s}, CPT (W) = {b :
r � p � w, f : w � p � r, s : p � w � r}, where
b : r � p � w is interpreted as follows: “whenM is b,
then,r is the most preferred value forW, p is the second
most preferred value, andw is the least preferred value.”
N and its induced partial order�N (without edges implied
by transitivity) are illustrated in Figure 2.

When all issues are binary, a CP-netN can be visual-
ized as a hypercube with directed edges inp-dimensional



M W

CPT (M)
b � f � s

CPT (W)
b : r � p � w
f : w � p � r
s : p � w � r

br bp bw

fw fp fr

sp sw sr

(a) CP-netN . (b) The partial order induced byN .

Figure 2:An acyclic CP-netN and its induced partial order.

space, in the following way: each vertex is an alternative,
any two adjacent vertices differ in only one component (is-
sue). That is, for anyi ≤ p, any ~d−i ∈ D−i, there is a
directed edge connecting(0i, ~d−i) and (1i, ~d−i), and the
direction of the edge is from(0i, ~d−i) to (1i, ~d−i) if and
only if (0i, ~d−i) �N (1i, ~d−i).

Example 3 Let p = 3 and letN be a CP-net defined as
follows: the directed graph ofN has an edge fromx1 to
x2 and an edge fromx2 to x3; the CPTs areCPT (x1) =
{01 � 11}, CPT (x2) = {01 : 02 � 12, 11 : 12 � 02},
CPT (x3) = {02 : 03 � 13, 12 : 13 � 03}. N is illus-
trated in Figure 3 (for simplicity, in the figure, a vertexabc
represents the alternativea1b2c3, for example, the vertex
000 represents the alternative010203).

x1 x2 x3

000 001

010 011

100 101

110 111

Figure 3: The hypercube representation of the CP-net.

A linear orderV extendsa CP-netN , denoted byV ∼ N ,
if it extends�N . For any setting~u of ParG(xi), letV |xi:~u

andN|xi:~u denote the the restriction ofV (or equivalently,
N ) to xi, given~u. That is,V |xi:~u (orN|xi:~u) is the linear
order�i

~u.

For any graphG onA, V is compatiblewith G if there ex-
ists a CP-netN such thatV ∼ N andN is compatible
with G. If V is compatible withG, we also say thatV is
G-legal; we sayV is legal if it is G-legal for some acyclic
graphG. A profile isG-legal if all of its votes areG-legal.
For any linear orderO on A, we letGO be thegraph in-
duced byO—that is, there is an edge(xi,xj) in GO if
and only ifxi >O xj . For any directed acyclic graphG,
a linear orderO can be found such thatG ⊆ GO, which
means that anyG-legal profile is alsoGO-legal (which we
abbreviate asO-legal). For example, letN be the CP-net
defined in Example 2. Any linear order overX that extends
�N is G(M>W)-legal (or, equivalently,(M > W)-legal).

V is separableif and only if it extends a CP-net in which
there is no edge. Therefore, any separable vote isO-legal
for any orderingO of issues. We emphasize that votes are
not always required to be separable or legal in this paper.

In this paper, we fixO to bex1 > . . . > xp. Given a
collection oflocal rules(r1, . . . , rp) (where for anyi ≤ p,
ri is a voting rule onDi), the sequential compositionof
r1, . . . , rp w.r.t.O, denoted bySeq(r1, . . . , rp), is defined
for all O-legal profiles as follows:Seq(r1, . . . , rp)(P ) =
(d1, . . . , dp) ∈ X , where for any i ≤ p, di =
ri(P |xi:d1...di−1

). Thus, the winner is selected inp steps,
one for each issue, in the following way: in stepi, di is
selected by applying the local ruleri to the preferences of
voters overDi, conditioned on the valuesd1, . . . , di−1 that
have already been determined for issues that precedexi.
Seq(r1, . . . , rp) is well-defined, because for anyG-legal
profile, the set of winners is the same for allO′ such that
G ⊆ GO′ (see [9]). WhenG has no edges,Seq(r1, . . . , rp)
becomes anissue-by-issuevoting rule. Sequential com-
position of local correspondencesc1, . . . , cp, denoted by
Seq(c1, . . . , cp) is defined in a similar way: for anyO-
legal profileP , ~d ∈ Seq(c1, . . . , cp)(P ) if and only if for
anyi ≤ p, we have thatdi ∈ ci(P |xi:d1...di−1

).

We will focus on voting methods that only use information
about voters’ preferences that is represented in the CP-nets
that those preferences extend. Therefore, we can consider
an input profile to be composed of CP-nets instead of linear
orders.

3 Noise models in multi-issue domains

In this section, we extend the maximum likelihood es-
timation approach to multi-issue domains (whereX =
D1× . . .×Dp). For now, we consider the case where there
is a correct winner,~d ∈ X . Votes are given by CP-nets
and are conditionally independent, given~d. The probabil-
ity of drawing CP-netN given that the correct winner is~d
is π(N|~d), whereπ is some noise model. Given this noise
model, for any profile of CP-netsP = (N1, . . . ,Nn), the
maximum likelihood estimate of the correct winner is

MLEπ(P ) = arg max~a∈X

∏n
j=1 π(Nj |~a)

Again,MLEπ is a voting correspondence.

Even if for all i, |Di| = 2, the number of CP-nets (includ-
ing cyclic ones) is2p2p−1

. Hence, to specify a probability
distribution over CP-nets, we will assume some structure
in this distribution so that it can be compactly represented.
Throughout the paper, we will assume that the local pref-
erences for individual issues (given the setting of the other
issues) are drawn conditionally independently, both across
issues and across settings of the other issues, given the cor-
rect winner. More precisely:

Definition 3 A noise model isvery weakly decomposable
if for every ~d ∈ X , everyi ≤ p, and every~a−i ∈ D−i,



there is a probability distributionπ~a−i

~d
overL(Di), so that

for every~d ∈ X and everyN ∈ CPnet(X ),

π(N|~d) =
∏

i≤p,~a−i∈D−i
π

~a−i

~d
(N|xi:~a−i

)

For instance, ifDi = {0i, 1i, 2i}, π
~a−i

~d
(0i � 2i � 1i)

is the probability that the CP-net of a given voter contains
~a−i : 0i � 2i � 1i, given that the correct winner is~d.
Then, the probability of CP-netN is the product of the
probabilities of all its local preferencesN|xi:~a−i

over spe-
cific xi given specific~a−i (which contains the setting for
xi’s parents as a sub-vector), when the winner is~d. (We
will introduce stronger decomposability notions soon.)

Assuming very weak decomposability is reasonable in the
sense that a voter’s preferences for one issue are not di-
rectly linked to herpreferencesfor another issue. We note
that this is completely different from saying that the voter’s
preferences for an issue do not depend on thevaluesof the
other issues. Indeed, the voter’s preferences for an issue
can, at least in principle, change drastically depending on
the values of the other issues.

However, we do not want to argue that such a distribu-
tion always generates realistic preferences. In fact, with
some probability, such a distribution generates cyclic pref-
erences. This is not a problem, in the sense that the purpose
of the maximum likelihood approach is to find a natural
voting rule that maps profiles to outcomes. The fact that
this rule is also defined for cyclic preferences does not hin-
der its application to acyclic preferences. Similarly, Con-
dorcet’s original noise model for the single-issue setting
also generates cyclic preferences with some probability, but
this does not prevent us from applying the corresponding
(Kemeny) rule [7] to acyclic preferences.

Even assuming very weak decomposability, we still need to
define exponentially many probabilities. We will now in-
troduce some successive strengthenings of the decompos-
ability notion. First, we introduceweak decomposability,
which removes the dependence of an issue’s local distribu-
tion on the settings of the other issuesin the correct winner.

Definition 4 A very weakly decomposable noise modelπ is
weakly decomposableif for anyi ≤ p, any~d1, ~d2 ∈ X such
that ~d1|xi

= ~d2|xi
, we must have that for any~a−i ∈ D−i,

π
~a−i

~d1

= π
~a−i

~d2

. Let WD(X ) denote the set of correspon-

dences that are the MLE for some weakly decomposable
noise model.
Next, we introduce an even stronger notion, namelystrong
decomposability, which removes all dependence of an is-
sue’s distribution on the settings of the other issues. That
is, the local distribution only depends on the value of that
issue in the correct winner.

