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Abstract

In this paper, we study a maximum likelihood es-
timation (MLE) approach to preference aggrega-
tion and voting when the set of alternatives has a
multi-issue structure, and the voters’ preferences
are represented by CP-nets.

We first consider multi-issue domains in which
each issue is binary; for these, we propose a gen-
eral family of distance-based noise modetsf
which give an axiomatic characterization. We
then propose a more specific family of natural
distance-based noise models that are parameter-
ized by a threshold. We show that computing the
winner for the corresponding MLE voting rule is
NP-hard when the threshold is 1, but can be done
in polynomial time when the threshold is equal to
the number of issues.

Next, we consider general multi-issue domains,
and study whether and how issue-by-issue vot-
ing rules and sequential voting rules can be rep-
resented by MLEs. We first show that issue-by-
issue voting rules in which each local rule is it-
self an MLE (resp. a ranking scoring rule) can be
represented by MLEs with a weak (resp. strong)
decomposability property. Then, we prove two
theorems that state that if the noise model satis-
fies a very weak decomposability property, then
no sequential voting rule that satisfies unanimity
can be represented by an MLE, unless the num-
ber of voters is bounded.

Finally, we propose and study the MLE approach
for CP-net aggregators, which take CP-nets as in-
put, and output one or more aggregate CP-nets.

Introduction

Vincent Conitzer

J érdbme Lang

preferences, and thenvating rule (or voting correspon-
dencé selects the winning alternative (or multiple winning
alternatives). Mathematically, a voting rule or correspon
dence is defined as a mapping from the set of possible pref-
erenceprofilesto the set of alternatives. Here, a profile is a
vector of all the agents’ preferences.

In some sense, this means that the agents’ preferences are
the “causes” of the joint decision. However, there is a dif-
ferent (and almost reversed) point of view: there is a “cor-
rect” joint decision, but the agents may have different per-
ceptions (estimates) of what this correct decision is. Thus
the agents’ preferences can be viewed as noisy reports on
the correct joint decision. Even in this framework, the
agents still need to make a joint decision based on their
preferences, and it makes sense to choose their best esti-
mate of the correct decision. Given a noise model, one
natural approach is to choose the maximum likelihood es-
timate of the correct decision. The maximum likelihood
estimator is a function from profiles to alternatives (more
accurately, subsets of alternatives, since there may fkg tie
and as such is a voting rule (more accurately, a correspon-
dence).

This maximum likelihood approach was first studied by
Condorcet [5] for the case of two and three alternatives.
Much later, Young [12] showed that for arbitrary numbers
of alternatives, the MLE rule derived from Condorcet’s
noise model coincides with the Kemeny rule [7]. The
approach was further pursued by Drissi and Truchon [6].
More recently, Conitzer and Sandholm [4] studied whether
and how common voting rules amuteference functions
(that is, mappings that take agents’ preferences as input,
and output one or more aggregate rankings of the alter-
natives) can be represented as maximum likelihood esti-
mators. More recently, the maximum likelihood approach
for preference functions has been investigated in more de-
tail [3].

All of the above work does not assume any structure on the

A natural way for agents to make a joint decision when theyset of alternatives. However, in real life, the set of aléern
have possibly conflicting preferences over a set of alternatives often has a multi-issue structure: there are muligple
tives is byvoting Each agent (voter) is asked to report hersues(or attributeg, each taking values in its respective do-



main, and an alternative is characterized by the values thatrs’ preferences are represented by (not necessarilyi@cycl
the issues take. For example, consider a situation where tHeP-nets. Considering the structure of CP-nets, we focus
citizens of a country vote to directly determine a govern-on probabilistic models that avery weakly decomposable
ment plan, composed of multiple sub-plans for several in-That is, given the “correct” winner, a voter’s local prefer-
terrelated issues, such as transportation, environmedt, a ences over an issue are independent from her local prefer-
health [2]. Clearly, a voter’s preferences for one issue inences over other issues, as well as from her local prefer-
general depend on the decision taken on the other issuesnces over the same issue given a different setting of (at
for example, if a new highway is constructed through a for-least some of) the other issues.

est, a voter may prefer a nature reserve to be establisheg\'fter reviewing some background, we start with the spe-

but if the highway is not constructed, the voter may prefer . ) . . .
. . cial case in which each issue has only two possible values.
that no nature reserve is established.

For such domains, we introdudestance-based noise mod-
The number of alternatives in a multi-issue domain is ex-els in which the local distribution over any issuainder
ponential in the number of issues, which makes commonlgome setting of the other issues depends only on the Ham-
studied voting methods impractical (for one, they requireming distance from this setting to the restriction of ther“co
the agents to rank all the alternatives). One straightfoiwa rect” winner to the issues other than We axiomatically
way to aggregate preferences in multi-issue domains isharacterize distance-based noise models by very weak de-
issue-by-issuéa.k.a.seat-by-seatvoting, which requires composability andhter-issue neutralityThen we focus on
that the voters explicitly express their preferences osehe distance-based threshold noise modalsvhich there is a
issue separately, after which each issue is decided by aphreshold such that if the distance is smaller than thelthres
plying local (issue-wise) voting rules independently. sThi old, then a fixed nonuniform local distribution is used,
makes sense if voters’ preferences separablethatis, if  whereas if the distance is at least as large as the thresh-
the preferences of every voter over any issue are indepemld, then a uniform local distribution is used. We study the
dent of the values taken by the other issues. However, if @omputational complexity of the two extreme cases of this
voter has nonseparable preferences, it is not clear how shmodel: for the case where the threshold is one, we prove
should vote in such an issue-by-issue election. Indeed, that it is NP-hard to compute the winner; but for the case
is known that natural strategies for voting in such a contextvhere the threshold is equal to the number of issues, we
can lead to very undesirable results [2, 8]. prove that the winner can be computed in polynomial time.

While in general, a voter’s preferences for one issue depentihen, we move to the general case in which the issues are
on the decisions taken on other issues, on the other handpt necessarily binary. The goal here is to investigate when
one would not necessarily expect the preferences for onissue-by-issue or sequential voting rules can be modeled as
issue to depend oall other issues. CP-nets [1] were de- maximum likelihood estimators. When the input profile is
veloped as a natural representation language for capturingeparable, we completely characterize the set of all voting
such limited dependence among the preferences over multtorrespondences that can be modeled as an MLE for a noise
ple issues; they have some obvious similarities to Bayesiamodel satisfying a weak decomposability (resp. strong de-
networks. Recent work has started to investigate using CReomposability) property. Lastly, when the input profile of
nets to represent preferences in voting contexts with mulCP-nets is consistent with a common order over issues, we
tiple issues. If there is an order over issues such that eyprove that no sequential voting rule satisfying unanimity
ery voter's preferences for “later” issues depends only orcan be represented by an MLE, provided the noise model
the decisions made on “earlier” issues, then the voters’ CPsatisfies very weak decomposability. We show that this im-
nets are acyclic, and a natural approach is to apply issugzossibility result no longer holds if the number of voters is
wise voting rulessequentially{9]. This sequential voting bounded above by a constant.

process has a low communication cost, and a low com-. . . .
i . : : Finally, we generalize the idea to define MLEs that aggre-
putational cost if each of the local voting rules is easy to

. i > _gate CP-nets to a single CP-net or multiple CP-nets (in con-
compute. While the assumption that such an order exists '%rast to a single winner or multiple winners). We show that
still restrictive, it is much less restrictive than assugtimat 9 P .

. such MLEs correspond to a family of natural CP-net aggre-

preferences are separable (for one, the resulting preferen

S . . ators that are composed of local MLEs.
domain is exponentially larger [9]). Recent extensions of?
sequential voting rules include order-independent sequen .
tial voting rules [11], as well as a framework for voting 2 Technical background
when preferences are modeled by general (that is, not nec-
essarily acyclic) CP-nets [10]. 2.1 Basics of voting

In this paper, we combine the two research directions: W§ o4 v pe 4 finite set oalternatives(or candidatel A vote
take a maximum likelihood estimation approach to pref-V is a linear order o, i.e, a transitive, antisymmetric,

erence aggregation in multi-issue domains, when the Vot o total relation ot For anyk < |X|, (V) denotes the



alternative ranked in theth position inV; top(V') = (V)1

denotes the alternative that is ranked in the top position iR in the following way: for any profileP, ¢(P)

V. The set of all linear orders o’ is denoted byL(X).
An n-voter profileP is a collection of: votes, thatispP =
(Vi,..., V), whereV; € L(X) for everyj < n. The set
of all profiles onX’ is denoted byP(X). A (voting) rule

defined by a scoring functiors LX) x X —

arg maxg. , > vep sV, d).

