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Abstract

In many settings, a group of agents must come to a joint aecisn multiple
issues. In practice, this is often done by voting on the issusequence. In this pa-
per, we model sequential voting in multi-issue domains asmaptete-information
extensive-form game, in which the agents are perfectlypmatiand their prefer-
ences are common knowledge. In each step, the voters siraalialy vote on one
issue, and the order of the issues is determined before toegs. We call this
modelstrategic sequential voting

We focus on domains with binary issues, so that this pro@sdsito a unique
outcome under a natural solution concept. We show sermrtiiple-election para-
doxesin strategic sequential voting: there exists a profile foicktthe winner
under strategic sequential voting is ranked nearly at thboin all votes, and the
winner is Pareto-dominated by almost every other altereatiVe also show that
changing the order of the issues cannot completely preventt paradoxes. We
also study paradoxes for strategic sequential voting irthvtiie profiles satisfy do-
main restrictions such as separability, lexicographioityO-legality. Finally, we
study other common voting rules (from a non-strategic parsye). For some of
them, we show that there exist paradoxes that are simildretariultiple-election
paradoxes, and for the others, we show that there are no suatigxes.



1 Introduction

In a traditional voting system, each voter is asked to repdiriear order over the al-
ternatives to represent her preferences. Themtiag ruleis applied to the resulting
profile of reported preferences, to select a winning altirea

In practice, the set of alternatives often hasalti-issuestructure. That is, there
arep issuesZ = {xi,...,x,}, and each issue can take values ilo@al domain In
other words, the set of alternatives is the Cartesian pitaafuthe local domains. For
example, inmultiple referendathe inhabitants of a local district are asked to vote on
multiple inter-related issues [4]. Another examplgaging by committeen which the
voters select a subset of objects [1], where each objecteardn as a binary issue.

Voting in multi-issue domains has been extensively stubiegiconomists, and more
recently has attracted the attention of computer scientBtevious work has focused
on proposing a natural and compacting languagédor the agents to represent their
preferences, as well as designing a sensible voting ruleakendecisions based on
preferences represented in such languages. A natural agipis to let voters vote
on the issues separately, in the following way. For eacheigsimultaneously, not
sequentially), each voter reports her preferences foiisbag, and then, lacal rule is
used to select the winning value that the issue will take.sTbiting process is called
issue-by-issuer seat-by-seatvoting. Computing the winner for issue-by-issue voting
rules is easy, and it only requires a modest amount of comeation from the agents
to the mechanism. Nevertheless, issue-by-issue votingdmmg drawbacks. First, a
voter may feel uncomfortable expressing her preferencesawe issue independently
of the values that the other issues take [12]. It has beentq@biout that issue-by-
issue voting avoids this problem if the voters’ preferenaesseparable(that is, for
any issuei, regardless of the values for the other issues, the votez®e@nces over
issuei are always the same) [11]. Secomalltiple-election paradoxearise in issue-
by-issue voting [4, 11, 17, 19]. In models that do not consiti@ategic (game-theoretic)
voting, previous works have shown several types of paraics@metimes the winner
is a Condorcet loser; sometimes the winner is Pareto-ddedray another alternative
(thatis, that alternative is preferred to the winner in alles); and sometimes the winner
is ranked in a very low position by all voters.

A way to (partly) escape these paradoxes consists in origarize multiple elec-
tionssequentially given an orde® over all issues (without loss of generality, we take
O tobex; > ... > x,), the voters first vote on issug ; then, the value collectively
chosen forx; is determined using some voting rule and broadcast to thersjotvho
then vote on issug,, and so on. When the issues are all binary, it is natural tosho
the majority rule at each stage (plus, in the case of an evarbauof voters, some
tie-breaking mechanism). Such processes are conductedriy real-life situations,
such as recruiting commitees (suppose there is a full ppofgsosition and an assis-
tant professor position to be filled; then, it is realistietgpect that the committee will
first decide who gets the full professor position); or, at éixecutive meeting of the
co-owners of a building, important decisions (whether teslifould be installed or not,
how much money should be spent to repair the roof) are ustzdn before minor de-
cisions. In each of these cases, it is clear that the deaisamte on one issue influences
the votes on later issues, thus the order in which the isswedegtided potentially has
a strong influence on the final outcome. Now, if voters arerassito know the prefer-
ences of other voters well enough, then we can expect thewtécstrategically at each
step, forecasting the outcome at later steps conditiondi®@outcomes at earlier steps.
Our contributions.



In this paper, we analyze the complete-information ganeesttic model of se-
guential voting that we illustrated by the example aboveis Thodel applies to any
preferences that the agents may have (notgisstgal ones), though they must be strict
orders.