Definition 5 A very weakly decomposable noise modelπ
is strongly decomposableif it is weakly decomposable, and
for any i ≤ p, any~a−i,~b−i ∈ D−i, any ~d ∈ X , we must

have thatπ~a−i

~d
= π

~b−i

~d
. LetSD(X ) denote the set of cor-

respondences that are the MLE for some strongly decom-
posable noise model.

4 Distance-based models

In this section, we focus on maximum likelihood estima-
tors that are based on noise models defined over binary
multi-issue domains (domains composed of binary issues).
We recall that a CP-net on a binary multi-issue domain
corresponds to a directed hypercube in which each edge
has a direction representing the local preferences. A very
weakly decomposable noise modelπ can be represented by
multiple weighted directed hypercubes, one for each cor-
rect winner, in which the weight of each directed edge is
the probability of the local preferences represented by the
directed edge. For example, when the correct winner is
010203, the weight on the directed edge(011203, 011213)
is the probabilityπ0112

010203
(03 � 13). We now propose and

study very weakly decomposable noise models in which
the weight of each edge depends only on the Hamming dis-
tance between the edge and the correct winner. First we
define the Hamming distance between two alternatives and
between an alternative and an edge in the hypercube.

For any pair of alternatives~d, ~d′ ∈ X , theHamming dis-
tancebetween~d and ~d′, denoted by|~d − ~d′|, is the num-
ber of components in which~d is different from~d′, that is,
|~d − ~d′| = #{i ≤ p : di 6= d′i}. Let e = (~d1, ~d2) be a pair
of alternatives such that|~d1 − ~d2| = 1 (equivalently, an
edge in the hypercube representation ofX ). The distance
betweene and an alternative~d ∈ X , denoted by|e− ~d|, is
the smaller Hamming distance between~d and the two ends
of e, that is,|e− ~d| = min{|~d1 − ~d|, |~d2 − ~d|}. For exam-
ple, |011203 − 010203| = 1, |011213 − 010203| = 2, and
|(011203, 011213)− 010203| = 1.

We next introducedistance-based noise modelsin which
the probability distributionπ~a−i

~d
only depends ondi and

the Hamming distance between~a−i and~d−i.

Definition 6 Let X be a binary multi-issue domain. For
any~q = (q0, . . . , qp−1) such that1 > q0, . . . , qp−1 > 0,
a distance-based (noise) modelπ~q is a very weakly decom-
posable noise model such that for any~d ∈ X , anyi ≤ p,
and any~a−i ∈ D−i with |~a−i− ~d−i| = k ≤ p−1, we have
thatπ~a−i

~d
(di � d̄i) = qk.

Given the correct winner~d, a distance-based modelπ~q

can be visualized by the following weighted directed graph
built on the hypercube:
• For any undirected edgee = (~d1, ~d2) in the hypercube,
where ~d1, ~d2 differ only on the value assigned toxi for
somei ≤ p, if ~d1|xi

= di, then the direction ofe is from
~d1 to ~d2; if ~d2|xi

= di, then the direction ofe is from ~d2

to ~d1. That is, the direction of the edge is always from the
alternative whosexi component is the same as thexi com-



ponent of the correct winner to the other end of the edge.
• For any edgee with |e− ~d| = l, the weight ofe is ql.

For example, given that010203 is the correct winner, the
distance-based model is illustrated in Figure 4. To char-
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Figure 4: The distance-based modelπ(q0,q1,q2) when the
correct winner is000.

acterize distance-based models, we first defineinter-issue
permutations. Intuitively, an inter-issue permutation is a
permutation that exchanges two issues.

Definition 7 Let i, j ≤ p. An inter-issue permutationis a
permutationmi,j onD1 ∪ . . . ∪Dp satisfying: (1) for any
k 6= i, j and anydk ∈ Dk, mi,j(dk) = dk and (2) for any
di ∈ Di, mi,j(di) ∈ Dj; for anydj ∈ Dj , mi,j(dj) ∈ Di;
and for anyk ∈ {i, j} and anydk ∈ Dk, mi,j(dk) =
(mi,j)

−1(dk).

mi,j induces a permutationMi,j on the set of all sub-
vectors of any ~d ∈ X as follows: for any I ⊆
A and ~dI = (di1 , . . . , di|I|) ∈ DI , Mi,j(dI) =
(mi,j(di1 ), . . . , mi,j(di|I|)). For example, letp = 3, and
m1,2 be an inter-issue permutation such thatm1,2(01) =
12. Then we haveM1,2(11) = 02, M1,2(02) = 11,
M1,2(12) = 01; M1,2(010203) = 111203, M1,2(1113) =
0213.

We note that since each issue is binary, there are exactly
two ways of exchanging issuexi andxj : either map0i to
0j (and1i to 1j), or map0i to 1j (and1i to 0j).

Definition 8 A very weakly decomposable noise modelπ
satisfiesinter-issue neutralityif for any i, j ≤ p, any inter-
issue permutationmi,j (which inducesMi,j), any i′ ≤ p,

any~d ∈ X , and any~a−i′ ∈ D−i′ , we have thatπ
~a−i′

~d
(0i′ �

1i′) = π
Mi,j(~a−i′ )

Mi,j(~d)
(mi,j(0i′) � mi,j(1i′)).

Thus, the noise modelπ satisfies inter-issue neutrality if
after exchanging any two issues, the resulting noise model
is still π. Or equivalently,π is indifferent to the names of
the issues as well as the names of the values they take. We
next show that the class of distance-based models can be
completely characterized as the class of noise models that
satisfy very weak decomposability and inter-issue neutral-
ity.

Theorem 1 LetX be a binary multi-issue domain. A very
weakly decomposable noise modelπ is a distance-based
noise model if and only if it satisfies inter-issue neutrality.

The proofs of all theorems are in the appendix, which is
uploaded separately as the supplementary material.

We are especially interested in a special type of distance-
based model in which there exists a threshold1 ≤ k ≤ p
andq > 1

2 , such that for anyi < k, we have thatqi = q,
and for anyk ≤ i ≤ p − 1, we have thatqi = 1

2 . Such
a model is denoted byπk,q. We callπk,q a distance-based
threshold noise modelwith thresholdk. We say that a noise
modelπ has thresholdk ≤ p if and only if there exists
q > 1

2 such thatπ = πk,q . The MLE for a distance-based
threshold modelπk,q is denoted byMLEπk,q

.

Example 4 Let p = 3. π1,q and π2,q are illustrated in
Figure 5 (when the correct winner is000).
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(a) The threshold is 1. (b) The threshold is 2.

Figure 5: Distance-based threshold models. The weight of
the bold edges isq > 1

2 ; the weight of all other edges is12 .

The following theorem provides an axiomatic characteri-
zation of the set of all noise models that have thresholdp,
which is the number of issues. This axiomatization is sim-
ilar to the one in Theorem 1.

Theorem 2 LetX be a binary multi-issue domain. A noise
modelπ is a distance-based threshold noise model with
thresholdp if and only if π is strongly decomposable and
satisfies inter-issue neutrality.

We next present a direct method for computing winners un-
der the MLE correspondences of distance-based threshold
models. For any1 ≤ k ≤ p, any ~d ∈ X , and any CP-net
N , we define theconsistency of degreek between~d andN ,
denoted byNk(~d,N ), as follows.Nk(~d,N ) is the number
of triples (~a,~b, i) such that~a−i = ~b−i, ai = di, bi = d̄i,
|(ai, bi)− ~d| ≤ k − 1, andN containsa−i : di � d̄i. That
is, Nk(~d,N ) is the number of local preferences (over any
issuexi, given any~a−i ∈ D−i) in N that aredi � d̄i, and
the distance between~d and the edge((di,~a−i), (d̄i,~a−i))
is at mostk − 1. For any profilePCP of CP-nets, we let
Nk(~d, PCP ) =

∑

N∈PCP
Nk(~d,N ).