2.3 Voting in multi-issue domains

r: P(X) — X maps any profile to a single candidate (the In this paper, the set of all alternativasis a multi-issue

winner). A(voting) correspondence: P(X) — 2% maps
any profile to a subset of candidatespreference function
f: P(X) — 28 maps any profile to a set of linear
orders overY.

2.2 The maximum likelihood approach to voting

In the maximum likelihood approach to voting rules, it is
assumed that there is a correct winmee X, and each
vote V' is drawn conditionally independently giveh ac-
cording to a conditional probability distributioRr(V'|d).

domain Thatis, letd = {xi,...,x,} (p > 2) be a set
of issueswhere each issue; takes values in a finitecal
domainD;. The set of alternatives & = D; x ... x D,,
that is, an alternative is uniquely identified by its values
on all issues. A multi-issue domain Enary if for ev-
ery i we haveD, = {0;,1;}. For any alternativel =
(d1,...,dp) and any issue;, we Iet(fxi =d; anddil- =
(dv,...,di—1,dit1,...,dp). Foranyl C {1,...,p}, we

let Dr = [[,c; Di,andD_; = Dy, i—1,i41,... p}-

Example 1 A group of people must make a joint decision
on the menu for dinner (the caterer can only serve the same

The independence structure of the noise modelis illustratemeny to everyone). The menu is composed of two issues:
in Figure 1. The use of this independence structure is stante main courseM) and the wine ). There are three
dard. Moreover, if conditional independence among voteghgjces for the main course: beef (b), fish (f), or salad (s).
is not required, then any voting rule can be represented byne wine can be either red wine (r), white wine (w), or pink

an MLE for some noise model [4], which trivializes the
guestion.

correct outcomg

Figure 1: The noise model.

wine (p). The set of alternatives is a multi-issue domain:
X = {b’ f’ S} X {T7w7p}'

CP-nets [1] constitute a useful language for compactly ex-
pressing preferences over multi-issue domains. A CP-net
N overX consists of two components: (a) a directed graph
G = (2, E) and (b) a set of conditional linear preferences
=% overD;, for any setting7 of the parents of; in G (de-
noted byParg(x;)). These conditional linear preferences

Under this independence assumption, the probability of &~ over D, form theconditional preference tabl®r issue

profile P = (V4,...,V,) given the correct winned is
Pr(P|d) = TI, Pr(V;|d) Then, the maximum likeli-
hood estimate of the correct winner is

MLEp,(P) = argmaxgex Pr(P|d)

M LEp, is a voting correspondence, as there may be sev-

eral alternatived that maximizePr(P|d). Another model
that has been studied assumes that there is a coamct

ing of the alternatives. Here, the model is defined similarly:

given the correct linear orddr*, each voteV is drawn
conditionally independently according for(V|V*). The
maximum likelihood estimate is defined as follows.
MLEp,(P) = argmaxy«cr,(x) HVGP Pr(V|V*)
Definition 1 ([4]) A voting rule (correspondence) is
a maximum likelihood estimator for winners under
i.i.d. votes (MLEWIV)if there exists a noise modEl- such
that for any profileP, we have that/ LEp,.(P) = r(P).

Definition 2 ([4]) A preference functionf is a maxi-
mum likelihood estimator for rankings under i.i.d. votes
(MLERIV) if there exists a noise modélr such that for
any profileP, we have thal/ LEp,.(P) = f(P).

x;, denoted byC' PT'(x;). WhenG is acyclic,\V is said to
be anacyclic CP-net

A CP-net N induces the partial preorder s, defined
as the transitive closure df(a;, @, 2) = (b;, 4, 2))]i <

D3 @i, bi € Dis il € Dparg(x,) }-

It is known [1] that whenV is acyclic, = is transitive
and asymmetric, that is, a strict partial order. (This is not
necessarily the case N is not acyclic.) For any grapf’
on%l, a CP-net\ is compatiblewith G’ if its graphG is a
subgraph of’.

Example 2 LetX’ be the multi-issue domain defined in Ex-
ample 1. We define a CP-n#tas follows:M is the parent
of W, and the CPTs consist of the following conditional
preferencesCPT(M) = {b > f > s}, CPT(W) = {b:
r=p=w,f:w>p>=rs:p=w>r} where
b:r > p > wisinterpreted as follows: “wheM is b,
then,r is the most preferred value fo, p is the second
most preferred value, and is the least preferred value.”
N and its induced partial order 5 (without edges implied
by transitivity) are illustrated in Figure 2.

Conitzer and Sandholm studied which common voting

rules/preference functions are MLEWIVS/MLERIVs [4].
A ranking scoring correspondenceis a correspondence

When all issues are binary, a CP-n®&t can be visual-
ized as a hypercube with directed edgeg-dimensional
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(a) CP-netV. (b) The partial order induced by

Figure 2:An acyclic CP-netV and its induced partial order.

space, in the following way: each vertex is an alternative
any two adjacent vertices differ in only one component (is-

sue). That is, for any < p, anyd_; € D_;, there is a
directed edge connectin®;,d_;) and (1;,d_;), and the
direction of the edge is fron0;,d_;) to (1;,d_;) if and
only if (05,d_;) =ar (15,d_;).

Example 3 Letp = 3 and let A be a CP-net defined as
follows: the directed graph ol has an edge fronx; to
x2 and an edge fronx, to x3; the CPTs areC' PT(x;) =
{01 - 11}, CPT(XQ) = {01 200 > 15,17 1 15 > 02},
CPT(Xg) = {02 203 = 13,12 : 13 > 03} N is illus-
trated in Figure 3 (for simplicity, in the figure, a vertekc
represents the alternative, bocs, for example, the vertex
000 represents the alternativig 0503).

100 ——————— 101

A

!

|
U(]()%—»U(ll

X7 X9 >X3

010

011

Figure 3: The hypercube representation of the CP-net.

A linear orderV extendsa CP-net\, denoted by ~ N,
if it extends>= »r. For any settingi of Parg(x;), letVx,.z
andN|,.z denote the the restriction &f (or equivalently,
N) to x;, giveni. Thatis,V|x,.z (or Nx,.z) is the linear
order=t.

For any graplG on%, V' is compatiblewith G if there ex-
ists a CP-nefV such thatV ~ N and\ is compatible
with G. If V is compatible withG, we also say that’ is
G-legal, we sayV is legalifitis G-legal for some acyclic
graphG. A profile is G-legal if all of its votes are&x-legal.
For any linear orde® on 2, we letG» be thegraph in-
duced byO—that is, there is an edgex;,x;) in Go if
and only ifx; > x;. For any directed acyclic grap®,
a linear ordei® can be found such that C Ge, which
means that ang-legal profile is alsdz »-legal (which we
abbreviate a®-legal). For example, led/ be the CP-net
defined in Example 2. Any linear order ov&rthat extends
=~ is Gv>w)-legal (or, equivalentlyM > W)-legal).

V' is separablef and only if it extends a CP-net in which
there is no edge. Therefore, any separable voge-isgal

for any ordering? of issues. We emphasize that votes are
not always required to be separable or legal in this paper.

In this paper, we fixO to bex; > ... > x,. Given a
collection oflocal rules(ry, ..., r,) (where for anyi < p,
r; is a voting rule onD;), the sequential compositioof

r1,...,7p W.Lt. O, denoted bySeq(r, ..., rp), is defined
for all O-legal profiles as followsSeq(r1,...,rp)(P) =
(dh,...,dp,) € X, where for anyi < p, d; =

7:(Plx,:d;...d;_,)- Thus, the winner is selected jnsteps,
one for each issue, in the following way: in stgpd; is
selected by applying the local rute to the preferences of
voters overD;, conditioned on the values, . . ., d;_; that
have already been determined for issues that preggde
Seq(r1,...,rp) is well-defined, because for arfy-legal
profile, the set of winners is the same for &l such that
G C G- (see[9]). WherZ has no edgesieq(ri, ..., 7p)
becomes arissue-by-issu&oting rule. Sequential com-
position of local correspondences;, ..., ¢y, denoted by
Seq(ci, ..., ¢p) is defined in a similar way: for ang-
legal profile P, de Seq(ci, . ..,cp)(P) if and only if for
anyi < p, we have thatl; € ¢;(P|x;.dy...d;_,)-

We will focus on voting methods that only use information
about voters’ preferences that is represented in the C-net
that those preferences extend. Therefore, we can consider
an input profile to be composed of CP-nets instead of linear
orders.