We focus on voting in binary multi-issue domains, thatisgioy: < p, x; must take
avalue in{0;,1;}. This has the advantage that for each issue, we can use tbetynaj
rule as the local rule for that issue. We use a game-theonetitel to analyze outcomes
that result from sequential voting. Specifically, we modhel sequential voting process
as ap-stage complete-information game, as follows. There isrdar@® over all issues
(w.l.o.g.,0 =x; > x2 > ... > x,), which indicates the order of the issues (the order
in which they will be voted on). In stage the voters vote on issue simultaneously,
and the majority rule is used to choose the winning valusfokVe make the following
game-theoretic assumptions: the or@s common knowledge; all voters’ preferences
are common knowledge; and, of course, all voters are pérfestional, which is also
common knowledge.

We can solve this game by a type of backward induction: indkefth) stage, only
two alternatives remain (corresponding to the two possibltings of the last issue),
so at this point it is a (weakly) dominant strategy for eactevdo vote for her more
preferred alternative of the two. Then, in the second-sv{@ — 1)th) stage, there
are two possible local outcomes for thye — 1)th issue; for each of them, the voters
can predict which alternative will finally be chosen, beeatley can predict what will
happen in thesth stage. Thus, thép — 1)th stage is effectively a majority election
between two alternatives, and each voter will vote for herenmreferred alternative;
etc. We call such a procedure thigategic sequential voting procedure (SSP)

Given the order over issues, this game-theoretic analyspsravery profile of (strict
ordinal) preferences to a unique outcome. Since any fumétam profiles of prefer-
ences to alternatives can be interpreted as a voting r@edting rule that corresponds
to SSP is denoted by S Py (this facilitates comparison with results where voters are
simply assumed to be voting truthfully).

After the introduction of SSP, we show that, unfortunatedyltiple-election para-
doxes also arise under SSP. To better present our resulitsiraduce a parameter called
theminimax satisfaction index (MSlfor an election withn alternatives and voters,
it is defined in the following way. For each profile, considee highest position that
the winner obtains across all of the input rankings of theratitives (corresponding to
the most-satisfied voter); this is theaximum satisfaction inddrr this profile. Then,
the minimax satisfaction index is obtained by taking theimimm over all profiles of
the maximum satisfaction index. A low minimax satisfactiodex means that there
exists a profile in which the winner is ranked in low positimsll votes, thus there is
a multiple-election paradox. Our main theorem is the folfayv

Theorem 1For anyp € N and anyn > 2p? + 1, the minimax satisfaction index
of SSP when there are = 27 alternatives anch voters is|p/2 + 2]. Moreover, in
the profile P that we use to prove the upper bound, the win68» (P) is Pareto-
dominated byp? — (p + 1)p/2 alternatives.

We note that an alternativePareto-dominates another alternat@/émplies thatc
beatsc’ in their pairwise election. Therefore, Theorem 1 implieattthe winner for
SSP is almost a Condorcet loser. It follows from this theothat SSP exhibits all
three types of multiple-election paradoxes: the winneaigked almost in the bottom in
every vote, the winner is almost a Condorcet loser, and theaviis Pareto-dominated
by almost every other alternative. We also show a paradogdiigm 2) that states that
there exists a profile such that fany order© of the issues, in each input ranking, the



SSP winner is ranked almost in the bottom position. We alswshat even when the
voters’ preferences can be represented by CP-nets thatremgatible with a common
order, multiple-election paradoxes still arise.

To see if there are similar paradoxes for common voting r(Wdeen voters are as-
sumed to vote truthfully), we calculate the minimax satitan index for some common
voting rules, including dictatorships, positional scgrimiles (includings-approval and
Borda), plurality with runoff, Copeland, maximin, STV, Bidin, ranked pairs, and (not
necessarily binary) voting trees. We show thatfeapproval with largé:, voting trees,
Copelang, and maximin we can find a similar paradox, and for the othegeetare no
such paradoxes.

Related work and discussion.