Proposition 1 For any k ≤ p, anyq > 1
2 , and any pro-

file PCP of CP-nets, we have thatMLEπk,q
(PCP ) =

arg max~d Nk(~d, PCP ).

That is, the winner for any profile of CP-nets under any
MLE for a distance-based threshold modelπk,q maximizes
the sum of the consistencies of degreek between the win-
ning alternative and all CP-nets in the profile. Therefore,



we have the following corollary, which states that the win-
ners for any profile underMLEπk,q

do not depend onq,
provided thatq > 1

2 .

Corollary 1 For any k ≤ p, any q1 > 1
2 , q2 > 1

2 , and
any profilePCP of CP-nets, we haveMLEπk,q1

(PCP ) =
MLEπk,q2

(PCP ).

We next investigate the computational complexity of apply-
ing MLE rules with distance-based threshold models. First,
we present a polynomial-time algorithm that computes the
winners and outputs the winners in a compact way, under
MLEπp,q

, wherep is the number of issues. This algorithm
computes the correct value(s) of each issue separately: for
any issuexi, the algorithm counts the number of tuples
(~a−i,N ), where~a−i ∈ D−i andN is a CP-net in the
input profilePCP , such thatN containsa−i : 0i � 1i.
If there are more tuples(~a−i,N ) in which N contains
a−i : 0i � 1i than there are tuples in whichN contains
a−i : 1i � 0i, then we select0i to be theith component
of the winning alternative, and vice versa. We note that the
time required to count tuples(~a−i,N ) depends on the size
of N . Therefore, even though computing the value forxi

takes time that is exponential in|ParG(xi)| (the number of
parents ofxi in the directed graph ofN ), the CPT ofxi in
N itself is also exponential in|ParG(xi)| (for each setting
of ParG(xi), there is an entry inCPT (xi)). This explains
why the algorithm runs in polynomial time.

Algorithm 1 INPUT: p ∈ N, 1 > q > 1
2 , and a profile of

CP-netsPCP .

1. For eachi ≤ p:

1a. Let Si = 0, Wi = ∅.

1b. For each CP-netN ∈ PCP : let ParG(xi) =
{xi1 , . . . ,xip′ } be the parents ofxi in the di-
rected graph ofN . Let l be the number of set-
tings~y of ParG(xi) for whichN|xi:~y = 0i �

1i. Let Si ← Si + l2p−p′

− 2p−1. Here
l2p−p′

− 2p−1 is the number of edges in the CP-
net where0i � 1i, minus the number of edges
where1i � 0i.

1c. At this point, letWi =







{0i} if Si > 0
{1i} if Si < 0
{0i, 1i} if Si = 0

2. OutputW1 × . . .×Wp.

Proposition 2 The output of Algorithm 1 is
MLEπp,q

(PCP ), and the algorithm runs in polyno-
mial time.

However, when the threshold is one, computing the win-
ners is NP-hard, and the associated decision problem,
namely checking whether there exists an alternative~d such
thatN1(~d, PCP ) ≥ T , is NP-complete.

Theorem 3 It is NP-hard to find a winner under
MLEπ1,q

. More precisely, it is NP-complete to de-

cide whether there exists an alternative~d such that
N1(~d, PCP ) ≥ T .

5 Characterizations of MLE
correspondences

The voting rules studied in Section 4 are quite different
from the voting rules that have previously been studied in
the context of multi-issue domains, such as issue-by-issue
voting and sequential voting. This illustrates that the max-
imum likelihood approach can generate sensible new rules
for multi-issue domains. Nevertheless, we may wonder
whether previously studied rules also fit under the MLE
framework.

In this section, we study whether or not issue-by-issue and
sequential voting correspondences can be modeled as the
MLEs for very weakly decomposable noise models. We
note that voting rules (which always output a unique win-
ner) are a special case of voting correspondences. There-
fore, our results easily extend to the case of voting rules.
First, we restrict the domain to separable profiles, and char-
acterize the set of all correspondences that can be modeled
as the MLEs for strongly/weakly decomposable noise mod-
els.

Theorem 4 Over the domain of separable profiles, a vot-
ing correspondencec can be modeled as the MLE for
a strongly decomposable noise model if and only ifc
is an issue-by-issue voting correspondence composed of
MLEWIVs.

Theorem 5 Over the domain of separable profiles, a vot-
ing correspondencec can be modeled as the MLE for a
weakly decomposable noise model if and only ifc is an
issue-by-issue voting correspondence composed of ranking
scoring correspondences.

However, for sequential voting correspondences, we have
the following negative result. A voting correspondencec
satisfiesunanimityif for any profileP in which each vote
ranks an alternative~d first, we haver(P ) = {~d}.

Theorem 6 Let Seq(c1, . . . , cp) be a sequential voting
correspondence that satisfies unanimity. Over the domain
of O-legal profiles, there is no very weakly decomposable
noise model such thatSeq(c1, . . . , cp) is the MLE.

However, a positive result can be obtained if there is an up-
per bound on the number of voters. The next theorem states
that for any natural numbern and any sequential composi-
tion of MLEWIVs, there exists a very weakly decompos-
able noise model such that for any profile of no more than
n O-legal votes, the set of winners under the MLE for that
noise model is always a subset of the set of winners under
the sequential correspondence.



Theorem 7 For anyn ∈ N and any sequential voting cor-
respondenceSeq(c1, . . . , cp) where for eachi ≤ p, ci

is an MLEWIV, there exists a very weakly decomposable
noise modelπ such that for anyO-legal profileP com-
posed of no more thann votes, we have thatMLEπ(P ) ⊆
Seq(c1, . . . , cp)(P ).

6 Noise models for CP-net aggregators

So far, we have only considered using voting to obtain a
winning alternative. Generating a full ranking of all alter-
natives is impractical in multi-issue domains. However, we
can try to generate an aggregate CP-net that represents the
aggregate preferences. We call such a mapping aCP-net
aggregator. Formally, a CP-net aggregatorR is defined as
a mapping from the set of all profiles of CP-nets to the set
of CP-nets.

To model CP-net aggregators as MLEs, we define noise
modelsδ similarly as in the case of voting correspondences.
We focus on weakly decomposable models: for anyi ≤ p,
any~a−i ∈ D−i, and anyW i ∈ L(Di), there is a proba-
bility distribution δ

~a−i

W i overL(Di). For any profilePCP

composed of CP-nets, we define the maximum likelihood
estimate as follows:

MLEδ(PCP )

= argmax
N

∏

N ′∈PCP

∏

i≤p,~a−i∈D−i

δ
~a−i

N|
xi:~a−i

(N ′|xi:~a−i
)

δ is strongly decomposable if (a) it is weakly decompos-
able, and (b) for every issuexi, the probability distribution
overDi does not depend on the choice of~a−i: formally, for
anyi ≤ p, any~a−i,~b−i ∈ D−i, and anyV i, W i ∈ L(Di),

we must have thatδ~a−i

W i (V i) = δ
~b−i

W i (V
i).

Let f1, . . . , fp be local preference functions. We de-
fine the issue-by-issue compositionof f1, . . . , fp, de-
noted byCom(f1, . . . , fp), as follows: for any profile
P , any i ≤ p, and any ~d−i ∈ D−i, we have that
Com(f1, . . . , fp)(P )|

xi:~d−i
= fi(P |xi:~d−i

).

Proposition 3 If P is O-legal, thenCom(f1, . . . , fp)(P )
isO-legal.

The next theorem characterizes all CP-net aggregators that
can be modeled as the MLE for a strongly decomposable
noise model.

Theorem 8 Over the domain of profiles of CP-nets, a CP-
net aggregatorR can be modeled as an MLE for a strongly
decomposable noise model if and only if it is an issue-by-
issue CP-net aggregator composed of local MLERIVs.