3 Noise models in multi-issue domains

In this section, we extend the maximum likelihood es-
timation approach to multi-issue domains (whetYe =
D, x ... x Dp). For now, we consider the case where there
is a correct winnerd € X. \otes are given by CP-nets
and are conditionally independent, givénThe probabil-
ity of drawing CP-net\/ given that the correct winner i&
is (N|d), wherer is some noise model. Given this noise
model, for any profile of CP-net8 = (N,...,N,), the
maximum likelihood estimate of the correct winner is
MLE(P) = argmaxgex [[j_, 7(N;]d)
Again, M LE, is a voting correspondence.

Even if for all 4, | D;| = 2, the number of CP-nets (includ-
ing cyclic ones) i2P2""" | Hence, to specify a probability
distribution over CP-nets, we will assume some structure
in this distribution so that it can be compactly represented
Throughout the paper, we will assume that the local pref-
erences for individual issues (given the setting of the iothe
issues) are drawn conditionally independently, both acros
issues and across settings of the other issues, given the cor
rect winner. More precisely:

Definition 3 A noise model ivery weakly decomposable
if for everyd € X, everyi < p, and everya_, € D_;,



there is a probability distributiomrj:i overL(D;), sothat respondences that are the MLE for some strongly decom-
for everyd € X and every\’ € CPnetX), posable noise model.

T(Nd) = Higp,d,ieD,i Wg*fi(N|x¢-:dLi) )
For instance, ifD; = {0;,1;,2;}, w‘f:f’(oi - 2 = 1;) 4 Distance-based models
is the probability that the CP-net ofa given voter contains ) ) o .
@ :0; = 2 = 1;, given that the correct winner &  In this section, we focus on maximum likelihood estima-
Then, the probability of CP-ne/ is the product of the tors that are based on noise models defined over binary
probabilities of all its local preference§|,,.;_, over spe- ~Multi-issue domains (domains composed of binary issues).
cific x; given specifici_; (which contains the setting for We recall that a CP-net on a binary multi-issue domain
x;'s parents as a sub-vector), when the winnezf.is(We corresponds to a directed hypercube in which each edge

will introduce stronger decomposability notions soon.) has a direction represent_ing the local preferences. A very
weakly decomposable noise modetan be represented by

Assuming very weak decomposability is reasonable in thenultiple weighted directed hypercubes, one for each cor-
sense that a voter's preferences for one issue are not diect winner, in which the weight of each directed edge is
rectly linked to heipreferencesor another issue. We note the probability of the local preferences represented by the
that this is completely different from saying that the véster directed edge. For example, when the correct winner is
preferences for an issue do not depend orvetleesof the 0,05, the weight on the directed edge; 1,03, 011513)
other issues. Indeed, the voter’'s preferences for an issug the probabimyﬂgiéjog (03 = 13). We now propose and
can, at least in principle, change drastically depending ortudy very weakly decomposable noise models in which
the values of the other issues. the weight of each edge depends only on the Hamming dis-

However, we do not want to argue that such a distribuance between the edge and the correct winner. First we

tion always generates realistic preferences. In fact, witflefine the Hamming distance between two alternatives and
some probability, such a distribution generates cyclié-pre Petween an alternative and an edge in the hypercube.

erences. This is nota problem, in the sense that the purpo$gyr any pair of alternatived, d € X, the Hamming dis-
of the maximum likelihood approach is to find a natural tancebetweend andd’, denoted b)'TCZ— JL is the num-
voting rule that maps profiles to outcomes. The fact thay,gp of components in whicti is different fromd’, that is,
this rule is also defined for cyclic preferences does not hiny 7’ _ Cp| = #{i<p:d; #d)}. Lete = (dz d}) be a pair
der its application to acyclic preferences. Similarly, €on ¢ oermatives such that; — da| — 1 (equivalently, an
dorcet’s original noise model for the single-issue settlngedge in the hypercube representationt)f The distance
also generates cyclic preferences with some probability, b

) ; 2 betweere and an alternative' € X, denoted bye — dJ, is
this does not prevent us from applying the correspondlnqhe smaller Hamming distance betwegand the two ends
(Kemeny) rule [7] to acyclic preferences.

of e, that is,|e — d| = min{|d; — d|, |d> — d|}. For exam-
Even assuming very weak decomposability, we still need tgle, |01 1205 — 010203] = 1,]011215 — 010203 = 2, and
define exponentially many probabilities. We will now in- |(0;1203,011215) — 010203| = 1.

troduce some successive strengthenings of the decomp
ability notion. First, we introduc&veak decomposabilit - T a,

whicI)’/] removes the dependence of an issue’s I%cal dist);ibut—he probability dIStI’IbutIOI‘W({ only dgpends onl; and
tion on the settings of the other isstieshe correct winner ~ the Hamming distance betweén; andd_;.

Definition 4 A very weakly decomposable noise modisl  Definition 6 Let X' be a binary multi-issue domain. For
weakly decomposablgfor anyi < p, anyd:, ds € X such anyqd = (qo,--.,gp—1) such thatl > go,...,g—1 > 0,
thatd; |x, = dz|x,, we must have that for ariy._; € D_;, adistance-based (noise) modglis a very weakly decom-

We next introducedistance-based noise modéfswhich

wfl:i = wi’;:i. Let W D(X) denote the set of correspon- posable noise model such that for ahye X, anyi < p,
1 2 — . - 7

dences that are the MLE for some weakly decomposabndanyi; € D_; with|@_; —d_;| = k < p—1, we have
noise model. that7’""(d; = d;) = q.

Next, we introduce an even stronger notion, nansédyng  Given the correct winnet, a distance-based mode);

decomposabilitywhich removes all dependence of an is- can pe visualized by the following weighted directed graph
sue’s distribution on the settings of the other issues. Thagilt on the hypercube:

?s, the_ local distributiqn only depends on the value of thaty Fqor any undirected edge = (dl, d}) in the hypercube,
issue in the correct winner. whered;, d» differ only on the value assigned to; for
Definition 5 A very weakly decomposable noise model somei < p, if di|x, = d;, then the direction of is from

is strongly decomposagiéit is weakly degomposable, and 7, to d: if J2|xi — d,, then the direction of is from d

for any: < p,anya-i,b-; € D, anyd € X, we must 15 7, Thatis, the direction of the edge is always from the
have tha’r:rg’i = wi’l:i. Let SD(X) denote the set of cor- alternative whos&; componentis the same as thecom-



ponent of the correct winner to the other end of the edge. The proofs of all theorems are in the appendix, which is
e For any edge with |e — d| = [, the weight ofe is ¢;. uploaded separately as the supplementary material.

For example, given thdi; 0503 is the correct winner, the We are especially interested in a special type of distance-
distance-based model is illustrated in Figure 4. To charbased model in which there exists a threshold k¥ < p
andq > % such that for any < k, we have that; = ¢,

S and for anyk < i < p — 1, we have thay; = 5. Such

100 — @1
|

" e a model is denoted by, ,. We callry, , adistance-based
""%’0“” \ threshold noise modalith thresholdk. We say that a noise
@ H o model 7 has threshold < p if and only if there exists
\ /,110%1;111 q > % such thatr = m;, .. The MLE for a distance-based
o Vs threshold modet, , is denoted bW/ LE,,, .

010 — ¢

o Example 4 Letp = 3. m, and sy, are illustrated in

Figure 4: The distance-based mode}, , ..y when the Figure 5 (when the correct winner &)0).
correct winner i€00.

acterize distance-based models, we first defiter-issue (1/1(;)0 " q/l(;m_q q/lm
permutations Intuitively, an inter-issue permutation is a @q : o ,1 | o
permutation that exchanges two issues. | | I

Definition 7 Leti,j < p. Aninter-issue permutatiois a i S B 11 1:[, ,,,,, . 11
permutationn; ; on D; U... U D, satisfying: (1) for any I / I e I/

k # i,j and anydy, € Dy, m; ;(dx) = di and (2) for any ol ol O1m § w011

di € Di, mi;(di) € Dy; foranyd; € Dj, mi;(d;) € Di; (a) The threshold is 1. (b) The threshold is 2.

and for anyk € {i,j} and anydy, € Dy, m; i(di) =
(mi ;)" (di).

m;,; induces a permutatiod/; ; on the set of all sub-  The following theorem provides an axiomatic characteri-
vectors of anyd € A as follows: for any/ C  zation of the set of all noise models that have thresipold
2 andd; = (di,...,di;) € Dr, M;j(dr) =  which isthe number of issues. This axiomatization is sim-
(mij(di,), ..., mi;(di,)). Forexample,lep = 3, and ilarto the one in Theorem 1.

m1 2 be an inter-issue permutation such that »(0,) =
1s. Then we havel\/[172(11) = 09, MLQ(OQ) = 14,
M 2(12) = 01; M1,2(010203) = 111203, M 2(1113) =
0213.