Our setting is closely related to theulti-stage sophisticated votir{@3, 14, 10].
They studied the model where the backward induction outsocoerespond to the
truthful outcomes of voting trees. Therefore, our SSP isexigh case of multi-stage
sophisticated voting. However, their work mainly focusedgeneral set of alterna-
tives (while we focus on multi-issue domains), and theiultssare characterization of
the outcomes as the outcomes in sophisticated votingj7]. We, on the other hand,
study the multiple-election paradoxes for SSP. Anotheepéat is closely related to
part of this work was written by Dutta and Sen [6]. They shoat 8ocial choice rules
corresponding to binary voting trees can be implementethagkward induction via a
sequential voting mechanism. This is closely related tdatiomship that we discuss
later in this paper, namely an equivalence between the méaif strategic behavior
in sequential voting over multiple binary issues, and aipaldr type of voting tree.
It should be pointed out that the sequential mechanism thé&aland Sen consider is
somewhat different from sequential voting as we consideiritparticular, in the Dutta-
Sen mechanism, one agent moves at a time, and a move oftéatsart of a vote, but
rather of choosing the next player to move. Neverthelessafiproaches are related at
a high level, though they are motivated quite differenthutfa and Sen are interested
in social choice rules corresponding to voting trees, aedrging to create sequential
mechanisms that implement them via backward induction.dfveéhe other hand again,
are primarily interested in the strategic outcome of theirsitmechanism for voting
sequentially over multiple issues, and use voting treeinas a useful tool for an-
alyzing the outcome of this process. Also, the relationsl@pveen sequential voting
and voting trees takes a particularly natural form in thetertnof domains with multi-
ple binary issues, as we will show. Less closely related|éementation by voting trees
has previously been studied at EC: Fischer et al. [8] cons$ideknown result that the
Copeland rule (which we define later in this paper) cannotiémented by a voting
tree [16], and set out tapproximatethe the Copeland score using voting trees.

It has been pointed out that typical multiple-election plasees partly comes from
the incompleteness of information about the preferencaseofoters [11]. However,
the paradoxes in this paper show that assuming that votesfnences are common
knowledge does not allow to get rid of multiple election hrees. Another interpreta-
tion of these results is that we may need to move beyond sé&gleoting to properly
address voting in multi-issue domains. However, note tttaroapproaches than se-
guential voting may be extremely costly in terms of commatian and computation,
which comes down to saying, one more time, that voting oniplaltelated issues is
an extremely challenging problem for which probably no perfolution exists.



2 Preliminaries

2.1 Basics of voting

Let X be the set ofilternatives | X| = m. A vote is a linear order ovet’. The set of
all linear orders ovef’ is denoted byL(X). For anyc € X andV € L(X), we let
ranky (¢) denote the position afin V' from the top. Ann-profile P is a collection ofx
votes for some: € N, thatis,P € L(X)™. For anyc,d € X and any profileP, we say
c Pareto-dominated, if forany V' € P, cis ranked higher thad in V, thatis,c >y d.
A voting ruler is a mapping that assigns to each profile a unique winningraitise.
Thatis,r : L(X)UL(X)?U... — X. Some common voting rules are listed below.
o Dictatorship. for everyn € N there exists a votef < n such that the winner is
always the alternative that is ranked in the top positiol;in

o (Positional) scoring rulesGiven ascoring vector

¥ = (v(1),...,v(m)), for any voteV € L(X) and anyc € X, let s(V,c) = v(j),
wherej is the rank ofc in V. For any profileP = (V1,...,V,), let s(P,c) =

>~ s(Vi, ¢). Therule will select € X so thats(P, ¢) is maximized. Some examples of

i=1

positional scoring rules af&orda, for which the scoring vectorign—1,m—2,...,0),

k-approval @ppy, with k& < m), for which the scoring vector il,...,1,0,...,0),
N———

k
plurality, for which the scoring vector i€l, 0, ..., 0), andvetq for which the scoring
vectoris(1,...,1,0).
e Copeland, (0 < o < 1): For any two alternatives; andc;, we can simulate pair-
wise electiorbetween them, by seeing how many votes preféo c;, and how many
preferc; to ¢;; the winner of the pairwise election is the one preferredendten. Then,
an alternative receives one point for each win in a pairnisetion, « points for each
draw, and) point for each loss. The winner is the alternative that hasighest score.
o Plurality with runoff(Pluo): The election has two rounds. In the first round, the al-
ternatives are ranked from high to low according to the nurobgmes they are ranked
in the top position in the votes of the profile (that is, ac@ogdo their plurality scores).
Only the top two alternatives enter the second (runoff) coun the runoff, we simu-
late a pairwise election between these two alternativebsttamalternative that wins the
pairwise election is the winner.
e Maximirnt Let N(c;, ¢;) denote the number of votes that rasikahead ofc;. The
winner is the alternative that maximizesnin{N(c,c') : ¢ € X, # c}.
e STV The election hasn — 1 rounds. In each round, we count for each remaining
alternative how many votes rank it highest among the remgialternatives; then, the
alternative with the lowest count drops out. The last retingialternative is the winner.
e Bucklin An alternativer’s Bucklin score is the smallest numbesuch that more than
half of the votes rank among the tog alternatives. The winner is the alternative that
has the lowest Bucklin score. If multiple alternatives hthalowest scoré, then ties
are broken by the number of votes that rank an alternativengrtiee topk.
¢ Ranked pairsThis rule first creates an entire ranking of all the altemest N (c;, ¢;)
is defined as for the maximin rule. In each step, we will coasalpair of alternatives
¢i, ¢; that we have not previously considered; specifically, weoslkathe remaining
pair with the highesiV (¢;, ¢;). We then fix the ordering; > ¢;, unless this contradicts
orderings that we fixed previously (that is, it violates sisimity). We continue until
we have considered all pairs of alternatives (hence we endthp full ranking). The
alternative at the top of the ranking wins.