7 Conclusion

The central problems in preference aggregation in multi-
issue domains are to find practical ways for voters to repre-

sent and report their preferences, as well as to find natural
and computationally feasible ways of aggregating these re-
ported preferences. In this paper, we considered the maxi-
mum likelihood estimation (MLE) approach to voting, and
generalized it to multi-issue domains, assuming that the
voters’ preferences are expressed by CP-nets. In the case
where all issues are binary, we proposed and axiomatized
a class of distance-based noise models; then, we focused
on a specific subclass of such models, parameterized by a
threshold. We identified the computational complexity of
winner determination for the two most relevant values of
the threshold (it isNP-hard for one, but doable in poly-
nomial time for the other; we also gave an axiomatiza-
tion of the latter). We then considered the case where is-
sues are not necessarily binary. For separable input pro-
files, we characterized MLEs of strongly/weakly decom-
posable models as issue-by-issue voting correspondences
composed of local MLEWIVs/ranking scoring correspon-
dences. Although we showed that no sequential voting
correspondence can be represented as the MLE for a very
weakly decomposable model, we did obtain a positive re-
sult here under the assumption that the number of voters
is bounded above by a constant. Finally, we studied the
MLE approach for CP-net aggregators, and characterized
all CP-net aggregators that can be modeled as the MLE for
a strongly decomposable noise model.

We note that, whereas Section 5 has a non-constructive fla-
vor because we studied existing voting mechanisms and
Theorem 6 is an impossibility theorem, quite the oppo-
site is the case for Section 4. Indeed, the MLE principle
led us to define genuinely new families of voting rules and
correspondences for multi-issue domains. These rules are
radically different from the rules that had previously been
proposed and studied for these domains. Unlike sequential
or issue-by-issue rules, they do not require any domain re-
striction, and yet their computational complexity is not that
bad (NP-complete at worst, and sometimes polynomial in
the size of the CP-nets). We believe that this new family of
rules is very original and promising.

Future research could further investigate the computational
aspects of determining the winners for MLE correspon-
dences. For example, in this paper, we characterized the
complexity of computing winners under MLEs of distance-
based threshold models with thresholds1 andp (the num-
ber of issues). It would be interesting to identify the com-
plexity for other thresholds (however, we conjecture that it
is at leastNP-hard). More generally, the study of voting
in multi-issue domains is still in its infancy. Unlike in the
standard (single-issue) case, relatively few rules have been
proposed and relatively little is known about social-choice-
theoretic properties. We believe that this paper has demon-
strated the potential of the maximum likelihood approach
to build a theory of social choice in multi-issue domains.
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The appendix: proofs

Proof of Theorem 1: We defineintra-issue permutation,
denoted byγ = (γ1, . . . , γp), as follows: for anyi ≤ p, γi

is a permutation overDi (that is, eitherγi exchanges0i and
1i, or γi is the identity permutaition), and for any~d ∈ X ,
we have thatγ(~d) = (γ1(d1), . . . , γp(dp)).

It is easy to check that every distance-based noise model is
very weakly decomposable and satisfies inter-issue neutral-
ity. We then prove that if a noise modelπ is very weakly de-
composable and satisfies inter-issue neutrality, then it must
be a distance-based noise model. It suffices to prove the
following two claims.

1. For anyi, i′ ≤ p, any pair~a−i ∈ D−i,~b−i′ ∈ D−i′ in
which the numbers of issues that take 1 are the same,

we have thatπ~a−i

01...0p
(0i � 1i) = π

~b−i′

01...0p
(0i′ � 1i′).

2. π satisfies intra-issue neutrality. That is, for every
intra-issue permutationγ = (γ1, . . . , γp), everyi ≤ p,
every~a−i ∈ D−i and every~d ∈ X , we have that

π
~a−i

~d
(di � d̄i) = π

γ(~a−i)

γ(~d)
(γi(di) � γi(d̄i)).

We first prove 1. LetI = {i1, . . . , ik} ⊆ {1, . . . , p} be
the set of components such that for anyl ∈ I, thexl com-
ponent of~a−i is 0l and thexl component of~b−j is 1l; let
I ′ = {i′1, . . . , i

′
k} ⊆ {1, . . . , p} be the set of components

such that for anyl ∈ I, the xl component of~a−i is 1l

and thexl component of~b−j is 0l. We consider the fol-
lowing inter-issue permutations:Mi1,i′1

, . . . , Mik,i′
k
, Mi,i′

such that for anyl ≤ k, Mi1,i′
1
(0ik

) = 0i′
k
, Mi,i′(0i) = 0i′ .

Let M = Mi,i′ ◦ Mi1,i′
1
◦ . . . ◦ Mik,i′

k
, where for any

two functionsf1 and f2, f1 ◦ f2(x) = f1(f2(x)). We
note thatM(~a−i) = b−i′ , M(01 . . . 0p) = 01 . . . 0p, and
M(0i) = 0i′ . Therefore, from the inter-issue neutrality

we have thatπ~a−i

01...0p
(0i � 1i) = π

M(~a−i)
M(01...0p)(M(0i) �

M(1i)) = π
~b−i′

01...0p
(0i′ � 1i′).

Next, we prove 2. For anyi ≤ p, we letm′
i,i be the inter-

issue permutation in whichm′
i,i(0i) = 1i (andm′

i,1(1i) =
0i). We note that any intra-issue permutation is equivalent
to the composition of multiple inter-issue permutation in
the following way: suppose for anyi ∈ {i1, . . . , ik}, we
have thatγi exchanges0i and1i; for anyi 6∈ {i1, . . . , ik},
we have thatγi is the identity permutation. Then,γ =
M ′

i1,i1 ◦ . . . ◦M ′
ik,ik

. Becauseπ satisfies inter-issue neu-
trality, it also satisfies intra-issue neutrality.

(End of the proof of Theorem 1.) �

Proof of Proposition 1: For anyk ≤ p, any ~d ∈ X ,
we let Lk = #{e : |e − ~d| ≤ k}. That is, Lk is the
number of edges in the hypercube whose distance from a
given alternative~d is no more thank. For any~d ∈ X and

any CP-netN , we have that

lnπ(N|~d)

= ln
∏

i,~a−i∈D−i

π
~a−i

di
(N|xi:~a−i

)

=
∑

N∈PCP

(Nk(~d,N ) ln q + (Lk −Nk(~d,N )) ln(1 − q))

=
∑

N∈PCP

(Nk(~d,N ) ln
q

1− q
+ Lk ln(1− q))

Therefore,MLEπk,q
(PCP ) = arg max~d π(PCP |~d) =

arg max~d

∑

N∈PCP
(Nk(~d,N ) ln q

1−q + Lk ln(1 − q)) =

arg max~d Nk(~d, PCP ). �

Proof of Theorem 2: It is easy to check that anyπp,q sat-
isfies strong decomposability and inter-issue neutrality.We
next prove that any noise modelπ that satisfies strong de-
composability and inter-neutrality must be a distance-based
threshold noise model.

By Theorem 1,π is a distance-based model, denoted by
π~q. From strong decomposability, we have that for anyk ≤

p− 1, π
01...0p−1

01...0p
(0p � 1p) = π

11...1k0k+1...0p−1

01...0p
(0p � 1p),

which means thatq0 = qk. Hence, we have thatπ is a
distance-based threshold noise model. �

Proof of Proposition 2: First we prove that the out-
put of Algorithm 1 isMLEπp,q

(PCP ). For any~d ∈ X ,

Np(~d, PCP ) =
∑

i≤p, #{~a−1 ∈ D−1 : (di,~a−i) �N

(d̄i,~a−i),N ∈ PCP }. We note thatdi ∈ Wi if and only
if #{~a−1 ∈ D−1 : (di,~a−i) �N (d̄i,~a−i),N ∈ PCP } �
#{~a−1 ∈ D−1 : (d̄i,~a−i) �N (di,~a−i),N ∈ PCP }.
Therefore,~d ∈MLEπp,q

(PCP ) if and only if for all i ≤ p,
we have thatdi ∈ Wi.

Next we prove that the algorithm runs in polynomial time.
We note that in step 1b, the complexity of computingl
is O(2|ParG(xi)|), andCPT (xi) of the CP-netN has ex-
actly 2|ParG(xi)| entries, which means that the complexity
of computingl is in polynomial of the size ofCPT (xi)
of the input. Therefore, Algorithm 1 is a polynomial-time
algorithm. �

Proof of Theorem 3: By Proposition 1, the decision prob-
lem of finding a winner underMLEπ1,q

is the follow-
ing: for any profileP that consists ofn CP-nets, and any
T ≤ pn, we are asked whether or not there exists~d ∈ X
such thatN1(~d, P ) ≥ T .