Figure 5: Distance-based threshold models. The weight of
the bold edges ig > 1; the weight of all other edges is

Theorem 2 LetX be a binary multi-issue domain. A noise
modelr is a distance-based threshold noise model with
thresholdp if and only if 7 is strongly decomposable and
satisfies inter-issue neutrality.

We note that since each issue is binary, there are exactly

two ways of exchanging issug andx;: either mag; to We next present a direct method for computing winners un-
0, (and1; to 1,), or map0; to 1; (and1; to 0;). der the MLE correspondences of distance-based threshold

o . models. Forany < k& < p, anycfe X, and any CP-net
Definition 8 A very weakly decomposable noise model N, we define theonsistency of degrdebetweerd_'andj\/
satisfiednter-issue neutralitf for anyi, j < p, any inter-  yanoted ka(d ), as follows. Nk(d N) is the number
issue permutatiom:; ; (which induces\; ;), anyi’ < p, of triples (a b,i) such thati_; = b, a; = di, by = di,

anyd € X, a'jd anyi_i € D_y, we have that’, ™ (0; - (a;,b;) —d] < k — 1, and\ containsu_; : d; > d;. That
1) = wﬁf'f%ﬂ’)(mm(oy) =m; i (1;1)). is, Ni,(d, \') is the number of local preferences (over any
issuex;, given anya_l € D_;)in A that ared >~ d;, and
Thus, the noise modet satisfies inter-issue neutrality if the distance betweefiand the edgé(d;,@—), (di,a—;))
after exchanging any two issues, the resulting noise modd$ at mostk — 1. For any profilePcp of CP-nets, we let

is still . Or equivalently;r is indifferent to the names of Ny (d, Pcp) = = Y NePop Ni(d,N).

the issues as well as the names of the values they take. Weroposmon 1 For anyk < p, anyq > 1, and any pro-
next show that the class of distance-based models can Qg Pop of CP-nets, we ha{ve thaT/[L% (Pop) =
completely characterized as the class of noise models that e

satisfy very weak decomposability and inter-issue neutral*"® ™% Ni(d; Pop).

ity. That is, the winner for any profile of CP-nets under any
Theorem 1 Let X be a binary multi-issue domain. A very MLE for a distance-based threshold modgl, maximizes
weakly decomposable noise models a distance-based the sum of the consistencies of degkebetween the win-
noise model if and only if it satisfies inter-issue neutyalit ning alternative and all CP-nets in the profile. Therefore,



we have the following corollary, which states that the win-Theorem 3 It is NP-hard to find a winner under
ners for any profile unded LE,, . do not depend oaq, MLE,, ,. More precisely, it is NP-complete to de-

provided thay > 3. cide_whether there exists an alternativé such that
Corollary 1 For anyk < p, anyq > 4,42 > 3, and  MNi(d, Pop) =2 T.

any profile Pc p of CP-nets, we havMLE,,km (Pep) =

MLEy, ,(Pcp). 5 Characterizations of MLE

. . . . correspondences
We next investigate the computational complexity of apply- P

ing MLE rules with distance-based threshold models. First

we present a polynomial-time algorithm that computes th The voting rules studied in Section 4 are quite different

winners and outouts the winners in a compact wa unolE?rom the voting rules that have previously been studied in
P P Y. the context of multi-issue domains, such as issue-by-issue

MLE,_ _,wherepisthe number of issues. This algorithm . . . L
Pd . . .Vvoting and sequential voting. This illustrates that the max
computes the correct value(s) of each issue separately: for . :
. . imum likelihood approach can generate sensible new rules
any issuex;, the algorithm counts the number of tuples

- - . : for multi-issue domains. Nevertheless, we may wonder
i(ribgljij;)/r)(;fi\ll;hlgrea_szuceh tﬁe;tl/\/alggrjl\t/ailr?sz CE—get;n 1the whether previously studied rules also fit under the MLE
CcP, —q +U; i

If there are more tuple$i_;, ') in which A/ contains framework.

a_; : 0; = 1, than there are tuples in whick” contains  In this section, we study whether or not issue-by-issue and
a_; : 1; = 0;, then we selech; to be theith component sequential voting correspondences can be modeled as the
of the winning alternative, and vice versa. We note that theVILEs for very weakly decomposable noise models. We
time required to count tuplgg_;, \) depends on the size note that voting rules (which always output a unique win-
of N. Therefore, even though computing the valuestpr ner) are a special case of voting correspondences. There-
takes time that is exponential jRarg(x;)| (the number of  fore, our results easily extend to the case of voting rules.
parents ofx; in the directed graph o¥), the CPT ofx; in First, we restrict the domain to separable profiles, and-char
N itself is also exponential ilParq (x;)| (for each setting  acterize the set of all correspondences that can be modeled
of Parg(x;), thereis an entry i€’ PT(x;)). This explains  as the MLEs for strongly/weakly decomposable noise mod-

why the algorithm runs in polynomial time. els.
Algorithm 1 INPUT: p € N, 1 > ¢ > 3, and a profile of Theorem 4 Over the domain of separable profiles, a vot-
CP-netsPcp. ing correspondence can be modeled as the MLE for

a strongly decomposable noise model if and only if

1. For eachi < p: is an issue-by-issue voting correspondence composed of

MLEWIVs.
la. LetS; =0, W, = 0. Theorem 5 Over the domain of separable profiles, a vot-
1b. For each CP-ne\N' € Pcp: let Parg(x;) = ing correspondence can be modeled as the MLE for a
{xi,,...,%; ,} be the parents ok; in the di- weakly decomposable noise model if and only i§ an

rected graph of\'. Let! be the number of set- issue-by-issue voting correspondence composed of ranking
tings y of Parg(x;) for which NVlx,.; = 0; > scoring correspondences.

1, LetS;, « S, + 1277 — 27=1  Here
127—7" — 27~1 js the number of edges in the CP-
net whered; > 1;, minus the number of edges
wherel; = 0,.

However, for sequential voting correspondences, we have
the following negative result. A voting corresponderce
satisfiesunanimityif for any profile P in which each vote

{0:} if 5, > 0 ranks an alternativé first, we have:(P) = {d}.
1c. At this point, letW; = ¢ {1;} if S, <0 Theorem 6 Let Seq(ci,...,c,) be a sequential voting
{0;,1;} ifS;=0 correspondence that satisfies unanimity. Over the domain
of O-legal profiles, there is no very weakly decomposable
2. OutputWy x ... x W, noise model such thateq(cy, . .., ¢,) is the MLE.

Proposition 2 The output of Algorithm 1 is However, a positive result can be obtained if there is an up-
MLE,, (Pcp), and the algorithm runs in polyno- perbound on the number of voters. The nexttheorem states
mial time. that for any natural number and any sequential composi-

tion of MLEWIVs, there exists a very weakly decompos-
However, when the threshold is one, computing the win-able noise model such that for any profile of no more than
ners is NP-hard, and the associated decision problemy O-legal votes, the set of winners under the MLE for that
namely checking whether there exists an alternafisach  noise model is always a subset of the set of winners under
thatNl(cf, Pcp) > T, isNP-complete. the sequential correspondence.



