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Abstract

In a voting system, sometimes multiple new alternatives will join the election after the voters’
preferences over the initial alternatives have been revealed. Computing whether a given alter-
native can be a co-winner when multiple new alternatives join the election is called the possible
co-winner with new alternatives (PcWNA) problem, introduced by Chevaleyre et al. [4, 5]. In
this paper, we show that the PcWNA problems are NP-complete for the Bucklin, Copeland0,
and Simpson (a.k.a. maximin) rule, even when the number of new alternatives is no more than
a constant. We also show that the PcWNA problem can be solved in polynomial time for plu-
rality with runoff. For the approval rule, we define three different ways to extend a linear order
with new alternatives, and characterize the computational complexity of the PcWNA problem
for each of them.

1 Introduction
In many real-life situations, a set of voters have to choose a common alternative out of a set that can
grow during the process. For instance, when looking for a meeting date, it may happen that of new
dates become possible. A recent paper by Chevaleyre et al. [4] considers the following problem:
suppose that the voters’ preferences about a set of initial alternatives have already been elicited,
and we know that a given number k of new alternatives will join the election; we ask who among
the initial alternatives can possibly win the election in the end. This problem is a special case of the
possible winner problem [7, 9, 8, 2, 3, 1], restricted to the case where the incomplete profile consists
of a collection of full rankings over the initial alternatives (nothing being known about the voters’
preferences about the new alternatives), somehow dual of another special case of the problem where
the incomplete profile consists of a collection of full rankings over all alternatives for a subset of
voters (nothing being known about the remaining voters’ preferences), which itself is equivalent to
the coalitional manipulation problem.

Chevaleyre et al. [4, 5] investigated the complexity of computing possible winners with new al-
ternatives, and laid the focus on scoring rules, obtaining both polynomiality and NP-completeness
results, depending on the scoring rule used and the number of new alternatives. Their results, how-
ever, did not go beyond scoring rules. Here we go further and give results for several other common
rules, especially some common rules that are based on pairwise elections. After giving some back-
ground in Section 2, each of the following sections is devoted to the PcWNA problem for a specific
voting rule. In Section 3, we focus on approval voting. Since the notion of a complete profile (includ-
ing the new alternatives) extending a partial profile over the initial alternatives is not straightforward,
we propose three possible definitions, which we think are the three most reasonable definitions. We
show that PcWNA problems are trivial for two of these definitions, and NP-complete for the third
one. In Sections 4, 5 and 6 we show that the problem is NP-complete for, respectively, the Bucklin
rule, the Copeland rule, and the Simpson (a.k.a. maximin) rule, and finally in Section 7 we focus
on plurality with runoff, for which the problem is in P (due to the space constraint, the proof of this
result is omitted).
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2 Preliminaries
Let C be the set of alternatives (or candidates), with |C| = m. Let I(C) denote the set of votes.
Most often, the set of votes is the set of all linear orders over C. An n-profile P is a collection of n
votes for some n ∈ N, that is, P ∈ I(C)n. A voting rule r is a mapping that assigns to each profile
a set of winning alternatives, that is, r is a mapping from {∅} ∪ I(C) ∪ I(C)2 ∪ . . . to 2C . Some
common voting rules are listed below. For all of them (except the approval rule), I(C) is the set of
all linear orders over C; for the approval rule, the set of votes is the set of all subsets of C, that is,
I(C) = {S : S ⊆ C}.
(Positional) scoring rules: Given a scoring vector ~v = (v(1), . . . , v(m)), for any vote V ∈ L(C)
and any c ∈ C, let s(V, c) = v(j), where j is the rank of c in V . For any profile P = (V1, . . . , Vn), let
s(P, c) =

∑n
i=1 s(Vi, c). The rule will select c ∈ C so that s(P, c) is maximized. Some examples of

positional scoring rules are Borda, for which the scoring vector is (m−1,m−2, . . . , 0); l-approval
(l ≤ m), for which the scoring vector is v(1) = . . . = v(l) = 1 and vl+1 = . . . = vm = 0; and
plurality, for which the scoring vector is (1, 0, . . . , 0).
Approval: Each voter submits a set of alternatives (that is, the alternatives that are “approved”
by the voter). The winner is the alternative approved by the largest number of voters. Note that
the approval rule is different from the l-approval rule, in that for the l-approval rule, a voter must
approve l alternatives, whereas for the approval rule, a voter can approve an arbitrary number of
alternatives.
Bucklin: The Bucklin score of an alternative c is the smallest number t such that more than half of
the votes rank c among top t positions. The alternatives that have the lowest Bucklin score win. (We
do not consider any further tie-breaking for Bucklin.)
Copelandα (0 ≤ α ≤ 1): For any two alternatives ci and cj , we can simulate a pairwise election
between them, by seeing how many votes prefer ci to cj , and how many prefer cj to ci; the winner
of the pairwise election is the one preferred more often. Then, an alternative receives one point for
each win in a pairwise election, α points for each tie, and zero point for each loss. The alternatives
that have the highest scores win.
Simpson (a.k.a. maximin): Let NP (ci, cj) denote the number of votes that rank ci ahead of cj in P .
The Simpson score of alternative c ∈ C in profile P is defined as SimP (c) = min{NP (c, c′) : c′ ∈
C \{c}}. A Simpson winner for P is an alternative c0 ∈ C such that SimP (c0) = max{SimP (c) :
c ∈ C}.
Plurality with runoff: The election has two rounds. In the first round, all alternatives are eliminated
except the two with the highest plurality scores. In the second round (runoff), the winner is the
alternative that wins the pairwise election between them.