We prove the NP-hardness by reduction from the decision
problem ofMAX-2-SAT. The inputs of an instance of the
decision problem ofMAX-2-SAT are:

• A set oft atomic propositionsx1, . . . , xt.

• T ≤ t.



• A formula F = c1 ∧ . . . ∧ cm represented incon-
junctive normal form, in which for anyi ≤ m, ci =
li1 ∨ li2 , and there existsj1, j2 ≤ t such thatli1 is xj1

or¬xj1 , andli2 is xj2 or¬xj2 .

We are asked whether or not there exists a valuation~x
for the atomic propositionsx1, . . . , xt such that at leastT
clauses are satisfied under~x.

Given any instance ofMAX-2-SAT, we construct a deci-
sion problem of computing a winner underMLEπ1,q

as
follows.

• LetX be composed oft issuesx1, . . . , xt.

• Let T ′ = 16T − 12m.

• For anyi ≤ m, we letvi1 be the valuation ofxi1 un-
der whichli1 is true; letvi2 be the valuation ofxi2

under whichli2 is true. For anyj ≤ t, we let0j cor-
responds toxj being false, and1j corresponds toxj

being true. Then, any valuation of the atomic proposi-
tions is uniquely identified by an alternative. We next
define six CP-net as follows:

– Ni,1 andN ′
i,1: the DAG ofNi,1 has only one

directed edge(xi1 ,xi2). InNi,1, vi1 � v̄i1 , vi1 :
vi2 � v̄i2 , v̄i1 : vi2 � v̄i2 , and for anyj 6= i1 and
j 6= i2, we have that0j � 1j. N ′

i,1 is the same as
Ni,1, except that for anyj 6= i1 andj 6= i2, we
have that1j � 0j .

– Ni,2 andN ′
i,2: the DAG ofNi,2 has only one

directed edge(xi1 ,xi2). InNi,2, vi1 � v̄i1 , vi1 :
v̄i2 � vi2 , v̄i1 : vi2 � v̄i2 , and for anyj 6= i1 and
j 6= i2, we have that0j � 1j. N ′

i,2 is the same as
Ni,2, except that for anyj 6= i1 andj 6= i2, we
have that1j � 0j .

– Ni,3 andN ′
i,3: the DAG ofNi,3 has only one

directed edge(xi2 ,xi1). InNi,1, vi2 � v̄i2 , vi2 :
v̄i1 � vi1 , v̄i2 : vi1 � v̄i1 , and for anyj 6= i1 and
j 6= i2, we have that0j � 1j. N ′

i,3 is the same as
Ni,3, except that for anyj 6= i1 andj 6= i2, we
have that1j � 0j .

Let ~Ni = (Ni,1,N ′
i,1,Ni,2,N ′

i,2,Ni,3,N ′
i,3). We let

the profile of CP-net bePCP = ( ~N1, . . . , ~Nm).

Let P be a profile of CP-nets. The aggregated majority
graph ofP is a weighted directed graph in which the ver-
tices areX , and the edges are defined in the following
way: for any neighboring vertices~d1, ~d2 in the hypercube,
if DP (~d1, ~d2) > 0, then there is a directed edge from~d1

to ~d2 with weight DP (~d1, ~d2); if DP (~d2, ~d1) > 0, the
direction and weight of the edge is defined similarly; if
DP (~d1, ~d2) = 0, then there is no edge between~d1 and~d2).
The aggregated majority graph ofNi is illustrated in Fig-
ure 6 (the vertices that are not connected to any other vertex

vi1vi2 vi1vi2

vi1vi2 vi1vi2

2

2

6

6

Figure 6: The aggregated majority graph of~Ni.

is not drawn in the figure). We make the following claim
on the number of consistent edges between an alternative~d
and ~Ni.

Claim 1 For any ~d ∈ X and anyi ≤ m, N1(~d, ~Ni) =
{

4 if ~di1 = vi1 or di2 = vi2

−12 if ~di1 = v̄i1 anddi2 = v̄i2

Claim 1 states that the number of consistent edges between
~d and ~Ni within distance 1 is4 if the clauseli is true un-
der the valuation represented by~d; otherwise it is−12.
For any ~d ∈ X , we letT~d denote the number of clauses

in c1, . . . , cm that are true under~d. Then, we have that
N1(~d, PCP ) = 4T~d−12(m−T~d) = 16T~d−12m. It follows
from Proposition 1 that for anyq > 1

2 , MLEπ1,q
(PCP ) =

arg max~d N1(~d, PCP ) = arg max~d T~d. Therefore, a win-
ner ofPCP underMLEπ1,q

corresponds to a valuation un-
der which the number of satisfied clauses is maximized;
and any valuation that maximizes the number of satisfied
clauses corresponds to a winner ofPCP underMLEπ1,q

.
We note that the size ofPCP is O(mt). It follows that
computing a winner underMLEπ1,q

is NP-hard.

Clearly the problem is in NP. Therefore, it is NP-complete
to compute a winner underMLEπ1,q

. �

Proof of Theorem 4: First we prove the “if” part. Letc be
an issue-by-issue voting correspondence that is composed
of c1, . . . , cp, in which for anyi ≤ p, ci is an MLEWIV
overDi of the noise modelPr(V i|di), whereV i ∈ L(Di)
anddi ∈ Di. Let π be a noise model overX defined as
follows: for anyi ≤ p, any~d ∈ X , any~a−i ∈ D−i and any
V i ∈ L(Di), we have thatπ~a

~d
(Vi) = Pr(V i|di). We next

prove that for any separable profileP , we must have that
MLEπ(P ) = c(P ).

MLEπ(P ) =arg max
~d

∏

i≤p,~a−i∈D−i

n
∏

j=1

π
~a−i

~d
(Vj)

=arg max
~d

∏

i≤p

n
∏

j=1

Pr((Vi|xi
)|di)

|D−i|

Therefore, ~b ∈ MLEπ(P ) if and only if for any
i ≤ p, we havebi ∈ argmax

di

∏n
j=1 Pr((Vi|xi

)|bi).

We note that for any~d′ ∈ r(P ), we must have that



d′i = argmax
di

∏n
j=1 Pr((Vi|xi

)|di). Therefore, ~d′ ∈

MLEπ(P ).

Next, we prove the “only if” part. For anyMLEπ ∈
SD(X ), we define an issue-by-issue voting rule as follows:
for any i ≤ p, let ci be the MLEWIV that corresponds to
the noise model in which for anydi ∈ Di, we have that
Pr(V i|di) = π

~a−i

~d
(V i). Similar to the proof for the “if”

part, we have thatc andMLEπ are equivalent over the do-
main of separable profiles. �

Proof of Theorem 5: First we prove the “if” part. Let
c be an issue-by-issue voting correspondence in which the
issue-wise correspondence overDi is csi

, which has scor-
ing function si. Let π

~a−i

di
denoteπ

~a−i

~d
, where theith

component of~d is di. Becauser is strongly decompos-
able, π

~a−i

di
is well-defined. For anyi ≤ p, we claim

that there exists a set of probability distributionsπ
~a−i

~d
,

~d ∈ X ,~a−i ∈ D−i overL(Di) such that for anydi ∈ Di,
di ∈ arg maxbi∈Di

∏n
j=1

∏

~a−i∈D−i
π

~a−i

bi
(Vj |xi

) if and
only if di ∈ csi

(P |xi
).

We note that for any scoring functions and any constant
t, the ranking scoring rule that corresponds tos is equiva-
lent to the ranking scoring rule that corresponds tos + t.
Therefore, without loss of generality we letsi(V

i, di) < 0
for any i ≤ p, anyV i ∈ L(Di), and anydi ∈ Di. Let
Ki = |Di|, L(Di) = {l1, . . . , lKi!}.

Claim 2 There existki, ti ∈ R with ki > 0, such that
for any V i ∈ L(Di) and anydi ∈ Di, we have that

ln(
∏

~d−i∈D−i
π

~d−i

di
(V i)) = kisi(V

i, di) + ti.