Theorem 7 For anyn € N and any sequential voting cor- sent and report their preferences, as well as to find natural
respondenceSeq(cy, ..., cp) Where for eachi < p, ¢ and computationally feasible ways of aggregating these re-
is an MLEWIV, there exists a very weakly decomposabl@orted preferences. In this paper, we considered the maxi-
noise modelr such that for anyO-legal profile P com-  mum likelihood estimation (MLE) approach to voting, and

posed of no more tham votes, we have that/ LE,(P) C generalized it to multi-issue domains, assuming that the

Seq(ci, ..., cp)(P). voters’ preferences are expressed by CP-nets. In the case
where all issues are binary, we proposed and axiomatized
6 Noise models for CP-net aggregators a class of distance-based noise models; then, we focused

on a specific subclass of such models, parameterized by a

So far, we have only considered using voting to obtain éh.reshold. We.ideptified the computational complexity of
winning alternative. Generating a full ranking of all aiter v;/]mnﬁr ditelzjm[na_\tlon Lor (tjh? two mobst rglevgrt yalutals of
natives is impractical in multi-issue domains. However, we!"® ! r|e§ 0 f('t ENP' har. or OTe’ ut doable in poly-
can try to generate an aggregate CP-net that represents tH8™M'& time for the other; we also gave an axiomatiza-
aggregate preferences. We call such a mappiG@aet tion of the latter). We then considered the case where is-

aggregator Formally, a CP-net aggregatfiris defined as sues are not necessarily binary. For separable input pro-

a mapping from the set of all profiles of CP-nets to the sefll€S: We characterized MLEs of strongly/weakly decom-
of CP-nets. posable models as issue-by-issue voting correspondences

composed of local MLEWIVs/ranking scoring correspon-
To model CP-net aggregators as MLEs, we define noisgences. Although we showed that no sequential voting
modelss similarly as in the case of voting correspondencescorrespondence can be represented as the MLE for a very
We focus on weakly decomposable models: for asyp,  weakly decomposable model, we did obtain a positive re-
anyd_; € D_;, and anyW" € L(D;), there is a proba- sult here under the assumption that the number of voters
bility distribution 53‘; over L(D;). For any profileP¢cp is bounded above by a constant. Finally, we studied the
composed of CP-nets, we define the maximum likelihoodVILE approach for CP-net aggregators, and characterized
estimate as follows: all CP-net aggregators that can be modeled as the MLE for
MLEs;(Pcp) a strongly decomposable noise model.

= argmax H H 5;‘3;' o N |xpia_,) We note that, whereas Section 5 has a non-constructive fla-

N N'EPep i<p,d_s€D_; T vor because we studied existing voting mechanisms and
Theorem 6 is an impossibility theorem, quite the oppo-
site is the case for Section 4. Indeed, the MLE principle
o led us to define genuinely new families of voting rules and
overDi does nStdgpend on the choiceiaf;: formally, for correspondencegs for muﬁi—issue domains. Thgse rules are
anyi < p, anya—i,b_; € D, andany",W* € L(Di),  radically different from the rules that had previously been
we must have that),;; (V*) = 631;5(Vi). proposed and studied for these domains. Unlike sequential
or issue-by-issue rules, they do not require any domain re-
striction, and yet their computational complexity is nattth
bad (NP-complete at worst, and sometimes polynomial in
the size of the CP-nets). We believe that this new family of
rules is very original and promising.

0 is strongly decomposable if (a) it is weakly decompos-
able, and (b) for every issue, the probability distribution

Let fi,...,f, be local preference functions. We de-
fine the issue-by-issue compositioof fi,..., f,, de-
noted by Com(fi,..., fp), as follows: for any profile
P, anyi < p, and anyd_; € D_; we have that
Com(fl, ey fp)(P)|xi:d1i = fi(Plxi,:J,i)'

Proposition 3 If P is O-legal, thenCom(f1, ..., fp)(P)

is O-legal.

Future research could further investigate the computation
aspects of determining the winners for MLE correspon-
dences. For example, in this paper, we characterized the

The next theorem characterizes all CP-net aggregators th§Pmplexity of computing winners under MLEs of distance-

can be modeled as the MLE for a strongly decomposabl@ased threshold models with thresholdandp (the num-
noise model. ber of issues). It would be interesting to identify the com-

. ' i _ plexity for other thresholds (however, we conjecture that i
Theorem 8 Over the domain of profiles of CP-nets, a CP is at leastNP-hard). More generally, the study of voting

netaggregatort can be modeled as an MLE for a strongly in multi-issue domains is still in its infancy. Unlike in the

decomposable noise model if and only if it is an issue'by'standard (single-issue) case, relatively few rules haea be
issue CP-net aggregator composed of local MLERIVs. 9 ! y

proposed and relatively little is known about social-clkeeic
] theoretic properties. We believe that this paper has demon-
7 Conclusion strated the potential of the maximum likelihood approach

to build a theory of social choice in multi-issue domains.
The central problems in preference aggregation in multi-

issue domains are to find practical ways for voters to repre-
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The appendix: proofs any CP-net\/, we have that

Proof of Theorem 1: We defineintra-issue permutation Inm(Nd)

denoted byy = (71, ...,7p), as follows: for anyi < p, v; —In H Wg.”'(/\fx»-a )

is a permutation oveb; (thatis, eithery; exchanges; and ideD_i T

1;, or ~; is the identity permutaition), and for anyc X, - -

we have thaty(d) = (v1(d1), ..., v, (dp)). = > (Ne(dN)Ing+ (L — Ni(d, NV)) In(1 — g))
NE€Pcp

It is easy to check that every distance-based noise model is -
very weakly decomposable and satisfies inter-issue neutral — Z (Ni(d, N) In 1

fq+me1—@)

ity. We then prove that if a noise models very weakly de- Nepop

composable and satisfies inter-issue neutrality, then #tmu -

be a distance-based noise model. It suffices to prove th&herefore, MLEx,  (Fcp) = arg max zm(Pepld) =

following two claims. arg max; ZNGPCP (Nk(d, M) In T4 + Ly In(1 — q)) =
argmaxd Nk(d, Pcp). O

1. Foranyi, i < p,any paird_; € D_i;b_i € D_irIn " proof of Theorem 2: It is easy to check that any, , sat-
which the numbers of issues that take 1 are the sameggias strong decomposability and inter-issue neutralig.
we have tha’tr 0,(0i = 1;) = 7r0 0, (0ir = 1i). next prove that any noise modelthat satisfies strong de-

composability and inter-neutrality must be a distancesas

2. 7 satisfies intra-issue neutrality. That is, for every threshold noise model.
intra-issue permutation = (71, c ), everyi < p,

By Theorem 1,7 is a distance-based model, denoted by
everya,l € D_; and everyd € X, we have that

mg. From strong decomposability, we have that for &ny

'y(a z)
i dy - dy) = " (vi(ds) = vi(dy)). p—1, Wol oz 0, > 1,) = 01 é:0k+1 0p— 0, = 1,),
WhICh means thaty = ¢gx. Hence, we have that is a
We first prove 1. Letl = {iy,....is} C {1,...,p} be distance-based threshold noise model. O

the set of components such that for dny I, thex; com- proof of Proposition 2:  First we prove that the out-
ponent ofd_; is 0; and thex; componentob_; is 1;; let  put of Algorithm 1 iSMLE,, (Pcp). Foranyd € X,
I' = {i},...,4.} € {1,...,p} be the set of components N (JPCP) = S #{d € Doy : (diyds) =
such that for any € I, thex; component ofi_; is 1; NN i<p, ;

— . (di,d—;),N € Pcp}. We note thatl; € W; if and only
and thex; component ob_; is 0;. We consider the fol- if #{G_, € D_, (d ) = (di,@i), N € Pop} >
lowing inter-issue permutations/;, i/, ..., M; ., M; ot R “r

i o S0 #{d_1 € D_y : (d;,d_;) = (dl,a i),N € Pcp}.
suchthatforany < k, M;, i (0;,) = 0;,, M; 3+ (0;) = Oz > .
- "1 Therefored € MLE, ( ) if and only if for all: < p,
Let M = Mo My, 4 ©...0 M, i where for any we have thatl, € T, p.a
two functions f; and fo, f1 o fa(x) = fi(fa(x)). W ¢ v
note thatM (d_;) = b_y, M(01...0,) = 01...0,, and Next we prove that the algorithm runs in polynomial time.
M(0;) = 0. Therefore, from the inter-issue neutrality We note that in step 1b, the complexity of computing
we have thatng*f_op(oi = 1;) = M- 1) (M(0;) = isO(2/Parex)l) ‘andCPT(x;) of the CP-netV has ex-

7 (01 0p) actly 2/Perc(x:)l entries, which means that the complexity

M(1:)) = m, "o, (0 > Lir). of computing! is in polynomial of the size ot PT'(x;)
Next, we prove 2. For any < p, we letm/ , be the inter- of the input. Therefore, Algorithm 1 is a polynomial-time
: algorithm. O

issue permutation in which; ;(0;) = 1; (andmZ 1(1) =

0;). We note that any intra-issue permutation is equivalenproof of Theorem 3: By Proposition 1, the decision prob-
to the composition of multiple inter-issue permutation injem of finding a winner unded/ LE,, _is the follow-
»q

the following way: suppose for any€ {i1,...,ix}, we  ing: for any profileP that consists of. CP-nets, and any
have thaty; exchange$; and1;; foranyi & {i1,...,ir}, T < pn, we are asked whether or not there exibts X
we have thaty; is the identity permutation. Then, = such thatNl(cZ P)>T.