¢ \/oting trees A voting tree is a binary tree with: leaves, where each leaf is associated
with an alternative. In each round, there is a pairwise Eladietween an alternative

and its siblingc;: if a majority of voters prefers; to ¢;, thenc; is eliminated, and; is
associated with the parent of these two nodes; similarly,nfajority of voters prefers

¢; to ¢, theng; is eliminated, and; is associated with the parent of these two nodes.
The alternative that is associated with the root of the treiaq all its rounds) is the
winner.

2.2 Multi-issue domains

In this paper (except Section 7), the set of all alternati¥eis a binary multi-issue
domain Thatis, letZ = {xi,...,x,} (p > 2) be a set oissues where each issue
x; takes values in a binarpcal domainD; = {0;,1;}. The set of alternatives is
X = Dy x ... x D,, thatis, an alternative is uniquely identified by its valoesall
issues. IfY C 7 thenDy = Hyey D,.

Given a preference relation in L(X'), an issuex;, and a subset of issuég C Z,
letU = 7\ (W U {x;}); then,x; is preferentially independent 6¥ givenU (with
respect to-) if for any & € Dy, anya;,b; € D;, and anyd, W € Dy, (U, a;, W) =
(@, b;, w) if and only if (@, a;, W) > (@, b;,w). Informally, if we wish to find out
whether changing the value &f from a; to b; (while keeping everything else fixed)
will make the voter better or worse off, we only need to know tialues of the issues
inU.

LetO =x; > ... > x,. A preference relatios- is O-legalif for any i < p, x; is
preferentially independent gk, 1, ... ,x,} given{xy,...,x;_1}. Informally, to find
out whether a particular change in the value of an issue wakerthe voter better or
worse off, we only need to know the values of earlier issuepreference relatios is
separabldf for any i < p, x; is preferentially independent &f \ {x;}. Informally, to
find out whether a particular change in the value of an issllenake the voter better or
worse off, we do not need to know the value of any other issuseparable preference
relation isO-legal for anyO.

A preference relatior is O-lexicographicif for any i < p, any@ € Dy X ... X
D;_1, anya;,b; € D, and anyca,cfg,é’l,é’g S Di+1 X ... X Dp, (ﬁ,ai,cfl) -
(u, b;, €1) if and only if she preferséii, a;, d}) = (i, b;, €). Informally, if a profile isO-
lexicographic, then it i€)-legal, and moreover, earlier issues are more importardgt—th
is, to compare two alternatives, it suffices to know the valfethe issues up to and in-
cluding the firstissu&; on which they differ. (While the values &f;, . .., x;_1 will be
the same, they still matter in that they affect the prefeeantx;.) O-lexicographicity
and separability are incomparable notions.

A profile is separabl&?-lexicographicO-legal if it is composed of preference rela-
tions that are all separabt@/lexicographicO-legal.

We can now define sequential composition of local votingsulBiven a vector of

local rules(r4,...,rp) (Where for anyi < p, r; is a voting rule onD;), thesequential
compositiorof r1,...,r, w.r.t. O, denoted bySeqo (11, . .., p), is defined for allO-
legal profiles as follows:Sego (r1,...,mp)(P) = (di,...,dp,) € X, where for any

i < p,d; = 1ri(Plx,:dy...d;_y ), WhereP|x,.q,..q4,_, 1S composed of the voters’ local
preferences ovex;, given that the issues preceding it take valdes .., d; 1. Thus,
the winner is selected insteps, one for each issue, in the following way: in step is
selected by applying the local rutg to the preferences of voters ovBr;, conditioned

onthevalued,, ..., d;_; that have already been determined for the issues that preced



x;. In this paper, we only consider the case where evgiythe majority rule over two
alternatives.