Proof of Claim 2: We letki be a real number such that for
anydi ∈ Di, we have that

∑Ki!
j=1(exp(si(lj , di)))

ki < 1;

let p̂j
di

= exp(si(lj , di)). For anydi ∈ Di, any1 ≤ α <
Ki!

Ki!− 1
, we let

fdi
(α) = ln((1 −

Ki!−1
∑

j=1

p̂j
di

α
)(1 − (Ki − 1)

α

Ki!
))

Because
∑Ki!

j=1 p̂j
di

< 1, we have that ln(1 −
∑Ki!−1

j=1 p̂j
di

) > ln p̂Ki!
di

= kisi(lKi!, di). There-
fore, fdi

(1) ≥ kisi(lKi!, di) − ln(Ki!). We note that
lim

α→
Ki!

Ki!−1

fdi
(α) = −∞. It follows that there exists

1 ≤ αdi
≤

Ki!

Ki!− 1
such thatfdi

(αdi
) = kisi(lKi!, di) −

ln(Ki!).

For anyi ≤ p, anydi ∈ Di, we let~a′
−i,~a

∗
−i ∈ D−i such

that~a′
−i 6=

~~a∗
−i. We defineπ

~d−i

di
as follows.

• for any j ≤ Ki! − 1, π
~a′
−i

di
(lj) =

1

αdi

(exp(si(lj , di)))
ki , π

~a∗
−i

di
(lj) =

αdi

Ki!
.

• for anyj ≤ Ki!, any~d−i ∈ D−i such that~d−i 6= ~a′
−i

and~d−i 6= ~a∗
−i, we have thatπ

~d−i

di
(lj) = 1

Ki!
.

For any~di ∈ Di and anyj ≤ Ki!− 1, we have that

ln(
∏

~d−i∈D−i

π
~d−i

di
(lj))

= ln(π
~a′
−i

di
(lj) · π

~a∗
−i

di
(lj)) + (|D−i| − 2) ln(

1

Ki!
)

= ln(
1

αdi

(exp(si(lj , di)))
ki ·

αdi

Ki!
)− (|D−i| − 2) ln(Ki!)

=kisi(lj , di)− (|D−i| − 1) ln(Ki!)

For j = Ki!, we have the following calculation.

ln(
∏

~d−i∈D−i

π
~d−i

di
(lKi!))

= ln(π
~a′
−i

di
(lKi!) · π

~a∗
−i

di
(lKi!)) + (|D−i| − 2) ln(

1

Ki!
)

=fdi
(αi)− (|D−i| − 2) ln(Ki!)

=kisi(lKi!, di)− (|D−i| − 1) ln(Ki!)

Therefore, letti = −(|D−i| − 1) ln(Ki!). It follows that
for anyV i ∈ L(Di), and anydi ∈ Di, we must have that

ln(
∏

~d−i∈D−i
π

~d−i

di
(V i)) = kisi(V

i, di) + ti. �

Next, we show that for any separable profileP ,
c(P ) = MLEπ(P ). Similar to in the proof of The-
orem 4, it suffices to prove that for anyi ≤ p,

arg maxdi∈Di

∏

j≤n

∏

~d−i∈D−i
π

~d−i

di
(Vj |xi

) = csi
(P |xi

).

arg max
di∈Di

∏

j≤n

∏

~d−i∈D−i

π
~d−i

di
(Vj |xi

)

=arg max
di∈Di

ln(
∏

j≤n

∏

~d−i∈D−i

π
~d−i

di
(Vj |xi

))

=arg max
di∈Di

∑

j≤n

∑

~d−i∈D−i

ln(π
~d−i

di
(Vj |xi

))

=arg max
di∈Di

∑

j≤n

∑

~d−i∈D−i

(kisi(Vj |xi
, di) + ti)

=arg max
di∈Di

∑

j≤n

∑

~d−i∈D−i

si(Vj |xi
, di)

=csi
(P |xi

)

Next, we prove the “only if” part. Letπ be a
weakly decomposable noise model. For anyi ≤
p, any di ∈ Di, and any V i ∈ L(Di), we let
si(V

i, di) = ln
∏

~a−i∈D−i
π

~a−i

di
(V i). Then, we have that



di maximizessi(P |xi
, di) if and only if di maximizes

∏

N∈P

∏

~a−i∈D−i
π

~a−i

di
(N|xi

), which means thatc(P ) =

MLEπ(P ).

(End of the proof of Theorem 5). �

Proof of Theorem 6: For the sake of contradiction, we let
Seq(c1, . . . , cp) be a sequential voting correspondence and
MLEπ be an MLE model equivalent to it. A voting corre-
spondencec satisfiesconsistency, if for any profilesP1, P2,
if c(P1) = c(P2), thenc(P1 ∪ P2) = c(P1); c satisfies
anonymity, if it is indifferent with the name of the voters.
BecauseMLEπ satisfies consistency and anonymity, we
have the following claim.

Claim 3 For anyi ≤ p, ci satisfies consistency, anonymity
(see [9]) and unanimity.

For any~d ∈ X , anyO-legal CP-netN , we let

πx1

~d
(N ) =

∏

~a−1∈D−1

π
~a−1

~d
(N|x1

)

π
x−1

~d
(N ) =

∏

2≤i≤p,~a−i∈D−i

π
~a−i

~d
(N|xi:a1...ai−1

)

Let N1,N2 be CP-nets. We note that ifN1|x1
=

N2|x1
, then πx1

~d
(N1) = πx1

~d
(N2); if for any d1 ∈

D1, N1|x−1:d1
= N2|x−1:d1

, then we must have that
π
x−1

~d
(N1) = π

x−1

~d
(N2), whereN1|x−1:d1

is the sub-CP-
net of N1 given x1 = d1. For anyO-legal vote V
that extends a CP-netN , we write πx1

~d
(V ) = πx1

~d
(N )

and π
x−1

~d
(V ) = π

x−1

~d
(N ); for any O-legal profile P ,

we write πx1

~d
(P ) =

∏

V ∈P πx1

~d
(V ) and π

x−1

~d
(P ) =

∏

V ∈P π
x−1

~d
(V ). It follows that for anyO-legal profileP ,

we have that

MLEπ(P ) = arg max
~d∈X

[πx1

~d
(P ) · π

x−1

~d
(P )]

For anyV 1
1 , V 1

2 ∈ L(D1) with top(V 1
1 ) 6= top(V 1

2 ), and
anyn ∈ N, we letP 1

1,n be the profile that is composed ofn
copies ofV 1

1 ; let P 1
2,n be the profile that is composed ofn

copies ofV 1
2 . Becausec1 satisfies unanimity, we must have

that c1(P
1
1,n) = {top(V 1

1 )} and c1(P
1
2,n) = {top(V 1

2 )}.
For anyj ≤ n, we let Qj,n be the profile in which the
preferences of the firstj voters areV 1

1 , and the preferences
of the remainingn− j voters areV 1

2 . We have thatQ1,n =
P 1

1,n andQn,n = P 1
2,n. Therefore, there existsj ≤ n − 1

and b1 ∈ D1 with b1 6= top(V 1
1 ), such thattop(V 1

1 ) ∈
c1(Qj,n) andb1 ∈ c1(Qj+1,n). For anyn ∈ N, we letCn

denote the set of pairs(a1, b1) such that

• a1, b1 ∈ D1, a1 6= b1.

• There exists two profilesW 1
1 , W 1

2 overD1 such that
a1 ∈ c1(W

1
1 ), b1 ∈ c1(W

1
2 ), andW 1

1 differs fromW 1
2

only on one vote.

That is,Cn is composed of the pairs(a1, b1) such that there
exists a profileQ overD1 that consists ofn votes,a1 ∈
c1(Q), and by changing one vote ofQ, there is another
alternativeb1 who is one of the winners. We note that for
anyn ∈ N, (a1, b1) ∈ Cn if and only if (b1, a1) ∈ Cn. It
follows that for anyn ∈ N, Cn 6= ∅. Because|D1| < ∞,
there exists(a1, b1) ∈ (D1)

2 such that for anyk ∈ N, there
existsn ≥ k such that(a1, b1) ∈ Cn.