Let C denote the set of original alternatives, let Y denote the set of new alternatives. For any
linear order V over C, a linear order V ′ over C ∪ {V } extend V , if in V ′, the pairwise comparison
between any pair of alternatives in C is the same as in V . That is, for any c, d ∈ C, c ÂV d if and
only if c ÂV ′ d.

Given a voting rule r, an alternative c, and a profile P over C, we are asked whether there exists
a profile P ′ over C ∪ Y such that P ′ is an extension of P and c ∈ r(P ′). This problem is called the
possible co-winner with new alternatives (PcWNA) problem [4, 5].

Similarly, we let PWNA denote the problem in which we are asked whether c is a possible
(unique) winner, that is, r(P ′) = {c}. Up to now, the PcWNA and PWNA problems are well-
defined for all voting rules studied in this paper (except the approval rule). For the approval rule, we
will introduce three types of extension, and discuss the computational complexity of the PcWNA
and PWNA problems under these extensions.

In this paper, all NP-hardness results are proved by reductions from the Exact Cover by 3-Sets
problem (denoted by X3C) or the 3-DIMENSIONAL MATCHING problem (denoted by 3DM). An
instance I = (S,V) of X3C consists of a set V = {v1, . . . , v3q} of 3q elements and t ≥ q 3-sets
S = {S1, . . . , St} of V , i.e., for any i ≤ t, Si ⊆ V and |Si| = 3. For any v ∈ V , let dI(v)
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denote the number of 3-sets containing element v in instance I . Let ∆(I) = maxv∈V dI(v). We
are asked whether there exists a subset J ⊆ {1, . . . , t} such that |J | = q and

⋃
j∈J Sj = V (indeed,

the sets Sj for j ∈ J form a partition of V). This problem is known to be NP-complete, even
if ∆(I) ≤ 3 (problem [SP2] page 221 in [6]). In this paper, we will use a special case of 3DM
that is also a special case of X3C, defined as follows.1 Given A,B, X , where A = {a1, . . . , aq},
B = {b1, . . . , bq}, X = {x1, . . . , xq}, T ⊆ A × B × X , T = {S1, . . . , St} with t ≥ q. We are
asked whether there exists M ⊆ T such that |M | = q and for any (a1, b1, x1), (a2, b2, x2) ∈ M , we
have a1 6= a2, b1 6= b2, and x1 6= x2. That is, M corresponds to an exact cover of V = A ∪B ∪X .
This problem with the restriction where no element of A∪B ∪X occurs in more than 3 triples (i.e,
∆(I) ≤ 3) is known to be NP-complete (problem [SP1] page 221 in [6]).

It is straightforward to check that the PcWNA (respectively, PWNA) problems for all voting
rules studied in this paper are in NP, because given an extension of a profile P , it is polynomial to
verify if the given alternative c is a co-winner (respectively, unique winner) for all rules studied in
this paper (again, we discuss the approval rule separately). Therefore, in this paper we only show
NP-hardness proofs.

To prove that the PcWNA and PWNA problems are NP-hard, we first prove that another useful
special case of 3DM (as well as X3C) remains NP-complete.

Proposition 1 3DM is NP-complete, even if q is even, t = 3q/2, and ∆(I) ≤ 6.

Proof of Proposition 1: Let I = (T, A×B ×X) be an instance of 3DM with A = {a1, . . . , aq},
B = {b1, . . . , bq}, X = {x1, . . . , xq}, T ⊆ A × B × X , T = {S1, . . . , St} and ∆(I) ≤ 3. We
next show how to build an instance I ′ = (T ′, A′ × B′ × X ′) of 3DM in polynomial time, with
|A′| = |B′| = |X ′| = q′, T ′ ⊆ A′ × B′ × X ′ and |T ′| = t′ such that q′ is even, t′ = 3q′/2, and
∆(I ′) ≤ 6.

• If q is odd, then we add to the instance 3 new elements {a′1, b′1, x′1} with A′ = A ∪ {a′1},
B′ = B ∪ {b′1}, X ′ = X ∪ {x′1} and one new triples (a′1, b

′
1, x

′
1).

• Suppose that q is even. If t > 3q/2, then we add 6(t − 3q/2) new elements
{a′1, . . . , a′2(t−3q/2)} to A, {b′1, . . . , b′2(t−3q/2)} to B, {x′1, . . . , x′2(t−3q/2)} to X and 2(t − 3q/2)
new triples {S′1, . . . , S′2(t−3q/2)}, where for any i ≤ 2(t − 3q/2), S′i = (a′i, b

′
i, x

′
i). If t < 3q/2,

then we add 3q/2 − t dummy triples to T by duplicating 3q/2 − t triples of T once each. We note
that t ≥ q implies that t ≥ 3q/2− t.

It is easy to check in I ′, q′ is even, t′ = 3q′/2, and ∆(I ′) ≤ 6. The size of the input of the new
instance is polynomial in the size of the input of the old instance. Moreover, I is a yes-instance if
and only if I ′ is also a yes-instance. ¤

3 Approval
Since the input of the approval rule is different from the input of other voting rules studied in this
paper, we have to define the set of possible extensions of an approval profile over C. Let PC =
(V1, . . . , Vn) be an approval profile over C, where each Vi is a subset of C. An extension of PC over
C ∪ Y is a collection (V ′

1 , . . . , V ′
n) where V ′

i ⊆ C ∪ Y is an extension of Vi. Now, we have to define
what it means to say that V ′ ⊆ C ∪ Y is an extension of V ⊆ C. We can think of three natural
definitions:

Definition 1 (extension of an approval vote, definition 1) V ′ ⊆ C ∪ Y is an extension of V ⊆ C
if V ⊆ V ′ and V ′ ∩ C = V ∩ C.