3 Strategic sequential voting

Sequential voting on multi-issue domains can be seen as a ghere in each step, the
voters decide whether to vote for or against the issue urmdesideration after reasoning
about what will happen next. We make the following assurmstio

(1) All voters act strategically, and this is common knovged

(2) The order in which the issues will be voted upon, as wetlhadocal voting rules
used at the different steps (namely, majority), are comnmmwkedge.

(3) All voters’ preferences on the set of alternatives amammn knowledge.

Assumption 1 is standard in game theory. Assumption 2 menelgns that the rule
has been announced. Assumption 3 (complete informaticheisnost significant as-
sumption. It may be interesting to consider more genertihgstwith incomplete infor-
mation, resulting in a Bayesian game. Nevertheless, bedhecomplete-information
setting is a special case of the incomplete-informatiotirge{where the prior distri-
bution is degenerated)l negative results obtained for the complete-informasetting
also apply to the incomplete-information settinghat is, the restriction to complete
information only strengthens negative results.

Given these assumptions, the voting process can be modglad game that is
composed op stages where in each stage, the voters vote simultanecusiyeissue.
Let O be the order over the set of issues, which without loss of igdibewe assume
to bex; > ... > x,, andP the profile of preferences ovét. The game is defined as
follows: for eachi < p, in stagei the voters vote simultaneously on issiy¢hen, the
value ofx; is determined by the majority rule (plus, in the case of amewember of
voters, some tie-breaking mechanism), and this local ouds broadcast to all voters.
(Equivalently, all voters could broadcast their votes ahestage.)

We now show how to solve the game. Because of assumptions,latas®pi the
voters vote strategically, by recursively figuring out whteg final outcome will be if
the local outcome foxk; is 0, and what it will be if it is1. More concretely, suppose
that stepd to7 — 1 resulted in issues, ..., x;_; taking the valued,, ..., d;_1, and
letd = (dy,...,d;—1). Suppose also that i#; takes the valu®, (resp.,1;), then,
recursively, the remaining issues will take the tuple otreald (resp.,g). Then,x; is
determined by a pairwise comparison betwéér;, @) and(d, 1,,b) in the following
way: if a majority of voters preferéd, 0;,@) over (d, 1;,b), thenx; takes the value
0;; in the opposite case; takes the valué;. This process, which corresponds to the
strategic behavior in the sequential election, is what wktha strategic sequential
voting procedure, and for any profil®, the winner w.r.t. the orde® is denoted by
SSPo(P).

As we shall see later, SSP can not only be thought of as thiegitaoutcome of
sequential voting, but also as a voting rule in its own rigltfact, SSP corresponds
to a particular balanced voting tree, as illustrated in Fégli for the case = 3. In
this voting tree, in the first round, each alternative is @dinp against the alternative
that differs only on theth issue; each alternative that wins the first round is théregda
up with the unique other remaining alternative that diffendy on the(p — 1)th and
possibly thepth issue; etc.

Of course, there are many voting trees thatnddcorrespond to an SSP election;
this is easily seen by observing that there are gnidifferent SSP elections (corre-



sponding to the different orders of the issues), but manyeroting trees. The voting

tree corresponding to the ordér= x; > ... > x, is defined by the property that for
any nodey whose depth i$ (where the root has depth), the alternative associated with
any leaf in the left (resp., right) subtreewgives the valu®, (resp.,1;) to x;.

000 001 010 011 100 101 110 111

Figure 1: A voting tree that is equivalent to the strategigusmtial voting procedure
(p = 3). 000 is the abbreviation fob, 0,03, etc.

4 Minimax Satisfaction Index

In the rest of this paper, we will show that strategic segaémbting on multi-issue
domains is prone to paradoxes that are almost as severevisyste studied multiple-
election paradoxes under models that are not game-theftetl1]. To facilitate the
presentation of these results, we define an index that isdetto measure one aspect
of the quality of a voting rule, calleshinimax satisfaction index

In words, the minimum satisfaction index can be defined devisl. For each pro-
file, consider the highest position that the winner obtagress all of the input rankings
of the alternatives (corresponding to the most-satisfiédryahis is thenaximum satis-
faction indexfor this profile. Then, the minimax satisfaction index isaibed by taking
the minimum over all profiles of the maximum satisfactiongrd

Definition 1 For any voting ruler, theminimax satisfaction index (MSbHf r is defined
by MSI,(m,n) = minperxy» max;<p (m + 1 —ranky, (T(P)))
wherem is the number of alternatives amdis the number of voters.

The MSI of a voting rule is not the final word on it. For example MSI for dic-
tatorships isn, the maximum possible value, which is not to say that dictdips are
desirable. However, if the MSI of a voting rule is low, therstimplies the existence of
a paradox for it, namely, a profile that results in a winnet thakes all voters unhappy.

Many of the multiple-election paradoxes known so far imigilicrefer to such an
index. For example, Lacy and Niou [11] and Benoit and Korrdea(?] showed that for
multiple referenda, if voters vote on issues separatelgéuaome assumptions on how
voters vote), then there exists a profile such that in eaah o¢ winner is ranked near
the bottom-therefore the rule has a very low MSI.

5 Multiple-Election Paradoxes for Strategic Sequential
Voting

In this section, we show that over multi-issue domains, for a that is sufficiently
large (we will specify the number in our theorems), thereseamn-profile P such that
SSPo(P) is ranked almost in the bottom position in each votéinThat is, the min-
imax satisfaction index is extremely low for the strategigsential voting procedure
SSP.



We first calculate the MSI fof .S P» when the winner does not depend on the tie-
breaking mechanism. That is, eithelis odd, orn is even and there is never a tie in
the process of running the election. (This is our main migtgdection paradox result.)
Because of the space constraint, we omit all proofs. The fullersion of this paper
can be found online.

Theorem 1 For anyp € N (p > 2) and anyn > 2p? + 1, MSIssp,(m,n) =
|p/2 +2].r Moreover, in the profile® that we use to prove the upper bound, the winner
SSPo(P) is Pareto-dominated b3” — (p + 1)p/2 alternatives.

We note that the number of alternativesiis= 27. Therefore,|p/2 + 2] is expo-
nentially smaller than the number of alternatives, whiclansthat there exists a profile
for which every voter ranks the winner very close to the bhattMoreover(p + 1)p/2
is still exponentially smaller tha2P, which means that the winner is Pareto-dominated
by almost every other alternative.

Naturally, we wish to avoid such paradoxes. One may wondbeiparadox occurs
only if the ordering of the issues is particularly unfortteavith respect to the prefer-
ences of the voters. If not, then, for example, perhaps a gppdach is to randomly
choose the order of the issuesInfortunately, our next result shows that we can con-
struct a single profile that results in a paradoxdtirorderings. While it works for all
orders, the result is otherwise somewhat weaker than Thedret does not show a
Pareto-dominance result, it requires a number of votetsishat least twice the num-
ber of alternatives, the upper bound shown on the MSI is vigghtty higher than in
Theorem 1, and unlike Theorem 1 no matching lower bound is/sho

Theorem 2 For anyp,n € N (with p > 2 andn > 2P*1), there exists am-profile P
such that for any orde®© over{x,...,x,}, SSPo(P) = 1;...1,, andanyV € P
ranksl; ...1, somewhere in the bottopH 2 positions.

6 Multiple-election paradoxes for SSP with restrictions
on preferences

The paradoxes exhibited so far placed no restriction on thers’ preferences. While
SSP is perfectly well defined for any preferences that thersanay have over the al-
ternatives, we may yet wonder what happens if the votergépeaces over alternatives
are restricted in a way that is natural with respect to thetinsdue structure of the
setting. In particular, are paradoxes avoided by suchicéstrs? It is well known that

natural restrictions on preferences sometimes lead to mack positive results in so-
cial choice and mechanism design—for example, singleguetpkeferences allow for
good strategy-proof mechanisms [3, 15].

In this section, we study the MSI f&t'S Py, for the following three cases: (1) voters’
preferences are separable; (2) voters’ preference®degicographic; and (3) voters’
preferences ar@-legal. For case (1), we show a mild paradox (and that thig-is e
fectively the strongest paradox that can be obtained);dse¢2), we show a positive
result; for case (3), we show a paradox that is very nearlydsb the unrestricted case.

Theorem 3 For anyn > 2p, when the profile is separable, the MSI 86 Py is be-
tween2/?/21 and2lr/2/+1,
Lif n is even, then to prove/ SIssp,, (m,n) > |p/2+ 2], we restrict attention to profiles without ties.

20f course, for any ordering of the issues, there exists alptbat results in the paradoxes in Theorem 1;
but this does not directly imply that there exists a singlife that works for all orderings.




That is, the MSI ofSSP» when votes are separable@./m). We still have that
lim,,, .00 O(y/m)/m = 0, so in that sense this is still a paradox. However, the cenver
gence td) is much slower than fo® (log m)/m, which corresponds to the convergence
rate for the earlier paradoxes.

Theorem 4 Foranyp € N (p > 2) and anyn > 5, when the profile i©-lexicographic,
MSI(SSPo) = 3-2P~2 + 1. Moreover,SSPy(P) is ranked somewhere in the top
2P~1 positions in at least/2 votes.

Naturallylim,, . (3m/441)/m = 3/4, so in that sense there is no paradox when
votes arg)-lexicographic.

Finally, we study the MSI fo5'S P» when the profile i€)-legal. Theorem 5 shows
that it is very nearly as bad as the unrestricted case (Thebye

Theorem 5 For anyp,n € Nwithn > 2p?+2p+1, there exists a¥-legal profile such
that in each vote, no more thdp/2] + 4 alternatives are ranked lower thaS Po (P).
Moreover,SS Po(P) is Pareto-dominated by at lea®t — 4p? alternatives.

Of course, the lower bound on the MSI from Theorem 1 still agplvhen the
profile isO-legal, so together with Theorem 5 this proves that the MBF®P» when
the profile isO-legal is©(log m), just as in the unrestricted case.

7 Minimax satisfaction index of other common voting
rules

So far, we have focused strictly on strategic sequentiahggSSP) in multi-issue do-

mains (and voting trees, but only in the sense of their edgrinez to strategic sequential
voting). Hence, at this point, it may not be clear whetherpgheadoxes (or, in some
cases, lack of paradoxes) that we have shown are due to therged, multi-issue na-

ture of the process, or whether they are due to the strategiavior, or whether such
paradoxes are prevalent throughout voting settings.

First, let us address the question of to what extent they aeea strategic behav-
ior. To answer this, it is most natural to compareS®yo (maj, . . ., maj) (“truthful”
sequential voting), which is only well defined when the peoid O-legal. We answer
this question by the following Proposition, which shows acimmilder paradox.

Proposition 1 Foranyn > 2p, when the profile i©-legal, the MSI foiSeqo (maj, . . . ,mayj)
is betweer2/?/21 and2lr/2]+1

Having settled the effect of strategic behavior, we nexéstigate the effect of the
multi-issue nature of the setting. We do this by studyingMf& of common voting
rules in non-combinatorial settings, where there is a siiggue (but one that can take
more than two values). In this context, studying strategldvior seems intractable.
By the Gibbard-Satterthwaite theorem [9, 18], withoutniesbns on preferences, no
strategy-proof rules exist other than dictatorships atekrthat exclude certain alterna-
tives ex ante Moreover, even with complete information, common votintgs have
many different equilibria. Hence, we focus on studying thieet to which paradoxes
occur when voters vote truthfully.

Specifically, we investigate the minimax satisfaction @&di of positional scoring
rules (includingk-approval and Borda), plurality with runoff{uo), Copeland, max-
imin, ranked pairs, Bucklin, STV, and (not necessarily ba&d) voting trees. Of
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course, these rules can be applied to multi-issue domaingekhss to any other do-
main, but they do not make use of multi-issue structure; imegal, we just have a set of
alternative<” = {cy, ..., ¢, }. Throughout the remainder of this section, we assume
thatm > 3, and that ties are broken in the ordgr- cy > ... > ¢,,.

Proposition 2 Letm,n € N.
e MSIpict(m,n) =m;
o foranyk < m, MSILapp, (m,n) =m+1—k;
o M SIppo(m,n) =m;
° MSISTv(m, TL) =m,
L MSIBUCK"FI(ma n) > m/2-

Proposition 3 (Borda) Letm € N. Foranyn € Nsuchthat isevenM S1pyrqq(m,n) =
|m/2 + 1]; for any n € N such thatn > m, andn is odd, M S1gyrae(m,n) =
[m/2+ 1].

Proposition 4 (Copeland) Let m,n € N. If either0 < o < 1, or n is odd and
a = 0, then M Slcopelang (m,n) > am/4. For anyn > 2m such thatn is even,
]\/[SICODQL':U’I(A (m, n) = 2.

Proposition 5 (Maximin) Letm,n € Nwithn > m — 1. M ST ,azimin(m,n) < 3

Proposition 6 (Ranked pairs) Letm,n € Nwithn > /m. M SI.,(m,n) > /m.

Proposition 7 (Voting trees) Let T' be a voting tree; let be the alternative whose
corresponding leaf is closest to the root among all leave¥ imnd let its distance to
the root be denoted If [ = 1, then for anyn > 2m, M SI,.,.(m,n) = 3;if | > 2, then
foranyn > 2m, M SI,.,.(m,n) = [1/2+2].

Proposition 7 implies that among all voting trees foaralternatives, balanced voting
trees have the highest MSI.

8 Conclusion and future work

In this paper, we considered a complete-information gameeretic analysis of sequen-
tial voting on binary issues, which we called strategic seial voting. Specifically,
given that agents have complete information about each’stheeferences and their
preferences are strict, the game can be solved by a natulalibed induction process,
which leads to a unique solution.

We showed that strategic sequential voting is prone to plakélection paradoxes;
to do so, we introduced a minimax satisfaction index, whicrasures the degree to
which at least one voter is made happy by the outcome of thiti@be We showed that
the minimax satisfaction index for strategic sequentiaingpis exponentially small,
which means that there exists a profile for which the winneaiidked almost in the bot-
tom position in all votes; even worse, the winner is Paraiovthated by almost every
other alternative. We showed that changing the order ofdhgeis in sequential voting
cannot completely avoid the paradoxes. These negativksé@sticate that the solution
of the sequential game can be very bad. We also showed théipletdlection para-
doxes can be avoided to some extent by restricting voteefepences to be separable
or lexicographic, but the paradoxes still exist when thexstpreferences ar@-legal.
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Voting rule MSI

Dictatorships m  (Proposition 2)
Plu w/ runoff m  (Proposition 2)
STV m  (Proposition 2)
Copeland, (0 < o <1) ©(m)  (Proposition 4)
Borda (v > m) ©(m)  (Proposition 3)
Bucklin ©(m)  (Proposition 2)
Seqo (maj, ..., maj
%Oglexicjo profiIes)J) Hampd bl e )
S SPo (O-lexico profiles) 3m/4+1 (Theorem 4)

k-Approval

(incl. Plurality and Veto) m+1—Fk  (Proposition 2)

Ranked pairsi{ > /m) Q(y/m)  (Proposition 6)
Seqo (maj, ..., maj) S

(separable profiles) 6(v'm) ({ieoremiS)
S SPo (separable profiles) O(y/m) (Theorem 3)

Seqo (maj, ..., mayj) -
(O-legal profiles) ©(y/m)  (Proposition 1)
between[log m /2 + 2]

S S Po (O-legal profiles) and|log m/2 + 5] (Theorem 5)
SSPo 3 [logm/2 + 2] (Theorem 1)
\oting tree fp > 2m) [i/2+2]*  (Proposition 7)
Maximin (n > m — 1) <3 (Proposition 5)
Copelang (n is even) 2 (Proposition 4)

Table 1: The minimax satisfaction index for strategic sequentialngp(SSP), truthful sequential voting
(Seq), and common voting rules, ranked roughly from higlota |

For the sake of benchmarking our results, we also study thamai satisfaction in-
dex for some common voting rules (under truthful voting)eThsults are summarized
in Table 1. For a voting rule with a low (high) MSI, we can (cat)find a paradox that
is similar to the multiple-election paradoxes—that is, afite for which the winner is
ranked in extremely low positions in all votes.

From this table, it may be concluded that: (1) in sequentiing, the paradoxes
are stronger when voting is strategic than when it is truttifiough of course this is no
longer true if we are in a restricted setting where truthfudl strategic voting lead to
identical results (that is, when the profile is separablexicbgraphic); (2) the strength
of the paradoxes for sequential voting ranks somewheresimiiddle, though perhaps
somewhat more on the strong side, among standard sociakchidés (when voters are
assumed to vote truthfully).

There are many topics for future research. For examplengvprofile, can we
characterize the set of alternatives that win for some oodler the issue$?Perhaps
more importantly, how can we get around the multiple-etetparadoxes in sequential
games? For example, Theorem 4 shows that if the voters’nerates are lexicographic,
then we can avoid the paradoxes. It is not clear if there dreravays to avoid the
paradoxes (paradoxes occur even if we restrict voterseépeates to be separable®@r
legal, as shown in Theorem 3 and Theorem 5). Another apprisaolconsider other,
non-sequential voting procedures for multi-issue domaitikat are good examples of
such procedures? Will these avoid paradoxes? What is theteff strategic behavior
for such procedures? How should we even define “strategiavieti for such proce-
dures, or for sequential voting with non-binary issues,arnoting rules in general?
How can we extend these results to incomplete-informatattings?® Also, beyond

SAdditionally, there exists a profilé such that forany order © over issues, the maximum satisfaction
index of S\S Py for P is no more thatog m + 2 (Theorem 2).

4 is the minimum distance from the root to a lekk logm. If | = 1, thenM SI,.,.(m,n) = 3.

5This results in asocial choice sebr correspondencesocial choice sets have recently attracted attention
from computer scientists [5].

60f course, because the complete-information setting igeialcase of incomplete-information settings,
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proving paradoxes for individual rules, is it possible t@sha general impossibility
result that shows that under certain minimal conditionsagaxes cannot be avoided?
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things can only get worse in the latter.
"This may require quite restrictive conditions or a différention of a paradox—for example, we have
already shown that several natural voting rules have MSalbeit under truthful voting.

13