Claim 4 For any~a−1,~b−1 ∈ D−1, and any pair of CP-

netsN ′,N ∗, we must have that
π
x−1

~a (N ′)

π
x−1

~b
(N ′)

=
π
x−1

~a (N ∗)

π
x−1

~b
(N ∗)

,

where~a = (a1,~a−1),~b = (b1,~b−1).

Proof of Claim 4: Suppose for the sake of contradic-

tion there exist~a−1,~b−1, andN ′,N ∗ so that
π
x−1

~a (N ′)

π
x−1

~b
(N ′)

6=

π
x−1

~a (N ∗)

π
x−1

~b
(N ∗)

. Without loss of generality we let
π
x−1

~a (N ′)

π
x−1

~b
(N ′)

>

π
x−1

~a (N ∗)

π
x−1

~b
(N ∗)

. We next claim that there exits a natural number

k such that for anyi ≤ p and any profileP i composed ofk
votes, if at leastk− 1 votes inP i rank the same alternative
di in the top position, thenci(P

i) = {di}.

Claim 5 There existsk ∈ N such that for anyi ≤ p, any
di ∈ Di, and any profileP i = (V i

1 , . . . , V i
k ) with di =

top(V i
1 ) = . . . = top(V i

k−1), we have thatci(P ) = {di}.

Proof of Claim 5: Let U = max
~d1,~d2,N

Pr(N|~d1)

Pr(N|~d2)
. Let u =

min
~d1 6=~d2,N :top(N )=~d1

Pr(N|~d1)

Pr(N|~d2)
. BecauseMLEπ(N ) satis-

fies unanimity, for any~d1 andN such thattop(N ) = ~d1,
we must have thatMLEπ(N ) = {~d1}, which means that
u > 1. Let k be a natural number such thatuk−1 > U . We
arbitrarily choose~d−i ∈ D−i, and let~d = (di, ~d−i). We
definek CP-netsN1, . . . ,Nk as follows.

• For anyj ≤ k, top(Nj) = (~d−i, top(V i)).

• For anyj ≤ k,Nj |xi:d1,...,di−1
= V i.

• Other conditional preferences are defined arbitrarily.

BecauseSeq(c1, . . . , cp) satisfies unanimity, we have that
Seq(c1, . . . , cp)(N1, . . . ,Nk−1) = {~d}. Therefore, for
any ~d′ ∈ X and any CP-netN , we have the following cal-
culation:

Pr((N1, . . . ,Nk)|~d)

Pr((N1, . . . ,Nk)|~d′)
=

∏k−1
j=1 Pr(Nj |~d)

∏k−1
j=1 Pr(Nj |~d′)

·
Pr(Nk|~d)

Pr(Nk|~d′)

≥u(k−1) 1

U
> 1



Thereforeci(V
1, . . . , V k) = {di}.

(End of proof of Claim 5.) �

Let N~a be a CP-net such thattop(N~a) = ~a and
top(N|x−1:b1) = ~b−1. That is,N~a is a CP-net in which~a is

ranked in the top position, and givenx1 = b1,~b−1 is ranked
in the top position. Next, we show that for any CP-netN ,
π
x−1

~a (N )

π
x−1

~b
(N )

=
π
x−1

~a (N~a)

π
x−1

~b
(N~a)

. Suppose for the sake of contra-

diction, there existsN such that
π
x−1

~a (N )

π
x−1

~b
(N )

6=
π
x−1

~a (N~a)

π
x−1

~b
(N~a)

.

We next show contradiction in the case
π
x−1

~a (N )

π
x−1

~b
(N )

>

π
x−1

~a (N~a)

π
x−1

~b
(N~a)

. Let Ux1
= max

~d1,~d2,N

πx1

~d1

(N )

πx1

~d2

(N )
. Let K be a nat-

ural number such that(
π
x−1

~a (N )

π
x−1

~b
(N )

/
π
x−1

~a (N~a)

π
x−1

~b
(N~a)

)K > U2
x1

.

Let n ∈ N be such thatn > kK and(a1, b1) ∈ Cn. It fol-
lows that there exist(V 1

1 , . . . , V 1
n ) andW 1

1 such thata1 ∈
c1(V

1
1 , . . . , V 1

n ) andb1 ∈ c1(W
1
1 , V 1

2 , . . . , V 1
n ). We define

2n + 1 CP-netsN ′
1,N1,N2, . . . ,Nn, N̂1, N̂2, . . . , N̂n as

follows.

• For anyj ≤ n,Nj |x1
= N̂j |x1

= V 1
j ;N ′

1|x1
= W 1

1 .

• For any j1 ≤ K, 1 ≤ j2 ≤ k − 1, and any
d1 ∈ D1, N(j1−1)k+j2 |x−1:d1

= N~a|x−1:d1
and

Nj1k|x−1:d1
= N|x−1:d1

; for any j ≤ n and any
d1 ∈ D1,Nj |x−1:d1

= N~a|x−1:d1
.

• For anykK + 1 ≤ j ≤ n,Nj = N̂j = N~a.

• For anyd1 ∈ D1,N ′
1|x−1:d1

= N~a|x−1:d1
.

For anyj ≤ n, we letVj (V̂j) be an arbitrary linear order
that extendsNj (N̂j); letV ′

1 be an arbitrary linear order that
extendsN ′

1; let P = (V1, . . . , Vn), P ′ = (V ′
1 , V2, . . . , Vn),

P̂ = (V̂1, . . . , V̂n), P̂ ′ = (V̂ ′
1 , V̂2, . . . , V̂n). We make the

following observations.

• a1 ∈ c1(P |x1
), a1 ∈ c1(P̂ |x1

), b1 ∈ c1(P
′|x1

), b1 ∈
c1(P̂

′|x1
).

• For any 1 ≤ i ≤ p − 1, P |xi:a1...ai−1
=

K((k − 1)N~a|xi:a1...ai−1
∪ N ′|xi:a1...ai−1

) ∪ (n −
kK)N~a|xi:a1...ai−1

. From Claim 5 we have that
ci((k − 1)N~a|xi:a1...ai−1

∪ N ′|xi:a1...ai−1
) = {ai}.

Becauseci satisfies unanimity and consistency, and
for anyi ≤ p, top(N~a|xi:a1...ai−1

) = ai, we have that
for anyi ≤ p, ci(P |xi:a1...ai−1

) = {ai}. Similarly for
anyi ≤ p, ci(P̂ |xi:a1...ai−1

) = {ai}.

• For any 1 ≤ i ≤ p − 1, P |xi:b1...bi−1
=

K((k − 1)N~a|xi:b1...bi−1
∪ N ′|xi:b1...bi−1

) ∪ (n −

kK)N~a|xi:b1...bi−1
. Similarly, we have that for any

1 ≤ i ≤ p, ci(P
′|xi:b1...bi−1

) = ci(P̂
′|xi:b1...bi−1

) =
{bi}.

Therefore, we have that~a ∈ Seq(c1, . . . , cp)(P ),~a ∈

Seq(c1, . . . , cp)(P̂ ), and~b ∈ Seq(c1, . . . , cp)(P
′),~b ∈

Seq(c1, . . . , cp)(P̂
′). That is,

Pr(P ′|~b)

Pr(P ′|~a)
≥ 1,

Pr(P̂ ′|~b)

Pr(P̂ ′|~a)
≥ 1. We note thatP andP ′ differ only on the

first vote. Therefore, we have the following calculation.

1 ≤
Pr(P ′|~b)

Pr(P ′|~a)

=
πx1

~b
(V ′

1) · π
x−1

~b
(V ′

1)
∏

2≤j≤n(πx1

~b
(Vj) · π

x−1

~b
(Vj))

πx1

~a (V ′
1) · π

x−1

~a (V ′
1)

∏

2≤j≤n(πx1

~a (Vj) · π
x−1

~a (Vj))

=
πx1

~b
(V ′

1)

πx1

~a (V ′
1)
·
πx1

~a (V1)

πx1

~b
(V1)

·
Pr(P |~b)

Pr(P |~a)

≤U2
x1

Pr(P |~b)

Pr(P |~a)

Therefore,
Pr(P |~a)

Pr(P |~b)
≤ U2

x1
. We note thatP andP ′ differ

onK votes.