M! ..o M! Becauser satisfies inter-issue neu-

1,91 Uk, lk "

tral|ty, |t also satisfies intra-issue neutrality. We prove the NP-hardness by reduction from the decision

problem ofMAX- 2- SAT. The inputs of an instance of the

(End of the proof of Theorem 1.) 0 decision problem ofAX- 2- SAT are:
Proof of Proposition 1: For anyk < p, anycf e X,
we letL, = #{e : |e —d| < k}. Thatis, Ly is the e A set oft atomic propositionsgy, . . ., z;.

number of edges in the hypercube whose distance from a
given alternativel is no more thark. For anyd € X and o T'<t.



e AformulaF = ¢; A ... A ¢, represented ircon-
junctive normal formin which for anyi < m, ¢; =
li, V1, and there existg;, jo < ¢ such that;, isz;,
or —x;,, andl;, is z;, or ~xj,.

We are asked whether or not there exists a valuation
for the atomic propositions,, ..., z; such that at least’
clauses are satisfied undér

Given any instance dfAX- 2- SAT, we construct a deci-
sion problem of computing a winner undéfLE,, = as
follows.

e Let X be composed afissuesxy, ..., x;.

o LetT’' = 16T — 12m.

e For anyi < m, we letv;, be the valuation of;, un-
der whichl;, is true; letv;, be the valuation ofc,,
under whichi;, is true. For anyj < ¢, we let0; cor-
responds toac; being false, and; corresponds te;

’Uil ’U7;2

| |
! !

2 —> V;, U5,

2
@il Viy 6 —» @115@,

Figure 6: The aggregated majority graph/‘ﬁf.

is not drawn in the figure). We make the following claim
on the number of consistent edges between an alternative
and\;.

Claim1 For anycfe X and anyi < m, Nl(cf,Aﬁ) =

4
—12

Claim 1 states that the number of consistent edges between
d andN; within distance 1 ist if tbe clause; is true un-
der the valuation represented by otherwise it is—12.

if dil = vy, Or di2 = Vi,
if di] = U;, anddiz = U4y

being true. Then, any valuation of the atomic Proposi-For anyd € X, we letT; denote the number of clauses

tions is uniquely identified by an alternative. We next .

define six CP-net as follows:

— Ni1 and N : the DAG of \;; has only one
directed edge‘gxh,xu) In N,l, Viy = Viy, Uiy
Uiy = Uiy, U4y ¢ Ui, = Uiy, and foranyy # i, and
J # 12, we have thad; > 1;. N’l is the same as
N1, except that for any ;é iy andj # i, we
have thatl; > 0;.

- N2 andj\/’g' the DAG of \V; » has only one
directed edgéx;, , x;,). In N,g, Viy > Viy, Uiy
Uiy > Uiy, Uy & Ui, > Uiy, and foranyj # ¢; and
J # i2, we have tha; - 1;. N/, is the same as
N2, except that for any # i; andj # i2, we
have thatl; > 0;.

- Nis andN’g' the DAG of \V; 3 has only one
directed edgéxm,x“) INN; 1, viy = Tiy, iy
Vi, > Uiy, Uy ¢ Uy, > iy, and foranyj # ¢; and
Jj # i2, we have thad; >~ 1;. NV ; is the same as
N, .3, except that for any ;é i1 andj # is, we
have thatl ; > 0.

Letj\? (M11M11M27M21M31M3) We Iet
the profile of CP-net b&cp = (Nl, . ,Nm).

Let P be a profile of CP-nets. The aggregated majority
graph of P is a weighted directed graph in which the ver-
tices areX, and the edges are defined in the following

way: for any neighboring verticeﬁ, ds in the hypercube,
if Dp(di,ds) > 0, then there is a directed edge frain
to do with Weight Dp(dl,dg)' if Dp(dg,dl) > 0, the

direction and weight of the edge is defined similarly; if Therefore, 5 € MLE,

Dp(dh dg) =0, then there is no edge betwe@nanddg)
The aggregated majority graph 4f; is illustrated in Fig-

in ¢ , ¢ that are true unded. Then, we have that
Nl(d Pcp) =AT—12(m~T;) = 16Tﬁ—12m It follows
from Proposition 1 that for any > 1 MLE,TL (Pep) =

arg maxy Nl(d, Pop) = argmaxy Td. Therefore, a win-
ner of Pop underM LE,, , corresponds to a valuation un-
der which the number of satisfied clauses is maximized;
and any valuation that maximizes the number of satisfied
clauses corresponds to a winnerifp underM LE,, .

We note that the size aPcp is O(mt). It follows that
computing a winner undev/ LE,,  is NP-hard.

Clearly the problem is in NP. Therefore, it is NP-complete
to compute a winner undéd LE, . O

Proof of Theorem 4: First we prove the “if” part. Let be

an issue-by-issue voting correspondence that is composed
of ¢1,...,¢p, in which for any: < p, ¢; is an MLEWIV

over D; of the noise modePr(V¢|d;), whereV* € L(D;)
andd; € D;. Letrw be a noise model ovet defined as
follows: for any: < p, anycfe X,anyd_; € D_; and any

Vi € L(D;), we have that®(V;) = Pr(V?|d;). We next
prove that for any separabﬁe profils we must have that
MLE,(P) = ¢(P).

II Il

MLE,(P) =argmax
4 i<pa_eD_;j=1

—arg max Pr((Vilx.)\|d; 1D
gma TTII Pr((Vilx)ld:)

i<pj=1

(P) if and only if for any

%

i < p, we haveb; € argnﬁxnyzl Pr((

ure 6 (the vertices that are not connected to any other vertew/e note that for anyc? € r(P), we must have that



_ n 7 1 a . )
d; = argrr}gxnjzl Pr((Vilx;)ldi). Therefore,d’ < a_(exp(si(lj’di)))kim (1) = ?g;_
MLE,(P). di v
For anW LE, € e foranyj < Kj!, anydii € D_; such tha‘dii #ad_,

we have thaﬁ'j;i(lj) = 2.

Next, we prove the “only if” part.
SD(X), we define an issue-by-issue voting rule as follows: andd_; #ad,,
forany: < p, let¢; be the MLEWIV that corresponds to

the noise model in which for any; € D;, we have that
Pr(Vid;) = e “(V*). Similar to the proof for the “if”
part, we have tﬁatandMLE are equivalent over the do- In H dli(l_))
main of separable profiles. O J

For anyd:- € D;and anyj < K;! — 1, we have that

Proof of Theorem 5: First we prove the “if” part. Let a @ 1
¢ be an issue-by-issue voting correspondence in which thes (g, () - 75" (1)) + ([D—i] — 2) 1H(KZ_!)
issue-wise correspondence oveyis Csin which has scor- g,

1 )
ing functions;. Let wg i denotew“ i, where theith :ln(a_d(exp(si(ljvdi)))kl ' Ki!) = (|D-i| = 2) In(K;!)

component ofd is d;. Becauser is strongly decompos- —k;si(l;, di) — (|D_i] — 1) In(K,!)
able, w“ *is well-defined. For any < p, we claim

that there exists a set of probability distributiomg’i, Forj = K;!, we have the following calculation.

d e X,a_; € D_; over L(D;) such that for anyl; € D;, In H ﬁdli(lK )
n a_; . d; il
d; € argmaxpep, [[5-1 s ,ep . ™, (Vjlx) if and Pep_.
only if d; € ¢, (Plx;)- _, . 1
We note that for any scoring functionand any constant =In(r, " (lx,1) - mq " (Uc,t)) + (|1D—if = 2) ln(K_Z-!)
t, the ranking scoring rule that corresponds tis equiva- =fa (i) — (|ID—s| — 2) In(K;!)
lent to the ranking scoring rule that corresponds te ¢. '
) ) : =kis; (L1, d;) — (|D_;| — 1) In(K;!
Therefore, without Ioss of generality we le{V*,d;) < 0 si(brca di) = | ) In(K)
foranyi < p, anyV* € L(D;), and anyd; € Di. Let  Therefore, let; = —(|D_;| — 1)In(K;!). It follows that
Ki = |D;|, L(D;) = {l1,. .., Ik} forany Vi € L(D;), and anyd; € D;, we must have that
Claim 2 There existk;,t; € R with k; > 0, such that (17 Fjﬂ-(vi)) = kisi(VE, d;) + t. 0O
for any Vi € L(D;) and anyd; € D;, we have that —iED— T
d—i yri i
1n(HJ,i€D,i Ty, (V )) = kiSi(V ,dl) +t;.