In other words, under this definition, V ′ is an extension of V if V ′ = V ∪ Y ′, where Y ′ ⊆ Y . The
problem with Definition 1 is that it assumes that any alternative approved in V is still approved in V ′.

1Generally, 3DM is not a special case of X3C.
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However, in some contexts, extending the choice with alternatives of Y may change the “approval
threshold”. Moreover, since we have more alternatives, this threshold should either stay the same or
move upwards: some alternatives that were approved initially may become disapproved. This leads
to the following definition of extension:

Definition 2 (extension of an approval vote, definition 2) V ′ ⊆ C ∪ Y is an extension of V ⊆ X
if one of the following conditions holds: (1) V = V ′; (2) V ′ ∩ Y 6= ∅ and V ′ ∩ C ⊆ V .

Lastly, we may also allow the acceptance threshold to move downwards, even though the set
of alternatives grows, especially in the case where the new alternatives are particularly bad, thus
rendering some alternatives in C acceptable after all. This leads to the third definition of extension:

Definition 3 (extension of an approval vote, definition 3) V ′ ⊆ C ∪ Y is an extension of V ⊆ C
if one of the following conditions holds: (1) V ′ ∩ C ⊂ V and V ′ ∩ Y 6= ∅; (2) V ⊂ V ′ ∩ C, and
Y \ V ′ 6= ∅; (3) V ′ ∩ C = V .

Under Definition 3, either the threshold moves upward, in which case all alternatives which were
disapproved inV are still disapproved in V ′, and obviously, at least one alternative in Y is approved;
or the threshold moves downward, in which case all alternatives that were approved in V are still
approved in V ′, and obviously not all alternatives in Y are approved. Note that in the case where
V ′ ∩ C = V , the threshold can have moved upward, or downward, or remained the same.

Let us give a brief summary of the three definitions of extension. Definition 1 assumes that the
threshold cannot move; Definition 2 assumes that the threshold can stay the same or move upward
(because the set of alternatives grows); and Definition 3 assumes that the threshold can stay the same,
move upward, or move downward. Next, we show an example that illustrates these definitions. Let
C = {a, b, c, d}, Y = {y1, y2}, and V = {a, b}.

• V ′
1 = {a, b} and V ′

2 = {a, b, y1} are extensions of V under any definition;
• V ′ = {a, y1} is an extension of V under definitions 2 and 3 but not under definition 1 (the

threshold has moved upward, since b was approved in V and is no longer approved in V ′);
• V ′ = {a, b, c, y1} is an extension of V under definition 3 but neither under definitions 1 nor 2

(the threshold has moved downward, since c was not approved in V and becomes approved in V ′ –
note that, intuitively, y2 must be a very unfavored alternative for this to happen);

• V ′ = {a, b, c} is an extension of V under definitions 3 but neither under definitions 1 nor 2,
for the same reason as above;

• V ′ = {a} is not an extension of V under any of the definitions: to have b disapproved in V ′

and approved in V , the threshold has to move upward, which cannot be the case if no alternative of
Y is approved;

• V ′ = {a, b, c, y1, y2} is not an extension of V under any of the definitions: to have c disap-
proved in V and approved in V ′, the threshold has to move downward, which cannot be the case of
all alternatives of Y are disapproved;

• V ′ = {a, c, y1} is not an extension of V under any of the definitions: the threshold cannot
simultaneously move upward and downward.

It is straightforward to check that the PcWNA and PWNA problems are in P for approval under
definition 1: an alternative c ∈ C is a possible (co-)winner in P if and only if it is a (co-)winner for
approval in P (this is because for any V ∈ P , the scores of alternatives in C will not change from
V to its extension V ′). However, when we adopt definition 2 of extension, the problems become
NP-complete.

Theorem 1 Under Definition 2, PcWNA and PWNA problems are NP-complete for the approval
rule.

Proof of Theorem 1: We first prove the hardness of the PcWNA problem by a reduction from
X3C. For any X3C instance I = (S,V), we construct the following PcWNA instance.
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Alternatives: V ∪ {c} ∪ Y , where Y = {y1, . . . , yt−q}.
Votes: for any i ≤ t, we have a vote Vi = Si; and we have an additional vote Vt+1 = {c}. That

is, P = (V1, . . . , Vt, Vt+1).
Suppose the X3C instance has a solution, denoted by {Si1 , . . . , Siq

}. Then, take the following
extension P ′ of P : for any j ≤ q, let V ′

ij
= Vij

. For any i ≤ t such that i 6= ij for any j ≤ q, we let
V ′

i be a singleton containing exactly one of the new alternatives. Let V ′
p+1 = {c}. For any v ∈ V ,

because v appears exactly in one Sij
, v is approved by exactly one voter. So is c. Now, there are

exactly t − q votes Vi where i is not equal to one of the ij’s. Therefore, the total approval score of
the new alternatives is t− q, and it suffices to approve every new alternative exactly once. Therefore
c is a co-winner in P ′, and thus a possible co-winner in P .

Conversely, suppose c is a possible co-winner for P and let P ′ be an extension of P for which
c is a co-winner. We note that c is approved at most once in P ′. Therefore, every alternative in
V ∪Y must be approved at most once. Without loss of generality, assume that every vote V ′

i in P ′ is
either of the form Vi or of the form {yj} (if not, remove every alternative (except one yj) from V ′

i ;
c will still be a co-winner in the resulting profile). Since we have t− q new alternatives, each being
approved at most once in P ′, we have at least q votes V ′

i in P ′ such that V ′
i = Vi. If we had more

than q votes V ′
i such that V ′

i = Vi, then more than 3q points would be distributed to 3q alternatives
and one of them would get at least 2, which means that c would not be a co-winner in P ′. Therefore
we have exactly q votes V ′

i such that V ′
i = Vi, and 3q points distributed to 3q alternatives; since

none of them gets more than one point, they get one point each, which implies that the collection of
all Si such that Vi = V ′

i forms an exact cover of C.
For the PWNA problem, we add one more vote Vt+2 = {c} to the profile P . ¤
Now, let us consider Definition 3. Notice that the profile P ′ where every voter adds c to her

vote (if she was not already voting for c) is an extension of P , and obviously c is a co-winner in
P ′, therefore every alternative of C is a possible co-winner for P , which means that the problem is
trivial.

4 Bucklin
Theorem 2 The PWNA and PcWNA problems are NP-complete for Bucklin, even when there are
three new alternatives.

Proof of Theorem 2: We prove the NP-hardness of the PcWNA problem by a reduction from the
special case of 3DM mentioned in Proposition 1. Given any 3DM instance where |A| = |B| =
|X| = q, q is even, t = 3q/2, and no element in A ∪ B ∪X appears in more than 6 elements in T ,
we construct a PcWNA instance as follows. Without loss of generality, assume q ≥ 5; otherwise the
instance 3DM can be solved in linear time.
Alternatives: A∪B ∪X ∪Y ∪D∪{c}, where Y = {y1, y2, y3} is the set of new alternatives, and
D = {d1, . . . , d9q2} is the set of auxiliary alternatives.
Votes: For any i ≤ 2q, we define a vote Vi. Let P = (V1, . . . , V2q+1). Instead of defining these
votes explicitly, below we give the properties that P satisfies. The votes can be constructed in
polynomial time.

(i) For any i ≤ q, c is ranked in the first position. Suppose Si = (a, b, x). Then, let a, b, x be
ranked in the (3q + 1)th, (3q + 2)th, and (3q + 3)th positions in Vi, respectively.

(ii) For any i such that q < i ≤ 3q/2 = t, c is ranked in the (3q + 4)th position. Suppose
Si = (a, b, x). Then, let a, b, x be ranked in the (3q + 1)th ,(3q + 2)th, and (3q + 3)th
positions in Vi, respectively.

(iii) For any i such that 3q/2 < i ≤ 2q + 1, let c be ranked in the (3q + 4)th position, and no
alternative in A∪B ∪X is ranked in the (3q + 1)th, (3q + 2)th, or (3q + 3)th position in Vi.
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(iv) For any j ≤ 3q, vj is ranked within top 3q + 3 positions for exactly q + 1 times in P .

(v) For any d ∈ D, d is ranked within top 3q + 4 positions at most once.

The existence of a profile P that satisfies (iv) is guaranteed by the assumption that in the 3DM
instance, q ≥ 5, no element is covered by more than 6 times, and there are enough positions within
top 3q + 3 positions in all votes to fit in all alternatives in C, with each alternative appears q + 1
times. We note that there are in total 9q2 auxiliary alternatives, and the total number of top 3q + 4
positions in all votes is (3q + 4)(2q + 1) < 9q2. Therefore, (v) can be satisfied. It follows that there
exists a profile P that satisfies (i), (ii), (iii), (iv), and (v), and such a profile can be constructed in
polynomial time (by first putting the alternatives to their positions defined in (i), (ii), and (iii), then
filling out the positions using remaining alternatives to meet conditions (iv) and (v)). The Bucklin
score of c is 3q + 4 in P . For any j ≤ q, the Bucklin score of aj (resp., bj , xj) is at most 3q + 3
in P , and for any j ≤ 9q2, the Bucklin score of dj ∈ D is at least 3q + 4 in P . Observe that the
Bucklin score of any alternative cannot increase in any extension of P .

Suppose that the 3DM instance has a solution, denoted by {Sj : j ∈ J}, where J ⊆ {1, . . . , t}.
For any j ∈ J , we let V ′

j be the extension of Vj in which y1, y2, y3 are ranked in the (3q + 1)th,
(3q + 2)th, and (3q + 3)th positions, respectively. For any j ∈ {1, . . . , 2q + 1} \ J , we let V ′

j be the
extension of Vj where {y1, y2, y3} are ranked in the bottom positions. Let P ′ = (V ′

1 , . . . , V ′
2q+1). It

follows that in P ′, the Bucklin score of c is 3q + 4, and the Bucklin score of any other alternative is
at least 3q + 4. Therefore, c is a co-winner for Bucklin for P ′, which means that there is a solution
to the PcWNA instance.

Conversely, suppose that there is a solution to the PcWNA instance, denoted by P ′ =
(V ′

1 , . . . , V ′
2q+1). We recall that in order for c to be a co-winner, the Bucklin score of any alter-

native in A∪B ∪X must be at least 3q +4 (since the Bucklin score of c cannot increase in P ′). We
note that there are only three new alternatives, and the (3q+1)th, (3q+2)th, and (3q+3)th positions
in Vi are occupied by some alternatives in D. It follows that for every a ∈ A and every i such that
t < i ≤ 2q + 1, it cannot be the case that a is ranked within top 3q + 3 positions in Vi, and a is
ranked lower than the (3q + 3)th position in V ′

i . Therefore, for every a ∈ A, there exists i ≤ t such
that a is ranked within top 3q + 3 positions in Vi, and is ranked lower than the (3q + 3)th position
in V ′

i . It follows that in each of such V ′
i where a is ranked lower than the (3q + 3)th position, the

new alternatives must be ranked within top 3q + 3 positions. Therefore, each new alternative must
be ranked within top 3q + 3 positions in V1, . . . , Vt for q times (one for each a ∈ A). Because c is
a co-winner, no alternative in Y is ranked within top 3q + 3 positions in P ′ for more than q times.
Therefore, in exactly q votes in P ′, the alternatives in Y are ranked within top 3q + 3 positions. We
let {V ′

i1
, . . . , V ′

iq
} denote these votes.

We claim that {Si1 , . . . , Siq
} is a solution to the 3DM instance. If not, then there exists e ∈

B ∪ X that does not appear in any Sij . However, it follows that e is ranked within top 3q + 3
positions for exactly q times, which means that the Bucklin score of e is at most 3q + 3. This
contradicts the assumption that c is a co-winner for P ′. Therefore, the PcWNA problem is NP-hard
for Bucklin.

For PWNA, we make the following changes. In conditions (i) and (ii) that P should satisfy, we
require that a, b, x are in the (3q + 2)th, (3q + 3)th, and (3q + 4)th positions, respectively. ¤

5 Copeland0

For any profile P , the Copeland score of an alternative c ∈ C in profile P is denoted by
CSP (c) = |{c′ ∈ C : NP (c, c′) > n/2}| (recall that we focus on Copeland0, which means that
the tie in a pairwise election gives 0 point to both participating alternatives). We have the following
straightforward observation.
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Property 1 For any profile P ′ over C ∪ {y} that is an extension of profile P , the following inequal-
ities hold:

∀c ∈ C, CSP (c) ≤ CSP ′(c) ≤ CSP (c) + 1 (1)

We prove that a useful restriction of X3C remains NP-complete.

Proposition 2 X3C is NP-complete, even if t = 2q − 2 and ∆(I) ≤ 6.

Proof of Proposition 2: The proof is similar to the proof for Proposition 1. Let I = (S,V) be
an instance of X3C, where V = {v1, . . . , v3q} and S = {S1, . . . , St}. We next show how to build
an instance I ′ = (S ′,V ′) of X3C in polynomial time, with |V ′| = 3q′ and |S ′| ≤ 6 such that
t′ = 2q′ − 2 and ∆(I ′) ≤ 6.

• If t < 2q − 2, then we add 2q − 2− t dummy 3-sets to S by duplicating 2q − 2− t sets of S
once each. It follows from t ≥ q that 2q − 2− t ≤ q − 2 < t.

• If t > 2q−2, then we add 3(t−2q +2) new elements v′1, . . . , v
′
3(t−2q+2) and t−2q +2 3-sets

{v′1, v′2, v′3}, . . . , {v′3(t−2q+2)−2, v
′
3(t−2q+2)−1, v

′
3(t−2q+2)}.

The size of the input of the new instance is polynomial in the size of the input of the old instance.
Moreover, I is a yes-instance if and only if I ′ is also a yes-instance. Finally, in the new instance I ′,
we have: |V ′| = |V| = 3q and t′ = |S ′| = t+(2q−2− t) = 2q−2 = 2q′−2 in the first case, while
3q′ = |X ′| = 3q+3(t−2q+2) = 3(t−q+2) and t′ = |S ′| = t+(t−2q+2) = 2(t−q+1) = 2(q′−1)
in the second case. Moreover, dI′(v) ≤ 2dI(v) ≤ 6 if v ∈ V , and dI′(v) = 1 if v ∈ V ′ \ V . ¤

Theorem 3 The PcWNA problem is NP-complete for Copeland0, even when there is one new alter-
native.

Proof of Theorem 3: The proof is by a reduction from X3C. Let I = (S,V), where t = 2q−2 and
∆(I) ≤ 6 be an instance of X3C as described in Proposition 2. As previously, assume q ≥ 8; hence
∆(I) ≤ q − 2. For any X3C instance, we construct the following PcWNA instance for Copeland0.
Alternatives: V ∪ D ∪ Y ∪ {c}, where D = {d1, . . . , dt} and Y = {y} is the set of the new
alternative.
Votes: For any i ≤ t, we define the following 2t votes.

Vi = [di Â (D \ {di}) Â (V \ Si) Â c Â Si]

V ′
i = [rev(Si) Â rev(V \ Si) Â rev(D \ {di}) Â c Â di]

Here the elements in a set are ranked according to the order of their subscripts, i.e., if Si =
{v2, v5, v7}, then the elements are ranked as v2 Â v5 Â v7. For any set X such that X ⊂ V
or X ⊂ D, let rev(X) denote the linear order where the elements in X are ranked according to the
reversed order of their subscripts. For example, rev({v2, v5, v7}) = v7 Â v5 Â v2.

We also define the following t = 2q − 2 votes.

W1 = . . . = Wq−1 = [V Â D Â c]

W ′
1 = . . . = W ′

q−1 = [rev(D) Â rev(V) Â c]

Let P = (V1, V
′
1 , . . . , Vt, V

′
t ,W1,W

′
1, . . . , Wq−1,W

′
q−1).

We note that there are 3t votes in the instance. We recall that by assumption, 3t/2 = 3q− 3. We
make the following observations on the function NP .

• For any d ∈ D, d beats c: this holds because NP (c, d) = 1.

• For any v ∈ V , v beats c: this holds because NP (c, v) = dI(v) ≤ q − 2 < 3q − 3.

• For any d ∈ D and v ∈ V , d and v are tied: this holds because NP (v, d) = t+q−1 = 3q−3.
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• For any v, v′ ∈ V (v′ 6= v), v and v′ are tied: this holds because NP (v, v′) = t+q−1 = 3q−3,
because for any i ≤ q, v Â v′ either in Vi or in V ′

i .

• For any d, d′ ∈ D (d′ 6= d), d and d′ are tied: this holds because NP (d, d′) = 3q − 3.

From these observations we have the following calculation on the Copeland scores:

• CSP (c) = 0.

• For any v ∈ V , CSP (v) = 1.

• For any d ∈ D, CSP (d) = 1.

Now, assume that I = (S,V) is a yes-instance of X3C; hence, there exists J ⊂ {1, . . . , t} with
|J | = q and

⋃
j∈J Sj = V . Next, we show how to make c a co-winner by introducing one new

alternative y.

• For any j ∈ J , we let Ṽj = [dj Â D \{dj} Â V \Sj Â c Â y Â Sj ] be the completion of Vj .

• For any i ≤ t, we let Ṽ ′
i = [rev(Si) Â rev(V \ Si) Â rev(D \ {di}) Â c Â y Â di] be the

completion of V ′
i .

• For any vote not mentioned above, we put y in the top position.

• Finally, let P ′ denote the profile obtained in the above way.

It follows that y loses to c in their pairwise election, and for any other alternative c′ ∈ C (c′ 6= y
and c′ 6= c), c′ and y are tied in their pairwise election. Therefore, the Copeland score is 1 for c,
any alternative in V , and any alternative in D; the Copeland score of y is 0. It follows that c is a
co-winner.

Next, we show how to convert a solution to the PcWNA instance to a solution to the X3C
instance. Let P ′ = (Ṽ1, . . . , Ṽt, Ṽ

′
1 , . . . , Ṽ ′

t , W̃1, W̃
′
1, . . . , W̃q−1, W̃

′
q−1) be a profile with the new

alternative, such that c becomes a co-winner according to the Copeland0 rule. We denote P ′1 =
(Ṽ1, . . . , Ṽt), P ′2 = (Ṽ ′

1 , . . . , Ṽ ′
t ) and P ′3 = (W̃1, W̃

′
1, . . . , W̃q−1, W̃

′
q−1). It follows from the above

observations on Copeland scores of alternatives in profile P and inequalities (1) of Property 1, that
CSP ′(c) = 1, ∀c′ ∈ D ∪ V , CSP ′(c) = 1 and CSP ′(y) ≤ 1.

We now claim the following.

(a) ∀v ∈ V , NP ′(v, y) ≤ 3q − 3, NP ′(y, c) = 3q − 2 and ∀d ∈ D, NP ′(d, y) = 3q − 3.
NP ′2(c, y) = t = 2q − 2. Moreover, for any i ≤ q, c Â y Â di in Ṽ ′

i .

(b) ∀v ∈ V , NP ′2∪P ′3(v, y) ≥ NP ′2∪P ′3(c, y).

For (a). Since c is a co-winner for P ′, c must beat y in their pairwise election. Meanwhile, any
c′ ∈ V ∪ D cannot beat y in their pairwise elections. Therefore, we must have that NP ′(c, y) ≥
3q − 2, and for any c′ ∈ V ∪ D, NP ′(c′, y) ≤ 3q − 3. For any di ∈ D, in profile P ′, we have
that di Â c except in Ṽ ′

i , which means that NP ′(di, y) ≥ NP ′(c, y)− 1 by transitivity in each vote.
Hence, 3q− 3 ≥ NP ′(di, y) ≥ NP ′(c, y)− 1 ≥ 3q− 3, which means that NP ′(di, y) = 3q− 3 and
NP ′(c, y) = 3q− 2. From these equalities, we deduce that ∀d ∈ D, NP ′(d, y) = NP ′(c, y)− 1 and
then, for any i ≤ t, we have that c Â y Â di in Ṽ ′

i .
For (b). Since in P ′, v Â c except for some votes in P ′1, we have that for all v ∈ V ,

NP ′2∪P ′3(v, y) ≥ NP ′2∪P ′3(c, y).
Let J = {j ≤ t : c Â y in Ṽj}. We will prove that |J | = q and ∪j∈JSj = V . First, note that

|J | ≤ q because |J | = NP ′1(c, y) ≤ NP ′(c, y)−NP ′2(c, y) = q from item (a).
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Now, for any v ∈ V let Jv = {j ≤ t : y Â v in Ṽj}. We claim: ∀v ∈ V , J ∩ Jv 6= ∅.
Otherwise, there exists v∗ ∈ V with J ∩ Jv∗ = ∅. This means that c Â y implies v∗ Â y in votes in
P ′1. Hence, NP ′1(v

∗, y) ≥ NP ′1(c, y). By adding this inequality with the inequality in item (b) (let
v = v∗), we obtain that NP ′(v∗, y) ≥ NP ′(c, y). Now, combining the inequalities in item (a), we
have that 3q − 3 ≥ NP ′(v∗, y) ≥ NP ′(c, y) = 3q − 2, which is a contradiction. Therefore, for all
v ∈ V , J ∩ Jv 6= ∅. Finally, since |V| = 3q, |Si| = 3 and |J | ≤ q, we deduce that |J | = q and
J = {j ≤ t : c Â y Â Sj in Ṽj}. Also, because for all v ∈ V , J ∩ Jv 6= ∅, we have

⋃
j∈J Sj = V .

In conclusion, I = (S,V) is a yes-instance of X3C. This completes the NP-hardness proof for the
PcWNA problem for Copeland0. ¤

6 Simpson
To prove the NP-hardness of the PcWNA problem for Simpson, we first make the following obser-
vation, whose proof is straightforward.

Property 2 Let P be a profile over C, P ′ be a profile over C ∪ {y}, P ′ is an extension P . The
following (in)equalities hold:

(i) ∀c ∈ C, SimP ′(c) = min{SimP (c), NP ′(c, y)}.

(ii) ∀c ∈ C, SimP ′(c) ≤ SimP (c).

Theorem 4 PcWNA and PWNA problems are NP-complete for Simpson, even when there is one
new alternative.

Proof of Theorem 4: We first prove the NP-hardness for the PcWNA problem by a reduction
from X3C. Let I = (S,V) with t = 2q − 2 and ∆(I) ≤ 6 be an instance of X3C as described in
Proposition 2. Without loss of generality, assume q ≥ 8; in particular, we deduce ∆(I) ≤ q−2. We
define a PcWNA instance for Simpson as follows:
Alternatives: V ∪ {c, d} ∪ {y}, where y is the new alternative.
Votes: For any i ≤ t, we define the following vote. Vi = [(V \ Si) Â d Â c Â Si]. For any
j ≤ q − 1, we define the following vote. W1 = · · · = Wq−1 = [c Â rev(V) Â d]. We also let
Wq = [rev(V) Â d Â c]. Let P1 = (V1, . . . , Vt), P2 = (W1, . . . , Wq), and P = P1 ∪ P2.

We make the following observation on the Simpson scores of the alternatives before y is added.

• SimP (c) = q − 1. Indeed, NP (c, d) = q − 1 and ∀v ∈ V , NP (c, v) = q − 1 + dI(v) ≥ q.

• SimP (d) ≤ 6 ≤ q − 2. This is because for any v ∈ V , v is covered by the 3-sets for no more
than q − 2 times (the assumption of the input X3C instance), which means that in P1, d Â v
for at most q − 2 times, i.e., NP (d, v) = dI(v) ≤ 6 ≤ q − 2.

• For any v ∈ V , SimP (v) ≥ q. Actually, NP (v, d) = NP (v, c) = t− dI(v) + q ≥ 3q − 2−
(q − 2) ≥ q. Now, assume v = vi. If i < j, then NP (v, vj) = NP1(v, vj) ≥ t − dI(v) ≥
2q − 2− (q − 2) = q and if j > i, NP (v, vj) = NP2(v, vj) = q.

Now, assume that I = (S,V) is a yes-instance of X3C; hence, there is a J ⊂ {1, . . . , t} with
|J | = q and

⋃
j∈J Sj = V . We show how to make c a co-winner by introducing one new alternative

y.

• For any j ∈ J , we let V ′
j = [(V \ Sj) Â d Â c Â y Â Sj ].

• For any j ∈ {1, . . . , t} \ J , we let V ′
j = [y Â (V \ Sj) Â d Â c Â Sj ].

• For any j ≤ q − 1, we let W ′
j = [c Â y Â rev(V) Â d].

9



• Let W ′
q = [y Â rev(V) Â d Â c].

• Finally, let P ′ = (V ′
1 , . . . , V ′

t ,W ′
1, . . . , W

′
q).

In P ′, the Simpson score of y is q− 1 (via c), because t = 2q− 2, which means that t− q +1 =
q− 1; the Simpson score of c is q− 1 (via d); the Simpson score of d is no more than q− 1 (via any
of v ∈ V); and the Simpson score of any v ∈ V is q − 1 (via y). Therefore, c is a co-winner for the
Simpson rule.

Next, we show how to convert a solution P ′ to the above PcWNA instance for the Simpson rule
to a solution to the X3C instance. Let P ′ = (V ′

1 , . . . , V ′
t ,W ′

1, . . . , W
′
q) with P ′1 = (V ′

1 , . . . , V ′
t ) and

P ′2 = (W ′
1, . . . , W

′
q) be a profile such that c becomes a co-winner according to the Simpson rule

when alternative y is introduced.
We make the following observations.

(a) ∀v ∈ V , NP ′(v, y) ≤ q − 1,

(b) NP ′(y, c) ≤ q − 1 and NP ′(y, d) ≥ q,

(c) y Â c in W ′
q.

For item (a): Since c is a winner, we have that for any v ∈ V , SimP ′(v) ≤ SimP ′(c). Thus,
using Property 2, SimP (c) = q − 1 and SimP (v) ≥ q. We have the following calculation.

min{NP ′(v, y), q} = SimP ′(v) ≤ SimP ′(c) ≤ SimP (c) = q − 1

For item (b): First from (a), we deduce that for any v ∈ V , NP ′(y, v) ≥ t + q−NP ′(v, y) > q.
Thus, we obtain:

SimP ′(y) = min{NP ′(y, c), NP ′(y, d)} ≤ SimP ′(c) ≤ SimP (c) = q − 1 (2)

Now, assume NP ′(y, d) ≤ q − 1. Then, NP ′2(d, y) = q − NP ′2(y, d) ≥ q − NP ′(y, d) ≥ 1.
Hence, there exists i ≤ q such that in W ′

i , we have that for any v ∈ V , v Â d Â y. Moreover,
NP ′1(d, y) = t−NP ′1(y, d) ≥ 2q − 2− (q − 1) = q − 1. Let J0 ⊆ {1, . . . , t} (with |J0| = q − 1)
be the subscripts of arbitrary q − 1 votes in P ′1, where d Â y. Because |V| = 3q and |Sj | = 3,
there exists v∗ ∈ V \ ⋃

j∈J0
Sj . We deduce that for all j ∈ J0, v∗ Â y in V ′

j . In conclusion,
NP ′(v∗, y) ≥ |J0|+ 1 = q, which contradicts item (a). Using inequality (2), item (b) follows.

For item (c): Otherwise, by the definition of Wq, we deduce:

∀v ∈ V, NP ′2(v, y) ≥ 1 (3)

On the other hand, using NP ′1(y, c) ≤ NP ′(y, c) and item (b), we have NP ′1(c, y) = t −
NP ′1(y, c) ≥ t − NP ′(y, c) ≥ t − (q − 1) = q − 1. Let J0 ⊆ {1, . . . , t} (with |J0| = q − 1)
be the subscripts of arbitrary q − 1 votes in P ′1, where c Â y. We have V \ ⋃

j∈J0
Sj 6= ∅ since

|V| = 3q and |Si| = 3. Hence, there exists v∗ ∈ V \⋃
j∈J0

Sj such that:

NP ′1(v
∗, y) ≥ |J0| = q − 1 (4)

Summing up inequalities (3) (let v = v∗) and (4), we get obtain a contradiction with item (a).
From items (b) and (c), we get NP ′1(y, c) = NP ′(y, c)−NP ′2(y, c) ≤ q− 1− 1 = q− 2. Thus,

NP ′1(c, y) = t − NP ′1(y, c) ≥ t − (q − 2) = q. Let J denote the subscripts of arbitrary q votes in
P ′1 where c Â y. We claim

⋃
j∈J Sj = V . Otherwise, there exists v∗ ∈ V \ ⋃

j∈J Sj . It follows
that for any j ∈ J , v∗ ∈ (V \ ⋃

j∈J Sj) ⊆ V \ Sj , which means that v∗ Â c Â y in Vj . Hence,
NP ′(v∗, y) ≥ NP ′1(v

∗, y) ≥ |J | = q, which contradicts item (a). In conclusion, I = (S,V) is a
yes-instance of X3C. Therefore, PcWNA is NP-complete for Simpson.

For the PWNA problem, we make the following change. Let Wq = [rev(V) Â c Â d]. Then,
before the new alternative is introduced, the Simpson score of c is q. Then, similarly we can prove
the NP-hardness of the PWNA problem. ¤
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7 Plurality with runoff
In this section, we focus on possible co-winners, which means that ties are never broken, neither in
the first round nor in the second round. If a tie occurs in the first round, then all possible compatible
second rounds are considered: for instance, if the plurality scores, ranked in decreasing order, are
x1 7→ 8, x2 7→ 6, x3 7→ 6, x4 7→ 5 . . ., then the set of co-winners contains the majority winner
between x1 and x2 and the majority winner between x1 and x3.

Proposition 3 Determining whether c ∈ C is a possible (co-)winner for plurality with runoff is in
P.

The proof does not present any particular difficulty, and due to the lack of space, we only give a
very brief sketch for the PcWNA problem. It proceeds in two steps as follows. Let ºP

M be the weak
majority relation induced by a profile P . Let P be a profile over C. c is a possible co-winner in P if
and only if one of the following two conditions hold:

1. There exists a completion P ′ of P such that c and some d ∈ C \{c} are possible second round
competitors, and c ºP ′

M d.
2. There exists a completion P ′ of P such that c and some y ∈ Y are possible second round

competitors, and c ºP ′
M y.

For each of these two conditions we can find equivalent, polynomial-time computable character-
izations.

For the PWNA problem, the algorithm is similar: we need to make sure that the pairs of alterna-
tives that enter the second round must be (c, d), where c ÂP

M d.

8 Conclusion
In this paper we have gone much beyond existing results on the complexity of the possible
(co-)winner problem with new alternatives. While [4, 5] focused on scoring rules, we have identified
three new rules for which the PcWNA problem is NP-complete (Bucklin, Copeland, and Simpson).
We also showed that the PcWNA problem has a polynomial time algorithm for plurality with runoff,
and as far as approval voting is concerned, we have given three definitions of the extension of a
profile to new alternatives and shown that depending on the chosen definition, the problem can be
trivial or NP-complete. Our NP-completeness proofs and algorithms for the PcWNA problems can
also be extended to the PWNA problems for approval, Bucklin, Simpson, and plurality with runoff.
The results are summarized in the following table.

Voting rule PcWNA PWNA
Borda P [5]

2-approval P [5]
l-approval (l ≥ 3) NP-complete 2 [5]

Approval
P (Definition 1)
NP-complete (Definition 2)
Trivial (Definition 3)

Bucklin NP-complete 2

Copeland0 NP-complete 3 ?
Simpson NP-complete 3

Plurality with runoff P

Table 1: Complexity of PcWNA and PWNA problems for some common voting rules.

2Even with 3 new alternatives.
3Even with 1 new alternative.
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An obvious and interesting direction for future research is studying the computational complex-
ity of the PcWNA (PWNA) problems for more common voting rules, including Copelandα (for
some α 6= 0), ranked pairs, and voting trees. Even for Copeland0, the complexity of the PWNA
problem still remains open.
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Jérôme Lang
LAMSADE
Universite Paris-Dauphine
75775 Paris Cedex, France
Email: lang@lamsade.dauphine.fr
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