(
Pr(P |~a)

Pr(P |~b)
)/(

Pr(P̂ |~a)

Pr(P̂ |~b)
)

=(
K
∏

j=1

πx1

~a (Vjk) · π
x−1

~a (Vjk)

πx1

~b
(Vjk) · π

x−1

~b
(Vjk)

)/(
K
∏

j=1

πx1

~a (V̂jk) · π
x−1

~a (V̂jk)

πx1

~b
(V̂jk) · π

x−1

~b
(V̂jk)

)

=(
π
x−1

~a (N )

π
x−1

~b
(N )

/
π
x−1

~a (N~a)

π
x−1

~b
(N~a)

)K

>U2
x1

We note that(
Pr(P̂ |~a)

Pr(P̂ |~b)
) ≥ 1. Therefore,

Pr(P |~a)

Pr(P |~b)
>

U2
x1

, which is a contradiction.

Similarly, for the case of
π
x−1

~a (N )

π
x−1

~b
(N )

<
π
x−1

~a (N~a)

π
x−1

~b
(N~a)

we still

have a contradiction. Hence,
π
x−1

~a (N )

π
x−1

~b
(N )

=
π
x−1

~a (N~a)

π
x−1

~b
(N~a)

for

allN , which means that for anyN ′ andN ∗, we must have

that
π
x−1

~a (N ′)

π
x−1

~b
(N ′)

=
π
x−1

~a (N ∗)

π
x−1

~b
(N ∗)

.

(End of proof of Claim 4.) �

By Claim 4, for any CP-netN , any~b−1,~b
′
−1 ∈ D−1,

we must have that
π
x−1

(b1,~b−1)
(N )

π
x−1

(b1,~b−1)
(N~a)

=
π
x−1

~a (N )

π
x−1

~a (N~a)
=



π
x−1

(b1,~b′−1
)
(N )

π
x−1

(b1,~b′−1
)
(N~a)

, which means that
π
x−1

(b1,~b−1)
(N )

π
x−1

(b1,~b′−1
)
(N )

=

π
x−1

(b1,~b−1)
(N~a)

π
x−1

(b1,~b′−1
)
(N~a)

. LetN1 be a CP-net such thattop(N1) =

(b1,~b
′
−1), N2 be a CP-net such thattop(N2) = (b1,~b−1)

and N1|x1
= N2|x1

. BecauseSeq(c1, . . . , cp) satis-

fies unanimity, we have that
Pr(N1|(b1,~b

′
−1))

Pr(N1|(b1,~b−1))
> 1 and

Pr(N2|(b1,~b
′
−1))

Pr(N2|(b1,~b−1))
< 1. However, we have the following

calculation.

1 <
Pr(N1|(b1,~b

′
−1))

Pr(N1|(b1,~b−1))

=
πx1

(b1,~b′−1
)
(N1) · π

x−1

(b1,~b′−1
)
(N1)

πx1

(b1,~b−1)
(N1) · π

x−1

(b1,~b−1)
(N1)

=
πx1

(b1,~b′−1
)
(N2) · π

x−1

(b1,~b′−1
)
(N~a)

πx1

(b1,~b−1)
(N2) · π

x−1

(b1,~b−1)
(N~a)

(BecauseN1|x1
= N2|x1

)

=
πx1

(b1,~b′−1
)
(N2) · π

x−1

(b1,~b′−1
)
(N2)

πx1

(b1,~b−1)
(N2) · π

x−1

(b1,~b−1)
(N2)

=
Pr(N2|(b1,~b

′
−1))

Pr(N2|(b1,~b−1))

<1

Therefore, we have a contradiction.(End of proof of The-
orem 6.) �

Proof of Theorem 7: Let ri be the MLEWIV with the
conditional probabilistic distributionPri(V

i|di), where
V i ∈ L(Di), di ∈ Di. For anyi ≤ p, we letRi,n

max =

maxPi,P ′
i ,di,d′

i
{

Pri(P |di)

Pri(P ′|d′i)
}, wheredi, d

′
i ∈ Di, Pi and

P ′
i are profiles with the same number (but no more thann)

of linear orders overDi. We letRi,n
min = 1 if ri is the triv-

ial correspondence that always output the whole domain;

andRi,n
min = minPi,~di,~d′

i
{
Pri(Pi|di)

Pri(Pi|d′i)
:

Pri(Pi|di)

Pri(Pi|d′i)
> 1},

wheredi, d
′
i ∈ Di, andPi is a profile of no more thann lin-

ear orders overDi. We note that for anyi ≤ p, anyn ∈ N,
we have thatRi,n

max ≥ Ri,n
min ≥ 1.

For anyV i ∈ L(Di), any ~d ∈ X , and any~a−i ∈ D−1, we
let

π
~a−i

~d
=







Pri(V
i|di)

ki/Zi if ~a−i = ~d−i
1

Ni!
otherwise

,

whereZi =
∑

V i∈L(Di)
Pri(V

i|di)
ki is the normalizing

factor,1 = k1 > k2 > . . . > kp > 0 are chosen in the

following way: for anyi′ < i ≤ p, anyV i, W i ∈ L(Di),
and anydi, d

′
i ∈ Di, if Ri,n

min > 1, then we must have that

(Ri,n
max)ki < (Ri′,n

min)ki′/2i−i′

.

We next prove that for any profilePCP of no more
than n CP-nets, we must have thatMLEπ(PCP ) ⊆
Seq(r1, . . . , rp)(PCP ). For the sake of contradiction,
let PCP be a profile of no more thann CP-nets with
MLEπ(PCP ) * Seq(r1, . . . , rp)(PCP ). Let ~d ∈
MLEπ(PCP ), and i∗ be the number such that there ex-
ists ~d∗ ∈ Seq(r1, . . . , rp)(PCP ) such that for alli′ <
i∗, di′ = d∗i′ , and di∗ 6∈ ri∗(PCP |xi∗ :d1...di∗−1

). Be-
causeri∗(PCP |xi∗ :d1...di∗−1

) 6= Di∗ , we must have that

Ri∗,n
min > 1. Because~d ∈MLEπ(PCP ), we must have that

π(PCP |~d)

π(PCP |~d∗)
≥ 1. However, we have the following calcula-

tion that leads to a contradiction.

1 ≤
π(PCP |~d)

π(PCP |~d∗)

=

∏p
i=1 Pri(PCP |xi:d1...di−1

|di)
∏p

i=1 Pri(PCP |xi:d∗
1
...d∗

i−1
|d∗i )

=

∏p
i=i∗ Pri(PCP |xi:d1...di−1

|di)
∏p

i=i∗ Pri(PCP |xi:d∗
1
...d∗

i−1
|d∗i )

≤
1

(Ri∗,n
min)ki∗

·

p
∏

i=i∗+1

(Ri,n
max)ki

<
1

(Ri∗,n
min)ki∗

·

p
∏

i=i∗+1

(Ri∗,n
min)ki∗/2i−i∗

< 1

Therefore, we must have thatMLEπ(P ) ⊆
Seq(r1, . . . , rp)(P ) for all profiles P that consists of
no more thann CP-nets. �

Proof of Theorem 8: We note thatN that maximizes
∏

N ′∈PCP

∏

i≤p,~a−i∈D−i
δ
~a−i

N|
xi:~a−i

(N ′|xi:~a−i
) if and only

if for any i ≤ p and any~a−i ∈ D−i, the restriction ofN
onxi given~a−1 maximizes

∏

N ′∈PCP

δ
~a−i

N|
xi:~a−i

(N ′|xi:~a−i
).

The proof is then similar as the proof of Theorem 4. For the
“if” part, for any i ≤ p, any~a−i ∈ D−i, and anyV i, W i ∈

L(Di), we letδ~a−i

W i (V i) = Pri(V
i|W i), wherePri is the

probabilistic distribution thatmi corresponds to. For the
“only if” part, we let Pri(V

i|W i) = δ
~a−i

W i (V i). �


