Learning using Large Datasets

Léon Bottou* and Olivier Bousquet

aNEC Laboratories America, Princeton, NJ08540, USA
b Google Ziirich, 8002 Ziirich, Switzerland

Abstract. This contribution develops a theoretical framework thaetalto ac-
count the effect of approximate optimization on learning atgms. The anal-
ysis shows distinct tradeoffs for the case of small-scalelargk-scale learning
problems. Small-scale learning problems are subject to thal approximation—
estimation tradeoff. Large-scale learning problems areestib a qualitatively dif-
ferent tradeoff involving the computational complexity oétlinderlying optimiza-
tion algorithms in non-trivial ways. For instance, a mediooptimization algo-
rithms, stochastic gradient descent, is shown to performp wedl on large-scale
learning problems.

Keywords. Large-scale learning. Optimization. Statistics.

Introduction

The computational complexity of learning algorithms halsl@® been taken into ac-
count by the learning theory. Valiant [1] states that a peabls “learnable” when there
exists a probably approximatively correct learning altijoniwith polynomial complex-
ity. Whereas much progress has been made on the statisticat ésped?2,3,4]), very
little has been told about the complexity side of this prabds.g., [5].)

Computational complexity becomes the limiting factor wiere envisions large
amounts of training data. Two important examples come t@min

e Data mining exists because competitive advantages canhievad by analyz-
ing the masses of data that describe the life of our comma#rsociety. Since
virtually every computer generates data, the data volunpedportional to the
available computing power. Therefore one needs learniggrithms that scale
roughly linearly with the total volume of data.

e Artificial intelligence attempts to emulate the cognitiapebilities of human be-
ings. Our biological brains can learn quite efficiently fréme continuous streams
of perceptual data generated by our six senses, using diraiteunts of sugar as
a source of power. This observation suggests that thereeargihg algorithms
whose computing time requirements scale roughly lineait the total volume
of data.

This contribution finds its source in the idea that approt@maptimization algo-
rithms might be sufficient for learning purposes. The first paoposes new decompo-
sition of the test error where an additional term represt#rgsmpact of approximate
optimization. In the case of small-scale learning problgiis decomposition reduces to
the well known tradeoff between approximation error anahestion error. In the case of

large-scale learning problems, the tradeoff is more coxipéeause it involves the com-
putational complexity of the learning algorithm. The setqrart explores the asymp-
totic properties of the large-scale learning tradeoff farious prototypical learning al-
gorithms under various assumptions regarding the statlststimation rates associated
with the chosen objective functions. This part clearly shthat the best optimization al-
gorithms are not necessarily the best learning algoritiviagbe more surprisingly, cer-
tain algorithms perform well regardless of the assumedfoatthe statistical estimation
error. Finally, the final part presents some experimentalits.

1. Approximate Optimization

Following [6,2], we consider a space of input-output péirsy) € X x) endowed with
a probability distributionP(x, y). The conditional distributio®(y|z) represents the un-
known relationship between inputs and outputs. The discrepbetween the predicted
outputgy and the real outpuj is measured with a loss functidi(yj, y). Our benchmark
is the functionf* that minimizes the expected risk

B(f) = / 0(f(2),y) dP(z,y) = E [((f(2).9)),
that is,

F* () = arg minE [€(7,)| o).

Y

Although the distributionP(x, y) is unknown, we are given a sampfeof » indepen-
dently drawn training examplés:;, y;), i = 1...n. We define the empirical risk

Fa(f) =+ 3247 w),w0) = Ealt(f(@),)
i=1

Ouir first learning principle consists in choosing a fandthof candidate prediction func-
tions and finding the functiorf, = argmin . E,(f) that minimizes the empirical
risk. Well known combinatorial results (e.g., [2]) suppthis approach provided that
the chosen familyF is sufficiently restrictive. Since the optimal functighi is unlikely
to belong to the familyF, we also defingf; = argmin;c» E(f). For simplicity, we
assume thaf*, fx andf, are well defined and unique.

We can then decompose the excess error as

E[E(f.) — E(f7)] = E[E(fr) - E(f")] + E[E(fa) — E(fF)]
= Eapp + Eest

; @

where the expectation is taken with respect to the randoncetuod training set. Thap-
proximation error&,,, measures how closely functionsfican approximate the opti-
mal solutionf*. Theestimation errorE.s; measures the effect of minimizing the empir-
ical risk E,,(f) instead of the expected ridk(). The estimation error is determined by
the number of training examples and by the capacity of théyashfunctions [2]. Large

families' of functions havesmaller approximation errorut lead tohigher estimation

errors. This tradeoff has been extensively discussed in the litezg2,3] and lead to
excess error that scale between the inverse and the invggrasesroot of the number of
examples [7,8].

1.1. Optimization Error

Finding f,, by minimizing the empirical risk,,(f) is often a computationally expen-
sive operation. Since the empirical rigk,(f) is already an approximation of the ex-
pected riskE(f), it should not be necessary to carry out this minimizatiothwireat
accuracy. For instance, we could stop an iterative optiticizalgorithm long before its
convergence.

Let us assume that our minimization algorithm returns an@pmate solutionf,,
that minimizes the objective function up to a predefinedrtoieep > 0.

En(fn) < En(fn) +p

We can then decompose the excess efrerE[E(f,,) — E(f*)] as

€ = E[BE(fr) - E(f)] + E[E(fa) - E(f¥)] + E[E(fa) - E(f2)]
= Eapp + gest + gopt .

@

We call the additional ternf,, the optimization error It reflects the impact of the ap-
proximate optimization on the generalization performamisemagnitude is comparable
to p (see section 2.1.)

1.2. The Approximation—Estimation—Optimization Trafleof

This decomposition leads to a more complicated comprorttiseiolves three variables
and two constraints. The constraints are the maximal nuoflarailable training exam-
ple and the maximal computation time. The variables areitteeas the family of func-
tions F, the optimization accuragy, and the number of examples This is formalized
by the following optimization problem.

n < Nmax

min & = Eypp + Eest + Eopt SUDjECE to{ T(F, p,n) < Tomme 3)

F.p;n

The numbem of training examples is a variable because we could choogsg@nly a
subset of the available training examples in order to cotaples optimization within the
alloted time. This happens often in practice. Table 1 surirasitthe typical evolution of
the quantities of interest with the three variahfésn, andp increase.

The solution of the optimization program (3) depends alticof which budget
constraint is active: constraint < n,,,, on the number of examples, or constradihk
Tmax ON the training time.

Iwe often consider nested families of functions of the fdfm= {f € H, Q(f) < c}. Then, for each
value ofe, function f,, is obtained by minimizing the regularized empirical ri8k () + AQ(f) for a suitable
choice of the Lagrange coefficieAt We can then control the estimation-approximation tradepfthmoosing
A instead of.

Table 1. Typical variations wheiF, n, andp increase.

F n p
Eapp (approximation error) ™\
Eest (estimation error) N\
Eopt (optimizationerror) .-+ ...
T (computation time) S N\

e \We speak obmall-scale learning problemwhen (3) is constrained by the maxi-
mal number of examples,,.,. Since the computing time is not limited, we can
reduce the optimization errég,,, to insignificant levels by choosingarbitrarily
small. The excess error is then dominated by the approxamatnd estimation
errors,Eapp aNdEes;. Takingn = nmayx, We recover the approximation-estimation
tradeoff that is the object of abundant literature.

e We speak ofarge-scale learning problerwhen (3) is constrained by the max-
imal computing timeT ... Approximate optimization, that is choosipg> 0,
possibly can achieve better generalization because mairény examples can
be processed during the allowed time. The specifics depettteaomputational
properties of the chosen optimization algorithm through #xpression of the
computing timeT'(F, p, n).

2. The Asymptoticsof Large-scale Learning

In the previous section, we have extended the classicabajppation-estimation trade-
off by taking into account the optimization error. We haveegi an objective criterion to
distiguish small-scale and large-scale learning problémthe small-scale case, we re-
cover the classical tradeoff between approximation arichatibn. The large-scale case
is substantially different because it involves the comtioital complexity of the learning
algorithm. In order to clarify the large-scale learningdaff with sufficient generality,
this section makes several simplifications:

e We are studying upper bounds of the approximation, esttmaind optimiza-
tion errors (2). It is often accepted that these upper bognasa realistic idea
of the actual convergence rates [9,10,11,12]. Another wdint comfort in this
approach is to say that we study guaranteed convergensdmatead of the pos-
sibly pathological special cases.

e We are studying the asymptotic properties of the tradeoffmtie problem size
increases. Instead of carefully balancing the three tesmsyrite€ = O(E,pp) +
O(&est) + O(Eopt) and only need to ensure that the three terms decrease with the
same asymptotic rate.

e We are considering a fixed family of functiofiSand therefore avoid taking into
account the approximation errék,,,. This part of the tradeoff covers a wide
spectrum of practical realities such as choosing modelscandsing features.
In the context of this work, we do not believe we can meaniligfddress this
without discussing, for instance, the thorny issue of featielection. Instead we
focus on the choice of optimization algorithm.

e Finally, in order to keep this paper short, we consider thafamily of functions
F is linearly parametrized by a vectar € R¢. We also assume that y andw

are bounded, ensuring that there is a constant B sucld that(f,,(z),y) < B
and/(-,y) is Lipschitz.

We first explain how the uniform convergence bounds providerergence rates that
take the optimization error into account. Then we discuss@mpare the asymptotic
learning properties of several optimization algorithms.

2.1. Convergence of the Estimation and Optimization Errors

The optimization erro€,,; depends directly on the optimization accuracyHowever,
the accuracy involves the empirical quantitg,, (f,,) — E,(f,), whereas the optimiza-
tion error&,,; involves its expected counterpdi(f,,) — E(f,.). This section discusses
the impact on the optimization erréj,, and of the optimization accuragyon general-
ization bounds that leverage the uniform convergence quagioneered by Vapnik and
Chervonenkis (e.g., [2].)

In this discussion, we use the letteto refer to any positive constant. Multiple oc-
curences of the letterdo not necessarily imply that the constants have identilales.

2.1.1. Simple Uniform Convergence Bounds

Recall that we assume thétis linearly parametrized by € R<. Elementary uniform
convergence results then state that

B sup |E(f) - B < @ ,

where the expectation is taken with respect to the randoneelodthe training set.This
result immediately provides a bound on the estimation error

Eost =E [(E(fn) = En(fn)) + (En(fn) — En(f7)) + (En(f7) — E(f7))]

<2E suplE(f)*En(f)\} < o/t
feF n

This same result also provides a combined bound for the a8timand optimization
errors:

Eest + Eopt = E[E(fn) = En(fa)] +E[En(fn) — En(fa)]
+ E[En(fa) = En(f)] + E[En(fF) - E(fF)]

d d d
<cy/ = Ve = 2.
<c n+p+0+c o C<p+ n)

Unfortunately, this convergence rate is known to be pessicrin many important cases.
More sophisticated bounds are required.

2Although the original Vapnik-Chervonenkis bounds haveftiren ¢, / % log %, the logarithmic term can
be eliminated using the “chaining” technique (e.g., [10].)

2.1.2. Faster Rates in the Realizable Case

When the loss functiong(j, y) is positive, with probabilityl — e~ for anyr > 0,
relative uniform convergence bounds state that

E(f) = En(f) d, n. 7T

This result is very useful because it provides faster cageme rate® (log n/n) in the
realizable casgethat is whent(f,(z;),y;) = 0 for all training examplegx;,y;). We

have then®,,(f,,) = 0, En(fn) < p, and we can write

E(fn)—ﬂécmm,

Viewing this as a second degree polynomial inequality inalde /E(fn), we obtain

~ d n T
W) <clp+=log=+).
E(f)_c(p nlOgd n)

Integrating this inequality using a standard technique,(sey., [13]), we obtain a better
convergence rate of the combined estimation and optinoizatiror:

Eest + Eomt = E[E(fa) — E(f7)] <E[B(f)] =¢ (p + Do g) .

2.1.3. Fast Rate Bounds

Many authors (e.g., [10,4,12]) obtain fast statisticalnestion rates in more general
conditions. These bounds have the general form

@ 1
&m+&ﬁgc<gm+<ibgg) mragagl. 4)

This result holds when one can establish the following vexgacondition:

21

@

vrer B[O -ax)] <o (B0-E) @

The convergence rate of (4) is described by the exponemhich is determined by the
quality of the variance bound (5). Works on fast statistestimation identify two main
ways to establish such a variance condition.

e Exploiting the strict convexity of certain loss functionk2] theorem 12]. For
instance, Lee etal. [14] establish @(logn/n) rate using the squared loss
UG,y) = (9 —y)*

e Making assumptions on the data distribution. In the caseatttm recognition
problems, for instance, the “Tsybakov condition” indicakew cleanly the pos-
terior distributionsP(y|x) cross near the optimal decision boundary [11,12]. The
realizable case discussed in section 2.1.2 can be viewed asti@me case of
this.

Despite their much greater complexity, fast rate estimmat@sults can accomodate
the optimization accuracy using essentially the methods illustrated in sectionsl2.1.
and 2.1.2. We then obtain a bound of the form

€ =+ Eoi + o =B [B() - B <&+ (D106) 40) . ®)

For instance, a general result with= 1 is provided by Massart [13, theorem 4.2]. Com-
bining this result with standard bounds on the complexitglagses of linear functions
(e.g., [10Q]) yields the following result:

. i d

€ = b+ Eoi t o =B [B() - B e (&t Dlog b4). @)
See also [15,4] for more bounds taking into account the apéition accuracy.
2.2. Gradient Optimization Algorithms

We now discuss and compare the asymptotic learning pregeofifour gradient opti-
mization algorithms. Recall that the family of functidh is linearly parametrized by
w € RY, Let w’ andw,, correspond to the functiong: and f,, defined in section 1. In
this section, we assume that the functians- ¢(f,,(x), y) are convex and twice differ-
entiable with continuous second derivatives. Convexitsuees that the empirical const
functionC(w) = E,(fw) has a single minimum.

Two matrices play an important role in the analysis: the Kesmatrix H and the
gradient covariance matri%, both measured at the empirical optimum.

6k, (@) (Mfenioh) H | ©)

The relation between these two matrices depends on therchassefunction. In order to
summarize them, we assume that there are conskgnts> A\, > 0 andr > 0 such
that, for any; > 0, we can choose the number of exampidarge enough to ensure that
the following assertion is true with probability greateatil — 7 :

tr(G Hil) <v and EigenSpectrum(H) C [Amin 5 Amax) (10)

The condition numbek = Anax/Amin IS @ good indicator of the difficulty of the opti-
mization [16].

The condition\,;, > 0 avoids complications with stochastic gradient algorithms
Note that this condition only implies strict convexity anslithe optimum. For in-
stance, consider the loss functibis obtained by smoothing the well known hinge loss
{(z,y) = max{0,1—yz} in a small neighborhood of its non-differentiable pointsne-
tion C'(w) is then piecewise linear with smoothed edges and vertités.not strictly
convex. However its minimum is likely to be on a smoothedesestith a non singular
Hessian. When we have strict convexity, the argument of [i€orem 12] yields fast
estimation ratea = 1 in (4) and (6). This is not necessarily the case here.

The four algorithm considered in this paper use informatibout the gradient of
the cost function to iteratively update their current estiea(¢) of the parameter vector.

e Gradient Descent (GD) iterates

w(t 1) = wi) o0 (w(t)) = w Z 2oty). 30)

wheren > 0 is a small enough gain. GD is an algorithm with linear conver-
gence [16]. Whem = 1/\nax, this algorithm require®(x log(1/p)) iterations

to reach accuracy. The exact number of iterations depends on the choice of the
initial parameter vector.

e Second Order Gradient Descent (2GD) iterates

w(t+1) = wit) ~ B 00 (w(t) = w —lez Futy i)o)

where matrixd —! is the inverse of the Hessian matrix (8). This is more favigrab
than Newton’s algorithm because we do not evaluate the ldeakian at each
iteration but simply assume that we know in advance the ldasdithe optimum.
2GD is a superlinear optimization algorithm with quadratanvergence [16].
When the cost is quadratic, a single iteration is sufficiemtthie general case,
O(loglog(1/p)) iterations are required to reach accuracy

e Stochastic Gradient Descent (SGD) picks a random training examp(e;, y;) at
each iteration and updates the paramet®en the basis of this example only,

w(t+1) = wlt) = Tt) 1)

Murata [17, section 2.2], characterizes the mBgjw(t)] and varianc&ar s [w(t)]
with respect to the distribution implied by the random ex@apmrawn from the
training setS at each iteration. Applying this result to the discretertirag set dis-
tribution forn = 1/A\yin, We havedw(t)? = O(1/t) wheredw(t) is a shorthand
notation forw(t) — w,.
We can then write
Es[C(w(t)) — inf C] = Es [tr(H dw(t) sw(t)')] +o(2)
= tr (H Es[6w(t)] Es[6w(t)]’ + H Vars[w(t)]) 4+ o(})
<G po(h) < 4 vo(l).
11)
Therefore the SGD algorithm reaches accuraayter less thamr?/p + o(1/p)
iterations on average. The SGD convergence is essentialtgdl by the stochas-
tic noise induced by the random choice of one example at ¢acdtion. Neither
the initial value of the parameter vector nor the total number of examples
appear in the dominant term of this bound! When the trainirigsskarge, one
could reach the desired accurgeyneasured on the whole training set without
even visiting all the training examples. This is in fact akiof generalization
bound.

Table2. Asymptotic results for gradient algorithms (with probalillf). Compare the second last column
(time to optimize) with the last column (time to reach the excessérrore).
Legend n number of exampleg] parameter dimensiom;, v see equation (10).

Algorithm Cost of one Iterations Timetoreach Timetoreach
iteration toreach p accuracy p E < c(Eapp +¢)
GD O(nd) O((rlog) O (ndrlog 1) o(L5067 1)
2GD O(d2 + nd) O(log log %) O((d2 + nd) log log %) O (Ef% log % log log %)
S6D oW ao(3) o(*) o(#£%)

The first three columns of table 2 report for each algorithentime for a single
iteration, the number of iterations needed to reach a prestefaccuracy, and their
product, the time needed to reach accuracyhese asymptotic results are valid with
probability 1, since the probability of their complement is smaller thyeor anyn > 0.

The fourth column bounds the time necessary to reduce thess)arroil€ below
¢ (Eapp + €) Wherec is the constant from (6). This is computed by observing thabs-
ing p ~ (£1og 2)® in (6) achieves the fastest rate fgrwith minimal computation time.
We can then use the asymptotic equivalences: andn ~ 61‘}“ log L . Setting the fourth
column expressions t&,,,, and solving fore yields thebest excess error achieved by
each algorithmwithin the limited timeT,,,.x . This provides the asymptotic solution of
the Estimation—Optimization tradeoff (3) for large scaletpems satisfying our assump-
tions.

These results clearly show that the generalization pedooa oflarge-scale learn-
ing systemslepends on both the statistical properties of the estimatiocedure and the
computational properties of the chosen optimization étigor. Their combination leads
to surprising consequences:

e The SGD result does not depend on the estimationaaihen the estimation
rate is poor, there is less need to optimize accurately. [Eases time to process
more examples. A potentially more useful interpretatioretages the fact that
(11) is already a kind of generalization bound: its fast taieps the slower rate
assumed for the estimation error.

e Superlinear optimization brings little asymptotical impements irz. Although
the superlinear 2GD algorithm improves the logarithmiotehe learning perfor-
mance of all these algorithms is dominated by the polynotarah in(1/¢). This
explains why improving the constanisx andv using preconditioning methods
and sensible software engineering often proves more aféetttan switching to
more sophisticated optimization techniques [18].

e The SGD algorithm yields the best generalization perforceatespite being the
worst optimization algorithmThis had been described before [19] in the case of
a second order stochastic gradient descent and observepliariments.

In contrast, since the optimization err8g,; of small-scale learning systentan be
reduced to insignificant levels, their generalization perfance is solely determined by
the statistical properties of their estimation procedure.

Table 3. Results with linear SVM on the RCV1 dataset.

Model Algorithm Training Time Objective Test Error
_ B SVMLight 23,642 secs 0.2275 6.02%
Hinge loss, A = 10 SVMPerf 66secs 0.2278 6.03%
See [21,22].
SGD 1.4 secs 0.2275 6.02%
o s LibLinear (p = 10~2) 30 secs 0.18907 5.68%
;‘;%'S[;g]'oss')‘ =10 LibLinear (o = 10-3) 44secs 0.18890 5.70%
' SGD 23secs 0.18893 5.66%

0.25 5 Testing loss
Testing loss
CONJUGATE GRADIENTS
0.20 0.4 1 \ 1 1
n=10000 | n=100000 \ n=781265

n=30000

0.35
Training time (secs)
0.3
100

0.25

50 0.2

LibLinear 0.15

0.1
01 0.01 0001 0.0001 1e-05 1e-06 1e-07 1e-08 le-09 0.001 0.01 0.1 1 10 100 1000
Optimization accuracy (trainingCost-optimalTrainingCost) Training time (secs)

Figure 1. Training time and testing loss as aFigure 2. Testing loss versus training time for
function of the optimization accuragyfor SGD SGD, and for Conjugate Gradients running on
and LibLinear [23]. subsets of the training set.

3. Experiments

This section empirically compares the SGD algorithm withentoptimization algorithms
on a well-known text categorization task, the classificatdd documents belonging to
theccAT category in the RCV1-v2 dataset [20]. Refehta p: / /| eon. bot t ou. or g/
proj ect s/ sgd for source code and for additional experiments that coutdihim this
paper because of space constraints.

In order to collect a large training set, we swap the RCV1-igial training and
test sets. The resulting training sets and testing setaicor®1,265 and 23,149 examples
respectively. The 47,152 TF/IDF features were recomputetti® basis of this new split.
We use a simple linear model with the usual hinge loss SVMativge function

min C(w,b) = ALl

1i 5 + - iﬁ(yt(th +b)) with ¢(z) = max{0,1 — z}.

=1

The first two rows of table 3 replicate earlier results [21Joded for the same data and
the same value of the hyper-parameter
The third row of table 3 reports results obtained with the Stigorithm

oy (wzy + b . 1
Wyg1 = Wy — 1 (/\er(yt(awt))> with nt:m.

The biasb is updated similarly. Since is a lower bound of the smallest eigenvalue of
the hessian, our choice of gainsapproximates the optimal schedule (see section 2.2).

The offsett, was chosen to ensure that the initial gain is comparable tivélexpected
size of the parametes. The results clearly indicate that SGD offers a good altara#o
the usual SVM solvers. Comparable results were obtaine2lijusing an algorithm that
essentially amounts to a stochastic gradient corrected opjaction step. Our results
indicates that the projection step is not an essential comtoof this performance.

Table 3 also reports results obtained with the logistic k§s$ = log(1 + e~ *) in
order to avoid the issues related to the nondifferentighili the hinge loss. Note that this
experiment uses a much better value XoOur comparison points were obtained with a
state-of-the-art superlinear optimizer [23], for two \@dLof the optimization accuragy
Yet the very simple SGD algorithm learns faster.

Figure 1 shows how much time each algorithm takes to reactem giptimization
accuracy. The superlinear algorithm reaches the optimutin $6 digits of accuracy
in less than one minute. The stochastic gradient starts opaickly but is unable to
deliver such a high accuracy. However the upper part of thediglearly shows that the
testing set loss stops decreasing long before the momeméwiesuperlinear algorithm
overcomes the stochastic gradient.

Figure 2 shows how the testing loss evolves with the traitiimg. The stochastic
gradient descent curve can be compared with the curvesneldtaising conjugate gra-
dients on subsets of the training examples with increasing sizesue for instance
that our computing time budget is 1 second. Running the gatgugradient algorithm
on arandom subset of 30000 training examples achieves alpetiteln performance than
running it on the whole training set. How to guess the rights&t size a priori remains
unclear. Meanwhile running the SGD algorithm on the fulirtiag set reaches the same
testing set performance much faster.

4, Conclusion

Taking in account budget constraints on both the number afgtes and the compu-
tation time, we findqualitative difference®etween the generalization performance of
small-scale learning systems and large-scale learningrags The generalization prop-
erties of large-scale learning systems depend on both dkist&tal properties of the es-
timation procedure and the computational properties obfstemization algorithm. We
illustrate this fact by deriving asymptotic results on desd algorithms supported by an
experimental validation.

Considerable refinements of this framework can be expeEte¢dnding the analysis
to regularized risk formulations would make results on tbenplexity of primal and
dual optimization algorithms [21,24] directly exploitablThe choice of surrogate loss
function [7,12] could also have a non-trivial impact in thege-scale case.

Acknowledgments

Part of this work was funded by NSF grant CCR-0325463.

3This experimental setup was suggested by Olivier Chapetiesgmal communication). His specialized
variant of the conjugate gradients algorithm works nicelythis context because it converges superlinearly
with very limited overhead.

References

(1]
[2]

[3]
[4]
[5]

(6]
(71

[8]

[9]
(10]
(11]
(12]
(13]
(14]

(15]

(16]
(17]
(18]

(19]

(20]
[21]

(22]

(23]

[24]

Leslie G. Valiant. A theory of learnabldlroc. of the 1984 STO(ages 436-445, 1984.

Vladimir N. Vapnik. Estimation of Dependences Based on Empirical Dåer Series in Statistics.
Springer-Verlag, Berlin, 1982.

Stéphane Boucheron, Olivier Bousquet, and Gabor LugBiseory of classification: a survey of recent
advancesESAIM: Probability and Statistic®:323-375, 2005.

Peter L. Bartlett and Shahar Mendelson. Empirical minimiaza Probability Theory and Related
Fields 135(3):311-334, 2006.

J. Stephen Judd. On the complexity of loading shallow akenetworks. Journal of Complexity
4(3):177-192, 1988.

Richard O. Duda and Peter E. HaRattern Classification And Scene Analy3aigiley and Son, 1973.
Tong Zhang. Statistical behavior and consistency ofsifaecation methods based on convex risk mini-
mization. The Annals of Statistic82:56—85, 2004.

Clint Scovel and Ingo Steinwart. Fast rates for supperter machines. In Peter Auer and Ron Meir,
editors,Proceedings of the 18th Conference on Learning Theory (CZU0B) volume 3559 ot ecture
Notes in Computer Sciengeages 279-294, Bertinoro, Italy, June 2005. Springelager

Vladimir N. Vapnik, Esther Levin, and Yann LeCun. Measwithe VC-dimension of a learning ma-
chine. Neural Computation6(5):851-876, 1994.

Olivier Bousquet.Concentration Inequalities and Empirical Processes Thefgpplied to the Analysis
of Learning AlgorithmsPhD thesis, Ecole Polytechnique, 2002.

Alexandre B. Tsybakov. Optimal aggregation of classsfia statistical learningAnnals of Statististics
32(1), 2004.

Peter L. Bartlett, Michael I. Jordan, and Jon D. McAfgif Convexity, classification and risk bounds.
Journal of the American Statistical Associatjdi®1(473):138-156, March 2006.

Pascal Massart. Some applications of concentratioouialities to statisticsAnnales de la Faculté des
Sciences de Toulouseeries 6, 9(2):245-303, 2000.

Wee S. Lee, Peter L. Bartlett, and Robert C. Williamsohe Tmportance of convexity in learning with
squared losslEEE Transactions on Information Theo®4(5):1974-1980, 1998.

Shahar Mendelson. A few notes on statistical learnivepty. In Shahar Mendelson and Alexander J.
Smola, editorsAdvanced Lectures in Machine Learnjnglume 2600 of_ecture Notes in Computer
Sciencepages 1-40. Springer-Verlag, Berlin, 2003.

John E. Dennis, Jr. and Robert B. Schnaldéimerical Methods For Unconstrained Optimization and
Nonlinear EquationsPrentice-Hall, Inc., Englewood Cliffs, New Jersey, 1983.

Noboru Murata. A statistical study of on-line learningn David Saad, editoiOnline Learning and
Neural NetworksCambridge University Press, Cambridge, UK, 1998.

Yann Le Cun, Léon Bottou, Genevieve B. Orr, and Klaub&oMiiller. Efficient backprop. INeural
Networks, Tricks of the Tradé&ecture Notes in Computer Science LNCS 1524. Springer yella98.
Léon Bottou and Yann Le Cun. Large scale online learnigSebastian Thrun, Lawrence K. Saul,
and Bernhard Scholkopf, editoradvances in Neural Information Processing SystemsVIl§ Press,
Cambridge, MA, 2004.

David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. RC\Wlnew benchmark collection for text
categorization researcfiournal of Machine Learning Reseatc361-397, 2004.

Thorsten Joachims. Training linear SVMs in linear time. Proceedings of the 12th ACM SIGKDD
International ConferengePhiladelphia, PA, August 2006. ACM Press.

Shai Shalev-Shwartz, Yoram Singer, and Nathan SrePegasos: Primal estimated subgradient solver
for SVM. In Zoubin Ghahramani, editoRroceedings of the 24th International Machine Learning
Conferencegpages 807-814, Corvallis, OR, June 2007. ACM.

Chih-Jen Lin, Ruby C. Weng, and S. Sathiya Keerthi. Tregion newton methods for large-scale logis-
tic regression. In Zoubin Ghahramani, editerpceedings of the 24th International Machine Learning
Conferencepages 561-568, Corvallis, OR, June 2007. ACM.

Don Hush, Patrick Kelly, Clint Scovel, and Ingo SteimvaQP algorithms with guaranteed accuracy
and run time for support vector machindsurnal of Machine Learning Researcti733-769, 2006.