Next, we show that for any separable profilg,
¢(P) = MLE.(P). Similar to in the proof of The-

Proof of Claim 2: We letk; be a real number such that for orem 4, it suffices to proveﬁthat for any < p,

anyd; € D;, we have thab> ") (exp(si(l;, d)))* < 1;  argmaxaep, [1i<, 17 ep_, 7 (Vilx,) = s, (Plx,)-
letp), = exp(si(l;,d;)). Foranyd; € D;, anyl < o < .
Al arg max H H ﬂ'd”‘(V- x;)
, we let dieD; 1L di AP
K ' — Jj<n d_;eD_;
Kil—1 4j = arg max In H H “(Vilx))
pdi a 1 D1 ‘
fa; (@) = In((1 - Z 7)(1—(&‘—1)[{‘,)) © isnd_ep_,
j=1 v
—agas 3 Yl (V)
Because Zg ipd < 1, we have thatln(l — isnd_;eD_;
K;!'—1 ~
ZJ i 1pfi) > Inp K1 = kisi(lx,,d;). There- —=arg maxz Z (kisi(Vilx,, di) + t;)
fore, fq,(1 ) > kis; (lKTI d;) — In(K;!). We note that dieDi T - >
lim_ x; fa,(a) = —oco. It follows that there exists T
K;l—1 =arg max Z Z ) 1% z
die€D;
1 < aq, < = suchthatfy, (aq,) = kisi(lx,1, di) — isnd ep_,
1D(Kz') " =Cs; (P|x7)

For anyi < p, anyd; € D;, we letd’ ,,a*, € D_; such
T Next, we prove the “only if” part. Letr be a

weakly decomposable noise model. For any <

. p, any d; € D; and anyVi € L(D;), we let
ofor any j < Kl — 1, m () = si(Vid) =W[[; .p . m ‘(VP). Then, we have that

- 3 . d
thata’ ; #a* ;. We definer, * as follows.



d; maximizess;(P|x,,d;) if and only if d; maximizes
[yverIla en , ™y  Nlx,), which means that(P) =
MLE,(P).

(End of the proof of Theorem 5).

O

Proof of Theorem 6: For the sake of contradiction, we let

Thatis,C,, is composed of the paifa,, b1) such that there
exists a profile) over D, that consists of votes,a; €
c1(Q), and by changing one vote @}, there is another
alternativeb; who is one of the winners. We note that for
anyn € N, (a1,b1) € C, ifand only if (b1,a1) € Cy. It
follows that for anyn € N, C), # . BecauseéD;| < oo,

Seq(cy,. .., c,) be a sequential voting correspondence andhere existgai, b1) € (D1)? such thatfor any: € N, there

M LE, be an MLE model equivalent to it. A voting corre-
spondence satisfiesconsistencyif for any profilesP;, P,

if ¢(P1) = ¢(P), thenc(Py U Py) = ¢(Py); c satisfies
anonymity, if it is indifferent with the name of the voters.

BecauseM LE, satisfies consistency and anonymity, we

have the following claim.

existsn > k such tha{ay,b1) € C,,.
Claim 4 For anya_l,g_l € D_4, and any pair of CP-
i N V)

s
nets\’, NV*, we must have that% = 4 ,

7_{_571(./\/'/) ﬂ.gfl(./\/'*)
whered = (a1, d@_1), b = (by,b_1).

Claim 3 Foranyi < p, ¢; satisfies consistency, anonymity proof of Claim 4: Suppose for the sake of contradic-

(see [9]) and unanimity.

For anyd € X, anyO-legal CP-netV, we let

Il
d

a_1€D_;

[I

2<i<p,a_;€D_;

Let Ni,N; be CP-nets. We note that iNVi|x, =
Nalx,, then 77 (N7) m2 (N2); if for any di €
Dy, Mlx_y:dy, = MNalx_;.4,» then we must have that
(M) = 7r ! (Ne), whereN[x_,.q, is the sub-CP-
net of N7 givenx; = d;. For anyO-legal vote V
that extends a CP-neY, we write 7% (V) = 7% (N)
and W;ifl(V) = w;ffl(/\f); for any O-legal profile P,
we write 73 (P) = [[ycpmy' (V) and 727 ' (P)
[Iver 7rd:1 (V). It follows that for anyO-legal profileP,
we have that

(N,

T (N)

xi:al...ai,l)

)

MLE,(P) = arg Ipax[w;f.l (P) - w;ffl (P)]
dex

For anyV}}, Vit € L(Dy) with top(V!) # top(Vy), and
anyn € N, we letP!,, be the profile that is composedwof
copies ofl/i!; let P, be the profile that is composed wof
copies ofl}'. Because; satisfies unanimity, we must have
thatei (P},) = {top(V))} andes(P,) = {top(V3)}.
For anyj < n, we letQ;, be the profile in which the
preferences of the firgtvoters aré/;!, and the preferences
of the remaining: — j voters ard/;'. We have tha@); ,, =
P!, andQ, ., = P;,. Therefore, there exiss< n — 1
andb; € D; with by # top(Vi!), such thattop(Vi!) €
c1(Qjn) andby € c1(Qj41,n). Foranyn € N, we letC,
denote the set of paif&1, b1) such that

® ai,b1 € Dy, a1 # b1.

e There exists two profile8/}!, W4 over D; such that
ai € e (W), by € c1(W3), andW differs fromW.}
only on one vote.

X_1 /i
tion there existi_1,b_1, and\’, N'* so thatw £
L (N)
ﬂ_’j—l(j\/'*) ) ) ﬂ,Pf—l(N/)
< . Without loss of generality we lete————= >
(V) Jeneray W =)
T (N) . _
—————. We next claim that there exits a natural number
T (V*)

k such that for any < p and any profileP* composed ok
votes, if at leask — 1 votes inP? rank the same alternative
d; in the top position, then; (P?) = {d;}.

Claim 5 There exists: € N such that for any < p, any

d; € D;, and any profileP’ = (V{,...,V{) withd; =
top(V{¥) = ... =top(V}i_,), we have that;(P) = {d;}.
Pr(Ndy)

Proof of Claim 5: LetU = Letu =

max = .
_ @deN Pr(N|ds)
m M BecauseV/ LE(N) satis-

J1¢JQ,N:top(N):Jl PT(N|d2)

fies unanimity, for anyl; and A\ such thatop(N') = i,
we must have that/LE,(N) = {d;}, which means that
u > 1. Letk be a natural number such thdt—* > U. We
arbitrarily choosel_; € D_;, and letd = (d;,d_;). We
definek CP-nets\Vy, ..., N, as follows.

o Foranyj < k, top(N;) = (d—s, top(V"?)).

e Foranyj <k, Njlx; .y, ..ai, = V"

e Other conditional preferences are defined arbitrarily.
BecauseSeg(cy, . . ., ¢p) satisfies unanimity, we have that
Seq(ci,...,cp)(Ni,...,Ni_1) = {d}. Therefore, for

anycf’ € X and any CP-neW, we have the following cal-
culation:

PT‘((Nl, ..
PT‘((Nl, cee

L NId) T2 PrNild)  Pr(ag|d)
Nld)  TT5Z1 Pr(N;|d) 7




Thereforec;(V, ..., VF) = {d;}. EK)Nz|x;:b,..0,_,- Similarly, we have that for any
(End of proof of Claim 5.) ibﬁ}l <P (P xibybiy) = a(P
Let Nz be a CP-net such thatop(N;) = a and o

xi:bl...bi,l) -

tOP(N|’f—1ﬁb1) = b,l..'l.'hat isNa-isaCP-neEin Yvhictiis Therefore, we have thal € Seq(ci,...,cp)(P),d €
rankedmthetp_p position, and given = by, b_1 is ranked Seq(cl,...,cp)(ﬁ), andb ¢ Seq(cl,...,cp)(P’),E c
in the top posmon Next, we show that for any CP-Aé&t Pr(P’|5)
X1 g =) is, ———l o >
‘,Ll(N) =& I(N) Suppose for the sake of contra- Seqler, s ep)(P) That is, Pr(P'|@) ~ L
T (N) T (Na) P’I’(p/|g)
T CN) me (NG —————~ > 1. We note thatP? and P’ differ only on the
diction, there exists\ such that £ 4 - Pr(P'|a@)
v x 1 X_1
Ty (N) Ty (Naz) first vote. Therefore, we have the following calculation.
L T (N)
We next show contradiction in the cas&&—— ~
W) | PP
) ey i = Pr(P'la)
————. LetUy, = ———~ . Let K be a nat- x s x X
wgfl(Na) ! dlnjzi\/ Wﬂ;(./\/) :ng(Vl’) T (V) Hzgygn(ﬁgl(vj) T "(V;))
o X1 (Ng mat (V) -5 (V) Hagjan (3 (Vi) - 757 (V)))
ural number such the(* i V) W;fl(Na))K > UZ.. x | . s ’ ’
(V) s (Na) T Vi) . 2 (Vi) Pr(P|b)
Letn € N be such that > kK and(al,bl) € C,. Itfol- D) m' (V1) Pr(P|a)
lows that there existV}!, ..., V,!) andW} such that; € -
a(Vh..., V) andb, € cl(Wl,V2 ..., V). We define <2 PT(PVi)
2n + 1 CP-netsN!, N1, Na, ..., Ny, N1, Na, ..., N, as ' Pr(P|a)
follows.
R Therefore,w < UZ,. We note that” and P’ differ
o Foranyj <m N, = Njl = ViiMb =W PriFlD
e Foranyj; < K, 1 < jo < k — 1, and any . .
dl S Dl, J\/(jlfl)k+j2|x,1:d1 = N6|x,1:d1 and (PT(P|2))/(PT‘( A|g))
J\/'jlk|x71¢d1 = N|X71td1; for anyj <n and any (P|b) P’I’( |b)

dl S Dln/\/-j|x,1:d1 :Nd'|x,1:d1-

|
.zw ;U

m (Vi) - mz ' (Vi) /(ﬁ 2 (Vi) g (Vi)
e ForanykK +1<j <n,N; =N; =Nz i T (Vi) - (Vi) 5 8 (Vi) - (Vi)
e Foranyd; € Dy, M|x_,.a; = Nalx_y:d;- :(W;f*l(/\/)/ﬂ;*l(/\/d))x
w%"l(/\f) wg’l(/\/'a)
For anyj < n, we letV; (V) be an arbitrary linear order >U2
that extendsV; (J\/) letV{ be an arbltraryllnear order that
extends/\/’,letP Vi, s Vi), P= (VY Vo Vi), Pr(P|d) Pr(P|d)
P=,...,V), P = (V{,Va,..., V). We make the We note tha( r(P|b)) > 1 Therefore,w >
following observations. UZ,, which is a contradiction.
o a1 € c1(Pl,) a1 € e1(Ple), by € e1(P'lx,) b € Similarly, for the case of- (N) mi_ (Na) we still
e1(P'lxy). 4 TR Sa
X 1 X1 ",
eForanyl < i < p—1, Plxu,.a, = havea contradiction. Hencei— 1(N) = Wi (Na) for
K((k - I)Nﬁf XiQ1...Qq—1 U N/ xiﬁalvwai—l) U (TL - 7Tb (N) TrE (N{i)
kK)N3lx.:a,..a,_,- From Claim 5 we have that all \V/, which means that for any” and/\'*, we must have

Ci((k - 1)N¢'i|xi:a1...a1,,1 U Nllxi:al...ai,l) = {az} 7T:z”(71 (N/) . ﬂ-()zfil(N*)

i o . that < =2 .
Becausec; satisfies unanimity and consistency, and wg’l(./\/ " s HNF)
for anyi < p, top(Nzlx;:a1...a:_,) = ai, We have that

foranyi < p, ¢;(Plx.:a,...a,_,) = {a:}. Similarly for (End of proof of Claim 4.) O

anyi < p, ¢;(Plx,.ar..a,_,) = {as}- By Claim 4, for any CP-net\, anyb_1,b, € D_j,
X-1 N X_

eForanyl < i < p—1, Plw.vin = we must have thatw(blb yW) _ T N
X_1 X 1

K((k — 1)./\/'5 xiﬁbl---bi—l) @] (TL — Tr(bl,b 1)(Nd’) Tz (Nd’)

Xi:bl...b171 U N/




(bla_‘, 1)(N) ) W(b;lll)(N)

T AL which means thatﬁ =
Ton,5 ) Na) T )NV
TN

— Let 7 be a CP-net such thabp(N7) =
jCya W)

(b1,b" ), N> be a CP-net such thabp(N) = (b1,b_1)

and J\/1|xl = Nolx,. BecauseSeq(cl,.. ,cp) Satis-
b

fies unanimity, we have that TNy, b)) > 1 and

B Pr(Ni|(b1,6-1))
Pr(Nz|(b1,0" 1))

Pr(Na|(br,b_1))
calculation.

< 1. However, we have the following

)
)
)
) (BecauseV |x,
)
)

Therefore, we have a contradictiqiiend of proof of The-
orem 6.) O

Proof of Theorem 7: Let r; be the MLEWIV with the
conditional probabilistic distributionPr;(V%|d;), where
Vi e L(D;), d; € D;. Foranyi < p, we letRi" =
Pri(P|d;) .

(P’|dg)}’ whered,;,d; € D;, P, and
P! are profiles Wlth the same number (but no more thjan
of linear orders oveD;. We IetRi'” = 1if r; is the triv-

maxp, p!.d;,d, {

:N2|X1)

following way: for anyi’ < i < p, anyVi Wt e L(D;),
and anyd,,d; € D;, if R®™ > 1, then we must have that

min
;! i— ‘L
(R:n?zm) ’ (Rzn,;z)kl//2 '

We next prove that for any profild’cp of no more
than n CP-nets, we must have tha/ LE,(Pcp) C
Seq(r1,...,mp)(Pcp). For the sake of contradiction,
let Pop be a profile of no more tham CP—netsﬁwith
MLE.(Pcp) € Seq(ri,...,rp)(Pcp). Letd €
MLE,(Pcp), andi* be the number such that there ex-
ists d* € Seq(r1,...,m,)(Pop) such that for alli’ <
i, dy = d;»k,, anddi* € ri*(PCP|x1;*:d1...d1;*,1)- Be-

causer;« ( idi..dw_,) 7 Di=, we must have that
RO >, Becausei € MLE,(Pcp), we must have that
Popld .
LPU > 1. However, we have the following calcula-
m(Pop|d*) o
tion that leads to a contradiction.
1< m(Pcpld)
n(Pepl|d)
_ Hi:l Pri(PCP|xi3dl~~~di—1 |d/l)
_y Pri(Peplx;.a;..ax_,|d)
_ z Z*Prl(Pcplxy idy...di 1|d)
i—ie Pri(Poplx;:dp..dz_,|d})
1 p
S— o (R, )"
(Rmzn)kl* i= 11:[4_1
g
Rk /27T
(Rmzn) 1=1*+1
Therefore, we must have thatMLE.(P) C
Seq(r1,...,rp)(P) for all profiles P that consists of
no more tham CP-nets. O

Proof of Theorem 8: We note that\/ that maximizes
HN’EPCP Higp,a,ieD,i 57\/];:571 (NI xi5a—i) if and only
if for any i < p and any@_; € D_;, the restriction of\

onx; givena_; maximizes [] 61‘@7’ W
rebey N

xi:[i,i)-

il correspondence that always output the whole domainthe proof is then similar as the proof of Theorem 4. For the

Pri(B|d;) Pri(P;|d;)
2 pr(Rja) * PRl ~
whered;, d; € D;, andP; is a profile of no more than lin-
ear orders oveDb;. We note that for any < p, anyn € N,
we have thaRRim > R" > 1.

max min

andR:"

min

= min

ForanyV' € L(D;), anyd e X,andanyi_; € D_q, we
let

ifd_;=d_;
otherwise

‘Ql

1

)

2y

N;!

whereZ; = ZWGL(D”P”(VHCZZ-)’“ is the normalizing
factor,1 = ky > ko > ... > k, > 0 are chosen in the

“if” part, forany i < p,anya_; € D_;,and anyy*, W* €
L(D;), we Ietégﬁ(vi) = Pr;(Vi|W?), wherePr; is the
probabilistic distribution thatn; corresponds to. For the
“only if” part, we let Pr; (VW) = 5“ SV, O



